WorldWideScience

Sample records for water-cooled reactor concepts

  1. Reactor core and plant design concepts of the Canadian supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Bailey, J.; Rhodes, D.; Guzonas, D.; Hamilton, H.; Haque, Z.; Pencer, J.; Sartipi, A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada is developing a 1200 MWe supercritical water-cooled reactor (SCWR), which has evolved from the well-established pressure-tube type CANDU{sup 1} reactor. This SCWR reactor concept, which is often referred to as the Canadian SCWR, uses supercritical water as a coolant, has a low-pressure heavy water moderator and a direct cycle for power production. The reactor concept incorporates advanced safety features, such as passive emergency core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce the core damage frequency beyond existing nuclear reactors. This paper presents a description of the Canadian SCWR core design concept, the integration of in-core and out-of-core components and the mechanical plant design concept. Supporting systems for reactor safety, reactor control and moderator cooling are also described. (author)

  2. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    OpenAIRE

    Shirvan, Koroush; Kazimi, Mujid

    2016-01-01

    A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and ...

  3. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available A novel fully passive small modular superheated water reactor (SWR for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF. The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

  4. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  5. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Conley, G.H.; Cowell, G.K.; Detrick, C.A.; Kusenko, J.; Johnson, E.G.; Dunyak, J.; Flanery, B.K.; Shinko, M.S.; Giffen, R.H.; Rampolla, D.S.

    1979-12-01

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used.

  6. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  7. Steam-Reheat Option for Supercritical-Water-Cooled Reactors

    Science.gov (United States)

    Saltanov, Eugene

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. Main objectives of the development are to increase thermal efficiency of a Nuclear Power Plant (NPP) and to decrease capital and operational costs. The first objective can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative feedwater heaters. The second objective can be achieved by designing a steam cycle that closely matches that of the mature supercritical fossil-fuelled power plants. The feasibility of these objectives is discussed. As a part of this discussion, heat-transfer calculations have been performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels of the proposed reactor concept. In the calculations a uniform and three non-uniform Axial Heat Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO 2, MOX, UC2, UC, and UN) and at average and maximum channel power. Bulk-fluid, sheath, and fuel centerline temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the fuel-channel length. The HTC values are within a range of 4.7--20 kW/m2·K and 9.7--10 kW/m2·K for the SCW and SHS channels respectively. The main conclusion is that while all the mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW channel, because their fuel centerline temperatures are at least 1000°C below melting point, while that of UO2, ThO2 , and MOX may reach melting point.

  8. Recent results of research on supercritical water-cooled reactors in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Koehly, C.; Schulenberg, T. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Toivonen, A.; Penttila, S. [VTT Technical Research Centre, Espoo (Finland); Chandra, L.; Lycklama a Nijeholt, J.A. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2009-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. The recent design of the HPLWR including flow paths is described in this paper. Exemplarily, design analyses are presented addressing neutronics, thermal-hydraulics, thermo-mechanics, materials investigations and heat transfer. (author)

  9. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of fuel and claddings during accident are still below limitations which are in secure condition.

  10. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  11. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K. [Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Aksan, S. N. [International Atomic Energy Agency, 1400 Vienna (Austria)

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  12. Draft layout, containment and performance of the safety system of the European Supercritical Water-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schlagenhaufer, M.; Kohly, C.; Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Rothschmitt, S.; Bittermann, D. [AREVA NP GmbH, Erlangen (Germany)

    2010-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. Close to the end of the project the technical results are translated into a draft layout of the HPLWR. The containment and safety system are being explained. Exemplarily, a depressurization event shows the capabilities of the safety system to sufficiently cool the reactor by means of a low pressure coolant injection system. (author)

  13. Design of a supercritical water-cooled reactor with a three-pass core arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K. [EnBW Kernkraft GmbH, Kernkraftwerk Philippsburg, D-76661 Philippsburg (Germany)], E-mail: kai-fischer@gmx.de; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany); Laurien, E. [University of Stuttgart, Institute for Nuclear and Energy Systems (IKE), Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2009-04-15

    The Supercritical Water-cooled Reactor (SCWR) is one of the six concepts of the Generation IV International Forum. In Europe, investigations have been integrated into a joint research project, called High Performance Light Water Reactor (HPLWR). Due to the higher heat up within the core and a higher outlet temperature, a significant increase in turbine power and thermal efficiency of the plant can be expected. Besides the higher pressure and higher steam temperature, the design concept of this type of reactor differs significantly from a conventional LWR by a different core concept. In order to achieve the high outlet temperature of over 500 deg. C, a core with a three-step heat up and intermediate mixing is proposed to keep local cladding temperatures within today's material limits. A design for the reactor pressure vessel (RPV) and the internals has been worked out to incorporate a core arrangement with three passes. All components have been dimensioned following the safety standards of the nuclear safety standards commission in Germany. Additionally, a fuel assembly cluster with head and foot piece has been developed to facilitate the complex flow path for the multi-pass concept. The design of the internals and of the RPV is verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Furthermore, the reactor design ensures that the total coolant flow path remains closed against leakage of colder moderator water even in case of large thermal expansions of the components. The design of the RPV and internals is now available for detailed analyses of the core and the reactor.

  14. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power reactors...

  15. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  16. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  17. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  18. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  19. Cooling performance of a water-cooling panel system for modular high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Shoji; Suzuki, Kunihiko; Inagaki, Yoshiyuki; Sudo, Yukio [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1995-12-31

    Experiments on a water cooling panel system were performed to investigate its heat removal performance and the temperature distribution of components for a modular high-temperature gas-cooled reactor (MHTGR). The analytical code THANPACST2 was applied to analyze the experimental results to verify the validity of the analytical method and the model.

  20. Design guide for category II reactors light and heavy water cooled reactors. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems.

  1. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    Science.gov (United States)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  2. Scientific-technical cooperation with Russia. Transient analyses for alternative types of water-cooled reactors. Final report; WTZ mit Russland. Transientenanalysen fuer wassergekuehlte Kernreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich [Forschungszentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung; Kozmenkov, Yaroslav [Forschungszentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung; Institute of Physics and Power Engineering, Obninsk (Russian Federation); Pivovarov, Valeri; Matveev, Yurij [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2010-12-15

    The recently developed multi-group version DYN3D-MG of the reactor dynamics code DYN3D has been qualified for applications to water-cooled reactor concepts different from industrial PWR and BWR. An extended DYN3D version was applied to the graphite-moderated pressure tube reactor EGP-6 (NPP Bilibino) and conceptual design studies of an advanced Boiling Water Reactor with reduced moderation (RMWR) as well as the RUTA-70 reactor for low temperature heat supply. Concerning the RUTA reactor, safe heat removal by natural circulation of the coolant at low pressure has to be shown. For the corresponding validation of thermo-hydraulic system codes like ATHLET and RELAP5, experiments on flashing-induced natural circulation instabilities performed at the CIRCUS test facility at the TU Delft were simulated using the RELAP5 code. For the application to alternative water-cooled reactors, DYN3D model extensions and modifications were implemented, in particular adaptations of heat conduction and heat transfer models. Performing code-to-code comparisons with the Russian fine-mesh neutron diffusion code ACADEM contributed to the verification of DYN3D-MG. Validation has been performed by calculating reactor dynamics experiments at the NPP Bilibino. For the reactors EGP-6, RMWR and RUTA, analyses of various protected and unprotected control rod withdrawal and ejection transients were performed. The beyond design basis accident (BDBA) scenario ''Coast-down of all main coolant pumps at nominal power without scram'' for the RUTA reactor was analyzed using the code complexes DYN3D/ATHLET and DYN3D/RELAP5. It was shown, that the reactor passes over to a save asymptotic state at reduced power with coolant natural circulation. Analyzing the BDBA ''Unprotected withdrawal of a control rod group'' for the RMWR, the safety against Departure from Nucleate Boiling (DNB) could not be shown with the necessary confidence. Finally, conclusions have been drawn

  3. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  4. Physical aspects of the Canadian generation IV supercritical water-cooled pressure tube reactor plant design

    Energy Technology Data Exchange (ETDEWEB)

    Gaudet, M.; Yetisir, M.; Haque, Z. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The form of the containment building is a function of the requirements imposed by various systems. In order to provide sufficient driving force for naturally-circulated emergency cooling systems, as well as providing a gravity-driven core flooding pool function, the Canadian SCWR reactor design relies on elevation differences between the reactor and the safety systems. These elevation differences, the required cooling pool volumes and the optimum layout of safety-related piping are major factors influencing the plant design. As a defence-in-depth, the containment building and safety systems also provide successive barriers to the unplanned release of radioactive materials, while providing a path for heat flow to the ultimate heat sink, the atmosphere. Access to the reactor for refuelling is from the top of the reactor, with water used as shielding during the refuelling operations. The accessibility to the reactor and protection of the environment are additional factors influencing the plant design. This paper describes the physical implementation of the major systems of the Canadian SCWR within the reactor building, and the position of major plant services relative to the reactor building. (author)

  5. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  6. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  7. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  8. Nuclear power station with a water-cooled reactor pressure vessel. Kernkraftwerk mit einem wassergekuehlten Reaktordruckbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, R.; Brunner, G.; Jost, N.

    1987-10-29

    Nuclear radiation produces radiolysis gases, which are undesirable for corrosion and oxyhydrogen gas reasons. To limit the proportion of this radiolysis gas, the invention provides that catalytic surfaces should be introduced into the primary circuit, to produce recombination of hydrogen and oxygen. These surfaces can be accommodated in the upper part of the reactor pressure vessel. The live steam screen can also have a catalytic surface.

  9. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  10. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  11. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Science.gov (United States)

    2010-01-01

    ...-Cooled Power Reactors J Appendix J to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. J Appendix J to Part 50—Primary Reactor Containment... basis accident and specified either in the technical specification or associated bases. J. Pt (p.s.i.g...

  12. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby; Urquidi-Macdonald, Mirna; Chen, Yingzi; Ai, Jiahe; Park, Pilyeon; Kim, Han-Sang

    2006-12-12

    Our work involved the continued development of the theory of passivity and passivity breakdown, in the form of the Point Defect Model, with emphasis on zirconium and zirconium alloys in reactor coolant environments, the measurement of critically-important parameters, and the development of a code that can be used by reactor operators to actively manage the accumulation of corrosion damage to the fuel cladding and other components in the heat transport circuits in both BWRs and PWRs. In addition, the modified boiling crevice model has been further developed to describe the accumulation of solutes in porous deposits (CRUD) on fuel under boiling (BWRs) and nucleate boiling (PWRs) conditions, in order to accurately describe the environment that is contact with the Zircaloy cladding. In the current report, we have derived expressions for the total steady-state current density and the partial anodic and cathodic current densities to establish a deterministic basis for describing Zircaloy oxidation. The models are “deterministic” because the relevant natural laws are satisfied explicitly, most importantly the conversation of mass and charge and the equivalence of mass and charge (Faraday’s law). Cathodic reactions (oxygen reduction and hydrogen evolution) are also included in the models, because there is evidence that they control the rate of the overall passive film formation process. Under open circuit conditions, the cathodic reactions, which must occur at the same rate as the zirconium oxidation reaction, are instrumental in determining the corrosion potential and hence the thickness of the barrier and outer layers of the passive film. Controlled hydrodynamic methods have been used to measure important parameters in the modified Point Defect Model (PDM), which is now being used to describe the growth and breakdown of the passive film on zirconium and on Zircaloy fuel sheathing in BWRs and PWRs coolant environments. The modified PDMs recognize the existence of a

  13. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    Information concerning the use of plutonium recycle in water cooled reactors is presented under the following chapter headings: probable adverse environmental effects that cannot be avoided; means for mitigating adverse environmental effects; alternative dispositions of plutonium; relationship between local short term uses of man's environment and the maintenance and enhancement of long term productivity; irreversible and irretrievable commitments of resources; and economic analysis and cost-benefit balancing.

  14. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  15. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  16. The preliminary thermal–hydraulic analysis of a water cooled blanket concept design based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanghuai; Peng, Changhong; Guo, Yun, E-mail: guoyun79@ustc.edu.cn

    2016-11-01

    Highlights: • The superheated steam and PWR schemes are analyzed by RELAP5 code. • The influence of non-uniform heating sources is include. • A supposed slow flow decrease case is discussed and the PWR scheme is better. - Abstract: Water cooled blanket (WCB) is very important in the conceptual design and energy transfer in future fusion power plant. One conceptual design of WCB is under computational testing. RELAP5 code, which is mature and often used in transient analysis in Pressurizer water reactor (PWR), is selected as the simulation tool. The complex inner flow channels and heat sources are simplified according to its thermal–hydraulic characteristics. Then the nodal model for REALP5 is built for approximating the conceptual design. Two typical operating plans, superheated steam scheme and PWR scheme, are analyzed. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions of both operation plans can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. At last, a supposed slow flow decreasing is discussed under two operating conditions separately. According to present results, the superheated steam scheme still needs to be further optimized. The PWR scheme shows a very good safety feature.

  17. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  18. Fuel composition optimization in a 78-element fuel bundle for use in a pressure tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, D.W.; Novog, D.R. [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO{sub 2} in ThO{sub 2}) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO{sub 2} (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)

  19. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  20. Study of the influence of temperature and time on the electroplating nickel layer in Inconel 718 strips used in spacer grid of Pressurized Water Cooled nuclear reactors (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Renato; Abati, Amanda; Verne, Júlio; Panossian, Zehbour, E-mail: amanda.abati@marinha.mil.br, E-mail: jvernegropp@gmail.com, E-mail: renato.rezende@marinha.mil.br, E-mail: zep@ipt.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil). Laboratório de Desenvolvimento e Instrumentação de Combustível Nuclear; Instituto de Pesquisas Tecnológicas (IPT), São Paulo, SP (Brazil)

    2017-07-01

    The Inconel 718 (UNS N07718: Ni-{sup 19}Cr-{sup 18}Fe-{sup 5}Nb-3 Mo) is a precipitation hardenable nickel alloy that has good corrosion resistance and high mechanical strength. These strips are used for assembling the spacer grid of fuel element of pressurized water cooled nuclear reactors (PWR). The spacer grid is a structural component of fundamental importance in fuel elements of PWR reactors, maintaining the position and necessary spacing of the fuel rods within the arrangement of the fuel element. The spacer grid is formed by joining the points of intersection of the strips, by a joint process called brazing. For this process, these strips are stamped and plated with a thin layer of nickel by means of electroplating in order to protect against oxidation and allow a better flowability and wettability of the addition metal in the strips during brazing. Oxidation at the surface of the base material harms wettability and inhibits spreading of the liquid addition metal on the substrate surface during the brazing process. The use of coatings such as nickel plating is used to ensure such conditions. The results showed that there is a process of diffusion de some chemical elements such as chromium, iron, titanium and aluminum from the substrate to the nickel layer and nickel from the layer to the substrate. These chemical elements are responsible for the oxidation at the surface of the strip. (author)

  1. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  2. STUDY OF WATER HAMMERS IN THE FILLING OF THE SYSTEM OF PRESSURE COMPENSATION IN THE WATER-COOLED AND WATER-MODERATED POWER REACTORS

    Directory of Open Access Journals (Sweden)

    A. V. Korolyev

    2017-01-01

    list of initial events of severe accidents at NPPs with a water-cooled and water-moderated power reactor can be expanded.

  3. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    implies, this reactor uses gas as the primary coolant . The coolant has a higher exit temperature when leaving the core than the PWR water 6 AFWL-TN-84...nuclear reactors, coolants must be used to ensure material components are not subject to failure due to the temperature exceeding melting points...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept

  4. Water-cooled lithium-lead box-shaped blanket concept for Demo: thermo-mechanical optimization and manufacturing sequence proposal

    Energy Technology Data Exchange (ETDEWEB)

    Baraer, L.; Dinot, N.; Giancarli, L.; Proust, E.; Salavy, J.F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Severi, Y.; Quintric-Bossy, J. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1992-12-31

    The development of the water-cooled lithium-lead box-shaped blanket concept for DEMO has now reached the stage of thermo-mechanical optimization. In the previous design phases the preliminary dimensioning of the cooling circuit has permitted to define the water proportions required in the breeder region and to demonstrate, after a minimization of steel proportion and thicknesses, that this concept could reach tritium breeding self-sufficiency. In the present analysis the location of the coolant pipes has been optimized for the whole equatorial plane cross-section of both inboard and outboard segments in order to maintain the maximum Pb-17Li/steel interface temperature below 480 deg C and to minimize the thermal gradients along the steel structures. The consequent thermo-mechanical analysis has shown that the thermal stresses always remain below the allowable limits. Segment fabricability and removal are the next design issues to be analyzed. Within this strategy, a first manufactury sequence for the outboard segment is proposed.

  5. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  6. Thermo-fluid analysis of water cooled research reactors in natural convection; Analise termofluidodinamica de reatores nucleares de pesquisa refrigerados a agua em regime de conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Maria Auxiliadora Fortini

    2004-07-01

    The STHIRP-1 computer program, which fundamentals are described in this work, uses the principles of the subchannels analysis and has the capacity to simulate, under steady state and transient conditions, the thermal and hydraulic phenomena which occur inside the core of a water-refrigerated research reactor under a natural convection regime. The models and empirical correlations necessary to describe the flow phenomena which can not be described by theoretical relations were selected according to the characteristics of the reactor operation. Although the primary objective is the calculation of research reactors, the formulation used to describe the fluid flow and the thermal conduction in the heater elements is sufficiently generalized to extend the use of the program for applications in power reactors and other thermal systems with the same features represented by the program formulations. To demonstrate the analytical capacity of STHIRP-l, there were made comparisons between the results calculated and measured in the research reactor TRIGA IPR-R1 of CDTN/CNEN. The comparisons indicate that the program reproduces the experimental data with good precision. Nevertheless, in the future there must be used more consistent experimental data to corroborate the validation of the program. (author)

  7. Study on improvement of reactor physics analysis method for FBRs with various core concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshihisa; Kitada, Takanori; Tagawa, Akihiro; Maruyama, Manabu; Takeda, Toshikazu [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    2000-02-01

    Investigation was made on the following three themes as a part of the improvement of reactor physics analysis method for FBR with various core concepts. Part 1: Investigation of Error Estimation of Neutron Spectra in FBR and Suggestions to Improve the Accuracy. In order to improve the spectrum unfolding method used in the fast experimental reactor JOYO, a trial was made to evaluate the error in the estimated neutron spectrum, cause by cause. And the evaluated errors were summed up to obtain the most probable and reasonable error as possible. The summed up error was found relatively small compared to the error caused by the uncertainty of cross section data: most of the error in the spectrum unfolding method can be attributed to the error in cross sections. It was also found that the error due to the fission spectrum causes a considerable error in the high energy neutron spectrum which is above several MeV. Part 2: Study on Reactor Physics Analysis Method for Gas-Cooled FBR. In gas-cooled FBR, the portion of coolant channels in core volume is larger than in sodium-cooled FBR. This leads to strong neutron streaming effects. For sodium-cooled FBR, several methods were proposed to evaluate the neutron streaming effect, however, these methods can not be used directly to gas-cooled reactor because the direction dependent diffusion coefficient becomes infinitive along the direction parallel to the coolant channel. In this study, a new method is proposed to evaluate the neutron streaming effect, based on the method taking the axial buckling into consideration, which method was originally proposed by Koehler. Part 3: Study on Reactor Physics Analysis Method for Water-Cooled FBR. An investigation was made on low-moderated water-cooled FBR, on the point that the ordinary used analysis method for FBR may give considerable difference in results in such a core. In light water cooled thermal reactors, it is well known that the space dependence of self-shielding effect of heavy

  8. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2005-01-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was

  9. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  10. User's instructions for ORCENT II: a digital computer program for the analysis of steam turbine cycles supplied by light-water-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, L.C.

    1979-02-01

    The ORCENT-II digital computer program will perform calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam characteristic of contemporary light-water reactors. Turbine performance calculations are based on a method published by the General Electric Company. Output includes all information normally shown on a turbine-cycle heat balance diagram. The program is written in FORTRAN IV for the IBM System 360 digital computers at the Oak Ridge National Laboratory.

  11. Analysis and evaluation of the Dual Fluid Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang

    2017-06-27

    The Dual Fluid Reactor is a molten salt fast reactor developed by IFK in Berlin based on the Gen-IV Molten-Salt Reactor concept and the Liquid-Metal Cooled Reactor. The design aims to combine these two concepts to improve these two concepts. The Dissertation focuses on the concept and performs diverse calculations and estimations on the subjects of neutron physics, depletion and thermal-hydraulic behaviors to validate the new features of the concept. Based on the results it is concluded that this concept is feasible to its desired purpose and with great potential.

  12. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  13. ASME Material Challenges for Advanced Reactor Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  14. New reactor concepts; Nieuwe rectorconcepten - nouveaux reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost.

  15. The concept of the innovative power reactor

    Directory of Open Access Journals (Sweden)

    Sang Won Lee

    2017-10-01

    Full Text Available The Fukushima accident reveals the vulnerability of existing active nuclear power plant (NPP design against prolonged loss of external electricity events. The passive safety system is considered an attractive alternative to cope with this kind of disaster. Also, the passive safety system enhances both the safety and the economics of NPPs. The adoption of a passive safety system reduces the number of active components and can minimize the construction cost of NPPs. In this paper, reflecting on the experience during the development of the APR+ design in Korea, we propose the concept of an innovative Power Reactor (iPower, which is a kind of passive NPP, to enhance safety in a revolutionary manner. The ultimate goal of iPower is to confirm the feasibility of practically eliminating radioactive material release to the environment in all accident conditions. The representative safety grade passive system includes a passive emergency core cooling system, a passive containment cooling system, and a passive auxiliary feedwater system. Preliminary analysis results show that these concepts are feasible with respect to preventing and/or mitigating the consequences of design base accidents and severe accidents.

  16. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  18. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  19. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

  20. Demineralised water cooling in the LHC accelerator

    CERN Document Server

    Peón-Hernández, G

    2002-01-01

    In spite of the LHC accelerator being a cryogenic machine, it remains nevertheless a not negligible heat load to be removed by conventional water-cooling. About 24MW will be taken away by demineralised water cooled directly by primary water from the LHC cooling towers placed at the even points. This paper describes the demineralised water network in the LHC tunnel including pipe diameters, lengths, water speed, estimated friction factor, head losses and available supply and return pressures for each point. It lists all water cooled equipment, highlights the water cooled cables as the most demanding equipment followed by the radio frequency racks and cavities, and by the power converters. Their main cooling requirements and their positions in the tunnel are also presented.

  1. Assessment of the high performance light water reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J. [Univ. of Stuttgart, IKE, (Germany); Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Bittermann, D. [AREVA NP GmbH, Erlangen (Germany); Andreani, M. [Paul Scherrer Inst., Villigen (Switzerland); Maraczy, C. [AEKI-KFKI, Budapest (Hungary)

    2011-07-01

    From 2006-2010, the High Performance Light Water Reactor (HPLWR) was investigated within a European Funded project called HPLWR Phase 2. Operated at 25MPa with a heat-up rate in the core from 280{sup o}C to 500{sup o}C, this reactor concept provides a technological challenge in the fields of design, neutronics, thermal-hydraulics and heat transfer, materials, and safety. The assessment of the concept with respect to the goals of the technology roadmap for Generation IV Nuclear Reactors of the Generation IV International Forum shows that the HPLWR has a potential to fulfil the goals of economics, safety and proliferation resistance and physical protection. In terms of sustainability, the HPLWR with a thermal neutron spectrum investigated within this project, does not differ from existing Light Water Reactors in terms of usage of fuel and waste production. (author)

  2. New concept of proliferation resistant sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, V.A.; Krivitski, I.Y.; Matveev, V.I.; Popov, E.P.; Savitski, V.I.; Tsikunov, A.G. [Institute for Physics and Power Engineering, Obninsk (Russian Federation)

    2001-07-01

    The full text follows. It is proposed the concept of BN-800 sodium cooled fast reactor operating in the closed fuel cycle with special reprocessing technology. The use of nitride fuel allows improving the parameters of reactor safety (internal breeding {approx}1, zero value of sodium void reactivity effect), economy (one refueling per year), ecology (use of nitride enriched by nitrogen-15) and non-proliferation (use of reprocessing without separating the plutonium from uranium). The main difficulty of this type reactor development is that the technical project of BN-800 reactor with MOX fuel was developed. When using the nitride fuel it is necessary to serve (in max extent) the mail technical decisions of this project. This report presents first results on development and justification of the BN-800 reactor with nitride fuel core. (authors)

  3. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  4. Concepts and design of chemical reactors. Volume 3 in the chemical engineering: Concepts and reviews series

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, S.; Cassano, A.E.

    1986-01-01

    This work provides researchers and practitioners with information regarding concepts in chemical reactor design. The text presents the fundamentals of multiphase transport phenomena with heterogeneous reactions and the efficient computational determination of effectiveness factors. The most recent developments, applications, and current design strategies for each of the classic types of chemical reactors: fixed bed, fluidized bed, slurry, trickle bed, and photoreactors are reviewed.

  5. Advanced Burner Reactor 1000MWth Reference Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fanning, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Kellogg, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Salev, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Seidensticker, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Tang, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Tzanos, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Chikazawa, Y. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2007-09-30

    The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence, to validate the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat.

  6. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M. [ed.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  7. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M. (ed.); Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  8. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  9. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    Energy Technology Data Exchange (ETDEWEB)

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E

    1987-02-01

    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  10. Contribution to the study of the stability of water-cooled reactors; Contribution a l'etude de la stabilite des reacteurs refroidis par de l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Coudert, C. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1969-06-01

    This work is devoted to the study of the stability of reactors cooled by water subjected only to natural convection. It is made up of two parts, a theoretical study and experimental work, each of these parts being devoted to a consideration of linear and non-linear conditions: - calculation of the transfer function of the reactor using neutronic and hydrodynamic linear equations with the determination of the instability threshold; - demonstration of the existence of the limiting oscillation cycle in the case of a linear feedback using MALKIN'S method; - measurement and interpretation of the reactor's transfer functions and of the hydrodynamic transfer functions; and - analysis of the noise due to boiling. (author) [French] Dans ce travail on etudie la stabilite des piles refroidies par de l'eau circulant en convection naturelle. Cette etude se divise en deux parties: un travail theorique et un travail experimental, chacune de ces parties comportant une etude lineaire et une etude non-lineaire: - calcul de la fonction de transfert du reacteur a partir des equations lineaires de la neutronique et de l'hydrodynamique avec determination du seuil d'instabilite; - demonstration de l'existence du cycle limite des oscillations dans le cas d'une retroaction lineaire en utilisant la methode de MALKIN; - mesure et interpretation de la fonction de transfert du reacteur et des fonctions de transfert hydrodynamiques; et - analyse du bruit d'ebullition. (auteur)

  11. Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven Alan; Parma, Edward J., Jr.; Suo-Anttila, Ahti Jorma (Computational Engineering Analysis, Albuquerque, NM); Al Rashdan, Ahmad (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary Eugene

    2011-05-01

    This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.

  12. New reactor concepts. An analysis of the actual research status; Neue Reaktorkonzepte. Eine Analyse des aktuellen Forschungsstands

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias

    2017-04-15

    The report on new reactor concepts covers the following issues: characterization and survey of new reactor concepts; evaluation criteria: safety, resources for fuel supply, waste problems, economy and proliferation; comprehensive relevant aspects: thorium as alternative resource, partitioning and transmutation; actual developments and preliminary experiences for fast breeding reactor (FBR), high-temperature reactor (HTR), molten salt reactor (MSR), small modular reactor (SMR).

  13. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  14. Optimization of the first wall for the DEMO water cooled lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Julien, E-mail: julien.aubert@cea.fr [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Aiello, Giacomo [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Bachmann, Christian [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Di Maio, Pietro Alessandro [Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, Rosario [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Li Puma, Antonella; Morin, Alexandre [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Tincani, Amelia [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2015-10-15

    Highlights: • This paper presents the optimization of the first wall of the water cooled lithium lead DEMO blanket with pressurized water reactor condition and circular channels in order to find the best geometry that can allow the maximum heat flux considering design criteria since an estimate of the engineering limit of the first wall heat load capacity is an essential input for the decision to implement limiters in DEMO. • An optimization study was carried out for the flat first wall design of the DEMO Water-Cooled Lithium Lead considering thermal and mechanical constraint functions, assuming T{sub inlet}/T{sub outlet} equal to 285 °C/325 °C, based on geometric design parameters. • It became clear that through the optimization the advantages of a waved First Wall are diminished. • The analysis shows that the maximum heat load could achieve 2.53 MW m{sup −2}, but considering assumptions such as a coolant velocity ≤8 m/s, pipe diameter ≥5 mm and a total first wall thickness ≤22 mm, heat flux is limited to 1.57 MW m{sup −2}. - Abstract: The maximum heat load capacity of a DEMO First Wall (FW) of reasonable cost may impact the decision of the implementation of limiters in DEMO. An estimate of the engineering limit of the FW heat load capacity is an essential input for this decision. This paper describes the work performed to optimize the FW of the Water Cooled Lithium-Lead (WCLL) blanket concept for DEMO fusion reactor in order to increase its maximum heat load capacity. The optimization is based on the use of water at typical Pressurised Water Reactors conditions as coolant. The present WCLL FW with a waved plasma-faced surface and with circular channels was studied and the heat load limit has been predicted with FEM analysis equal to 1.0 MW m{sup −2} with respect to the Eurofer temperature limit. An optimization study was then carried out for a flat FW design considering thermal and mechanical constraints assuming inlet and outlet

  15. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  17. Fast reactor core concepts to improve transmutation efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Koji; Kawashima, Katsuyuki [Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1, Omika-cho, Hitachi-shi, Ibaraki, 319-1221 Japan (Japan); Itooka, Satoshi [Hitachi-GE Nuclear Energy, Ltd., 3-1-1, Saiwai-cho, Hitachi-shi, Ibaraki, 317-0073 Japan (Japan)

    2015-12-31

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  18. Design concept of the high performance light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas; Starflinger, Joerg [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. for Nuclear and Energy Technologies; Bittermann, Dietmar [AREVA NP GmbH, Erlangen (Germany). NEP-G Process

    2009-04-15

    The 'High Performance Light Water Reactor' (HPLWR) is a Light Water Reactor operating with supercritical water as coolant. At a pressure of 25 MPa in the core, water is heated up from 280 to 500 C. For these conditions, the envisaged net plant efficiency is 43.5%. The core design concept is based on a so-called '3-pass-core' in which the coolant is heated up in three subsequent steps. After each step, the coolant is mixed avoiding hot streaks possibly leading to unacceptable wall temperatures. The design of such a core comprises fuel assemblies containing 40 fuel rods and an inner and outer box for a better neutron moderation. Nine of these are assembled to a cluster with common head- and foot piece. The coolant is mixed inside an upper and inside a lower mixing chamber and leaves the reactor pressure vessel through a co-axial pipe, which protects the vessel wall against too high temperatures. (orig.)

  19. Lawson concepts and criticality in DT fusion reactors

    Science.gov (United States)

    Lartigue, J. G.

    1987-12-01

    The original Lawson concepts (amplification factor R and parameter nτ as well as their applications in DT reactors are discussed in two cases: the ignition regime and the subignition regime in a self-sufficient plant. The modified Lawson factor or internal amplification factor R α (a function of alpha power) is proposed as a means to measure the ignition level reached by the plasma, in a more precise way than that given by the collective parameter ( nτkT). The self-sufficiency factor ( δ) is proposed as a means to measure the plant self-sufficiency, δ being more significant than the traditional Q factor. It is stated that the ignition regime ( R α =1) is equivalent to a critical state (energy equilibrium); then, the corresponding critical mass concept is proposed. The analysis of the R α relationship with temperature (kT), ( nτ), and recirculating factor (ɛ) gives the conditions for the reactor to reach ignition or for the plant to reach self-sufficiency; it also shows that an approach to ignition is not improved by heating from 50 to 100 KeV.

  20. PX–An Innovative Safety Concept for an Unmanned Reactor

    Directory of Open Access Journals (Sweden)

    Sung-Jae Yi

    2016-02-01

    Full Text Available An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

  1. REACTOR - a Concept for establishing a System-of-Systems

    Science.gov (United States)

    Haener, Rainer; Hammitzsch, Martin; Wächter, Joachim

    2014-05-01

    well suited to establish brokers, which mediate metadata and semantic information about the resources of all involved systems. This concept has been developed within the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) on the basis of semantic registries describing all facets of events and services utilisable for crisis management systems. The implementation utilises an operative infrastructure including an Enterprise Service Bus (ESB), adapters to proprietary sensor systems, a workflow engine, and a broker-based MOM. It also applies current technologies like actor-based frameworks for highly concurrent, distributed, and fault tolerant event-driven applications. Therefore REACTOR implementations are well suited to be hosted in a cloud that provides Infrastructure as a Service (IaaS). To provide low entry barriers for legacy and future systems, REACTOR adapts the principles of Design by Contract (DbC) as well as standardised and common information models like the Sensor Web Enablement (SWE) or the JavaScript Object Notation for geographic features (GeoJSON). REACTOR has been applied exemplarily within two different scenarios, Natural Crisis Management and Industrial Subsurface Development.

  2. Undermoderated spectrum MOX core study. Supercritical pressure light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki; Kosizuka, Seiichi [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-09-01

    The supercritical pressure light water cooling reactor is a nuclear reactor concept with the once through type and the direct cycle reactor cooled with supercritical pressure water. The cooling water controlled with the feed pump flows directly to the turbine and a recirculation is never done by the nuclear reactor of this type. Therefore, this system isn`t equipped with the recirculation system and the steam separator, the system becomes simple. As for this system, it is expected that the cost performance improves. Here, the outline of former study is described. (author)

  3. Development concept for a small, split-core, heat-pipe-cooled nuclear reactor

    Science.gov (United States)

    Lantz, E.; Breitwieser, R.; Niederauer, G. F.

    1974-01-01

    There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.

  4. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  5. Civilian Power Program. Part 1, Summary, Current status of reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Author, Not Given

    1959-09-01

    This study group covered the following: delineation of the specific objectives of the overall US AEC civilian power reactor program, technical objectives of each reactor concept, preparation of a chronological development program for each reactor concept, evaluation of the economic potential of each reactor type, a program to encourage the the development, and yardsticks for measuring the development. Results were used for policy review by AEC, program direction, authorization and appropriation requests, etc. This evaluation encompassed civilian power reactors rated at 25 MW(e) or larger and related experimental facilities and R&D. This Part I summarizes the significant results of the comprehensive effort to determine the current technical and economic status for each reactor concept; it is based on the 8 individual technical status reports (Part III).

  6. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  7. Analysis of High Power/energy Nuclear Pumped Laser/reactor Concepts.

    Science.gov (United States)

    Gu, Guoxiang

    1987-09-01

    The basic principle of direct energy conversion of nuclear energy into coherent radiation (Nuclear-Pumped Laser or NPL) has been established by many experiments. ^{1-3} Because the high energy density available in nuclear fuel permits a high total output with a very low mass, Nuclear-Powered Lasers offer the possibility of being able to operate very high power lasers from a space base. However, the Nuclear-Pumped Laser is not only an interesting research tool, but also an embryonic engineering technology. It is the most important among all the areas of engineering to develop some specific types of nuclear reactors for use with Nuclear-Pumped Lasers. These reactors need to be coupled with the laser system efficiently, and then provide a high energy conversion efficiency. This study will evaluate the reactor engineering from neutronics point of view, while considering the laser electronics and thermodynamics. Four basic reactor concepts designed specifically for nuclear-pumped lasers have been identified in this study, that is, "the thermal reactor laser","the aerosol -core reactor/laser", "the surface-source reactor/laser" and "the flash lamp gas core reactor/laser". The neutronic design of the reactors for geometries and materials appropriate to each of these concepts is examined. The specific properties in neutronics of these reactors are analyzed. The total reactor size and weight for each of these concepts are estimated. Because the feasibility of using nuclear power to produce a laser pulse of short duration and high intensity is of more current interest, this study concludes with some reactor kinetic behavior. The laser systems that would be coupled to these reactors are not discussed in detail. All the calculations are based mainly on one dimensional diffusion and transport theory, using multiple energy groups. These one dimensional calculations have confirmed the feasibility of four basic concepts from a neutronics point of view.

  8. Concept of the power-reactor-pumped laser for technology applications

    Science.gov (United States)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kononov, Victor N.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    1998-09-01

    Conception of a high-power pulsed reactor-pumped laser system (RPLS) based on new physical principles (direct nuclear-to- optical energy conversion) for the technology and space application is discussed. The development of an energy model of RPLS consisting of the ignition two-core fast-burst reactor reactor module and a thermal subcritical laser module filled with an Ar-Xe laser active medium is reported. Some of the experimental results are also presented.

  9. Assessment of Compact Low Neutron Fusion Reactor Concepts

    National Research Council Canada - National Science Library

    Wong, H

    2000-01-01

    A brief summary of our results is as follows. We find that, in the proton-boron colliding beam fusion reactor, the power which must be supplied to maintain an optimal colliding beam configuration is estimated to be as...

  10. Substantiation of physical concepts of fast reactors in Russia: experience and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N. [Russian Research Center ' Kurchatov Institute' (RRC KI), 1, Kurchatov Sq., Moscow, 123182 (Russian Federation); Vasiliev, B.A. [Experimental Design Bureau of Machine Building (OKBM) 15, Burnakovskiy Pr., N. Novgorod, 603074 (Russian Federation); Kormilitsyn, M.V. [State Scientific Center of Russian Federation - Research Institute of Atomic Reactors (NIIAR) Dimitrovgrad-10, Ulianovsk Reg., 433510 (Russian Federation); Lopatkin, A.V. [N.A. Dollezhal Research and Development Institute of Power Engineering (NIKIET) 2/8, M. Krasnoselskaya Str., Moscow, 107140 (Russian Federation); Seleznev, E.F. [All-Russian Research Institute for Nuclear Power Plant Operation (VNIIAES) 25, Ferganskaya, Moscow, 109507 (Russian Federation); Khomyakov, Yu.S.; Tsybulia, A.M. [State Scientific Center of the Russian Federation - A. I. Leypunsky Institute for Physics and Power Engineering (SSC RF- IPPE) 1, Bondarenko Sq., Obninsk, Kaluga Reg., 249033 (Russian Federation); Tocheny, L.V. [International Science and Technology Center (ISTC) 32-34 Krasnoproletarskaya Ulitsa, Moscow, 127473 (Russian Federation)

    2008-07-01

    The fast reactor concept in Russia has accumulated unique experience, since its advent in the 1950's and up to the present, from the creation of the first experimental installation BR-1, experimental reactors BR-5 and BOR-60, the pilot industrial reactors BN-350 in Kazakhstan and up to the BN-600 at Beloyarsk Atomic Power Station. Investigations on the first experimental installations BR-1 and BR-5/-10 proved the propriety of the idea that it is possible to create nuclear reactors that can produce more nuclear fuel than they consume, i.e. the idea of breeding. The architecture of such reactors was also designed, producing a current leader among fast reactors with sodium coolant and oxide uranium-plutonium fuel. Operational experience of BOR-60, BN-350 and, particularly, BN-600 confirmed the engineering and technical feasibility of the concept of fast reactors, the possibility for its realization both for power production and for certain other purposes as well, such as desalinisation of sea water (BN-350) and for radionuclide production (BN-350, BN-600), and it enabled the development and verification of different models, computer methods and codes. The paper presents a review of experience in the creation of plants with fast reactors, scientific research on these installations, principal results, the current status of experimental data analysis, and prospective directions in the development of fast reactors and the corresponding experimental basis in Russia. (authors)

  11. Simulation study of pressure trends in the case of loss of coolant accident in Water Cooled Lithium Lead blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Eboli, Marica, E-mail: marica.eboli@for.unipi.it [DICI-University of Pisa, Pisa (Italy); Del Nevo, Alessandro [ENEA UTIS-TCI, CR Brasimone, Camugnano (Italy); Pesetti, Alessio; Forgione, Nicola [DICI-University of Pisa, Pisa (Italy); Sardain, Pierre [CEA/IRFM Cadarache, St. Paul lez Durance Cedex (France)

    2015-10-15

    Highlights: • Review of the activities performed in the past on lithium-lead water interaction. • SIMMER-III code assessment of pressure trends based on BLAST experiments. • Identifying capabilities and deficiencies of SIMMER in modeling safety phenomena. • Proposal of experimental campaign in support of code validation. - Abstract: The water–lithium lead interaction implies a direct energy release, which leads to temperature and pressure increase, due to a combined thermal and chemical reaction, and an indirect form of energy release, the hydrogen production, due to secondary chemical reaction involving the initial reaction products. Review and understanding of the knowledge acquired in past studies, experimental works and numerical activities are needed in view of the renewed interest in the Water Cooled Lithium Lead blanket concept and safety issues connected with the fusion reactor design. This paper presents a review of the studies carried out in the past to characterize the potential safety concerns associated with the use of water and lithium-lead eutectic alloy, the main experimental campaigns, and numerical simulations of BLAST Test No. 5 performed by SIMMER-III code. As results, no code was found able to perform a satisfactory post-test analysis of separate effect experiments, without engineering assumptions. Therefore, a code model for the exothermic reaction and hydrogen production, and experimental data are needed for solving the WCLL blanket safety issues associated with the water–PbLi interaction.

  12. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    OpenAIRE

    Haileyesus Tsige-Tamirat; Luca Ammirabile

    2015-01-01

    Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR) has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron s...

  13. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  14. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  15. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  16. Design Concept for a Nuclear Reactor-Powered Mars Rover

    Science.gov (United States)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  17. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  18. Integrated reactor concepts for the enzymatic kinetic synthesis of cephalexin

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Nierstrasz, V.A.; Bosma, R.; Kroon, P.J.; Tjeerdsma, P.S.; DeVroom, E.; VanderLaan, J.M.; Moody, H.M.; Beeftink, H.H.; Janssen, A.E.M.; Tramper, J.

    2002-01-01

    Integrated process concepts for enzymatic cephalexin synthesis were investigated by our group, and this article focuses on the integration of reactions and product removal during the reactions. The last step in cephalexin production is the enzymatic kinetic coupling of activated phenylglycine

  19. Design studies of innovatively small fusion reactor based on biomass-fusion hybrid concept: GNOME

    Energy Technology Data Exchange (ETDEWEB)

    Ibano, K., E-mail: kibano@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto 611-0011 (Japan); Utoh, H.; Tobita, K. [Japan Atomic Energy Agency, Naka-shi, Ibaraki 311-0193 (Japan); Yamamoto, Y.; Konishi, S. [Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto 611-0011 (Japan)

    2011-10-15

    Conceptual design of an innovatively small tokamak reactor 'GNOME' based on a non-fission biomass-fusion hybrid concept is proposed. This fusion plant concept intends to use high-temperature heat from the blanket to generate hydrogen or synthetic fuels out of waste biomass. Since energy multiplication is expected by utilizing chemical energy of biomass, the requirement for the fusion plasma for net plant energy output is reduced to Q {>=} 5. As a result, the GNOME reactor has been designed to produce 320 MW fusion power with a 5.2 m major radius, 3.1 normalized beta and 11 T maximum field. This relatively small maximum field can be achieved by using Nb{sub 3}Sn superconducting magnets. Besides, this reactor allows 3.0 m diameter space for its center solenoid coil and requires 60 MW of the input power. These features require minimal technical extensions from ITER.

  20. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  1. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  2. An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors

    OpenAIRE

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2010-01-01

    Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled fast reactor, respectively. The concepts were explored for both high- and low-conversion core configurations, and metal and oxide fuels. The annular fuel concept is best suited for low-conversion metal-fuelled cores, where it can enable a power uprate of ~20%; the magnitude ...

  3. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  4. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  5. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer to...

  6. A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya; Spielman, Zach; Hill, Rachael

    2017-06-01

    Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to address the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.

  7. A breed and burn reshuffling scheme for an Astrid-like reactor concept design

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois L, J. L., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2016-09-15

    The greenhouse emissions has a serious impact on environmental terms, reason why energy supply needs to be provided by low carbon emission technologies. Nuclear power is and environmentally friendly energy with future concepts and designs that ensure safety, and in this paper is taken as a solution to be considered in the energy supply mix. This study presents an extension on the operation of the Advanced Sodium Technological Reactor for Industrial demonstration (Astrid) nuclear reactor through a breed and burn operation to extend the operation of the reactor. The Astrid nuclear reactor is a fourth generation sodium-cooled fast reactor of 1500 MWt h, and it considers an innovative design: the low void effect core (Cfv: Coeur a Faible effet de Vidange sodium) due to the reactor configuration and the radial and axial position of the fuel subassemblies. Previous research in the Astrid-like cores aimed the model validation of a conventional oxide-fueled core and its comparison with a proposed metallic-fueled core. Taking into account the amount of fissile material (mainly 239-Pu) after the first cycle, a reshuffling scheme was suggested, which consists in changing strategically the position of the nuclear fuel assemblies when the reactivity drops near to the critical state of the reactor. Two different reshuffling schemes were simulated in every developed model, having operation extensions of 805 days and 1775 days for the oxide and metallic designs respectively. The implementation of the reshuffling schemes in the developed models enhanced the fuel utilization and could save up to 2.20 and 5.96 tons of plutonium for oxide and metallic designs respectively, which has an economic impact. The breeding of 239-Pu achieved in the fertile zone of the metallic design reached half of the initial concentration of the 239-Pu in the fissile zone and for the oxide design, the breeding reached one third of the initial concentration of the 239-Pu in the fissile zone. (Author)

  8. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  9. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    Science.gov (United States)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-01

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  10. Safety research on fusion DEMO in Japan: Toward development of safety strategy of a water-cooled DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Makoto, E-mail: nakamura.makoto@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho 039-3212, Aomori (Japan); Tobita, Kenji; Someya, Youji; Utoh, Hiroyasu; Sakamoto, Yoshiteru [Japan Atomic Energy Agency, Rokkasho 039-3212, Aomori (Japan); Gulden, Werner [Fusion for Energy, Garching D-85748 (Germany)

    2016-11-01

    Highlights: • This paper reports the current status of a safety research on water-cooled fusion DEMO in Japan. • We report analyses of two transients: (i) complete loss of decay heat removal and (ii) major ex-VV LOCA. • The MELCOR analysis has clarified the temperature histories of the DEMO components in complete loss of decay heat removal. • A strategy to reduce the pressure load to the final barrier confining radioactive materials is proposed against the major ex-VV LOCA. - Abstract: This paper reports the current status of a safety research on water-cooled fusion DEMO in Japan. A basic strategy of development of the safety guidelines is described for DEMO based on a water-cooled solid pebble bed blanket. Clarification of safety features of the DEMO in accident situations is a key issue to develop the guidelines. Recent achievements in understanding of the safety features of the water-cooled DEMO are reported. The MELCOR analysis has clarified the temperature histories of the DEMO components in a complete loss of decay heat removal event. The transient behavior of the first wall temperature is found to be essentially different from that of ITER. The pressure load to the tokamak cooling water system vault (TCWSV) is analyzed based on a simple model equation of the energy conservation. If the amount of the primary coolant is the same as that of Slim-CS, the previous small Japanese DEMO, the discharged water does not damage the TCWSV with the volume and pressure-tightness similar to those of pressurized light water reactors. It is shown that implementation of a pressure suppression system to the small TCWSV is effective to suppress the pressure load to the second confinement barrier.

  11. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    Science.gov (United States)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  12. Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryskamp, John M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a

  13. Neutronics and pumping power analyses on the Tokamak reactor for the fusion-biomass hybrid concept

    Energy Technology Data Exchange (ETDEWEB)

    Ibano, Kenzo, E-mail: kibano@gmail.com [Graduate School of Energy Science, Kyoto University, Uji (Japan); Kasada, Ryuta [Graduate School of Energy Science, Kyoto University, Uji (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Konishi, Satoshi [Graduate School of Energy Science, Kyoto University, Uji (Japan)

    2013-11-15

    Highlights: • MCNP analyses on a Tokamak with LiPb-cooled components shows concentrations of nuclear heating at the in-board region in addition to the out-board region. • Required pumping power of LiPb coolants for the nuclear heating exponentially increases as fusion power increases. • Pumping power analysis for the divertor also indicates the increasing pumping power as the fusion power increases. -- Abstract: The authors aim to develop a fusion-biomass combined plant concept with a small power fusion reactor. A concern for the small power reactor is the coolant pumping power which may significantly decreases the apparent energy outcome. Thus pressure loss and corresponding pumping power were studied for a designed Tokamak reactor: GNOME. First, 3-D Monte-Carlo Neutron transport analysis for the reactor model with dual-coolant blankets was taken in order to simulate the tritium breeding ability and the distribution of nuclear heat. Considering calculated concentration of nuclear heat on the in-board blankets, pressure loss of the liquid LiPb at coolant pipes due to MHD and friction forces was analyzed as a function of fusion power. It was found that as the fusion power increases, the pressure loss and corresponding pumping power exponentially increase. Consequently, the proportion of the pumping power to the fusion power increases as the fusion power increases. In case of ∼360 MW fusion power operation, pumping power required for in-board cooling pipes was estimated as ∼1% of the fusion power.

  14. Antineutrino monitoring of thorium reactors

    Science.gov (United States)

    Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.

    2016-09-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. A rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.

  15. EVALUATION METRICS APPLIED TO ACCIDENT TOLERANT FUEL CLADDING CONCEPTS FOR VVER REACTORS

    Directory of Open Access Journals (Sweden)

    Martin Sevecek

    2016-12-01

    Full Text Available Enhancing the accident tolerance of LWRs became a topic of high interest in many countries after the accidents at Fukushima-Daiichi. Fuel systems that can tolerate a severe accident for a longer time period are referred as Accident Tolerant Fuels (ATF. Development of a new ATF fuel system requires evaluation, characterization and prioritization since many concepts have been investigated during the first development phase. For that reason, evaluation metrics have to be defined, constraints and attributes of each ATF concept have to be studied and finally rating of concepts presented. This paper summarizes evaluation metrics for ATF cladding with a focus on VVER reactor types. Fundamental attributes and evaluation baseline was defined together with illustrative scenarios of severe accidents for modeling purposes and differences between PWR design and VVER design.

  16. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing

    Science.gov (United States)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.

    2002-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  17. Adoption of in-vessel retention concept for VVER-440/V213 reactors in Central European Countries

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, Peter, E-mail: peter.matejovic@ivstt.sk [Inzinierska Vypoctova Spolocnost (IVS), Jana Holleho 5, 91701 Trnava (Slovakia); Barnak, Miroslav; Bachraty, Milan; Vranka, Lubomir [Inzinierska Vypoctova Spolocnost (IVS), Jana Holleho 5, 91701 Trnava (Slovakia); Berky, Robert [Integrita a Bezpecnost Ocelovych Konstrukcii, Rybnicna 40, 831 07 Bratislava (Slovakia)

    2017-04-01

    Highlights: • Design of in-vessel retention concept for VVER-440/V213 reactors. • Thermal loads acting on the inner reactor surface. • Structural response of reactor pressure vessel. • External reactor vessel cooling. - Abstract: An in-vessel retention (IVR) concept was proposed for standard VVER-440/V213 reactors equipped with confinement made of reinforced concrete and bubbler condenser pressure suppression system. This IVR concept is based on simple modifications of existing plant technology and thus it was attractive for plant operators in Central European Countries. Contrary to the solution that was adopted before at Loviisa NPP in Finland (two units of VVER-440/V213 reactor with steel confinement equipped with ice condenser), the coolant access to the reactor pressure vessel from flooded cavity is enabled via closable hole installed in the centre of thermal shield of the reactor lower head instead of lowering this massive structure in the case of severe accident. As a consequence, the crucial point of this IVR concept is narrow gap between torispherical lower head and thermal and biological shield. Here the highest thermal flux is expected in the case of severe accident. Thus, realistic estimation of thermal load and corresponding deformations of reactor wall and their impact on gap width for coolant flow are of primarily importance. In this contribution the attention is paid especially to the analytical support with emphasis to the following points: 1) {sup ∗}Estimation of thermal loads acting on the inner reactor surface; 2) {sup ∗}Estimation of structural response of reactor pressure vessel (RPV) with emphasis on the deformation of outer reactor surface and its impact on the annular gap between RPV wall and thermal/biological shield; 3) {sup ∗}Analysis of external reactor vessel cooling. For this purpose the ASTEC code was used for performing analysis of core degradation scenarios, the ANSYS code for structural analysis of reactor vessel

  18. Topical report : NSTF facilities plan for water-cooled VHTR RCCS : normal operational tests.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C. P.; Lomperski, S.; Aeschlimann, R. W.; Nuclear Engineering Division

    2006-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the gas-cooled Very High Temperature Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept.

  19. Startup thaw concept for the SP-100 space reactor power system

    Science.gov (United States)

    Kirpich, A.; Das, A.; Choe, H.; Mcnamara, E.; Switick, D.; Bhandari, P.

    1990-01-01

    A thaw concept for a space reactor power system which employs lithium as a circulant for both the heat-transport and the heat-rejection fluid loops is presented. An exemplary thermal analysis for a 100-kWe (i.e., SP-100) system is performed. It is shown that the design of the thaw system requires a thorough knowledge of the various physical states of the circulant throughout the system, both spatially and temporally, and that the design has to provide adequate margins for the system to avoid a structural or thermally induced damage.

  20. Optimization of Fast Critical Experiments to Reduce Nuclear Data Uncertainties in Support of a Fast Burner Reactor Design Concept

    Science.gov (United States)

    Stover, Tracy E., Jr.

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept's core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment

  1. Physics design of initial and approach to equilibrium cores of a reactor concept for thorium utilization

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Usha [Light Water Reactor Physics Section, Reactor Physics Design Division, Bhabha Atomic Research Centre, A-5-15, Central Complex, Mumbai, Maharashtra (India)], E-mail: ushapal@barc.gov.in; Jagannathan, V. [Light Water Reactor Physics Section, Reactor Physics Design Division, Bhabha Atomic Research Centre, A-5-15, Central Complex, Mumbai, Maharashtra (India)], E-mail: vjagan@barc.gov.in

    2008-07-15

    A thermal reactor concept 'a thorium breeder reactor' (ATBR) was conceived and reported by the authors during 1998. The distinctive physical characteristics of ATBR core with different types of seed fuels have been discussed in subsequent publications. The equilibrium core of ATBR with Pu seed was shown to exhibit a flat and low excess reactivity for a fuel cycle duration of two years. Notably this is achieved by no conventional burnable poison but by intrinsic balancing of reactivity between fissile and fertile zones. In this paper we present the design of the initial core and the refueling strategy for subsequent fuel cycles to enable a smooth transition to the equilibrium core. Three fuel types with characteristics similar to the three batch fuels of equilibrium core were designed for the initial core. Fuel requirement for the initial core is 4673 kg of reactor grade (RG) Pu for a cycle length of two years at 1875 MWt as against the 2200 kg needed for each fuel cycle of equilibrium core for same quantum of energy. The core reactivity variation during the first fuel cycle is monotonic fall and is relatively high ({approx}40 mk) but gradually diminishes to {+-}5 mk for fuel cycles 5-8.

  2. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  3. Core design analysis of the supercritical water fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M.

    2005-10-01

    Light Water Reactor technology is nowadays the most successful commercial application of fission reactors for the production of electricity. However, in the next years, nuclear industry will have to face new and demanding challenges. The need for sustainable and cheap sources of energy, the need for public acceptance, the need for even higher safety standards, the need to minimize waste production are only a few examples. It is for these very reasons that a few next generation nuclear reactor concepts were selected for extensive research and development. Super critical water cooled reactors are one of them. The use of a supercritical coolant would in fact allow for higher thermal efficiencies and a more compact plant design. As a matter of fact, steam generators, or steam separators and driers would not be needed thus, significantly reducing construction costs. Moreover, because of the high heat capacity of supercritical water, comparatively less coolant would be needed to refrigerate the reactor. Consequently, a water-cooled reactor with a fast neutron spectrum could potentially be designed: the SuperCritical water Fast Reactor. This system presents unique features combining well-known fast and light water reactor characteristics in one design (e.g. the tendency to a positive void reactivity coefficient together with Loss Of Coolant Accidents, as design basis). The core is in fact loaded with highly enriched Mixed Oxide fuel (average plutonium content of {approx}23%), and presents a peculiar and significant geometrical and material heterogeneity (use of radial and axial blankets, solid moderator layers, several enrichment zones). The safety analysis of this very complex core layout, the development of suitable tools of investigation, and the optimization of the void reactivity effect through core design, is the main objective of this work. (orig.)

  4. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  5. Preliminary concept design of sodium-cooled radial fuel shuffling traveling wave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tian, W.; Zheng, M.; Chu, X.; Zhang, D.; Su, G.; Qiu, S. [Xi' an Jiaotong University, School of Nuclear Science and Technology, Xi' an (China)

    2014-07-01

    The concept of traveling wave reactor (TWR) has been investigated for several decades and has been applied to kinds of reactors. Radial fuel shuffling TWR is a new TWR concept, which has been put forward for only a few years by Terra Power LCC. In the present paper, a sodium-cooled radial fuel shuffling TWR is preliminarily designed. To perform neutronic and burn-up investigation, a MCNP-ORIGEN coupled code system, called MCORE, is used. The comparison between calculation results of MCORE and benchmark values showed the calculation ability of MCORE. The calculation results of radial fuel shuffling TWR show that the asymptotic κ{sub eff} parabolically varies with the shuffling period, while the burn-up increase linearly with shuffling period. The power peak shifts from the core inside to the core outside. To reduce the power peak, shuffling period 450 days is recognized as the best design. The asymptotic is 1.020 and the average burn-up is about 156 MWd/kg-HM. (author)

  6. An improvement in the use of plutonium in pressurized water reactors; The subassembly mixed-oxide fuel management concept

    Energy Technology Data Exchange (ETDEWEB)

    Bangil, C.; Gambier, G.; Soldevila, M. (Electricite de France DER 1, av. du General de Gaulle 92141 Clamart Cedex (FR))

    1989-09-01

    An unconventional mixed-oxide (MOX) fuel management concept for a pressurized water reactor core is proposed. Subassembly management (SAM) is an in-out reloading scheme applied within MOX assemblies that are reconstructed'' at each end of cycle. The SAM concept needs only one kind of MOX fuel pin instead of the three pins necessary in the standard MOX fuel management concept; it also leads to better use of plutonium.

  7. Propellant actuated nuclear reactor steam depressurization valve

    Science.gov (United States)

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  8. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission...-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs (ITPs) for light water cooled nuclear power plants. DATES...

  9. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    Directory of Open Access Journals (Sweden)

    Binay Kumar Biswas

    2016-01-01

    Full Text Available Sacroiliac (SI joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10 with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10 on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  10. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    Science.gov (United States)

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] – 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment. PMID:28096589

  11. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2017-09-15

    In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.

  12. Safety-Related Optimization and Analyses of an Innovative Fast Reactor Concept

    Directory of Open Access Journals (Sweden)

    Dalin Zhang

    2012-06-01

    Full Text Available Since a fast reactor core with uranium-plutonium fuel is not in its most reactive configuration under operating conditions, redistribution of the core materials (fuel, steel, sodium during a core disruptive accident (CDA may lead to recriticalities and as a consequence to severe nuclear power excursions. The prevention, or at least the mitigation, of core disruption is therefore of the utmost importance. In the current paper, we analyze an innovative fast reactor concept developed within the CP-ESFR European project, focusing on the phenomena affecting the initiation and the transition phases of an unprotected loss of flow (ULOF accident. Key phenomena for the initiation phase are coolant boiling onset and further voiding of the core that lead to a reactivity increase in the case of a positive void reactivity effect. Therefore, the first level of optimization involves the reduction, by design, of the positive void effect in order to avoid entering a severe accident. If the core disruption cannot be avoided, the accident enters into the transition phase, characterized by the progression of core melting and recriticalities due to fuel compaction. Dedicated features that enhance and guarantee a sufficient and timely fuel discharge are considered for the optimization of this phase.

  13. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  14. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    Energy Technology Data Exchange (ETDEWEB)

    Berkan, R.C.; Upadhyaya, B.R.; Bywater, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Kisner, R.A. (Oak Ridge National Lab., TN (United States))

    1991-08-01

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs.

  15. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  16. Preliminary Safeguards Assessment for the Pebble-Bed Fluoride High-Temperature Reactor (PB-FHR) Concept

    Energy Technology Data Exchange (ETDEWEB)

    Disser, Jay; Arthur, Edward; Lambert, Janine

    2016-09-01

    This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.

  17. The use of LBB concept in French fast reactors: Application to SPX plant

    Energy Technology Data Exchange (ETDEWEB)

    Turbat, A.; Deschanels, H.; Sperandio, M. [and others

    1997-04-01

    The leak before break (LBB) concept was not used at the design level for SUPERPHENIX (SPX), but different studies have been performed or are in progress concerning different components : Main Vessel (MV), pipings. These studies were undertaken to improve the defense in depth, an approach used in all French reactors. In a first study, the LBB approach has been applied to the MV of SPX plant to verify the absence of risk as regards the core supporting function and to help in the definition of in-service inspection (ISI) program. Defining a reference semi-elliptic defect located in the welds of the structure, it is verified that the crack growth is limited and that the end-of-life defect is smaller than the critical one. Then it is shown that the hoop welds (those which are the most important for safety) located between the roof and the triple point verify the leak-before-break criteria. However, generally speaking, the low level of membrane primary stresses which is favorable for the integrity of the vessel makes the application of the leak-before-break concept more difficult due to small crack opening areas. Finally, the extension of the methodology to the secondary pipings of SPX incorporating recent European works of DCRC is briefly presented.

  18. Review of IVR-ERVC and using flooding concept for application to high power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min ho; Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Accident scope will be limited in the RPV. For example, in case of Fukushima, they have difficulties for cleanup the accident and even catching the location of the melt-through corium. Therefore, IVR-ERVC is the right strategy for mitigation of the severe accident. However, in case of high power reactors, there is a Critical Heat Flux (CHF) problem in its application to high power reactor. If CHF occurred, boiling regime changes from effective nucleate boiling to ineffective film boiling, so temperature of the RPV goes up and finally the RPV fails. To solve the CHF problem, here have been a lot of works for IVR-ERVC. In the point of in-vessel heat transfer, Theofanous suggested risk oriented accident analysis methodology which is a combination of probabilistic and deterministic approach. A lot of experiments have been done using simulants of corium in various experimental apparatus. Their simulants were usually water due to simulate large Rayleigh number and natural circulation of corium. IVR-ERVC concept has been researched for a long time. For in-vessel heat transfer, simulants or real corium was used to get a heat flux distribution to the outer wall. And based on those results, ex-vessel cooling has been researched in various geometry to get cooling limit as CHF. Material flooding is suggested as improvement of ERVC in APR 1400 to secure safety margin for CHF. Regardless of Prandtl number of the flooding material, the focusing effect of heat flux was mitigated; the maximum heat flux was reduced less than half of the maximum heat flux in bare condition.

  19. Proposal on experience learning of a nuclear reactor for children in future. A basic concept on a nuclear reactor facility for demonstration and education

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Takashi [Kyoto Univ., Graduate School of Energy Science, Kyoto (Japan); Yoshiki, Nobuya; Kinehara, Yoshiki; Nakagawa, Haruo

    2001-12-01

    The Science Council of Japan indicates in a proposal on R and D on nuclear energy forward the 21st Century that it is important to expand the educational object on nuclear energy from colleges and gradual schools to elementary, middle high schools. And, the Committee of Japan Nuclear Energy Industries also proposed that as an effort forward security of reliability and popularization of knowledge, completeness of learning chance on energy and nuclear energy in education such as usage of general learning time, concept on establishment of educational reactor for demonstration and experience, is essential. Here was described on a concept on establishment of nuclear reactor for demonstration and experience at objectives of common national peoples, which was based on results of searches and investigations carried out by authors and aimed to supply to a field to grow up a literary adequately and widely capable of judging various information on the peoples by focusing to effectiveness of empirical learning as a method of promoting corrective understanding of common citizens on high class technical system and by establishment of the reactor aiming at general education on nuclear energy at a place easily accessible by common citizens, such as large city. (G.K.)

  20. Some particular aspects of control in nuclear power reactors; Conception de la surete en france et influence des imperatifs de surete sur la conception des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Vathaire, F. de; Vernier, Ph.; Pascouet, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    This paper reviews the experience acquired in France on the question, of reactor safety. Since a special paper is being presented on reactors of the graphite gas type, the safety of the other types studied in France is discussed here: - heavy water-gas reactors, - fast neutron reactors, - water research reactors of the swimming-pool and tank types. The safety rules peculiar to the different types are explained, with emphasis on their influence on the reactor designs and on the power limits they impose. The corresponding safety studies are presented, particular stress being placed on the original work developed in these fields. Special mention is made of the experimental systems constructed for these studies: the reactor CABRI, pile loop for depressurization tests, loops outside the pile, mock-ups etc. (authors) [French] La presente communication propose une synthese de l'experience acquise en France en matiere de surete des reacteurs. Les reacteurs de la filiere graphite-gaz faisant l'objet d'une communication particuliere, on examine ici la surete des autres types de reacteurs etudies en France: - reacteurs eau lourde-gaz, - reacteurs a neutrons rapides, - reacteurs de recherche a eau des types piscines et tank. Les imperatifs de surete propres aux differentes filieres sont developpes, en mettant l'accent sur leur influence sur la conception des reacteurs et sur les limitations de puissance qu'ils entrainent. Les etudes de surete correspondantes sont presentees, en insistant plus particulierement sur les travaux originaux developpes dans ces domaines. On indique notamment les moyens d'essais qui ont ete construits pour ces etudes: le reacteur CABRI, boucle en pile pour essais de depressurisation, boucles hors pile, maquettes, etc. (auteurs)

  1. A water-cooling solution for PC-racks of the LHC experiments

    CERN Document Server

    Vannerem, P

    2004-01-01

    With ever increasing power consumption and heat dissipation of todays CPUs, cooling of rack-mounted PCs is an issue for the future online farms of the LHC experiments. In order to investigate the viability of a water-cooling solution, a prototype PC-farm rack has been equipped with a commercially available retrofitted heat exchanger. The project has been carried out as a collaboration of the four LHC experiments and the PH-ESS group . This note reports on the results of a series of cooling and power measurements of the prototype rack with configurations of 30 to 48 PCs. The cooling performance of the rack-cooler is found to be adequate; it extracts the heat dissipated by the CPUs efficiently into the cooling water. Hence, the closed PC rack transfers almost no heat into the room. The measurements and the failure tests show that the rack-cooler concept is a viable solution for the future PC farms of the LHC experiments.

  2. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Science.gov (United States)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  3. Power conversion cycles study for He-cooled reactor concepts for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, M. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense, 22, Madrid 28040 (Spain)], E-mail: mercedes.medrano@ciemat.es; Puente, D.; Arenaza, E.; Herrazti, B.; Paule, A. [IBERTEF Magallanes 22, Madrid 28015 (Spain); Branas, B. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense, 22, Madrid 28040 (Spain); Orden, A.; Dominguez, M. [IBERTEF Magallanes 22, Madrid 28015 (Spain); Stainsby, R. [AMEC-NNC, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ (United Kingdom); Maisonnier, D.; Sardain, P. [EFDA-Close Support Unit Garching, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-10-15

    The study of different power conversion cycles have been performed in the framework of the DEMO scoping studies to provide technical information focused on the selection of DEMO parameters. The purpose of this study has been the investigation of 'advanced cycles' in order to get an improvement on the thermodynamic efficiency. Starting from the 'near term' He-cooled blanket concepts (HCLL, HCPB), developed within the Power Plant Conceptual Studies (PPCS) and currently considered for DEMO, conversion cycles based on a standard Rankine cycle were shown to yield net efficiencies (net power/thermal power) of approximately 28%. Two main features limit these efficiencies. Firstly, the heat sources in the reactor: the blanket which provides over 80% of the total thermal power, only produces moderate coolant temperatures (300-500 deg. C). The remaining thermal power is deposited in the divertor with a more respectable coolant temperature (540-717 deg. C). Secondly, the low inlet temperature of blanket coolant limits the possibilities to achieve efficient heat exchange with cycle. The parameters of HCLL model AB have been used for the analysis of the following cycles: (a) supercritical steam Rankine, (b) supercritical CO{sub 2} indirect Brayton and (c) separate cycles: independent cycles for the blanket and divertor. A comparison of the gross and net efficiencies obtained from these alternative cycles alongside the standard superheated Rankine cycle will be discussed in the paper.

  4. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  5. Application of the LBB concept to nuclear power plants with WWER 440 and WWER 1000 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zdarek, J.; Pecinka, L. [Nuclear Research Institute Rez (Czech Republic)

    1997-04-01

    Leak-before-break (LBB) analysis of WWER type reactors in the Czech and Sloval Republics is summarized in this paper. Legislative bases, required procedures, and validation and verification of procedures are discussed. A list of significant issues identified during the application of LBB analysis is presented. The results of statistical evaluation of crack length characteristics are presented and compared for the WWER 440 Type 230 and 213 reactors and for the WWER 1000 Type 302, 320 and 338 reactors.

  6. Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2016-11-15

    Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic

  7. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  8. Water-Cooled Magnet for a 40T Compact Hybrid Magnet(Magnet Technology)

    OpenAIRE

    S., Miura; K., Watanabe; S., Awaji; M., Motokawa; N., Kobayashi; T., FUKASE; Institute for Materials Research, Tohoku University

    1996-01-01

    A water-cooled poly Bitter magnet for a new compact hybrid magnet was designed under the fully utilization of the electric power source of 8 MW and the cooling systems installed in the High Field Laboratory for Superconducting Materials, Tohoku University. Supposing copper-silver plates with high yield strength are used, a poly Bitter magnet can be designed. The magnet consists of four axial water-cooled Bitter coils which are electrically connected in series and all of cooling water flows fr...

  9. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.

    Science.gov (United States)

    Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J

    2016-01-01

    Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.

  10. An assessment of the checkpoint bioassay concept for full scale wastewater UV reactor validation.

    Science.gov (United States)

    Maka, P P; Lawryshyn, Y A

    2011-01-01

    In an effort to help policy makers and manufacturers understand the impact of parameter uncertainties on UV reactor performance, a numerical bioassay model was developed by integrating a UV reactor model based on computational fluid dynamics with a Monte Carlo model developed to account for parameter uncertainty. For the model implemented, it was determined that reactor performance uncertainty was less than 6%. The integrated model was used to evaluate several checkpoint bioassay criteria including one currently used by the California Department of Public Health. The model showed that these criteria failed to take into account the fact that in an ideal case, a full scale reactor will pass a single checkpoint test 50% of the time. In reality, differences in equipment measurement errors between the system validation and checkpoint bioassay, and limitations of the power law form of the dose monitoring equation in accurately representing system validation data will result in poorer than expected performance. It was suggested that such checkpoint criteria be modified by crediting the inherent over-sizing of full scale reactors.

  11. Investigating the breeding capabilities of hybrid soliton reactors

    Energy Technology Data Exchange (ETDEWEB)

    Catsaros, N., E-mail: nicos@ipta.demokritos.gr [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, 27, Neapoleos Str., 15341 Aghia Paraskevi (Greece); Gaveau, B., E-mail: bernardgaveau@orange.fr [Université Pierre et Marie Curie, Campus Jussieu, 75252 Paris Cedex 05 (France); Jaekel, M.-T., E-mail: jaekel@lpt.ens.fr [Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (CNRS), 24 rue Lhomond, 75231 Paris Cedex 05 (France); Jejcic, A. [Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (CNRS), 24 rue Lhomond, 75231 Paris Cedex 05 (France); Maillard, J., E-mail: maillard@idris.fr [Institut National de Physique Nucléaire et de Physique des Particules (CNRS), 3 rue Michel Ange, 75794 Paris Cedex 16 (France); Institut du Développement et des Ressources en Informatique Scientifique (CNRS), Campus Universitaire d’Orsay, rue John Von Neumann, Bat 506, 91403 Orsay Cedex (France); Maurel, G., E-mail: gerard.maurel@sat.aphp.fr [Université Pierre et Marie Curie, Campus Jussieu, 75252 Paris Cedex 05 (France); Savva, P., E-mail: savvapan@ipta.demokritos.gr [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, 27, Neapoleos Str., 15341 Aghia Paraskevi (Greece); Silva, J., E-mail: jorge.silva@upmc.fr [Université Pierre et Marie Curie, Campus Jussieu, 75252 Paris Cedex 05 (France); and others

    2013-08-15

    Highlights: • ANET code simulates innovative reactor designs including Accelerator Driven Systems. • Preliminary analysis of thermal hybrid soliton reactor examines breeding capabilities. • Subsequent studies will aim at optimizing parameters examined in this analysis. • Breeding capacity could be obtained while preserving efficiency and reactor stability. -- Abstract: Nuclear energy industry asks for an optimized exploitation of available natural resources and a safe operation of reactors. A closed fuel cycle requires the mass of fissile material depleted in a reactor to be equal to or less than the fissile mass produced in the same or in other reactors. In this work, a simple closed cycle scheme is investigated, grounded on the use of a conceptual thermal water-cooled and moderated subcritical hybrid soliton reactor (HSR). The concept is a specific Accelerator Driven System (ADS) operating at lower power than usual pressurized water reactors (PWRs). This type of reactor can be inherently safe, since shutdown is achieved by simply interrupting the accelerator's power supply. In this work a preliminary investigation is attempted concerning the existence of conditions under which the operation of a thermal HSR in breeding regime is possible. For this purpose, a conceptual encapsulated core has been defined by choosing the magnitude of a set of parameters which are important from the neutronic point of view, such as core geometry and fuel composition. Indications of breeding operation regime for thermal HSR systems are sought by performing preliminary simulations of this core. For this purpose, the Monte Carlo code ANET, which is being developed based on the high energy physics code GEANT is utilized, as being capable of simulating particles’ transport and interactions produced, including also simulation of low energy neutrons transport. A simple analytical model is also developed and presented in order to investigate the conditions under which

  12. Simulation of the preliminary General Electric SP-100 space reactor concept using the ATHENA computer code

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, C.D.

    1986-01-01

    The capability to perform thermal-hydraulic analyses of a space reactor using the ATHENA computer code is demonstrated. The fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of the preliminary General electric SP-100 design were modeled with ATHENA. Two demonstration transient calculations were performed simulating accident conditions. Calculated results are available for display using the Nuclear Plant Analyzer color graphics analysis tool in addition to traditional plots. ATHENA-calculated results appear reasonable, both for steady state full power conditions, and for the two transients. This analysis represents the first known transient thermal-hydraulic simulation using an integral space reactor system model incorporating heat pipes. 6 refs., 17 figs., 1 tab.

  13. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  14. Capabilities of the ATHENA computer code for modeling the SP-100 space reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, C.D.

    1985-09-01

    The capability to perform thermal-hydraulic analyses of an SP-100 space reactor was demonstrated using the ATHENA computer code. The preliminary General Electric SP-100 design was modeled using Athena. The model simulates the fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of this design. Two ATHENA demonstration calculations were performed simulating accident scenarios. A mask for the SP-100 model and an interface with the Nuclear Plant Analyzer (NPA) were developed, allowing a graphic display of the calculated results on the NPA. 22 figs.

  15. Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry

    NARCIS (Netherlands)

    Aran, H.C.; Salamon, David; Rijnaarts, Timon; Rijnaarts, T.; Mul, Guido; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    In this study, a new membrane microreactor concept for multiphase photocatalytic reactions is demonstrated. Microfabrication, photocatalyst immobilization and surface modification steps were performed to develop a Porous Photocatalytic Membrane Microreactor (P2M2). This concept benefits from a

  16. Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Masuro, E-mail: ogawa.masuro@jaea.go.jp

    2016-11-15

    Highlights: • The author proposed new basic concepts on safety and radioactive waste. • A principle of ‘continue confining’ to realize the basic concept on safety is also proposed. • It is indicated that only a HTGR can attain the conditions required from the principle. • Technologies to realize the basic concept on radioactive waste are also discussed. • A New HTGR system based on the new basic concepts is proposed. - Abstract: A new basic concept on safety of ‘Not causing any serious catastrophe by any means’ and a new basic concept on radioactive waste of ‘Not returning any waste that possibly affects the environment’ are proposed in the present study, aiming at nuclear power plants which everybody can accept, in consideration of the serious catastrophe that happened at Fukushima Japan in 2011. These new basic concepts can be found to be valid in comparison with basic concepts on safety and waste in other industries. The principle to realize the new basic concept on safety is, as known well as the inherent safety, to use physical phenomena such as Doppler Effect and so on which never fail to work even if all equipment and facilities for safety lose their functions. In the present study, physical phenomena are used to ‘continue confining’, rather than ‘confine’, because the consequence of emission of radioactive substances to the environment cannot be mitigated. To ‘continue confining’ is meant to apply natural correction to fulfill inherent safety function. Fission products must be detoxified to realize the new basic concept on radioactive waste, aiming at the final processing and disposal of radioactive wastes as same as that in the other wastes such as PCB, together with much efforts not to produce radioactive wastes and to reduce their volume nevertheless if they are emitted. Technology development on the detoxification is one of the most important subjects. A new High Temperature Gas-cooled Reactor, namely the New HTGR

  17. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-04-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.

  18. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [ORNL; Fugate, David L [ORNL; Cetiner, Sacit M [ORNL; Qualls, A L [ORNL

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  19. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  20. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  1. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  2. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  3. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  4. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  5. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; David Gertman; Jacques Hugo

    2014-03-01

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would

  6. Influence of the Water-Cooled Heat Exchanger on the Performance of a Pulse Tube Refrigerator

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-02-01

    Full Text Available The water-cooled heat exchanger is one of the key components in a pulse tube refrigerator. Its heat exchange effectiveness directly influences the cooling performance of the refrigerator. However, effective heat exchange does not always result in a good performance, because excessively reinforced heat exchange can lead to additional flow loss. In this paper, seven different water-cooled heat exchangers were designed to explore the best configuration for a large-capacity pulse tube refrigerator. Results indicated that the heat exchanger invented by Hu always offered a better performance than that of finned and traditional shell-tube types. For a refrigerator with a working frequency of 50 Hz, the best hydraulic diameter is less than 1 mm.

  7. High power testing of water-cooled waveguide for ITER-like ECH transmission lines

    Science.gov (United States)

    Anderson, J. P.; Doane, J. L.; Grunloh, H. J.; O'Neill, R. C.; Ikeda, R.; Oda, Y.; Takahashi, K.; Sakamoto, K.

    2017-05-01

    The results of high power testing of new water-cooled ECH waveguide components for ITER are presented. The components are a precision-coupled 4.2 m waveguide assembly, a short expansion joint, and water-cooled waveguide for gyrotron commissioning. The testing was conducted at the QST Naka Fusion Institute using gyrotron pulses of 450 kW at 170 GHz for 300 s. Analysis shows that the power absorbed per unit length for the various waveguide components are dependent on location in the transmission line with respect to high order mode generators, such as miter bends. Additionally, larger-than-expected reflections from the load led to high absorption levels in the transmission line.

  8. Activation analysis and characteristics of the European community water cooled ceramic breeder blanket design proposal for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Rado, V. [ENEA-ERG-FUS, Frascati (Italy); Cepraga, D.G. [ENEA-INN-FIS, Bologna (Italy)

    1994-12-31

    The European Community (EC) Home Team has proposed various alternative blanket designs to the basic concept (essentially integrated first wall, cooled by liquid metal, with structures made by vanadium alloys). One of the EC proposal is the Water Cooled Ceramic Blanket developed on the basis of a common action between NET and ENEA. It is based on a more conservative approach, but involving well proven technologies and qualified materials: SS-316L as structural material, Li{sub 2}ZrO{sub 3} as first breeder material choice (50% Li{sup 6} enrichment) and low temperature water coolant (160/200{degrees}C). Beryllium has been chosen as multiplying material. The nominal performance are: 1 MW/m{sup 2} as average neutron wall load, corresponding to 1.5 GW fusion power, 1 MW-y/m{sup 2} beneath it has been proved to withstand power excursion till 5 GW. The proposed blanket concept is based on a Breeder Inside Tube (BIT) type technology, with poloidal breeding elements, each one consisting of two concentric tubes. Breeder pebbles are filled into the inner tube, the water coolant flows in the annular channel between the two tubes. Beryllium pebbles fill the space of the blanket box outside the outer tube. A helium purge gas flows through the breeder pebbles bed for tritium recovery. Alternative operating water temperature and pressure are proposed, considering also batch tritium recovery.

  9. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  10. Water cooling system leak proofing strategy for the Plasma Couette Experiment Upgrade (PCX-U)

    Science.gov (United States)

    Clark, Mike; Flanagan, Ken; Hernandez, Wilson; Jaeger, Austin; Laufman-Wollitzer, Lauren; Nikolau, Ethan; Tabbutt, Megan; Waleffe, Roger; Wallace, John; Xu, Yufan; Forest, Cary

    2016-10-01

    An improved system for water cooling several experimental components has been installed for the Plasma Couette Experiment Upgrade (PCX-U). The most important aspect of the upgrade was to cool the new SmCo permanent magnet cage array. Many methods of connecting water cooling pipes, tubes, and fittings were employed balancing several factors. These factors included ease of assembly/disassembly, reliability, operating pressure, operating temperature, chemical reactivity, and cost. The actions taken to develop the water cooling system will be discussed and illustrated. A focus will be made on sealing cooling water leaks from the inside out on small diameter metal passages (including extrusions, tubing, and fittings). These passages were located inside a vacuum environment, and only the ends of each passage were accessible to do the work. The vacuum vessel of PCX-U is a 1 meter diameter, 1 meter tall cylinder comprised of 0.25'' thick stainless steel. PCX-U has one removable end. Rings of SmCo magnets attached to a removable frame create a cusp field to contain the plasma and provide a resonance surface for the RF. This work is supported by the NSF.

  11. Adapting computational optimization concepts from aeronautics to nuclear fusion reactor design

    Directory of Open Access Journals (Sweden)

    Baelmans M.

    2012-10-01

    Full Text Available Even on the most powerful supercomputers available today, computational nuclear fusion reactor divertor design is extremely CPU demanding, not least due to the large number of design variables and the hybrid micro-macro character of the flows. Therefore, automated design methods based on optimization can greatly assist current reactor design studies. Over the past decades, “adjoint methods” for shape optimization have proven their virtue in the field of aerodynamics. Applications include drag reduction for wing and wing-body configurations. Here we demonstrate that also for divertor design, these optimization methods have a large potential. Specifically, we apply the continuous adjoint method to the optimization of the divertor geometry in a 2D poloidal cross section of an axisymmetric tokamak device (as, e.g., JET and ITER, using a simplified model for the plasma edge. The design objective is to spread the target material heat load as much as possible by controlling the shape of the divertor, while maintaining the full helium ash removal capabilities of the vacuum pumping system.

  12. Concept of a nuclear powered submersible research vessel and a compact reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (Japan); Tokunaga, Sango [Japan Deep Sea Technology Association, Tokyo (Japan)

    2001-07-01

    A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

  13. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    Science.gov (United States)

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  15. NEUTRONIC REACTOR CONSTRUCTION

    Science.gov (United States)

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  16. Re-Engineering Control Systems using Automatic Generation Tools and Process Simulation: the LHC Water Cooling Case

    CERN Document Server

    Booth, W; Bradu, B; Gomez Palacin, L; Quilichini, M; Willeman, D

    2014-01-01

    This paper presents the approach used at CERN (European Organization for Nuclear Research) to perform the re-engineering of the control systems dedicated to the LHC (Large Hadron Collider) water cooling systems.

  17. Operation Experiences of the Small Scale Nitrogen Loop with a Water-Cooling Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Soo; Seo, Dong Un; Yoo, Tae Ho; Hong, Sung Deok; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A small scale nitrogen loop is in-operation for the integrity and feasibility test of the hybrid-concept sulfur trioxide decomposer. The small-scale gas loop takes the place of the hot gas and the process gas loop. The hot gas loop simulates the intermediate loop of a nuclear hydrogen production system in that it is designed to withstand the maximum temperature of 1273K, the maximum pressure of 6.0 MPa, and to operate at a mass flow rate of 2.0 kg/min with 4.0 MPa. Nitrogen is used as the working fluid for simple high pressure gas experiments. The fluid temperature is controlled by adjusting the power of the heaters using direct voltage controllers. The accumulator maintains the primary system at the constant pressure. The inverter of the circulator and the bypass flow valve control the primary mass flow rate. In this paper, the operating experience is presented to estimate the performance of the primary system. A water-cooling printed circuit heat exchanger was used to cool the hot gas into the room temperature

  18. New concept for a high-repetition-rate reactor for inertial-confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.

    1980-11-01

    A new design concept was developed that has three additional features that are very important in reducing program risk: (1) through a proper choice of the working temperature (400 to 540/sup 0/C) and of the liquid metal (lithium or lead-lithium eutectic alloy), we can select a chamber pressure within the range of 10/sup -1/ to 10/sup -4/ Torr, required for the propagation of either a laser-beam or a heavy-ion-beam driver; (2) presently available ferritic steels can be used for the structural material; and (3) the new concept allows flexibility in irradiaton geometry. Although two-sided irradiation at high f/Nos. seems most attractive from the standpoints of minimizing the number of chamber penetrations and of simplifing the layout of the balance of plant, we must provide for the possibility that target-implosion physics will require a more symmetrical illumination geometry.

  19. The use of active learning strategies in the instruction of Reactor Physics concepts

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Michael A.

    2000-01-01

    Each of the Active Learning strategies employed to teach Reactor Physics material has been or promises to be instructionally successful. The Cooperative Group strategy has demonstrated a statistically significant increase in student performance on the unit exam in teaching conceptually difficult, transport and diffusion theory material. However, this result was achieved at the expense of a modest increase in class time. The Tutorial CBI programs have enabled learning equally as well as classroom lectures without the direct intervention of an instructor. Thus, the Tutorials have been successful as homework assignments, releasing classroom time for other instruction. However, the time required for development of these tools was large, on the order of two hundred hours per hour of instruction. The initial introduction of the Case-Based strategy was roughly as effective as the traditional classroom instruction. Case-Based learning could well, after important modifications, perform better than traditional instruction. A larger percentage of the students prefer active learning strategies than prefer traditional lecture presentations. Student preferences for the active strategies were particularly strong when they believed that the strategies helped them learn the material better than they would have by using a lecture format. In some cases, students also preferred the active strategies because they were different from traditional instruction, a change of pace. Some students preferred lectures to CBI instruction, primarily because the CBI did not afford them the opportunity to question the instructor during the presentation.

  20. New bioproduction systems: from molecular circuits to novel reactor concepts in cell-free biotechnology.

    Science.gov (United States)

    Rupp, Steffen

    2013-01-01

    : The last decades witnessed a strong growth in several areas of biotechnology, especially in fields related to health, as well as in industrial biotechnology. Advances in molecular engineering now enable biotechnologists to design more efficient pathways in order to convert a larger spectrum of renewable resources into industrially used biofuels and chemicals as well as into new pharmaceuticals and therapeutic proteins. In addition material sciences advanced significantly making it more and more possible to integrate biology and engineering. One of the key questions currently is how to develop new ways of engineering biological systems to cope with the complexity and limitations given by the cell. The options to integrate biology with classical engineering advanced cell free technologies in the recent years significantly. Cell free protein production using cellular extracts is now a well-established universal technology for production of proteins derived from many organisms even at the milligram scale. Among other applications it has the potential to supply the demand for a multitude of enzymes and enzyme variants facilitating in vitro metabolic engineering. This review will briefly address the recent achievements and limitations of cell free conversions. Especially, the requirements for reactor systems in cell free biotechnology, a currently underdeveloped field, are reviewed and some perspectives are given on how material sciences and biotechnology might be able to advance these new developments in the future.

  1. Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell.

    Science.gov (United States)

    Deeke, Alexandra; Sleutels, Tom H J A; Donkers, Tim F W; Hamelers, Hubertus V M; Buisman, Cees J N; Ter Heijne, Annemiek

    2015-02-03

    The use of granular electrodes in Microbial Fuel Cells (MFCs) is attractive because granules provide a cost-effective way to create a high electrode surface area, which is essential to achieve high current and power densities. Here, we show a novel reactor design based on capacitive granules: the fluidized capacitive bioanode. Activated carbon (AC) granules are colonized by electrochemically active microorganisms, which extract electrons from acetate and store the electrons in the granule. Electricity is harvested from the AC granules in an external discharge cell. We show a proof-of-principle of the fluidized capacitive system with a total anode volume of 2 L. After a start-up period of 100 days, the current increased from 0.56 A/m(2) with 100 g AC granules, to 0.99 A/m(2) with 150 g AC granules, to 1.3 A/m(2) with 200 g AC granules. Contact between moving AC granules and current collector was confirmed in a control experiment without biofilm. Contribution of an electro-active biofilm to the current density with recirculation of AC granules was limited. SEM images confirmed that a biofilm was present on the AC granules after operation in the fluidized capacitive system. Although current densities reported here need further improvement, the high surface area of the AC granules in combination with external discharge offers new and promising opportunities for scaling up MFCs.

  2. Mixing of cooling water in the mixing chambers of the HPLWR-High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wank, Alexander, E-mail: alexander.wank@siemens.co [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies, P.O. Box 3640, 76021 Karlsruhe (Germany); Starflinger, Joerg; Schulenberg, Thomas [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies, P.O. Box 3640, 76021 Karlsruhe (Germany); Laurien, Eckart [University of Stuttgart, Institute for Nuclear Technology and Energy Systems (IKE) Pfaffenwaldring 31, D-70550 Stuttgart (Germany)

    2010-10-15

    The High Performance Light Water Reactor (HPLWR), a supercritical water cooled reactor concept with multiple heat-up steps, requires efficient mixing of the coolant between these steps to minimize hot spots in the core. Analyzing and improving the mixing in the mixing chamber above the core, situated between evaporator and superheater assemblies, and below the core, between the first and second superheater, is one of the challenges in the design process of the HPLWR. Different measures to enhance mixing have been studied with CFD analyses, in which a new design approach has been applied to the upper mixing chamber. It simplifies the complex structures and takes the effects of the disregarded structures into account by introducing source terms into the momentum equations.

  3. Efficacy of a water-cooled garment for auxiliary body cooling in heat.

    Science.gov (United States)

    Nag, P K; Pradhan, C K; Nag, A; Ashtekar, S P; Desai, H

    1998-02-01

    The efficacy of a water-cooled jacket for auxiliary body cooling was examined under a simulated hot environment. The personal garment comprised of a water re-circulating three-layered vest of cotton fabric lined with 2 mm diameter latex tubing and inter-spaced coating of rubberized solution. Four subjects wearing the water-cooled jacket were tested in the environment chamber (30, 35 and 40 degrees C DB, 50-60% RH, air velocity 0.3, 0.6 and 0.9 m/s, with corresponding average effective temperature of 26 +/- 2.3, 33 +/- 1.1 and 36 +/- 1.5 degrees C). The inlet water temperature was maintained at 10-12 degrees C, with flow rates of 2.6 +/- 0.3, 4.3 +/- 0.3 and 5.1 +/- 0.3 l/h). At 30 degrees C DB, variation in water flow had marginal effect on microclimate, while at higher temperatures (35 and 40 degrees C DB), the re-circulating cooled water had noticeable effects in lowering microclimate, trunk and other skin temperatures, and maintaining the body core within 36.7 +/- 0.2 to 37.5 +/- 0.2 degrees C, over 2 h exposure at 35 and 40 degrees C DB. The observation indicates that the water-cooled jacket provided auxiliary cooling to maintain comfortable microclimate, skin and body core temperatures. This enabled subjects to sustain comfortable heat balance over 2 h heat exposure without any noticeable heat strain.

  4. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    . One of the most important activities in the thermal management and reliability improvement is the cooling system design. As industries are developing smaller power devices with higher power densities, optimized design of cooling systems with minimum thermal resistance and pressure drop become...... important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  5. Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Curtis R.; Miller, Mark E.

    2003-08-30

    The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

  6. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  8. An axially multilayered low void worth liquid-metal fast breeder reactor core concept

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, T.; Yamaoka, M. (Toshiba Corp., Nuclear Engineering Lab., 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi 210 (JP))

    1992-03-01

    A new core concept with a negative sodium void reactivity coefficient has evolved. The core is composed of two core layers in the axial direction. The core layers are separated by an internal blanket, the central region of which comprises a neutron-absorbing material such as boron carbide or tantalum. Consequently, the two core layers are completely decoupled as regards neutronics, leading to an effective increase in neutron leakage from the core region when sodium is voided. This design is expected to be free from the disadvantages of a large core radius, as seen in a conventional spoiled core such as a pancake core. In this paper the design is described in detail, and its application to a 300-MW (electronic) metal fuel core and to a 450-MW (electric) minor actinide burned core is given as an example.

  9. Neutronics and thermo-hydraulic design of supercritical-water cooled solid breeder TBM

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Wu, Yingwei, E-mail: wyw810@mail.xjtu.edu.cn; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-03-15

    Highlights: • A supercritical-water cooled solid breeder test blanket module (SWCB TBM) was designed. • The neutronics calculations show that the tritium breeding ratio (TBR) of SWCB TBM is 1.17. • The outlet temperature of SWCB TBM can reach as high as 500 °C. • Both thermal stress and deformation of the SWCB TBM design are within safety limits. - Abstract: In this paper, the supercritical-water cooled solid breeder test blanket module (SWCB TBM), using the supercritical water as the coolant, Li{sub 4}SiO{sub 4} lithium ceramic pebbles as a breeder, and beryllium pebbles as a neutron multiplier, was designed and analyzed for ITER. The results of neutronics, thermo-hydraulic and thermo-mechanical analysis are presented for the SWCB TBM. Neutronics calculations show that the proposed TBM has high tritium breeding ratio and power density. The tritium breeding ratio (TBR) of the proposed design is 1.17, which is greater than that of 1.15 required for tritium self-sufficiency. The thermo-hydraulic calculation proved that the TBM components can be effectively cooled to the allowable temperature with the temperature of outlet reaching 500 °C. According to thermo-mechanics calculation results, the first wall with the width of 17 mm is safe and the deformation of first wall is far below the limited value. All the results showed that the current TBM design was reasonable under the ITER normal condition.

  10. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  11. Activation analysis of the water cooling system of the LIPAc beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ogando, Francisco, E-mail: fogando@ind.uned.es [UNED, Madrid (Spain); Sauvan, Patrick; López, Daniel; Sanz, Javier [UNED, Madrid (Spain); Brañas, Beatriz; Arranz, Fernando [CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: •Quantification of radioisotope production in the water cooling system of LIPAc. •Design requirements to fulfill dose rate targets. •As main conclusion: water filters may be placed outside the accelerator vault, requiring only moderate radiation shielding. -- Abstract: LIPAc stands for Linear IFMIF Prototype Accelerator. LIPAc generates a 9 MeV deuteron beam, which is stopped at a beam dump, depositing over 1 MW of thermal power. A water cooling system has been devised for extracting this energy while keeping operational temperatures within range. The existing high neutron fluxes in the beam dump during operation produce activation of both coolant and beam stopper, which also suffers from corrosion into the coolant. The presence of radioisotopes in the cooling water leads to a radiological hazard. Water purification systems are located outside the accelerator vault and accumulate activated products during filtration, requiring a specific radiological shield to comply with target dose rates. Also devices containing large volume of activated cooling water, like N-16 decay pipes, require specific radioprotection analysis and design. This work identifies the most relevant radiation sources due to the activated cooling fluid, which may result in radiation doses to workers, and propose radioprotection measures into the design to mitigate their effect.

  12. Simulation study of air and water cooled photovoltaic panel using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  13. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  14. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31

    In summary, a scaling analysis of a water-cooled Reactor Cavity Cooling System (RCCS) system was performed based on generic information on the RCCS design of PBMR. The analysis demonstrates that the water-cooled RCCS can be simulated at the ANL NSTF facility at a prototypic scale in the lateral direction and about half scale in the vertical direction. Because, by necessity, the scaling is based on a number of approximations, and because no analytical information is available on the performance of a reference water-cooled RCCS, the scaling analysis presented here needs to be 'validated' by analysis of the steady state and transient performance of a reference water-cooled RCCS design. The analysis of the RCCS performance by CFD and system codes presents a number of challenges including: strong 3-D effects in the cavity and the RCCS tubes; simulation of turbulence in flows characterized by natural circulation, high Rayleigh numbers and low Reynolds numbers; validity of heat transfer correlations for system codes for heat transfer in the cavity and the annulus of the RCCS tubes; the potential of nucleate boiling in the tubes; water flashing in the upper section of the RCCS return line (during limiting transient); and two-phase flow phenomena in the water tanks. The limited simulation of heat transfer in cavities presented in Section 4.0, strongly underscores the need of experimental work to validate CFD codes, and heat transfer correlations for system codes, and to support the analysis and design of the RCCS. Based on the conclusions of the scaling analysis, a schematic that illustrates key attributes of the experiment system is shown in Fig. 4. This system contains the same physical elements as the PBMR RCCS, plus additional equipment to facilitate data gathering to support code validation. In particular, the prototype consists of a series of oval standpipes surrounding the reactor vessel to provide cooling of the reactor cavity during both normal and off

  15. Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Taiwo, T. A.; Cahalan, J. E.; Finck, P. J.

    2001-05-08

    An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess

  16. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Mexico, D.F. (Mexico); Francois, Juan Luis [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico)]. E-mail: jlfl@fi-b.unam.mx; Martin-del-Campo, Cecilia [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana, Avenida San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2005-04-15

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the {sup 233}U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly.

  17. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Science.gov (United States)

    2010-01-01

    ... vessel. These data will be used as described in section IV of appendix G to part 50. ASTM E 185-73, “Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels”; ASTM E 185-79, “Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels”; and ASTM...

  18. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  19. Thermal-hydraulic performance of a water-cooled tungsten-rod target for a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Poston, D.I.

    1997-08-01

    A thermal-hydraulic (T-H) analysis is conducted to determine the feasibility and limitations of a water-cooled tungsten-rod target at powers of 1 MW and above. The target evaluated has a 10-cm x 10-cm cross section perpendicular to the beam axis, which is typical of an experimental spallation neutron source - both for a short-pulse spallation source and long-pulse spallation source. This report describes the T-H model and assumptions that are used to evaluate the target. A 1-MW baseline target is examined, and the results indicate that this target should easily handle the T-H requirements. The possibility of operating at powers >1 MW is also examined. The T-H design is limited by the condition that the coolant does not boil (actual limits are on surface subcooling and wall heat flux); material temperature limits are not approached. Three possible methods of enhancing the target power capability are presented: reducing peak power density, altering pin dimensions, and improving coolant conditions (pressure and temperature). Based on simple calculations, it appears that this target concept should have little trouble reaching the 2-MW range (from a purely T-H standpoint), and possibly much higher powers. However, one must keep in mind that these conclusions are based solely on thermal-hydraulics. It is possible, and perhaps likely, that target performance could be limited by structural issues at higher powers, particularly for a short-pulse spallation source because of thermal shock issues.

  20. Modal Analysis and Measurement of Water Cooling Induced Vibrations on a CLIC Main Beam Quadrupole Prototype

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Janssens, S; Leuxe, R; Modena, M; Moron Ballester, R; Struik, M; Deleglise, C; Jeremie, A

    2011-01-01

    To reach the Compact Linear Collider (CLIC) design luminosity, the mechanical jitter of the CLIC main beam quadrupoles should be smaller than 1.5 nm integrated root mean square (r.m.s.) displacement above 1 Hz. A stiff stabilization and nano-positioning system is being developed but the design and effectiveness of such a system will greatly depend on the stiffness of the quadrupole magnet which should be as high as possible. Modal vibration measurements were therefore performed on a first assembled prototype magnet to evaluate the different mechanical modes and their frequencies. The results were then compared with a Finite Element (FE) model. The vibrations induced by water-cooling without stabilization were measured with different flow rates. This paper describes and analyzes the measurement results.

  1. A fiber-coupled 9xx module with tap water cooling

    Science.gov (United States)

    Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.

    2016-03-01

    A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing

  2. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  3. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    Science.gov (United States)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  4. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  5. A feasibility assessment of installation, operation and disposal options for nuclear reactor power system concepts for a NASA growth space station

    Science.gov (United States)

    Bloomfield, Harvey S.; Heller, Jack A.

    1987-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational disposition, and safety issues. A previous NASA sponsored study, which showed the advantages of space station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide the feasibility of each combination.

  6. Mechanical Analysis of an Innovative Assembly Box with Honeycomb Structures Designed for a High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herbell, Heiko [EnBW Kernkraft GmbH, 76661 Philippsburg (Germany); Himmel, Steffen; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    The High Performance Light Water Reactor (HPLWR) is a water cooled reactor concept of the 4. generation, operated at a pressure beyond the critical point of water. Assemblies of this innovative reactor concept need to be built with assembly and moderator boxes, like boiling water reactors, to provide enough moderator water between them to compensate the low coolant density in the core. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce the heat up of the moderator water. As a new an innovative approach, this paper describes moderator- and assembly boxes built from stainless steel honeycomb sandwich structures, in which the honeycomb cells are filled with alumina for thermal insulation. In comparison to solid box walls, the use of the presented design can provide the same stiffness but allows a drastic reduction of structural material and thus less neutron absorption. Finite element analyses are used to verify the required stiffness, to identify stress concentrations and to optimize the design. (authors)

  7. Melting and evaporation analysis of the first wall in a water-cooled breeding blanket module under vertical displacement event by using the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2017-05-15

    Highlights: • Material phase change of first wall was simulated for vertical displacement event. • An in-house first wall module was developed to simulate melting and evaporation. • Effective heat capacity method and evaporation model were proposed. • MARS code was proposed to predict two-phase phenomena in coolant channel. • Phase change simulation was performed by coupling MARS and in-house module. - Abstract: Plasma facing components of tokamak reactors such as ITER or the Korean fusion demonstration reactor (K-DEMO) can be subjected to damage by plasma instabilities. Plasma disruptions like vertical displacement event (VDE) with high heat flux, can cause melting and vaporization of plasma facing materials and burnout of coolant channels. In this study, to simulate melting and vaporization of the first wall in a water-cooled breeding blanket under VDE, one-dimensional heat equations were solved numerically by using an in-house first wall module, including phase change models, effective heat capacity method, and evaporation model. For thermal-hydraulics, the in-house first wall analysis module was coupled with the nuclear reactor safety analysis code, MARS, to take advantage of its prediction capability for two-phase flow and critical heat flux (CHF) occurrence. The first wall was proposed for simulation according to the conceptual design of the K-DEMO, and the heat flux of plasma disruption with a value of 600 MW/m{sup 2} for 0.1 s was applied. The phase change simulation results were analyzed in terms of the melting and evaporation thicknesses and the occurrence of CHF. The thermal integrity of the blanket first wall is discussed to confirm whether the structural material melts for the given conditions.

  8. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  9. Department of Energy's team's analyses of Soviet designed VVERs (water-cooled water-moderated atomic energy reactors)

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document contains apprendices A through P of this report. Topics discussed are: a cronyms and technical terms, accident analyses reactivity control; Soviet safety regulations; radionuclide inventory; decay heat; operations and maintenance; steam supply system; concrete and concrete structures; seismicity; site information; neutronic parameters; loss of electric power; diesel generator reliability; Soviet codes and standards; and comparisons of PWR and VVER features. (FI)

  10. Heat dissipation research on the water-cooling channel of HL-2M in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J., E-mail: jiangjiaming@swip.ac.cn; Liu, Y.; Chen, Q.; Ji, X.Q.

    2017-04-15

    Highlights: • The joule heat of in-vessel coils is very difficult to dissipate inside HL-2M vacuum vessel. • Heat dissipation model of the coil includes the joule heat model, the heat conduction model and the heat transfer model. • The CFD analysis has been done for the coil-water cooling, with comparison with the date of theoretical analysis and experiment. • The result shows water-cooling channel is good for the joule heat transfer and taken away. - Abstract: HL-2M in-vessel coils are positioned in high vacuum circumstance, and they will generate joule heat when they carry 15 kA electrical current, but joule heat is very difficult to dissipate in vacuum, so a hollow cable with 8 mm inner diameter is design as water-cooling channel for heat convection. By using the methods of the theoretical derivation, together with CFD numeric simulation method and the experiment of the heat transfer, the water channel of HL-2M in-vessel coils has been studied, and the temperature of HL-2M in-vessel coils under different cooling water flow rates is obtained and acceptable. Simultaneously, the external cooling water supply system parameters for the water-cooling channel of the coils are estimated. Three methods’ results are in good agreement; the theoretical model is verified and could be popularized for predicting the temperature rise of HL-2M in-vessel coils.

  11. Optimization of the Water-Cooled Structure for the Divertor Plates in EAST Based on an Orthogonal Theory

    Science.gov (United States)

    Li, Lei; Yao, Damao; Liu, Changle; Zhou, Zibo; Cao, Lei; Liang, Chao

    2015-05-01

    An orthogonal experimental scheme was designed for optimizing a water-cooled structure of the divertor plate. There were three influencing factors: the radius R of the water-cooled pipe, and the pipe spacing L1 and L3. The influence rule of different factors on the cooling effect and thermal stress of the plate were studied, for which the influence rank was respectively R > L1 > L3 and L3 > R > L1. The highest temperature value decreased when R and L1 increased, and the maximum thermal stress value dropped when R, L1 and L3 increased. The final optimized results can be summarized as: R equals 6 mm or 7 mm, L1 equals 19 mm, and L3 equals 20 mm. Compared with the initial design, the highest temperature value had a small decline, and the maximum thermal stress value dropped by 19% to 24%. So it was not ideal to improve the cooling effect by optimizing the geometry sizes of the water-cooled structure, even worse than increasing the flow speed, but it was very effective for dropping the maximum thermal stress value. The orthogonal experimental method reduces the number of experiments by 80%, and thus it is feasible and effective to optimize the water-cooled structure of the divertor plate with the orthogonal theory. supported by National Basic Research Program of China (973 Program) (No. 2013GB102000)

  12. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    Science.gov (United States)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  13. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-11-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m{sup 2} fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  14. LD side-pumped Nd:YAG Q-switched laser without water cooling

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-07-01

    A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10-12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than +/-1. 7 %.

  15. DETAILS OF OPERATIONS PERFORMED BY THE REMOTE CONTROL ROBOT (CONCEPT TO THE HORIZONTAL FUEL CHANNEL DURING DECOMMISSIONING PHASE OF NUCLEAR REACTOR CALANDRIA STRUCTURE. PART I: OUTSIDE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2017-05-01

    Full Text Available The authors contribution to this paper is to present a concept solution of a remote control robot (RCR used for the horizontal fuel channels pressure tube decommissioning in the CANDU nuclear reactor. The authors highlight in this paper, few details of geometry, operations, constraints by kinematics and dynamics of the robot movement outside of the reactor fuel channel. Outside operations performed has as the main steps of dismantling process the followings: positioning front of Calandria structure at the fuel channel to be decommissioned, coupling and locking to the End Fitting (EF, sorting and storage extracted items in the safe container. All steps are performed in automatic mode. The remote control robot (RCR represents a safety system controlled by sensors and has the capability to analyze any error registered and decide next activities or abort the outside decommissioning procedure in case of any risk rise in order to ensure the environmental and workers protection.

  16. Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating

    Directory of Open Access Journals (Sweden)

    Sarkar Jahar

    2013-02-01

    Full Text Available The effects of water-side operating conditions (mass flow rates and inlet temperatures of both evaporator and gas cooler on the experimental as well as simulated performances (cooling and heating capacities, system coefficient of performance (COP and water outlet temperatures of the transcritical CO2 heat pump for simultaneous water cooling and heating the are studied and revised. Study shows that both the water mass flow rate and inlet temperature have significant effect on the system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases by 0.6 for 1 kg/min compared to that of gas cooler water mass flow rate (COP increases by 0.4 for 1 kg/min and the effect of gas cooler water inlet temperature is more significant (COP decreases by 0.48 for given range compared to that of evaporator water inlet temperature (COP increases by 0.43 for given range. Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity and 16% for system COP.

  17. Improvements on water-cooled and doubly bent crystal monochromator for Compton scattering experiments

    CERN Document Server

    Kawata, H; Higashi, Y

    2001-01-01

    Improvements on the water-cooled and doubly bent crystal monochromator, which has been installed at the KEK, PF-AR NE1 beamline for Compton scattering experiments, are described. An as grown Si crystal is replaced by an annealed Si crystal (950 deg. C for 24 h in air) in order to get a much higher flux. As a result, the obtained flux for 60 keV monochromatic X-rays has become four times higher. The focused beam size has not changed. The energy resolution is 90 eV, which is 1.5 times worse than the previous value, but it is acceptable for high resolution Compton scattering experiments. Two Si crystals whose directions of the surface normal are (1 1 1) and (1 0 0) were successfully mounted. With this, the beamline now covers the energy ranges of the monochromatized X-rays: 40-70 keV by Si (1 1 1) and 90-160 keV by Si (4 0 0).

  18. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  19. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  20. Effects of Swirl Bubble Injection on Mass Transfer and Hydrodynamics for Bubbly Flow Reactors: A Concept Paper

    Directory of Open Access Journals (Sweden)

    Farooqi Ahmad Salam

    2017-01-01

    Full Text Available Bubble flow reactors (BFR are commonly used for various industrial processes in the field of oil and gas production, pharmaceutical industries, biochemical and environmental engineering etc. The operation and performance of these reactors rely heavily on a range of hydrodynamic parameters; prominent among them are geometric configurations including gas injection geometry, operating conditions, mass transfer etc. A huge body of literature is available to describe the optimum design and performance of bubbly flow reactors with conventional bubble injection. Attempts were made to modify gas injection for improved efficiency of BFR’s. However, here instead of modifying the geometry of the gas injection, an attempt has been made to generate swirl bubbles for gaining larger mass transfer between gas and liquid. Here an exceptionally well thought strategies have been used in our numerical simulations towards the design of swirl injection mechanism, whose paramount aspect is to inhibit the rotary liquid motion but facilitates the swirl movement for bubbles in nearly stationary liquid. Our comprehension here is that the swirl motion can strongly affect the performance of bubbly reactor by identifying the changes in hydrodynamic parameters as compared to the conventional bubbly flows. In order to achieve this bubbly flow, an experimental setup has been designed as well as computational fluid dynamic (CFD code was used with to highlight a provision of swirl bubble injection by rotating the sparger plate.

  1. Conception of a novel spray tower plasma-reactor in a spatial post-discharge configuration: Pollutants remote treatment.

    Science.gov (United States)

    Ferhat, Mohamed Fouad; Ghezzar, Mouffok Redouane; Smaïl, Bentaïba; Guyon, Cedric; Ognier, Stéphanie; Addou, Ahmed

    2017-01-05

    This paper describes a novel gliding Arc discharge reactor producing a non-thermal plasma at atmospheric pressure in humid air. The ionized gas is generated in a spray-tower absorber for the treatment of organic pollutants. The reactor configuration enables the plasma-degradation of micro-droplets effluents in the spatial post-discharge mode. This type of design allows to exclude the direct contact between the plasma plume and the liquid to be treated in order to avoid the liquid heating and the flame extinction problems. A hydrodynamic study coupling 'Navier-Stokes' equations and those of 'Convection-Diffusion' allowed to calculate the concentration profiles and the droplet falling velocity. The stripping of phenol was studied to valid the hydrodynamic approach. Experiences and simulations showed that after 1h of treatment, only 5% of the compound was transferred into the plasma phase. The spatiality of the novel reactor allowed a degradation rate of 100% for catechol after 38min of plasma-treatment. For 4-nitrophenol, the degradation rate reached 90% after 120min. Phenol and its by-products degradation were totally degraded by combining the spatiality of the reactor and the temporal post-discharge. A degradation mechanism was proposed and a plasmachemical reaction in relation with the pernitrous acid species was confirmed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Concept of a self-sustaining cooling system for after-heat removal in BWR-type reactors; Konzept eines autarken Kuehlsystems zur Nachwaermeabfuhr in Siedewasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Venker, J. [RWE Technology GmbH, Essen (Germany). Nukleartechnologie; Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE); Lavante, D. von [TUEV Rheinland, Koeln (Germany); Buck, M.; Starflinger, J. [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE); Gitzel, D. [RWE Technology GmbH, Essen (Germany). Nukleartechnologie

    2013-07-01

    The concept, technical feasibility and potential capability of a new self-sustaining after-heat removal system based on supercritical carbon dioxide is described. The effect of the system on the plant behavior of appropriately retrofitted BWR-type reactors is discussed. Based on calculations using the thermal hydraulic code ATHLET it is shown that the safe after-heat removal time of existing BWR-type reactors in case of station blackout can be increased for several hours. The calculations have also shown that a enduring control of the station blackout situation cannot be reached by the retrofitting of the pressure relief system. The question is raised whether the pressure relief is reasonable independent of the accident scenario. Without the possibility of further coolant supply in case of station blackout the pressure relief will enhance the dry-out of the reactor core. The high-pressure path for the primary circuit increases the time for possible external measures to activate ECCS or active after-heat removal.

  3. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    Science.gov (United States)

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed.

  4. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Institute Regional des Materiaux Avances, Ispra (Italy); Casini, G. [Systems Engineering and Informatics Institute, JRC Ispra, Ispra (Vatican City State, Holy See) (Italy); Viola, A. [Department of Chemical Engineering, University of Cagliari, Cagliari (Italy)

    1995-03-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.).

  5. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  6. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  7. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  8. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-09-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  9. Multicriteria selection in concept design of a divertor remote maintenance port in the EU DEMO reactor using an AHP participative approach

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Gironimo, G. Di, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Esposito, G. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Mäkinen, H. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Miccichè, G. [ENEA Brasimone, I:40032 Camugnano (Italy); Mozzillo, R. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2016-11-15

    Highlights: • Concept Studies in Divertor Remote Handling. • Prioritization of concept alternatives. • Comparison and evaluation of product alternatives using AHP. - Abstract: The work behind this paper took place in the Eurofusion remote maintenance system project (WPRM) for the EU Demonstration Fusion Power Reactor (DEMO). Following ITER, the aim of DEMO is to demonstrate the capability of generating several hundreds of MW of net electricity by 2050. The main objective of this paper was the study of the most efficient design of the maintenance port for replacing the divertor cassettes in a Remote Handling (RH) point of view. In DEMO overall design, one important consideration is the availability and short down time operations. The inclination of the divertor port has a very important impact on all the RH tasks such as the design of the divertor mover, the divertor locking systems and the end effectors. The current reference scenario of the EU DEMO foresees a 45° inclined port for the remote maintenance (RM) of the divertor in the lower part of the reactor. Nevertheless, in the optic of the systems engineering (SE) approach, in early concept design phase, all possible configurations shall be taken into account. Even the solutions which seem not feasible at all need to be investigated, because they could lead to new and innovative engineering proposals. The different solutions were compared using an approach based on the Analytic Hierarchy Process (AHP). The technique is a multi-criteria decision making approach in which the factors that are important in making a decision are arranged in a hierarchic structure. The results of these studies show how the application of the AHP improved and focused the selection on the concept which is closer to the requirements arose from technical meetings with the experts of the RH field.

  10. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  11. Remote means of nondestructive testing of shell-type reactors of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, V.V.; Lebedev, N.E.

    1984-11-01

    Equipment for the remote nondestructive testing of the welds in the shell of a water-cooled, water-moderated power reactor vessel is described. Television equipment is used for inspection. Ultrasonic monitoring is done in order to detect cracks, peeling, and separation of the austenite hard facing in the shells.

  12. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  13. DETAILS OF OPERATIONS PERFORMED BY THE REMOTE CONTROL ROBOT (CONCEPT TO THE HORIZONTAL FUEL CHANNEL DURING DECOMMISSIONING PHASE OF NUCLEAR REACTOR CALANDRIA STRUCTURE. PART II: INSIDE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2017-05-01

    Full Text Available The authors contribution to this paper is to present a concept solution of a remote control robot (RCR used for decommissioning of the horizontal fuel channels pressure tube in the CANDU nuclear reactor. In this paper the authors highlight few details of geometry, operations, constraints by kinematics and dynamics of the robot movement inside of the reactor fuel channel. Inside operations performed has as the main steps of dismantling process the followings: unblock and extract the channel closure plug (from End Fitting - EF, unblock and extract the channel shield plug (from Lattice Tube - LT, cut the ends of the pressure tube, extract the pressure tube and cut it in small parts, sorting and storage extracted items in the safe robot container. All steps are performed in automatic mode. The remote control robot (RCR represents a safety system controlled by sensors and has the capability to analyze any error registered and decide next activities or abort the inside decommissioning procedure in case of any risk rise in order to ensure the environmental and workers protection.

  14. The concept of the use of recycled uranium for increasing the degree of security of export deliveries of fuel for light-water reactors

    Science.gov (United States)

    Alekseev, P. N.; Ivanov, E. A.; Nevinitsa, V. A.; Ponomarev-Stepnoi, N. N.; Rumyantsev, A. N.; Shmelev, V. M.; Borisevich, V. D.; Smirnov, A. Yu.; Sulaberidze, G. A.

    2010-12-01

    The present paper deals with investigation of the possibilities for reducing the risk of proliferation of fissionable materials by means of increasing the degree of protection of fresh fuel intended for light-water reactors against unsanctioned use in the case of withdrawal of a recipient country of deliveries from IAEA safeguards. It is shown that the use of recycled uranium for manufacturing export nuclear fuel makes transfer of nuclear material removed from the fuel assemblies for weapons purposes difficult because of the presence of isotope 232U, whose content increases when one attempts to enrich uranium extracted from fresh fuel. In combination with restricted access to technologies for isotope separation by means of establishing international centers for uranium enrichment, this technical measure can significantly reduce the risk of proliferation associated with export deliveries of fuel made of low-enriched uranium. The assessment of a maximum level of contamination of nuclear material being transferred by isotope 232U for the given isotope composition of the initial fuel is obtained. The concept of further investigations of the degree of security of export deliveries of fuel assemblies with recycled uranium intended for light-water reactors is suggested.

  15. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  16. Conceptual study of advanced PWR systems. A study of passive and inherent safety design concepts for advanced light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; No, Hee Cheon; Baek, Won Pil; Shim Young Jae; Lee, Goung Jin; Na, Man Gyun; Lee, Jae Young; Kim, Han Gon; Kang, Ki Sig; Moon, Sang Ki; Kim, Yun Il; Park, Jae Wook; Yang, Soo Hyung; Kim, Soo Hyung; Lee, Seong Wook; Kim, Hong Che; Park, Hyun Sik; Jeong, Ji Hwan; Lee, Sang Il; Jung, Hae Yong; Kim, Hyong Tae; Chae, Kyung Sun; Moon, Ki Hoon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The five thermal-hydraulic concepts chosen for advanced PWR have been studied as follows: (1) Critical Heat Flux: Review of previous works, analysis of parametric trends, analysis of transient CHF characteristics, extension of the CHF date bank, survey and assessment of correlations, design of a intermediate-pressure CHF test loop have been performed. (2) Passive Cooling Concepts for Concrete Containment system: Review of condensation phenomena with noncondensable gases, selection of a promising concept (i.e., use of external condensers), design of test loop according to scaling laws have been accomplished. and computer programs based on the control-volume approach, and the conceptual design of test loop have been accomplished. (4) Fluidic Diode Concepts: Review of previous applications of the concept, analysis major parameters affecting the performance, development of a computational code, and conceptual investigation of the verification test loop have been performed. (5) Wet Thermal Insulator: Review of previous works, selection of promising methods ( i.e. ceramic fiber in a steel case and mirror-type insulator), and conceptual design of the experimental loop have been performed. (author). 9 refs.

  17. Investigation of Changes in Solubility Values of Some Non Impregnated Pine Species used in Water Cooling Towers

    Directory of Open Access Journals (Sweden)

    Murat ÖZALP

    2007-01-01

    Full Text Available Scotch pine (Pinus sylvestris L., Austrian black pine (Pinus nigra L. and Cyprus pine (Pinus brutia L. specimens were prepared and settled to water return system on water cooling tower. For every 3 months period’s specimens were tested solubility of hot and could water, 1% NaOH, alcohol-benzene and ethyl alcohol values were determined. For the control specimens significant color change, odour and surface softening was observed. For chemical analysis, all the solubility values were changed significantly.

  18. Neturonic performance of two European breeder-inside-tube (BIT) blankets for demo: The helium cooled ceramic LiAlO{sub 2} with be multiplier and the water cooled liquid Li17Pb

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Rado, V. [Centro Ricerche Energia Frascati, Rome (Italy)

    1994-12-31

    In the European Community (EC) Test Blanket programme a selection is foreseen, by 1995 of two blanket designs among those under investigation which can be divided in two groups: those using a solid ceramic breeder, all of them helium cooled and with Be neutron multiplier and those using the Ll{sub 17}-Pb liquid metal breeder which could be self or water cooled, depending on the proposal. The design studies have been carried out according to the latest DEMONET specification (2200 MW fusion power, 20000 hours irradiation full power). The present study concerns the most recent neutronic analyses of the two blankets design in which there is ENEA contribution. Both are based on a BIT concept with poloidal running breeding elements which follow the first wall curvature: (1) the helium cooled ceramic BIT with {gamma}-LiAlO{sub 2} breeder material (75% Ll{sup 6} enriched) and Be as neutron multiplier, which has been studied by ENEA since a long time and from 1990, jointly developed with CEA; (2) the water cooled liquid Li{sub 17}Pb (90% Ll{sup 6} enriched) inside cylindrical breeder modules which was originally proposed by JRC Ispra and now it is jointly developed CEA and ENEA.

  19. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2016-11-15

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m{sup 2}, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  20. One pass core design of a super fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingjie; Oka, Yoshiaki [Cooperative Major in Nuclear Energy, Waseda University, Tokyo 169-8555 (Japan)

    2013-07-01

    One pass core design for Supercritical-pressure light water-cooled fast reactor (Super FR) is proposed. The whole core is cooled with upward flow in one through flow pattern like PWR. Compared with the previous two pass core design; this new flow pattern can significantly simplify the core concept. Upper core structure, coolant flow scheme as well as refueling procedure are as simple as in PWR. In one pass core design, supercritical-pressure water is at approximately 25.0 MPa and enters the core at 280 C. degrees and is heated up in one through flow pattern upwardly to the average outlet temperature of 500 C. degrees. Great density change in vertical direction can cause significant axial power offset during the cycle. Meanwhile, Pu accumulated in the UO{sub 2} fuel blanket assemblies also introduces great power increase during cycle, which requires large amount of flow for heat removal and makes the outlet temperature of blanket low at the beginning of equilibrium cycle (BOEC). To deal with these issues, some MOX fuel is applied in the bottom region of the blanket assembly. This can help to mitigate the power change in blanket due to Pu accumulation and to increase the outlet temperature of the blanket during cycle. Neutron transport and thermohydraulics coupled calculation shows that this design can satisfy the requirement in the Super FR principle for both 500 C. degrees outlet temperature and negative coolant void reactivity. (authors)

  1. A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts

    Energy Technology Data Exchange (ETDEWEB)

    Moormann, R.

    2008-06-15

    The AVR pebble bed reactor (46 MW{sub th}) was operated 1967-88 at coolant outlet temperatures up to 990 C. A principle difference of pebble bed HTRs as AVR to conventional reactors is the continuous movement of fuel element pebbles through the core which complicates thermohydraulic, nuclear and safety estimations. Also because of a lack of other experience AVR operation is still a relevant basis for future pebble bed HTRs and thus requires careful examination. This paper deals mainly with some insufficiently published unresolved safety problems of AVR operation and of pebble bed HTRs but skips the widely known advantageous features of pebble bed HTRs. The AVR primary circuit is heavily contaminated with metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The amount of this contamination is not exactly known, but the evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory, which is some orders of magnitude more than precalculated and far more than in large LWRs. A major fraction of this contamination is bound on graphitic dust and thus partly mobile in depressurization accidents, which has to be considered in safety analyses of future reactors. A re-evaluation of the AVR contamination is performed here in order to quantify consequences for future HTRs (400 MW{sub th}). It leads to the conclusion that the AVR contamination was mainly caused by inadmissible high core temperatures, increasing fission product release rates, and not - as presumed in the past - by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot yet be equipped with instruments. The maximum core temperatures are still unknown but were more than 200 K higher than calculated. Further, azimuthal temperature differences at the active core margin of up to 200 K were

  2. Proposal for the award of a contract for the modification to the LEP water cooling system for the LHC

    CERN Document Server

    2002-01-01

    This document concerns the award of a contract for the modification of the hydraulic, electrical and control systems of the LEP water cooling system for the LHC. Following a market survey carried out among 74 firms in fifteen Member States, a call for tenders (IT-2633/ST/LHC) was sent on 23 November 2001 to seven firms and six consortia, five consisting of two firms and one consisting of three firms, in ten Member States. By the closing date, CERN had received six tenders from three firms and three consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium AIR ET CHALEUR (BE) - MELOTTE (NL), the lowest bidder, for the modification of the hydraulic, electrical and control systems of the LEP water cooling system for the LHC for a total amount of 11 026 713 euros (16 232 465 Swiss francs), subject to revision for inflation after 31 December 2003. The rate of exchange which has been used is that stipulated in the tender. The consortium has indica...

  3. Neutronics of a mixed-flow gas-core reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF/sub 6/ (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation.

  4. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  5. Nuclear reactor for breeding U.sup.233

    Science.gov (United States)

    Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin

    1976-01-01

    A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.

  6. Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling

    Directory of Open Access Journals (Sweden)

    Zejun Chen

    2017-04-01

    Full Text Available An on-line spray water cooling (OSWC process for manufacturing electric resistance welded (ERW steel pipes is presented to enhance their mechanical properties and performances. This technique reduces the processing needed for the ERW pipe and overcomes the weakness of the conventional manufacturing technique. Industrial tests for J55 ERW steel pipe were carried out to validate the effectiveness of the OSWC process. The microstructure and mechanical properties of the J55 ERW steel pipe processed by the OSWC technology were investigated. The optimized OSWC technical parameters are presented based on the mechanical properties and impact the performance of steel pipes. The industrial tests show that the OSWC process can be used to efficiently control the microstructure, enhance mechanical properties, and improve production flexibility of steel pipes. The comprehensive mechanical properties of steel pipes processed by the OSWC are superior to those of other published J55 grade steels.

  7. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A non-equilibrium quenched plasma is prepared using a gliding-arc discharge generated between diverging electrodes and extended by a gas flow. It can be operated at atmospheric pressure and applied to plasma surface treatment to improve adhesion properties of material surfaces. In this work, glass......-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen......-containing polar functional groups on the surfaces. Double cantilever beam specimens were prepared for fracture mechanic characterization of the laminate adhesive interface. It was found that gliding-arc treatment significantly increases the fracture resistance in comparison with a standard peel-ply treatment....

  8. Investigation of a large power water-cooled microwave resonance window for application with the ECR ion source

    Science.gov (United States)

    Guo, Guo; Guo, Junwei; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu

    2017-06-01

    A large power water-cooled microwave resonance window used for the electron cyclotron resonance (ECR) ion source is investigated in this paper. The microwave characteristic simulation, thermal analysis, and structure design are deeply and successively carried out before fabrication. After the machining and welding of the components, the window is cold and hot tested. The application results demonstrate that when the input power is 2000 W, the reflected power is only 5 W. The vacuum is below 10-10 Pa, and the high power microwave operation can last 30 h continuously and reliably, which indicates that the design and assembling can achieve the high efficiency of the microwave transmission. Finally, the performance of the ECR ion source is enhanced by the improvement of the injected microwave power to the ECR plasma.

  9. [Present conceptions of the C.E.A. concerning] the development of fast neutron reactors in France; [Les conceptions actuelles du C.E.A. concernant] la filiere des reacteurs a neutrons rapides en France

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G.; Gaussens, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pasquer, R. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    1 - The position of fast neutron reactors in the French nuclear energy program. In developing a program based on natural uranium, France will have an important stock of plutonium rich in higher isotopes. The existence of this plutonium and of the depleted uranium arising from the same reactors, has, as a logical consequence, the use of both in fast neutron reactors. Justified by this short term interest, the achievement of fast neutron reactors does, moreover, provide for a future necessity. 2 - Description of a fast neutron central power station of 1000 MWe. We indicate the characteristics of a future fast neutron central power station, plutonium fuelled, and sodium cooled. However uncertain these characteristics may be, they constitute a necessary guide in the orientation of our work. 3 - Studies carried out up to the present time. We give an outline of those studies, often very preliminary, which have given the characteristics cited above. The principal technical areas taken up are the following: - Neutronics (critical masses, breeding ratios, enrichments, flattening of the neutron flux, coefficients of reactivity, reactivity changes as a function of irradiation). - Dynamics, control, and safety. - Technology (design of the core and vessel, of the sodium system, and of the fuel handling mechanisms). These technical studies are complemented by economic considerations. The choice of the optimum characteristics is related to the existence of power production programs, and, in these programs, to the existence of plutonium producing thermal reactors. It is shown how, in this context, the existence of plutonium should be taken into account, and, in addition which mechanisms relate the economics of this plutonium to the choice of the most important parameters of the breeder reactors. 4 - Prototype reactor. The interest in an intermediate stage consisting of a reactor of a power level of about 80 MWe is justified. Its essential characteristics are briefly presented

  10. Improvement of the Neutronic Performance of the PACER Fusion Concept Using Thorium Molten Salt with Reactor Grade Plutonium

    Science.gov (United States)

    Acır, Adem

    2013-02-01

    In this study, the improvement of neutronic performance of a dual purpose modified PACER concept has been investigated. Flibe as the main constituent are fixed as 92% coolant. ThF4 is mixed with increased mole-fractions of RG-PuF4 starting by 0 mol % up to 1 mol %. TBR variations for all the investigated salts with respect to the RG-PuF4 contents are computed. Tritium self-sufficiency is provided with the ThF4 when the adding RG-PuF4 content is higher than 0.75%. The energy multiplication of the blanket is increased as 70% with adding RG-PuF4 contents to ThF4. High quality fissile isotope 233U are produced with increasing RG-PuF4. DPA and helium production increases with increased RG-PuF4 content in molten salt. Radiation damage with dpa <1.7 and He <3.3 ppm after a plant operation period of 30 years will be well below the damage limit values.

  11. Copper matrix composites as heat sink materials for water-cooled divertor target

    Directory of Open Access Journals (Sweden)

    Jeong-Ha You

    2015-12-01

    Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.

  12. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  13. Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division

    2005-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong

  14. The Westinghouse Small Modular Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Garcia, F. J.; Memmott, M. J.

    2012-07-01

    Westinghouse has developed a small modular reactor (SMR) which incorporates an integral pressurized water reactor (PWR) design. The Westinghouse SMR design also utilizes many of the key features and innovative concepts from the AP1000 plant, including passive safety systems.

  15. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  16. Contributions to safety studies for new concepts of nuclear reactors; Contributions aux etudes de surete pour des filieres innovantes de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Perdu, F

    2003-12-01

    The complete study of molten salt reactors, designed for a massive and durable nuclear energy production, must include neutronics, hydraulics and thermal effects. This coupled study, using the MCNP and Trio{sub U} codes, is undertaken in the case of the MSRE (molten salt reactor experiment) prototype. The obtained results fit very well the experiment. Their extrapolation suggests ways of improving the safety coefficients of power molten salt reactors. A second part is devoted to accelerator driven subcritical reactors, developed to incinerate radioactive waste.We propose a method to measure the prompt reactivity from the decay following a neutron pulse. It relies only on the distribution of times between generations, which is a characteristic of the reactor. This method is implemented on the results of the MUSE 4 experiment, and the obtained reactivity is accurate within 5%. (author)

  17. Pulpar temperature changes during mechanical reduction of equine cheek teeth: comparison of different motorised dental instruments, duration of treatments and use of water cooling.

    Science.gov (United States)

    O'Leary, J M; Barnett, T P; Parkin, T D H; Dixon, P M; Barakzai, S Z

    2013-05-01

    Although equine motorised dental instruments are widely used, there is limited information on their thermal effect on teeth. The recently described variation in subocclusal secondary dentine depth overlying individual pulp horns may affect heat transmission to the underlying pulps. This study compared the effect of 3 different equine motorised dental instruments on the pulpar temperature of equine cheek teeth with and without the use of water cooling. It also evaluated the effect of subocclusal secondary dentine thickness on pulpar temperature changes. A thermocouple probe was inserted into the pulp horns of 188 transversely sectioned maxillary cheek teeth with its tip lying subocclusally. Pulpar temperature changes were recorded during and following the continuous use of 3 different equine motorised dental instruments (A, B and C) for sequential time periods, with and without the use of water cooling. Using motorised dental instrument B compared with either A or C increased the likelihood that the critical temperature was reached in pulps by 8.6 times. Compared with rasping for 30 s, rasping for 45, 60 and 90 s increased the likelihood that the critical temperature would be reached in pulps by 7.3, 8.9 and 24.7 times, respectively. Thicker subocclusal secondary dentine (odds ratio [OR] = 0.75/mm) and water cooling (OR = 0.14) were both protective against the likelihood of the pulp reaching the critical temperature. Prolonged rasping with motorised dental instruments increased the likelihood that a pulp would be heated above the critical temperature. Increased dentinal thickness and water cooling had protective roles in reducing pulpar heating. Motorised dental instruments have the potential to seriously damage equine pulp if used inappropriately. Higher speed motorised dental instruments should be used for less time and teeth should be water cooled during or immediately after instrument use to reduce the risk of thermal pulpar damage. © 2012 EVJ Ltd.

  18. Legionella species and serogroups in Malaysian water cooling towers: identification by latex agglutination and PCR-DNA sequencing of isolates.

    Science.gov (United States)

    Yong, Stacey Foong Yee; Goh, Fen-Ning; Ngeow, Yun Fong

    2010-03-01

    In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml(-1); 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2-14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.

  19. Numerical investigation of thermal performance of a water-cooled mini-channel heat sink for different chip arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Tikadar, Amitav, E-mail: amitav453@gmail.com; Hossain, Md. Mahamudul; Morshed, A. K. M. M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000 (Bangladesh)

    2016-07-12

    Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advanced heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.

  20. Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Cangueiro, L.T., E-mail: liliana.cangueiro@ist.utl.pt; Vilar, R.

    2013-10-15

    Ultrafast lasers are extremely promising tools for minimally-invasive orthopedic surgery, but the ablated volumes per pulse are low, so a high pulse frequency is necessary to reach practical ablation rates. The purpose of this work was to study in vitro the influence of the pulse repetition rate on the ablation rate, surface topography and surface composition of bone using of bovine cortical femur as a model. The tests were carried out by scanning the laser beam in relation to the sample, using pulse frequencies between 50 and 3000 Hz, scanning velocities from 0.5 to 10 mm/s and average pulse energy of 650 μJ. The experiments were performed in dry conditions and with water irrigation. The higher ablation rates were obtained at high scanning velocity without water irrigation but severe thermal effects such as resolidification, cracking and, eventually, carbonization occurred in these conditions due to heat accumulation in the tissue. Thermal damage was avoided for all the laser processing parameters ranges tested by using water cooling. The highest ablation rate achieved was 1.4 mm{sup 3}/min for a scanning velocity of 10 mm/s at 2 kHz pulse repetition rate under water irrigation.

  1. Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, L. T.; Vilar, R.

    2013-10-01

    Ultrafast lasers are extremely promising tools for minimally-invasive orthopedic surgery, but the ablated volumes per pulse are low, so a high pulse frequency is necessary to reach practical ablation rates. The purpose of this work was to study in vitro the influence of the pulse repetition rate on the ablation rate, surface topography and surface composition of bone using of bovine cortical femur as a model. The tests were carried out by scanning the laser beam in relation to the sample, using pulse frequencies between 50 and 3000 Hz, scanning velocities from 0.5 to 10 mm/s and average pulse energy of 650 μJ. The experiments were performed in dry conditions and with water irrigation. The higher ablation rates were obtained at high scanning velocity without water irrigation but severe thermal effects such as resolidification, cracking and, eventually, carbonization occurred in these conditions due to heat accumulation in the tissue. Thermal damage was avoided for all the laser processing parameters ranges tested by using water cooling. The highest ablation rate achieved was 1.4 mm3/min for a scanning velocity of 10 mm/s at 2 kHz pulse repetition rate under water irrigation.

  2. Neutronic performance of two European breeder-inside-tube (BIT) blankets for DEMO: the helium-cooled ceramic LiAlO{sub 2} with Be multiplier and the water-cooled liquid Li{sub 17}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy)

    1995-03-01

    In support of ENEA activity in the European Community Test Programme, neutron analysis has been performed on the two latest blanket designs: helium-cooled ceramic breeder-inside-tube (BIT) (with LiAlO{sub 2} and Be multiplier) and water-cooled liquid Li{sub 17}Pb in cylindrical modules (CM). The powerful MCNP Monte Carlo code was used (version 4.2). A detailed and accurate description of the geometrical model has been performed by inserting the main reactor details and avoiding breeder material dilution inside the modules. The tritium breeding ratio (TBR) performance is low for the solid breeder BIT blanket (with 10 ports 1.011) due mainly to low blanket coverage near the exhaust duct, and this solution should be revised. The CM Li{sub 17}Pb blanket reaches a sufficient TBR (1.059, with ports) to rely on tritium self-sufficiency. Shielding properties, with respect to the toroidal field coils, have been estimated in a simplified model by means of the ANISN code, supplied with a nuclear data library consistent with that used by MCNP. The analysis suggests that a careful shield thickness/composition design should be used to ensure the shielding capability of the whole blanket plus shield system. (orig.).

  3. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  4. Coupled 3D neutron kinetics and thermalhydraulic characteristics of the Canadian supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, David William, E-mail: hummeld@mcmaster.ca; Novog, David Raymond

    2016-03-15

    Highlights: • A coupled spatial kinetics and thermalhydraulics model of the PT-SCWR was created. • Positive power excursions were demonstrated during accident-like transients. • The reactor will inherently self-shutdown in such transients with some delay. • A fast-acting shutdown system would limit the consequences of the power pulse. - Abstract: The Canadian Supercritical Water-cooled Reactor concept, as an evolution of the CANada Deuterium Uranium (CANDU) reactor, includes both pressure tubes and a low temperature heavy water moderator. The current Pressure Tube type SCWR (PT-SCWR) concept features 64-element fuel assemblies placed within High Efficiency Re-entrant Channels (HERCs) that connect to core inlet and outlet plena. Among current SCWR concepts the PT-SCWR is unique in that the HERC separates multiple coolant and moderator regions, giving rise to coupled neutronic-thermalhydraulic feedbacks beyond those present in CANDU or contemporary Light Water Reactors. The objective of this work was thus to model the coupled neutronic-thermal hydraulic properties of the PT-SCWR to establish the impact of these multiple regions on the core's transient behavior. To that end, the features of the PT-SCWR were first modeled with the neutron transport code DRAGON to create a database of homogenized and condensed cross-sections and thermalhydraulic feedback coefficients. These were used as input to a core-level neutron diffusion model created with the code DONJON. The behavior of the primary heat transport system was modeled with the thermalhydraulic system code CATHENA. A procedure was developed to couple the outputs of DONJON and CATHENA, facilitating three-dimensional spatial neutron kinetics and coupled thermalhydraulic analysis of the PT-SCWR core. Several postulated transients were initiated within the coupled model by changing the core inlet and outlet boundary conditions. Decreasing coolant density around the fuel was demonstrated to produce positive

  5. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  6. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  7. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  8. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower

    Directory of Open Access Journals (Sweden)

    Ru Jia

    2017-08-01

    Full Text Available Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS and NALCO 7330 (isothiazoline derivatives] and one oxidizing biocide [bleach (NaClO] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8 enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan in the enhancement of the three individual biocides against the biofilm consortium.

  9. Improving the Hybrid Photovoltaic/Thermal System Performance Using Water-Cooling Technique and Zn-H2O Nanofluid

    Directory of Open Access Journals (Sweden)

    Hashim A. Hussein

    2017-01-01

    Full Text Available This paper presented the improvement of the performance of the photovoltaic panels under Iraqi weather conditions. The biggest problem is the heat stored inside the PV cells during operation in summer season. A new design of an active cooling technique which consists of a small heat exchanger and water circulating pipes placed at the PV rear surface is implemented. Nanofluids (Zn-H2O with five concentration ratios (0.1, 0.2, 0.3, 0.4, and 0.5% are prepared and optimized. The experimental results showed that the increase in output power is achieved. It was found that, without any cooling, the measuring of the PV temperature was 76°C in 12 June 2016; therefore, the conversion efficiency does not exceed more than 5.5%. The photovoltaic/thermal system was operated under active water cooling technique. The temperature dropped from 76 to 70°C. This led to increase in the electrical efficiency of 6.5% at an optimum flow rate of 2 L/min, and the thermal efficiency was 60%. While using a nanofluid (Zn-H2O optimum concentration ratio of 0.3% and a flow rate of 2 L/min, the temperature dropped more significantly to 58°C. This led to the increase in the electrical efficiency of 7.8%. The current innovative technique approved that the heat extracted from the PV cells contributed to the increase of the overall energy output.

  10. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  11. Proposal for the award of a blanket contract for the supply and installation of water-cooled bus bars and cables for the LHC

    CERN Document Server

    2003-01-01

    This document concerns the award of a blanket contract for the supply and installation of water-cooled bus bars and cables for the LHC project. Following a market survey carried out among 22 firms in six Member States, a call for tenders (IT-2941/ST/LHC) was sent on 30 June 2003 to three firms in two Member States. By the closing date, CERN had received tenders from the three firms. The Finance Committee is invited to agree to the negotiation of a blanket contract with FLOHE (DE), the lowest bidder, for the supply and installation of water-cooled bus bars and cables, for a total amount not exceeding 2 900 000 Swiss francs, subject to revision after 1 January 2005 according to the LME copper prices. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 100%.

  12. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  13. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  14. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  15. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 5. Public comments and Nuclear Regulatory Commission responses

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    Copies of 69 letters are presented commenting on the Draft Generic Environmental Statement (GESMO) WASH-1327 and the NRC's responses to the comments received from Federal, State and local agencies; environmental and public interest groups, members of the academic and industrial communities, and individual citizens. An index to these letters indicating the number assigned to each letter, the author, and organization represented, is provided in the Table of Contents.

  16. Hydrodynamics of a Monolithic Stirrer Reactor

    NARCIS (Netherlands)

    Kritzinger, H.P.

    2011-01-01

    The Monolithic Stirrer Reactor (MSR) is a novel concept for heterogeneously catalyzed reactors and is presented as an alternative device to slurry reactors. It uses a modified stirrer on which structured catalyst supports (monoliths) are fixed to form permeable blades. The monoliths consist of small

  17. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  18. CONVECTION REACTOR

    Science.gov (United States)

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  19. Improvement on fabrication process of CANDU type reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Chung, Sang Tae; Kim, Hyung Soo; Park, Choon Ho

    1993-05-01

    The study on fabrication of the nuclear fuel for heavy water cooled reactor is performed. Among the fabrication processes of nuclear fuel, welding thickness between fuel rod and end cap can occur a serious error in total fuel length. Therefore, for nuclear fuel design, the thickness of end cap and changed weight of zircaloy-4 tube must be measured accurately. For welding performance, microstructure of welding point is investigated successfully. The result of the study shows the possibility of cost reduction and quality improvement by simplification of fabrication process of nuclear fuel. (Author).

  20. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core...

  1. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  2. Mechanical systems development of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.

    1997-07-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs.

  3. Retraction - Request that it is necessary to retract paper: Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module DOI:10.2298/TSCI130118144M

    National Research Council Canada - National Science Library

    Editorial

    2016-01-01

    Prof. Dr. Simeon Oka, Editor-in-chief of the journal THERMAL SCIENCE request that it is necessary to retract paper Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module DOI...

  4. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    Science.gov (United States)

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  5. Licensing topical report: interpretation of general design criteria for high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Orvis, D.D.; Raabe, P.H.

    1980-01-01

    This Licensing Topical Report presents a set of General Design Criteria (GDC) which is proposed for applicability to licensing of graphite-moderated, high-temperature gas-cooled reactors (HTGRs). Modifications as necessary to reflect HTGR characteristics and design practices have been made to the GDC derived for applicability to light-water-cooled reactors and presented in Appendix A of Part 50, Title 10, Code of Federal Regulations, including the Introduction, Definitions, and Criteria. It is concluded that the proposed set of GDC affords a better basis for design and licensing of HTGRs.

  6. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  7. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  8. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  9. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  10. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  11. Water Cooling for the Frontend Electronics and a modular Phase Separator for the COMPASS Silicon Detectors and Alignment for the 2012 Primakoff Run

    CERN Document Server

    Holzgartner, Bernd

    The COMPASS experiment at CERN uses sili- con microstrip detectors for beam definition and vertex reconstruction. Since 2009, the detectors are operated at cryogenic temperatures to min- imize radiation damage. This thesis describes the development of a new, modular phase sep- arator for the liquid nitrogen cooling system of the detector modules as well as the construction and the commissioning of a water cooling sys- tem for the frontend electronics of these detec- tors. In addition, results of the alignment stud- ies for the 2012 Primakoff run are presented.

  12. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  13. Electro-catalytic membrane reactors and the development of bipolar membrane technology

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2004-01-01

    Membrane reactors are currently under extensive research and development. Hardly any concept, however, is realized yet in practice. Frequently, forgotten as membrane reactors are electro-catalytic membrane reactors where electrodes perform chemical conversations and membranes separate the locations

  14. Status of CEA studies on the fast spectrum option for supercritical water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Ph.; Thevenot, C.; Rimpault, G.; Antoni, O.; Arnoux, P.; Aniel, S. [CEA Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2006-07-01

    Full text: The concepts of supercritical-pressure light water cooled reactors (SCWR) have been proposed and studied for almost 40 years. However, limited results are available on these concepts and in particular on the key technological points related to concept feasibility. CEA is conducting targeted R and D studies to be in a position to have a better judgment of the interest of these concepts. The paper reports on the work progress on the fast spectrum version of SCWR. The CEA R and D programme is focused on feasibility and conceptual design studies of a SCWR version with a fast neutron spectrum. The challenge is to determine a core design where high conversion ratio must also meet a negative void coefficient at end of cycle for a power range of about 1000 MWe and burnup near 60 GWd/t. First evaluations are performed with a pre-dimensioning tool (COPERNIC sheets) and followed by neutronic and thermal-hydraulic applications (ERANOS code system and CATHARE 2.5 code) Other parts of the programme are considered to be essential in order to be able to address the key points of SCWR feasibility: - extension to supercritical conditions of computer codes needed to make evaluations and limited conceptual design studies (reactor core physics, thermal-hydraulics). Neutronic studies have to take in account coupling effect with thermal-hydraulic relative to strong water density change along the fuel assembly: the CEA effort cover a generic reference calculation with coupling TRIPOLI and FLICA code (neutronic Monte-Carlo and thermalhydraulic) for the SCWR thermal spectrum option. Other main effort concern the adaptation of CATHARE 2.5 to fully describe depressurization from supercritical domain: adaptation of correlation, ability to perform computation in both supercritical and standard domain; - material studies, the cladding material being the major concern: tests are performed on selected material in despite of experimental difficulties dues to the high temperature range

  15. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  16. Analysis of UF6 breeder reactor power plants

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  17. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  18. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. NUCLEAR REACTOR

    Science.gov (United States)

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  20. Investigation of molten salt fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Enuma, Yasuhiro; Tanaka, Yoshihiko; Konomura, Mamoru; Ichimiya, Masakazu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-06-01

    Phase I of Feasibility Studies on Commercialized Fast Reactor System is being performed for two years from Japanese Fiscal Year 1999. In this report, results of the study on fluid fuel reactors (especially a molten salt fast breeder reactor concept) are described from the viewpoint of technical and economical concerns of the plant system design. In JFY1999, we have started to investigate the fluid fuel reactors as alternative concepts of sodium cooled FBR systems with MOX fuel, and selected the unique concept of a molten chloride fast breeder reactor, whose U-Pu fuel cycle can be related to both light water reactors and fast breeder reactors on the basis of present technical data and design experiences. We selected a preliminary composition of molten fuel and conceptual plant design through evaluation of technical and economical issues essential for the molten salt reactors and then compared them with reference design concepts of sodium cooled FBR systems under limited information on the molten chloride fast breeder reactors. The following results were obtained. (1) The molten chloride fast breeder reactors have inherent safety features in the core and plant performances, ad the fluid fuel is quite promising for cost reduction of the fuel fabrication and reprocessing. (2) On the other hand, the inventory of the molten chloride fuel becomes high and thermal conductivity of the coolant is inferior compared to those of sodium cooled FBR systems, then, the size of main components such as IHX's becomes larger and the amount of construction materials is seems to be increased. (3) Furthermore economical vessel and piping materials which contact with the molten chloride salts are required to be developed. From the results, it is concluded that further steps to investigate the molten chloride fast breeder reactor concepts are too early to be conducted. (author)

  1. Jet-type, water-cooled heat sink that yields 255-W continuous-wave laser output at 808 nm from a 1-cm laser diode bar.

    Science.gov (United States)

    Miyajima, Hirofumi; Kan, Hirofumi; Kanzaki, Takeshi; Furuta, Shin-ichi; Yamanaka, Masanobu; Izawa, Yasukazu; Nakai, Sadao

    2004-02-01

    A newly designed jet-type, water-cooled heat sink (the funryu heat sink, meaning fountain flow in Japanese) yielded 255-W cw laser output at 808 nm from a 1-cm bar made from InGaAsP/InGaP quantum-well active layers with a 67% fill factor [70 quantum-well laser diode (LD) array along the 1-cm bar]. A funryu heat sink measuring 1.1 mm in thickness gave the LD 0.25 degrees C/W thermal resistance, one of the lowest values achieved with a 1-cm LD bar. Over a short period of operation, the device reached a maximum cw power of 255 W. To the best of our knowledge, this is the highest power ever achieved in 808-nm LD operation. In the future, the funryu heat sink may be capable of 80-W cw operation over an extended lifetime of several thousand hours.

  2. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  3. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  4. NEUTRONIC REACTORS

    Science.gov (United States)

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  5. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  6. Proof of concept of the CaO/Ca(OH)2 reaction in a continuous heat-exchanger BFB reactor for thermochemical heat storage in CSP plants

    Science.gov (United States)

    Rougé, Sylvie; Criado, Yolanda A.; Huille, Arthur; Abanades, J. Carlos

    2017-06-01

    The CaO/Ca(OH)2 hydration/dehydration reaction has long been identified as a attractive method for storing CSP heat. However, the technology applications are still at laboratory scale (TG or small fixed beds). The objective of this work is to investigate the hydration and dehydration reactions performance in a bubbling fluidized bed (BFB) which offers a good potential with regards to heat and mass transfers and upscaling at industrial level. The reactions are first investigated in a 5.5 kW batch BFB, the main conditions are the bed temperature (400-500°C), the molar fraction of steam in the fluidizing gas (0-0.8), the fluidizing gas velocity (0.2-0.7 m/s) and the mass of lime in the batch (1.5-3.5 kg). To assist in the interpretation of the experimental results, a standard 1D bubbling reactor model is formulated and fitted to the experimental results. The results indicate that the hydration reaction is mainly controlled by the slow kinetics of the CaO material tested while significant emulsion-bubble mass-transfer resistances are identified during dehydration due to the much faster dehydration kinetics. In the continuity of these preliminary investigations, a continuous 15.5 kW BFB set-up has been designed, manufactured and started with the objective to operate the hydration and dehydration reactions in steady state during a few hours, and to investigate conditions of faster reactivity such as higher steam molar fractions (up to 1), temperatures (up to 600°C) and velocities (up to 1.5 m/s).

  7. Etude d'un concept de coeur hybride refroidi a l'eau supercritique

    Science.gov (United States)

    Delattre, Baptiste

    Facing the current weather and energy global problem, Canada chose to develop a reactor cooled by water at supercritical conditions (SCWR). Inspired by the current CANDU-6 pressure tube technology, this concept should allow to save a substantial amount of efforts for developping a brand new kind of reactor by using the well-known pressure tube CANDU design. In fact, this type of reactor should be able to reach a better energy efficiency as well as other essential criteria about safety, security, non-proliferation... Nevertheless, there are still a lot of technology challenges to be dealt with to satisfy the differents obligations related to the use of supercritical water (SCW). Thus, materials to use remain undetermined because of a 25 MPa operating pressure and a 650.C temperature for the SCW coolant. Actually, materials in presence of SCW should be able to avoid too much corrosion and remain low neutrons absorbers. Additionnaly, the use of a light water coolant makes the neutronic absorption more important than in CANDU heavy-water cooled reactors. Additionally, a positive coolant void reactivity (CVR) and safety related problem remains among the challenges to overcome for developping a SCWR. Bringing about a solutions to all these problems remains very difficult and that's why some concessions on these criteria have to be made in order to achieve a viable reactor. This study presents some thougts and works in that direction. Originally developped in early studies about thermodynamic cycle optimization for a SCW power plant, a new hybrid reactor concept with two channels types has arise. To this purpose, we imagine a pressure tube core design but with two different types of channels: . Some channels have thermodynamic conditions where water goes through a supercritical state. . The other channels have "CANDU like" thermodynamic conditions allowing the flow of pressurized light water under sub-critical conditions. These two kinds of features should mitigate the

  8. Materials needs for compact fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  9. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  10. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  11. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  12. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  13. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  14. Monitoring system for a liquid-cooled nuclear fission reactor

    Science.gov (United States)

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  15. 10J water-cooled DPSSL system based on Yb:YAG crystal edge-cladded by Cr:YAG ceramics (Conference Presentation)

    Science.gov (United States)

    Zheng, Jian-Gang; Yan, Xiongwei; Jiang, Xinying; Wang, Zhenguo; Li, Mingzhong; Zhang, Jun; Zhu, Qihua; Zheng, Wanguo

    2017-05-01

    Laser Inertial Fusion Energy (IFE) has been attracting the interests of the researchers around the world, because of the promising to the future energy. The Yb:YAG was broadly used in the research field of high-peak power and large energy laser with repetition-rate for IFE because of its outstanding performance, including significant thermal and mechanical capacities, long upper energy level lifetime, high quantum efficiency and highly doping capacity. But it exhibits high saturation fluence at room temperature because of the small emission and absorption cross-section. And at the same time this gain material exhibits self-absorption of laser because of the thermal population at lower laser level at room temperature. Ant it appears to have been solved by means of the cryogenic temperature, but the total efficiency of the laser system will be decreased as the use of cryogenic temperature. The amplified spontaneous emission (ASE) effect of the amplifier can be relaxed by means of edge-cladded absorption material. And the difficulties of edge cladding can be will solved as the emergence of ceramics. But at present the ceramics exhibits high scattering and many disfigurements, which limited the application in the high-power large-energy laser system. So the edge-cladding of Yb:YAG crystal will be a key issue for solution the ASE in amplifier. In this paper, we will introduce a 10J water-cooled DPSSL system, based on Yb:YAG crystal at room temperature. In this system a new edge cladding method has been used, that the Yb:YAG crystal was edge cladded by Cr:YAG ceramics, which was used as the absorption material of ASE. The amplifier was an active mirror water-cooled room temperature amplifier. With the help of this edge cladding the ASE has been lowered, and about 5 times small signal gain has been obtained in a single pass amplification, which was much higher than the earlier of 2 times. And the wavefront aberrance of the laser beam was also reduced due to the thermal

  16. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  17. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    Science.gov (United States)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  18. STARFIRE: a commercial tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor.

  19. Neutronic performance of two european breeder-inside tube (BIT) blankets for DEMO: Helium-cooled ceramic LiAlO{sub 2} with Be multiplier and water-cooled liquid Li17Pb 2103. international symposium on fusion nuclear technologies (ISFNT-3)

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy)

    1994-11-01

    In support of ENEA (Italian Agency for New Technologies, Energy and the Environment) activity in the European Community Test Programme, a neutronic analysis has been performed on the two latest blanket design relative to helium-cooled ceramic BIT (breeder-inside-tube) (with LiAIO{sub 2} and Be multiplier) and the water-cooled liquid Li17Pb in cylindrical modules. At this scope the powerful MCNP Monte Carlo code has been used (version 4). A detailed and accurate description of the geometrical model has been performed inserting the main reactor details and avoiding breeder material dilution inside the modules. TBR performance is low for the solid breeder BIT (with 10 ports 1.011) due mainly to low blanket coverage near the exhaust duct and this solution should be revised. CM Li17Pb blanket reaches sufficient TBR (1.059, with ports) to rely on tritium self-sufficiency. Shielding properties, with respect to the toroidal field coils, have been estimated in a simplified model by means of the ANISN code, supplied with nuclear data library coherent with the one used by MCNP. The analysis suggests a careful shield thickness/composition design to be confident on the shielding capability of the whole blanket and shield system.

  20. A novel reverse flow reactor coupling endothermic and exothermic reactions. Part I: comparison of reactor configurations for irreversible endothermic reactions

    NARCIS (Netherlands)

    van Sint Annaland, M.; Scholts, H.A.R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2002-01-01

    A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by

  1. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  2. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  3. Contribution to the study of {sup 233}U production with MOX-ThPu fuel in PWR reactor. Transition scenarios towards Th/{sup 233}U iso-generating concepts in thermal spectrum. Development of the MURE fuel evolution code; Contribution a l'etude de la production d'{sup 233}U en combustible MOX-ThPu en reacteur a eau sous pression. Scenarios de transition vers des concepts isogenerateurs Th/{sup 233}U en spectre thermique. Developpement du code MURE d'evolution du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Sendis, F

    2006-12-15

    If nuclear power is to provide a significant fraction of the growing world energy demand, only through the breeding concept can the development of sustainable nuclear energy become a reality. The study of such a transition, from present-day nuclear technologies to future breeding concepts is therefore pertinent. Among these future concepts, those using the thorium cycle Th/U-233 in a thermal neutron spectrum are of particular interest; molten-salt type thermal reactors would allow for breeding while requiring comparatively low initial inventories of U-233. The upstream production of U-233 can be obtained through the use of thorium-plutonium mixed oxide fuel in present-day light water reactors. This work presents, firstly, the development of the MURE evolution code system, a C++ object-oriented code that allows the study, through Monte Carlo (M.C.) simulation, of nuclear reactors and the evolution of their fuel under neutron irradiation. The M.C. methods are well-suited for the study of any reactor, whether it'd be an existing reactor using a new kind of fuel or a future concept altogether, the simulation is only dependent on nuclear data. Exact and complex geometries can be simulated and continuous energy particle transport is performed. MURE is an interface with MCNP, the well-known and validated transport code, that allows, among other functionalities, to simulate constant power and constant reactivity evolutions. Secondly, the study of MOX ThPu fuel in a conventional light water reactor (REP) is presented; it explores different plutonium concentrations and isotopic qualities in order to evaluate their safety characteristics. Simulation of their evolution allows us to quantify the production of U-233 at the end of burnup. Last, different french scenarios validating a possible transition towards a park of thermal Th/U-233 breeders, are presented. In these scenarios, U-233 is produced in ThPu moxed light water reactors. (author)

  4. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  5. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  6. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  7. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  8. Reactor transient

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1956-05-31

    The authors are planning a calculation to be done on the Univac at the Louviers Building to estimate the effect of xenon transients, a high reactor power. This memorandum outlines the reasons why they prefer to do the work at Louviers rather than at another location, such as N.Y.U. They are to calculate the response of the reactor to a sudden change in position of the half rods. Qualitatively, the response will be a change in the rooftop ratio of the neutron flux. The rooftop ratio may oscillate with high damping, or, instead, it may oscillate for many cycles. It has not been possible for them to determine this response by hand calculation because of the complexity of the problem, and yet it is important for them to be certain that high power operation will not lead us to inherently unstable operation. Therefore they have resorted to machine computation. The system of differential equations that describes the response has seven dependent variables; therefore there are seven equations, each coupled with one or more of the others. The authors have discussed the problem with R.R. Haefner at the plant, and it is his opinion that the IBM 650 cannot adequately handle the system of seven equations because the characteristic time constants vary over a range of about 10{sup 8}. The Univac located at the Louviers Building is said to be satisfactory for this computation.

  9. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  10. Mechanical analysis of an assembly box with honeycomb structure designed for a performance light water reactor; Strukturmechanische Auslegung eines HPLWR Brennelementkastens in Leichtbauweise

    Energy Technology Data Exchange (ETDEWEB)

    Herbell, H.; Himmel, S.

    2008-06-15

    The High Performance Light Water Reactor (HPLWR) is a water cooled reactor concept of the 4{sup th} generation, operated at a pressure beyond the critical point of water. In this report an innovative design for moderator- and assembly boxes is investigated, consisting of an alumina filled stainless steel honeycomb structure, built as a sandwich design between two stainless steel liners. Such temperatures and pressures (25 MPa, 500 C) require the use of stainless steel assembly boxes; however, such walls cause significant neutron absorption. Moreover, the moderator water is heated up, which makes it less effective. Therefore, the thermal conductivity of the box walls should be decreased by a good thermal isolation, ensuring that the moderator water remains at high density. As an innovative approach, thin walled assembly boxes with sufficient stiffness and low thermal conductivity could be made from honeycomb structures, in which the cavities are filled with alumina for thermal insulation. Finite element analyses are used to verify the required stiffness, to identify stress concentrations and to optimize the design. The sandwich panel has been designed with regard to sandwich specific failure modes. A stress analysis of the assembly box according to KTA 3201.2 guideline as used for components of the primary circle of light water reactors is performed. The corner pieces turned out as the weak points of the initial design. Even a significant increase of the number of stiffening ribs in corner pieces did not reduce the stress peaks sufficiently, thus massive corner pieces were finally taken. Panel deflection is within the design limits whereas the estimated bending line along the total height of the assembly box exceeds geometrical boundaries. Therefore some spacers between the fuel elements are necessary. The results presented in this study indicate that honeycomb sandwich structures could be applicable in the core of the HPLWR reactor. This feature will minimize the

  11. Adjunctive clinical effect of a water-cooled Nd:YAG laser in a periodontal maintenance care programme: a randomized controlled trial.

    Science.gov (United States)

    Slot, Dagmar E; Timmerman, Mark F; Versteeg, Paula A; van der Velden, Ubele; van der Weijden, Fridus A

    2012-12-01

    Various laser systems are currently available for intra-oral use. Neodymium:Yttrium-Aluminium Garnet lasers(Nd:YAG) have been approved by the US Food and Drug Administration for soft tissue treatment in the oral cavity. The aim of this study was to test whether the use of a water-cooled Nd:YAG laser during a maintenance care programme as an adjunct to supragingival and subgingival debridement (scaling and root planing, SRP) with hand and ultrasonic instruments results in clinical improvement compared with SRP alone. This study was an examiner-blind, randomized and controlled clinical trial using a split-mouth design. Thirty subjects were selected, originally diagnosed with moderate to severe generalized periodontitis, following a periodontal maintenance care programme (PMC). Immediately after SRP in two randomly assigned contra-lateral quadrants, all pockets ≥5 mm were additionally treated with a Nd:YAG laser (1064 nm, 4W, 250-μsec pulse). Clinical assessments [probing pocket depth PPD, bleeding on pocket probing (BOPP)] were performed pre-treatment and at 6 months. Based on these assessments, the periodontal inflamed surface area (PISA) was calculated. At 6 months, the clinical parameters had significantly improved for both regimens. No statistically significant differences between treatment modalities were observed for PPD and BOPP scores at any time. PISA scores supported these findings. In residual pockets ≥5 mm, treated in a PMC, the adjunctive use of an Nd:YAG laser does not provide a clinically significant additional advantage. © 2012 John Wiley & Sons A/S.

  12. Next Generation Steam Cracking Reactor Concept

    NARCIS (Netherlands)

    Van Goethem, M.W.M.

    2010-01-01

    The steam cracking process is an important asset in the hydrocarbon processing industry. The main products are lower olefins and hydrogen, with ethylene being the world's largest volume organic chemical at a worldwide capacity of ~ 120 million tonnes per year. Feed stocks are hydrocarbons such as:

  13. Nuclear reactor spacer grid and ductless core component

    Science.gov (United States)

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  14. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  15. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Science.gov (United States)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  16. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  17. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  18. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code shows good agreement between simulation and actual ACRR operations.

  19. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    Science.gov (United States)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  20. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  1. Steam drum level control studies of a natural circulation multi loop reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Contractor, A.D.; Srivastava, Abhishek; Lele, H.G. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Safety Div.; Vaze, K.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Design and Development Group

    2013-12-15

    The proposed heavy water moderated and light water cooled pressure tube type boiling water reactor works on natural circulation at all power levels. It has parallel inter-connected loops with 452 boiling channels in the main heat transport system configuration. These multiple (four) interconnected loops influence the steam drum level control adversely through the common reactor inlet header. Alternate design studies made earlier for efficient control of SD levels have shown favorable results. This has lead to explore further the present scheme with the compartmentalization of CRIH into four compartments catering to four loops separately. The conventional 3-element level control has been found to be working satisfactorily. The interconnections between ECCS header and inlet header compartments have also increased the safety margin for various LOCA and design basis events. The paper deals with the SD level control aspects for this novel MHT configuration which has been analyzed for various PIEs (Postulated Initiating Events) and found to be satisfactory. (orig.)

  2. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  3. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  4. Generic small modular reactor plant design.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  5. Advances in Tandem Mirror fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  6. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  7. Fusion reactor design studies: standard accounts for cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed.

  8. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  9. Study on Reduced-Moderation Water Reactor (RMWR) core design. Joint research report (FY1998-1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Reduce-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor aiming at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. Japan Atomic Energy Research Institute (JAERI) started a joint research program for conceptual design of RMWR core in collaboration with the Japan Atomic Power Company (JAPC) since 1998. The research area includes the RMWR core conceptual designs, development of analysis methods for rector physics and thermal-hydraulics to design the RMWR cores with higher accuracy and preparation of MOX critical experiment to confirm the feasibility from the reactor physics point of view. The present report describes the results of joint research program 'RMWR core design Phase 1' performed by JAERI and JAPC in FY 1998 and 1999. The results obtained from the joint research program are as follows: Conceptual design study on the RMWR core has been performed. A core concept with a conversion ratio more than about 1 is basically feasible to multiple recycling of plutonium. Investigating core characteristics at the equilibrium, some promising core concepts to satisfy above aims have been established. As for BWR-type concepts with negative void reactivity coefficients, three types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.1, (2) one feasible to attain operation cycle of about 2 years and burn-up of about 60 GWd/t with conversion ratio more than 1 or (3) one in simple design based on the ABWR assembly and without blanket attaining conversion ratio more than 1. And as for PWR-type concepts with negative void reactivity coefficients, two types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.05 by using heavy water as a coolant and (2) one feasible to attain conversion ratio about l by using light water. In the study of nuclear calculation method, a reactor analysis code

  10. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  11. INSIGHTS INTO THE ROLE OF THE OPERATOR IN ADVANCED REACTORS.

    Energy Technology Data Exchange (ETDEWEB)

    PERSENSKY, J.; LEWIS, P.; O' HARA, J.

    2005-11-13

    NUCLEAR POWER PLANT PERSONNEL PLAY A VITAL ROLE IN THE PRODUCTIVE, EFFICIENT, AND SAFE GENERATION OF ELECTRIC POWER, WHETHER FOR CONVENTIONAL LIGHT WATER REACTORS OR NEW ADVANCED REACTORS. IT IS WIDELY RECOGNIZED THAT HUMAN ACTIONS THAT DEPART FROM OR FAIL TO ACHIEVE WHAT SHOULD BE DONE CAN BE IMPORTANT CONTRIBUTORS TO THE RISK ASSOCIATED WITH THE OPERATION OF NUCLEAR POWER PLANTS. ADVANCED REACTORS ARE EXPECTED TO PRESENT A CONCEPT OF OPERATI...

  12. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Georgy Toshinsky; Vladimir Petrochenko

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  13. LBB application in the US operating and advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  14. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  15. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical

  16. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  17. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven L. [Applied Ecological Services Inc., Brodhead, WI (United States); Duvall, Kenneth W. [Sterling Energy Services, LLC, Atlanta, GA (United States); Nelson, Theresa M. [Applied Ecological Services Inc., Brodhead, WI (United States); Mensing, Douglas M. [Applied Ecological Services Inc., Brodhead, WI (United States); Bengtson, Harlan H. [Sterling Energy Services, LLC, Atlanta, GA (United States); Eppich, John [Waterflow Consultants, Champaign, IL (United States); Penhallegon, Clayton [Sterling Energy Services, LLC, Atlanta, GA (United States); Thompson, Ry L. [Applied Ecological Services Inc., Brodhead, WI (United States)

    2013-12-01

    ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  18. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  19. Massive computation methodology for reactor operation (MACRO)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael [Division of applied nuclear physics, Department of physics and astronomy, Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden); Koning, Arjan; Rochman, Dimitri [Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten (Netherlands); Bejmer, Klaes-Hakan [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, Vaellingby (Sweden); Henriksson, Hans [Vattenfall Research and Development AB, Jaemtlandsgatan 99, Vaellingby (Sweden)

    2010-07-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  20. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  1. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  2. Guidebook to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

  3. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  4. A neutron production target for ESS based upon the Canned-rods concept

    Energy Technology Data Exchange (ETDEWEB)

    Ghiglino, A., E-mail: angeloglinovoa@gmail.com [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Terrón, S. [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Thomsen, K. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Wolters, J. [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Magán, M.; Martínez, F.; Vicente, P.J. de; Vivanco, R.; Sordo, F. [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Butzek, M. [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)

    2014-08-21

    The neutron production targets operating within the present day spallation neutron sources in the MW power range are either based on water-cooled solid state devices such as that implemented at the SINQ source at PSI or liquid metal loops such as those installed at SNS and MLSF. Here we describe a water-cooled rotating solid target as an option for the 5 MW ESS project as an alternative to the current design based upon a helium-cooled solid rotating target. Implementation of the proposed option would provide comparable neutronic performance to that of the gas-cooled concept and furthermore, it would involve a relatively straightforward adaptation of the current ESS baseline geometry.

  5. Control system studies for thermionic reactors

    Science.gov (United States)

    Hermsen, R. J.; Gronroos, H. G.

    1978-01-01

    In core thermionic reactor concepts are of interest for space missions that require electrical power in the range of a few tens of kilowatts up to several megawatts. The physical principle involved--thermionic direct conversion of heat to electricity at net efficiencies up to 15 percent--offers potential advantages when compared to other nuclear powerplant concepts. However, the integration of the thermionic diode electrode structure with high-temperature nuclear fuel materials presents new design problems and new reactor physical constraints. Among the topics that must be investigated are those associated with the control system. The results of analytical and simulation studies of thermionic reactor control performed at the Jet Propulsion Laboratory are discussed.

  6. Program review: Ground disposal of reactor effluent

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1967-10-18

    With the exception of N Reactor the plutonium production reactors operated by Douglas United Nuclear, Inc., use treated Columbia River water as coolant on a once through basis. Thus, radionuclides formed by neutron activation of Columbia River salts not removed in the water treatment process and water treatment additives are discharged to the river. Although the quantity and possible effects of the radionuclides released are well within nationally accepted limits, emphasis has been placed for some time on reducing the releases to as low a level as possible. More recently increasing concern has been evidenced with regard to the heat which is also discharged to the river. This report discusses concept which not only would drastically reduce the radionuclide content of the river but which would also substantially decrease the heat discharge. This concept is the disposal of the reactor effluent to the ground either to a pond or to a network of trenches.

  7. NUCLEAR REACTOR CONTROL SYSTEM

    Science.gov (United States)

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  8. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  9. Laser fusion power reactor system (LFPRS)

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, W. P.

    1977-12-19

    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements. (MOW)

  10. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  11. Nuclear reactor overflow line

    Science.gov (United States)

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  12. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  13. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  14. Nuclear data covariances and sensitivity analysis, validation of a methodology based on the perturbation theory; application to an innovative concept: the molten thorium salt fueled reactor; Analyses de sensibilite et d'incertitude de donnees nucleaires. Contribution a la validation d'une methodologie utilisant la theorie des perturbations; application a un concept innovant: reacteur a sels fondus thorium a spectre epithermique

    Energy Technology Data Exchange (ETDEWEB)

    Bidaud, A

    2005-10-15

    Neutron transport simulation of nuclear reactors is based on the knowledge of the neutron-nucleus interaction (cross-sections, fission neutron yields and spectra...) for the dozens of nuclei present in the core over a very large energy range (fractions of eV to several MeV). To obtain the goal of the sustainable development of nuclear power, future reactors must have new and more strict constraints to their design: optimization of ore materials will necessitate breeding (generation of fissile material from fertile material), and waste management will require transmutation. Innovative reactors that could achieve such objectives - generation IV or ADS (accelerator driven system) - are loaded with new fuels (thorium, heavy actinides) and function with neutron spectra for which nuclear data do not benefit from 50 years of industrial experience, and thus present particular challenges. After validation on an experimental reactor using an international benchmark, we take classical reactor physics tools along with available nuclear data uncertainties to calculate the sensitivities and uncertainties of the criticality and temperature coefficient of a thorium molten salt reactor. In addition, a study based on the important reaction rates for the calculation of cycle's equilibrium allows us to estimate the efficiency of different reprocessing strategies and the contribution of these reaction rates on the uncertainty of the breeding and then on the uncertainty of the size of the reprocessing plant. Finally, we use this work to propose an improvement of the high priority experimental request list. (author)

  15. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  17. Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles

    OpenAIRE

    Okafor, Obinna; Weilhard, Andreas; Fernandes, Jesum A.; Karjalainen, Erno; Goodridge, Ruth; Sans, Victor

    2017-01-01

    The implementation of advanced reactor engineering concepts employing additive manufacturing is demonstrated. The design and manufacturing of miniaturised continuous flow oscillatory baffled reactors (mCOBR) employing low cost stereolithography based 3D printing is reported for the first time. Residence time distribution experiments have been employed to demonstrate that these small scale reactors offer improved mixing conditions at a millimetre scale, when compared to tubular reactors. Nearl...

  18. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  19. Space reactor assessment and validation study

    Science.gov (United States)

    Gedeon, Stephen; Morey, Dennis

    The present difficulties experienced by the United States in launching payloads into space has suggested a number of problems which are associated with the handling of hazardous materials in spacecraft. The question has arisen as to the safety of launching highly radioactive material such as plutonium-238, related to the possibility of its dispersion into the atmosphere during a launch vehicle explosion. An alternative is the use of a small nuclear reactor which is not started until it is in space and contains little or no radioactivity at launch. A first order assessment of six small reactor concepts with power levels up to 100 MWe was performed. Both the nuclear feasibility of these concepts to operate at their rated power levels between 7 and 10 years and the capability of these concepts to remain subcritical both before and during launch and also in the case of water immersion during a potential launch failure or abort were investigated.

  20. A novel reverse flow reactor coupling endothermic and exothermic reactions: an experimental study

    NARCIS (Netherlands)

    van Sint Annaland, M.; Nijssen, R.C.

    2002-01-01

    A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by

  1. HORIZONTAL BOILING REACTOR SYSTEM

    Science.gov (United States)

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  2. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  3. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  4. THERMAL NEUTRONIC REACTOR

    Science.gov (United States)

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  5. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  6. Development of reactor graphite

    Science.gov (United States)

    Haag, G.; Mindermann, D.; Wilhelmi, G.; Persicke, H.; Ulsamer, W.

    1990-04-01

    The German graphite development programme for High Temperature Reactors has been based on the assumption that reactor graphite for core components with lifetime fluences of up to 4 × 10 22 neutrons per cm 2 (EDN) at 400°C can be manufactured from regular pitch coke. The use of secondary coke and vibrational moulding techniques have allowed production of materials with very small anisotropy, high strength, and high purity which are the most important properties of reactor graphite. A variety of graphite grades has been tested in fast neutron irradiation experiments. The results show that suitable graphites for modern High Temperature Reactors with spherical fuel elements are available.

  7. Oscillatory flow chemical reactors

    National Research Council Canada - National Science Library

    Slavnić Danijela S; Bugarski Branko M; Nikačević Nikola M

    2014-01-01

    .... However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat...

  8. Membrane reactors at Degussa.

    Science.gov (United States)

    Wöltinger, Jens; Karau, Andreas; Leuchtenberger, Wolfgang; Drauz, Karlheinz

    2005-01-01

    The review covers the development of membrane reactor technologies at Degussa for the synthesis of fine chemicals. The operation of fed-batch or continuous biocatalytic processes in the enzyme membrane reactor (EMR) is well established at Degussa. Degussa has experience of running EMRs from laboratory gram scale up to a production scale of several hundreds of tons per year. The transfer of the enzyme membrane reactor from biocatalysis to chemical catalysis in the chemzyme membrane reactor (CMR) is discussed. Various homogeneous catalysts have been investigated in the CMR, and the scope and limitation of this new technique is discussed.

  9. Pressurizing new reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neill, J.S.

    1956-01-30

    The Technical Division was asked recently to consider designs for new reactors that would add 8000 MW capacity to the Savannah River Plant. One modification of the existing SRP design that would enable a higher power rating, and therefore require fewer new reactors, is an increase in the maximum pressure in the D{sub 2}O system. The existing reactors at SRP are designed for a maximum pressure in the gas plenum of only 5 psig. Higher pressures enable higher D{sub 2} temperatures and higher sheath temperatures without local boiling or burnout. The requirements in reactor cooling facilities at any given power level would therefore be reduced by pressurizing.

  10. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  11. The aging of equipment in service: Preventive measures taken in the design of the EPR reactor; Le vieillissement des materiaux en service mesures preventives prises pour la conception du reacteur EPR

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, A. [AREVA NP, Dept. Materiaux, Technologie et Chimie, 92 - Paris la Defense (France)

    2009-07-15

    The design of a new Pressurized Water Reactor (PWR) has to take into account past experience, and in particular the lessons drawn from aging of components already in operation. The benefit of this process for tong term operation can be exceptionally high in the case of an evolutionary design such as that of the EPR{sup TM} reactor, for which the materials and the manufacturing conditions are the result of a very Long term optimization. Aging of materials in operation encompasses several damages, from the embrittlement caused by irradiation or thermal aging to the generation of cracks by fatigue or corrosion. These damages are known and characterized through international field experience and through a Cot of Laboratory studies performed worldwide, in France mainly by EDF, Cea and AREVA NP. Even if some damage mechanisms are not fully understood, good practice rules or empirical models were developed in order to give accurate predictions of damage kinetics and consequences. All this experience was taken into account during the design phase of the EPR{sup TM} project to define mate-rials and/or service conditions allowing to prevent or to minimize aging. (author)

  12. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  13. Iodine chemistry in a reactor regulation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. [Nuclear Regulatory Commission, Washington, DC (United States). Advisory Committee on Reactor Safeguards

    1996-12-01

    Radioactive iodine has always been an important consideration in the regulation of nuclear power reactors to assure the health and safety of the public. Regulators adopted conservatively bounding predictions of iodine behavior in the earliest days of the development of nuclear power because there was so little known about either accidents or the chemistry of iodine. Today there is a flood of new information and understanding of the chemistry of iodine under reactor accident conditions. This paper offers some thoughts on how the community of scientists engaged in the study of iodine chemistry can present the results of their work so that it is more immediately adopted by the regulator. It is suggested that the scientific community consider the concept of consensus standards so effectively used within the engineering community to define the status of the study of radioactive iodine chemistry for reactor safety. (author) 9 refs.

  14. Wire core reactor for nuclear thermal propulsion

    Science.gov (United States)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  15. Concept Maps

    OpenAIRE

    Schwendimann, Beat Adrian

    2014-01-01

    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  16. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  17. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  18. REFLECTOR FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  19. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  20. Significant advantages of the safety-first concept in construction, operation, and maintenance of the Westinghosue AP1000 reactor; Signifikante Vorteile des Safety-First-Konzeptes bei Errichtung, Betrieb und Wartung des Westinghouse AP1000-Reaktors

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, E. [Westinghosue Electric Co., Pittsburgh (United States); Benitz, K. [Westinghouse Electric Co., Mannheim (Germany)

    2004-02-01

    In June 2003, the U.S. Nuclear Regulatory Commission (USNRC) published a draft opinion about safety of the AP1000 Westinghouse pressurized water reactor with 'passive safety' features. The report constitutes an important milestone in the development of the next generation of safe and cost-efficient nuclear power plants. A new AP1000 can be absolutely competitive with fossil fired power plants and may be able to revive the construction of new nuclear power plants worldwide. The reason for designing the AP1000 were safety considerations. The use of passive safety systems at the same time entails a considerable reduction in the costs of design, maintenance, and operation of an AP1000 plant. Independent experts confirmed that an AP1000 can be erected within three years or even less. The estimated electricity generating costs of an AP1000 plant in the United States amount to US Cent 3.2 to 3.6 per kilowatthour. (orig.)

  1. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  2. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  3. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  4. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  5. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  6. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  7. Power coefficient of reactivity in CANDU 6 Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Adams, R.; Boyle, S.; Connolly, A.; Kastanya, D.; Khaial, A.; Lau, V. [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    The Power Coefficient of Reactivity (PCR) measures the change in reactor core reactivity per unit change in reactor power and is an integral quantity which captures the contributions of the fuel temperature, coolant void and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between the inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity in all operating conditions are maintained within a safe range. The CANDU reactor design takes advantage of the inherent nuclear characteristics of small reactivity coefficient, minimal excess reactivity and very long prompt neutron lifetime to mitigate the magnitude of the demand on the engineered systems for controlling reactivity. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with its design characteristics, such that the overall design of the reactor does not depend on the sign of the PCR. This is a contrast to other reactor design concepts which are dependent on a PCR which is both large and negative in the design of their engineered systems for controlling reactivity. It will be demonstrated that during a Loss of Regulation Control (LORC) event, the impact of having a positive power coefficient, or of hypothesizing a PCR larger than that estimated for CANDU, has no significant impact on the reactor safety. Since the CANDU 6 PCR is small, its role in the operation or safety of the reactor is not significant.

  8. Coolant Compatibility Studies for Fusion and Fusion-Fission Hybrid Reactor Concepts: Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in High Temperature Molten Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); El-dasher, Bassem [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferreira, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caro, Magdalena Serrano de [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kimura, Akihiko [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2010-05-04

    Alloys such as 12YWT & 14YWT have exceptional high-temperature strength at temperatures greater than 550 C. This class of materials has also demonstrated relatively little radiation induced swelling at damage levels of at least 75 dpa in sodium-cooled fast reactors. However, corrosion of oxide dispersion strengthened (ODS) steels in high temperature molten fluoride salts may limit the life of advanced reactor systems, including some fusion and fusionfission hybrid systems that are now under consideration. This paper reports corrosion studies of ODS steel in molten fluoride salts at temperatures ranging from 600 to 900 C. Electrochemical impedance spectroscopy (EIS) was used to measure the temperature dependence of charge transfer kinetics in situ, while an environmental electron microscope (ESEM) equipped with energy dispersive spectroscopy (EDS) was used for postexposure examination of test samples. ODS steel experienced corrosion in the molten fluoride salts at 550 to 900 C, even in carefully controlled glove-box environments with very low levels of oxygen and moisture. The observed rate of attack was found to accelerate dramatically at temperatures above 800 C. Tantalum and tantalum-based alloys such as Ta-1W and Ta-10W have exceptional high temperature strength, far better than ODS steels. Unlike ODS steels, tantalum has been found to exhibit some immunity to corrosive attack by molten fluoride salts at temperatures as high as 900 C, though there is some indication that grain boundary attack may have occurred. Unfortunately, tantalum alloys are known to become brittle during irradiation and exposure to hydrogen, both of which are important in fusion applications.

  9. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  10. NPR (New Production Reactor) capacity cost evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  11. Reactor power system deployment and startup

    Science.gov (United States)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  12. Risk Management for Sodium Fast Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  13. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  14. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  15. The N-Reactor fuel testing program in the KER loops

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.W.

    1963-04-01

    The KER loops are four pressurized water-cooled in-reactor testing loops in which fuel, coolant and corrosion tests are being conducted for the N Reactor program. Two of the loops, KER-3 and KER-4, are equipped with N-size Zr-2 process tubes and have sufficient pumping and heat dissipation capacity to permit testing of 14-element charges of N fuel. The other two loops, HER-1 and KER-2, are fitted with Zr-2 process tubes of 2.1 in. inner diameter (vs 2.7 in. for N). The small loops can be used to test charges of N inner tubes or other elements sized at about 1.8 in. outer diameter or less. An inert sleeve must be used with N inner tubes to assure adequate coolant flow over both surfaces of the elements. The KE reactor active zone is 28 in. long com pared to 35 in. for N so the length of test charges is somewhat shorter than actual N charges will be. The purpose of this report is to review the testing environment, to discuss the testing program and to present the schedule as presently seen.

  16. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Executive summary: main report. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the objectives and organization of the reactor safety study; the basic concepts of risk; the nature of nuclear power plant accidents; risk assessment methodology; reactor accident risk; and comparison of nuclear risks to other societal risks.

  17. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  18. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  19. Heat Transfer Characteristics of Tubular Thermal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon; Park, Sang Kyoo [Chonnam National Univ., Yeosu (Korea, Republic of); Ra, Beong Yeol [Sinsung Plant company, Ansan (Korea, Republic of)

    2007-07-01

    Heat transfer augmentation based on the process intensification concept in heat exchangers and thermal reactors has received much attention in recent years, mainly due to energy efficiency and environmental considerations. The concept consists of the development of novel apparatuses and techniques that, compared to those commonly used today, are expected to bring dramatic improvements in manufacturing and processing, substantially decreasing equipment size, energy consumption, and ultimately resulting in cheaper, sustainable technologies. The objective of this paper was to investigate the heat transfer characteristics of tubular thermal reactor using static mixing technology. Glycerin and water were used as the test fluids and water was used as the heating source. The results for heat transfer rate were strongly influenced by tube geometry and flow conditions.

  20. Engineering overview of the Minimars reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.D.; Lousteau, D.C.; Taylor, G.E.; Doggett, J.N.

    1985-11-18

    A two-year study to describe an attractive tandem mirror reactor is in progress. The reactor, called Minimars, will produce 600 MW of net electrical power at a cost of less than 50 mills/kWh and will be inherently safe. The first year of the study has emphasized innovative concepts and trade studies that lead to good cost vs performance ratings. a set of baseline parameters and a preliminary engineering description of the machine have been generated, along with a first cost estimate. The second year of the study will develop the proposed concepts into an integrated point design and provide a ''bottoms-up'' cost estimate.

  1. Nuclear reactor control column

    Science.gov (United States)

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  2. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  3. Reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Naotaka; Igawa, Shinji; Kitazono, Hideaki

    1998-02-13

    The present invention provides a reactor power monitoring device capable of ensuring circumstance resistance, high reliability and high speed transmission even if an APRM is disposed in a reactor building (R/B). Namely, signal processing sections (APRM) for transmitting data to a central control chamber are distributed in the reactor building at an area at the lowest temperature among areas where the temperature control in an emergency state is regulated, and a transmission processing section (APRM-I/F) for transmitting data to the other systems is disposed to the central control chamber. An LPRM signal transmission processing section is constituted such that LPRM signals can be transmitted at a high speed by DMA. Set values relevant to reactor tripping (neutron flux high, thermal output high and sudden reduction of a reactor core flow rate) are stored in the APRM-I/F, and reactor tripping calculation is conducted in the APRM-I/F. With such procedure, a reactor power monitoring device having enhanced control function can be attained. (N.H.)

  4. Breeding gains of sodium-cooled oxide-fueled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mougniot, J. C.; Barre, J. Y.; Clauzon, P.; Ciacometti, C.; Neviere, G.; Ravier, J.; Sichard, B.

    1975-12-01

    Calculated values are presented for the breeding gains of French fast reactors, and the experimental uncertainties are discussed. The effect of various choices of planning on the breeding gains is next analyzed within the framework of classical concepts. In the final part, a new concept involving heterogeneous cores with a single enrichment zone is presented. This concept permits a significant improvement in the breeding gain and doubling time of fast reactors.

  5. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned.

  6. Jet stability in the lithium fall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S.W.

    1978-05-04

    A preliminary analysis has been made of the various hydrodynamic aspects involved in the stability of a liquid-lithium jet in a laser-fusion reactor, which comprises a part of LLL's laser fusion power-generation concept. Various physical factors that may affect the jet breakup are delineated, and some approximate calculations are performed to determine their relative influences. Areas of uncertainty are pointed out, along with plans for experimental verification or further theoretical analysis.

  7. Technology Selection for Offshore Underwater Small Modular Reactors

    OpenAIRE

    Shirvan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the ...

  8. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  9. Nuclear reactor reflector

    Science.gov (United States)

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  10. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  11. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  12. NEUTRONIC REACTOR CONTROL

    Science.gov (United States)

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  13. Nuclear reactor reflector

    Science.gov (United States)

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  14. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  15. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  16. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  17. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  18. Natural convection reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Bernath, L.; Menegus, R.L.; Ring, H.F.

    1956-05-01

    A previous report described the conceptual design of a plutonium producing reactor that may be characterized as follows: Power output (2000 MW); cooling - (natural convection of light water through the reactor, up through a draft tube to an evaporative cooling pond, then back to the reactor, and fuel (400 to 500 tons of uranium enriched to 1.2% U-235). Because this reactor would be cooled by the natural convection of light water, it is believed that the construction costs would be significantly less than for a Savannah or Hanford type reactor. Such expensive items as water treatment and water pumping facilities would be eliminated entirely. The inventory of 500 tons of slightly enriched uranium, however, is an unattractive feature. It represents not only a large dollar investment but also makes the reactor less attractive for construction during periods of national emergency because of the almost certain scarcity of even slightly enriched uranium at that time. The Atomic Energy Commission asked that the design be reviewed with the objective of reducing the inventory of uranium, The results of this review are given in this report.

  19. The Traveling Wave Reactor: Design and Development

    Directory of Open Access Journals (Sweden)

    John Gilleland

    2016-03-01

    Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.

  20. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  1. Concepts of formal concept analysis

    Science.gov (United States)

    Žáček, Martin; Homola, Dan; Miarka, Rostislav

    2017-07-01

    The aim of this article is apply of Formal Concept Analysis on concept of world. Formal concept analysis (FCA) as a methodology of data analysis, information management and knowledge representation has potential to be applied to a verity of linguistic problems. FCA is mathematical theory for concepts and concept hierarchies that reflects an understanding of concept. Formal concept analysis explicitly formalizes extension and intension of a concept, their mutual relationships. A distinguishing feature of FCA is an inherent integration of three components of conceptual processing of data and knowledge, namely, the discovery and reasoning with concepts in data, discovery and reasoning with dependencies in data, and visualization of data, concepts, and dependencies with folding/unfolding capabilities.

  2. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  3. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  4. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  5. Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, E706 (IIF)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide presents a method for predicting reference transition temperature adjustments for irradiated light-water cooled power reactor pressure vessel materials based on Charpy V-notch 30-ftlbf (41-J) data. Radiation damage calculative procedures have been developed from a statistical analysis of an irradiated material database that was available as of May 2000. The embrittlement correlation used in this guide was developed using the following variables: copper and nickel contents, irradiation temperature, and neutron fluence. The form of the model was based on current understanding for two mechanisms of embrittlement: stable matrix damage (SMD) and copper-rich precipitation (CRP); saturation of copper effects (for different weld materials) was included. This guide is applicable for the following specific materials, copper, nickel, and phosphorus contents, range of irradiation temperature, and neutron fluence based on the overall database: 1.1.1 MaterialsA 533 Type B Class 1 and 2, A302 Grade B, A302 G...

  6. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  7. Design and Fluid Dynamic Investigations for a High Performance Light Water Reactor Fuel Assembly

    Science.gov (United States)

    Hofmeister, Jan; Laurin, Eckart; Class, Andreas G.

    2005-11-01

    Within the 5th Framework Program of the European Commission a nuclear light water reactor with supercritical steam conditions has been investigated called High Performance Light Water Reactor (HPLWR). This reactor concept is distinct from conventional light water reactor concepts by the fact, that supercritical water is used to achieve higher core outlet temperatures. The reactor operates with a high system pressure, high heat-up of the coolant within the core, and high outlet temperatures of the coolant resulting in a thermal efficiency of up to 44%. We present the design concept proposed by IKET, and a fluid dynamic problem in the foot piece of the fuel assembly, where unacceptable temperature variations must be omitted.

  8. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  9. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  10. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  11. Independent assessment for new nuclear reactor safety

    Directory of Open Access Journals (Sweden)

    D'Auria Francesco

    2017-01-01

    Full Text Available A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On the one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs. Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry. The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty approach.

  12. An autonomous control framework for advanced reactors

    Directory of Open Access Journals (Sweden)

    Richard T. Wood

    2017-08-01

    Full Text Available Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  13. An autonomous control framework for advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  14. Human Factors Aspects of Operating Small Reactors

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins, J.; Deem, R. (BNL); Xing, J.; DAgostino, A. (NRC)

    2010-11-07

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

  15. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  16. Survey of mirror machine reactors

    Energy Technology Data Exchange (ETDEWEB)

    Condit, W.C.

    1978-08-11

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10/sup 14//cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject.

  17. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  18. Nuclear reactor safety device

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  19. Heat dissipating nuclear reactor

    Science.gov (United States)

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  20. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  1. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  2. The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants

    NARCIS (Netherlands)

    Neomagus, H.W.J.P.; Saracco, G.; Wessel, H.F.W.; Wessel, H.F.W.; Versteeg, Geert

    2000-01-01

    This paper provides an experimental and modelling analysis of the performance of a membrane reactor with separate feed of reactants for the combustion of methane. In this reactor concept methane and air streams are fed at opposite sides of a Pt/γ-Al2O3-activated porous membrane which hosts their

  3. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential

  4. Numerical simulation of the power characteristics of twin-core pulse reactor-pumped laser system

    Science.gov (United States)

    Gulevich, A. V.; Barzilov, A. P.; Dyachenko, P. P.; Zrodnikov, A. V.; Kukharchuk, O. F.; Kachanov, B. V.; Kolyada, S. G.; Pashin, E. A.

    1996-05-01

    Concept for high-power pulsed reactor-pumped laser system (RPLS) based on the new physical principles (direct nuclear-to-optical conversion) is discussed with reference to ICF feasibility problem. Theoretical problems for substantiation of the neutronic and physical characteristics of the RPLS power model are considered. Results of numerical studies of the expected power characteristics of reactor laser system are discussed.

  5. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  6. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  7. Nuclear reactor apparatus

    Science.gov (United States)

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  8. Safe reactor power

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.; Ring, H.F.; Bernath, L.

    1956-05-15

    The upper limit on reactor operating power is established not only by safety considerations during steady-state operation but also by the requirement that during an accident no permanent damage be inflicted upon the reactor or the fuel charge. Two general categories of accidents are recognized; they are the ``nuclear runaway`` and the ``loss of coolant flow`` incidents. In this memorandum an incident of the latter type is analyzed. It is assumed that the safety rods function normally, and a method is defined for establishing the highest operating power that may be permitted if the postulated accident is to do no damage.

  9. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  10. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  11. Passive modular gas safety system for a reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abalin, S.S.; Isaev, I.F.; Kulakov, A.A.; Sivokon, V.P.; Udovenko, A.N.; Ionaitis, R.R.

    1994-01-01

    Reactor safety systems have developed gradually. Today in particular, auxiliary systems are being developed which are based on nontraditional operational concepts, by using gaseous neutron absorbers. The Scientific-Research and Design Institute of Power Technology (NIKIET) and the Institute of Nuclear Reactors, Kurchatov Institute Reactor Science Center (RNTs), have done preliminary development and experimental verification of separate elements of this system, in which helium is used as the absorber. This article presents a rapid passive safety system based on gaseous absorber, which is made as autonomous modules as the final stage of reactor safety. Its effectiveness is discussed by using an RBMK reactor as an example. As opposed to traditional active, systems, it does not require a functioning power supply and information signals from outside the reactors system, which makes it stable against unsanctioned actions by personnel, the influence of other systems, and also outside actions (sabotage and natural calamities which could destroy the the nuclear power plant structure). Because the gas safety system can operate instantaneously (0.1-0.3 sec), in principle, it can shut down the reactor even with fast-neutron runaway, where traditional safety systems are ineffective.

  12. Pressurized hydrogenotrophic denitrification reactor for small water systems.

    Science.gov (United States)

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2017-03-15

    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3--N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3--N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4- was shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  14. Assessment of Sensor Technologies for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vlim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wootan, D. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anheier, Jr, N. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, E. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, H. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sheen, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States); Gopalsami, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Heifetz, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Tam, S. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Upadhyaya, B. R. [Univ. of Tennessee, Knoxville, TN (United States); Stanford, A. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  15. Development of an improved Sabatier reactor

    Energy Technology Data Exchange (ETDEWEB)

    Birbara, P.J.; Sribnik, F.

    1979-01-01

    This paper presents the results of recent experimental and analytical studies of a Sabatier reactor where carbon dioxide and hydrogen in the presence of a catalyst react to form water, methane, and heat. The work undertaken in this program was aimed at simplification of design and control concepts of Sabatier subsystems. To this end, effort was expended to the development of UASC-151G, a highly active, physically durable catalyst composed of ruthenium on alumina. UASC-151G is five times as active as that supplied for the SSP program. The use of this improved catalyst has very significant effects on the Sabatier reaction subsystem design including: (1) lower temperature starting capability, (2) simiplification of active control and instrumentation requirements, (3) simplified reactor design, (4) improved reliability, and (5) high conversion efficiencies using only small amounts of catalyst. Reasonable agreement between test and computer simulation has been obtained for temperature and lean component conversion efficiencies for both steady-state and cyclic operation.

  16. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  17. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  18. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... criteria; passive shutdown and decay heat removal systems; fast breeder reactors in India. PACS No. 28.41.−i. 1. ... water reactors, mainly pressurized heavy water reactors (PHWRs) to extract ∼10 GWe capacity for ..... commissioning phase and most of the supporting systems have been commissioned and.

  19. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  20. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  1. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Fast reactor programme in India. P Chellapandi P R ... Keywords. Sodium fast reactor; design challenges; construction challenges; emerging safety criteria; passive shutdown and decay heat removal systems; fast breeder reactors in India.

  2. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  3. Nuclear reactor building

    Science.gov (United States)

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  4. JACKETED REACTOR FUEL ELEMENT

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  5. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  6. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  7. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  8. NEUTRONIC REACTOR SHIELD

    Science.gov (United States)

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  9. Neutronic Reactor Structure

    Science.gov (United States)

    Vernon, H. C.; Weinberg, A. M.

    1961-05-30

    The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

  10. NEUTRONIC REACTOR CONTROL ELEMENT

    Science.gov (United States)

    Beaver, R.J.; Leitten, C.F. Jr.

    1962-04-17

    A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

  11. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  12. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  13. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  14. Sequencing Bacth Reactors; Reactores biologicos secuenciados

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.; Manoharan, M.

    1999-06-01

    The application of sequencing batch reactors (SBR) for wastewater treatment is becoming increasingly popular. However, published information on process performance and construction costs for SBRs is scarce. For this reason. Environment Canada, the Ontario Ministry of the Environment (MOE), and the Water Environment Association of Ontario (WEAO) decided to sponsor a program to evaluate the performance of 75 municipal SBRs in Canada and the United States. Effluent quality, construction costs, and design and operating problems were investigated. Areas for optimization found as a result of this investigation were classified an prioritized based on their impact on operational costs, treatment capacity, effluent quality, and frequency of occurrence. A list of recommendations for process optimization was prepared. A construction cost comparison between activated sludge systems of continuous flow and SBRs was prepared. (Author) 12 refs.

  15. Concept theory

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2009-01-01

      Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science.  The importance of historicist and pragmatic theories of concepts...

  16. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  17. A novel reverse flow reactor coupling endothermic and exothermic reactions. Part II: sequential reactor configuration for reversible endothermic reactions

    NARCIS (Netherlands)

    van Sint Annaland, M.; Scholts, H.A.R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2002-01-01

    The new reactor concept for highly endothermic reactions at elevated temperatures with possible rapid catalyst deactivation based on the indirect coupling of endothermic and exothermic reactions in reverse flow, developed for irreversible reactions in Part I, has been extended to reversible

  18. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  19. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  20. Nuclear reactor construction with bottom supported reactor vessel

    Science.gov (United States)

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment