WorldWideScience

Sample records for water year bulk

  1. Thermodynamic properties of bulk and confined water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  2. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  3. Factors that may compromise bulk water distribution reliability

    OpenAIRE

    2012-01-01

    D.Ing. This thesis considers water supply and divides the water supply environment into three categories; the macro water supply environment, the water supply scheme and the consumers. Each of the categories is briefly explored in terms of the factors that may influence it. Subsequently, some of the unique features of a bulk water distribution system are dealt with, as well as different approaches related to bulk water distribution system design and assessment. One of these approaches, the...

  4. Can groundwater be successfully implemented as a bulk water ...

    African Journals Online (AJOL)

    that groundwater can be developed as a potential viable bulk-water supply source. This paper attempts .... fracturing, even when using conventional geophysical methods. Gneiss and/or ..... will start to be self-sufficient in about 2018 and 2019.

  5. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  6. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  7. The Economics of Bulk Water Transport in Southern California

    Directory of Open Access Journals (Sweden)

    Andrew Hodges

    2014-12-01

    Full Text Available Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of many communities for increasing supplies. We find that using water bags to transport fresh water between northern and southern California is in some instances a low-cost alternative to desalination. The choice is constrained, however, by concerns about reliability and, thus, risk. Case-study results demonstrate the challenges of water supply augmentation in water-constrained regions.

  8. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system.

    Science.gov (United States)

    Miller, Haylea C; Morgan, Matthew J; Wylie, Jason T; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2017-03-01

    Global incidence of primary amoebic meningoencephalitis cases associated with domestic drinking water is increasing. The need for understanding disinfectant regimes capable of eliminating the causative microorganism, Naegleria fowleri, from bulk water and pipe wall biofilms is critical. This field study demonstrated the successful elimination of N. fowleri from the bulk water and pipe wall biofilm of a persistently colonised operational drinking water distribution system (DWDS), and the prevention of further re-colonisation. A new chlorination unit was installed along the pipe line to boost the free chlorine residual to combat the persistence of N. fowleri. Biofilm and bulk water were monitored prior to and after re-chlorination (RCl), pre-rechlorination (pre-RCl) and post-rechlorination (post-RCl), respectively, for one year. A constant free chlorine concentration of > 1 mg/L resulted in the elimination of N. fowleri from both the bulk water and biofilm at the post-RCl site. Other amoeba species were detected during the first two months of chlorination, but all amoebae were eliminated from both the bulk water and biofilm at post-RCl after 60 days of chlorination with free chlorine concentrations > 1 mg/L. In addition, a dynamic change in the biofilm community composition and a four log reduction in biofilm cell density occurred post-RCl. The pre-RCl site continued to be seasonally colonised by N. fowleri, but the constant free chlorine residual of > 1 mg/L prevented N. fowleri from recolonising the bulk and pipe wall biofilm at the post-RCl site. To our knowledge, this is the first study to demonstrate successful removal of N. fowleri from both the bulk and pipe wall biofilm and prevention of re-colonisation of N. fowleri in an operational DWDS. The findings of this study are of importance to water utilities in addressing the presence of N. fowleri and other amoeba in susceptible DWDSs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  10. Phase transitions and dynamics of bulk and interfacial water

    International Nuclear Information System (INIS)

    Franzese, G; Hernando-Martinez, A; Kumar, P; Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E; De los Santos, F

    2010-01-01

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  11. Phase transitions and dynamics of bulk and interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, G; Hernando-Martinez, A [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Kumar, P [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); De los Santos, F, E-mail: gfranzese@ub.ed [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  12. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...-ZA31 Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk AGENCY: Coast Guard... availability of a proposed policy letter concerning the carriage of shale gas extraction waste water in bulk... transport shale gas extraction waste water in bulk. The policy letter also defines the information the Coast...

  13. Orientational order and dynamics of water in bulk and in aqueous solutions of uranyl ions

    International Nuclear Information System (INIS)

    Chopra, Manish; Choudhury, Niharendu

    2014-01-01

    Molecular dynamics simulations in canonical ensemble of aqueous solutions of uranyl nitrate and bulk water at ambient condition have been carried out to investigate orientational order and dynamics of water. The orientational distributions of water around a central water molecule in bulk water and around a uranyl ion in an aqueous uranyl solution have been calculated. Orientational dynamics of water in bulk and in aqueous uranyl nitrate solution have also been analysed. (author)

  14. Bulk water phase and biofilm growth in drinking water at low nutrient conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    , and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilmexhibited a bacterial growth rate of 0.30 day1. The biofilmwas radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilmdetachm ent rate of 0.013 day1...... the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day1. The bulk water phase bacteria exhibited a higher activity than the biofilmbacteria in terms of culturability, cell-specific ATP content......In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used...

  15. Influence of Bulk PDMS Network Properties on Water Wettability

    Science.gov (United States)

    Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.

  16. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage or...

  17. Bulk water phase and biofilm growth in drinking water at low nutrient conditions.

    Science.gov (United States)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus

    2002-11-01

    In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.

  18. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Science.gov (United States)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  19. New results on water in bulk, nanoconfined, and biological environments

    Science.gov (United States)

    Stanley, H. E.; Kumar, Pradeep; Xu, Limei; Yan, Zhenyu; Mazza, Marco G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We present evidence from experiments and computer simulations supporting the hypothesis that water displays polyamorphism, i.e., water separates into two distinct liquid phases. This concept of a new liquid-liquid critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a biomolecule.

  20. Research of process of filtration of salt water by bulk filters with the use of vibration

    Directory of Open Access Journals (Sweden)

    A. I. Krikun

    2018-01-01

    Full Text Available For the purification of process water from impurities at fish processing plants, a large number of filtering devices are currently used, differing in their design parameters (mesh, woven, disco, etc.. However, in practice, these filtering devices are mainly used as the first stage of water treatment, since they can not provide sufficient quality of the filtrate. The most effective, as numerous studies of scientists of our country and the world show, are bulk granular filters. Their main advantages over other devices of similar designation are: they have a simple and reliable design; resistant to aggressive operating conditions; they are capable of effectively purifying seawater from mechanical impurities at relatively low pressure; most economical; have a filtering load capable of a long time to work without regeneration (the approximate service life of a grain-loading is 3 to 5 years etc. In this article, the influence of vibration effects on the filtration of sea water in a designed and fabricated filter unit with bulk granular materials of natural and artificial origin, the design of which is protected by two patents for the utility model. The results of the study are presented, revealing the degree of influence of the intensity of vibration of the perforated partitioning wall on the state of bulk granular materials located on it (segregation by size, stratified vibro-packing, compacting or loosening of a layer of granular material. The dependences of the capacity of the filtration unit on the amplitude, frequency and the vibration intensity factor have been experimentally established, which made it possible to establish rational vibration parameters of the perforated septum, under which the filtering layer becomes denser, the porosity of the loading decreases, and the precipitate does not break into the filtrate.

  1. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  2. Communication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water.

    Science.gov (United States)

    Alfè, D; Bartók, A P; Csányi, G; Gillan, M J

    2013-06-14

    We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.

  3. The impacts of coal refuse/fly ash bulk bends on water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Stewar, B.R.; Daniels, W.L. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-09-01

    There is considerable interest in the beneficial reuse of coal fly ash as a soil amendment on coal refuse piles. One method of application would be to blend the coal refuse and the fly ash before deposition in a refuse pile. A field experiment was initiated to measure the effects of bulk blending fly ash with coal refuse on water quality and plant growth parameters. Fly ash (class F) from three sources were used in the experiment. Two of the fly ashes were acidic and the third was alkaline. Trenches were excavated in a coal refuse pile to a depth of 2 m and the refuse was blended with fly ash and then returned to the trench. In other plots the ash was applied as a surface amendment. A treatment of a bulk blend of 5% (w/w) rock phosphate was also included in the experiment. Large volume lysimeters were installed in some trenches to collect the leachates. The fly ash treatments appear to improve the quality of the leachates when compared to the leachates from the untreated plots. The fly ash amended treatments have lower leachate concentrations of Fe and Al. Initially the fly ash treatments showed high levels of leachate B, however those levels have decreased with time. Millet (Setaria italica) yields from the first year of the experiment were highest n the alkaline fly ash and rock phosphate blended plots. In the second growing season, the two bulk blends with alkaline fly ash had the highest yields. In the third growing season all treatments had higher yield levels than the untreated control plots. The positive effects of the fly ash on leachate quality were attributed to the alkalinity of the ash, and the increase in yield was attributed to the increases in water holding capacity due to fly ash treatments.

  4. On the behavior of water at subfreezing temperatures in a protein crystal: evidence of higher mobility than in bulk water.

    Science.gov (United States)

    Wang, Dongqi; Böckmann, Anja; Dolenc, Jožica; Meier, Beat H; van Gunsteren, Wilfred F

    2013-10-03

    NMR experiments have shown that water molecules in the crystal of the protein Crh are still mobile at temperatures well below 273 K. In order to investigate this water anomaly, a molecular dynamics (MD) simulation study of crystalline Crh was carried out to determine the mobility of water in this crystal. The simulations were carried out at three temperatures, 150, 200, and 291 K. Simulations of bulk water at these temperatures were also done to obtain the properties of the simple point charge (SPC) water model used at these temperatures and to allow a comparison of the properties of water in the Crh crystal with those of bulk water at the same temperatures. According to the simulations, water is immobilized at 150 K both in crystal and in bulk water. As expected, at 291 K it diffuses and rotates more slowly in the protein crystal than in bulk water. However, at 200 K, the translational and rotational mobility of the water molecules is larger in the crystal than in bulk water. The enhancement of water mobility in the crystal at 200 K was further investigated by MD simulations in which the backbone or all protein atoms were positionally restrained, and in which additionally the electrostatic protein-water interactions were removed. Of these changes in the environment of the water molecules, rigidifying the protein backbones slightly enhanced water diffusion, while it slowed down rotation. In contrast, removal of electrostatic protein-water interactions did not change water diffusion but enhanced rotational motion significantly. Further investigations are required to delineate particular features of the protein crystal that induce the anomalous behavior of water at 200 K.

  5. The continuous similarity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  6. Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''

    Science.gov (United States)

    Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders

    2013-03-01

    Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.

  7. Speeding up stochastic analysis of bulk water supply systems using ...

    African Journals Online (AJOL)

    2013-10-22

    Oct 22, 2013 ... It is possible to analyse the reliability of municipal storage tanks through stochastic analysis, in which the user demand, fire water demand and pipe failures are simulated using Monte Carlo analysis. While this technique could in principle be used to find the optimal size of a municipal storage tank, ...

  8. Speeding up stochastic analysis of bulk water supply systems using ...

    African Journals Online (AJOL)

    It is possible to analyse the reliability of municipal storage tanks through stochastic analysis, in which the user demand, fire water demand and pipe failures are simulated using Monte Carlo analysis. While this technique could in principle be used to find the optimal size of a municipal storage tank, in practice the high ...

  9. Can groundwater be successfully implemented as a bulk water ...

    African Journals Online (AJOL)

    These properties define typical fractured aquifers in which the selection of drilling sites requires a thorough scientific approach to locate a successful productive borehole. While most water service authorities in the Province have been randomly developing new boreholes with limited success rates, the analysis of datasets in ...

  10. Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties

    Science.gov (United States)

    Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.

    2018-01-01

    A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…

  11. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  12. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  13. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  14. Calm water resistance prediction of a bulk carrier using Reynolds averaged Navier-Stokes based solver

    Science.gov (United States)

    Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan

    2017-12-01

    Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.

  15. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  16. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU

    Directory of Open Access Journals (Sweden)

    Tuğba MİSİLLİ

    2017-10-01

    Full Text Available Abstract The aim of this study was to compare the degree of water sorption and solubility in bulk-fills after curing with a polywave light source. A total of 120 disc-shaped specimens (8 mm diameter; 4 mm depth were prepared from three regular bulk-fill materials (X-tra Fil, Tetric N-Ceram Bulk Fill, SonicFill, and a control material (Filtek Z250, cured in 3 different modes (standard: 1000 mW/cm2-20 s; high power: 1400 mW/cm2-12 s; xtra power: 3200 mW/cm2-6 s using a third generation light-emitting diode light curing unit. Water sorption and solubility levels of the specimens were measured according to the ISO 4049:2009 specification after storing in distilled water for 30 days. Data were analyzed using two-way ANOVA and Tukey’s post-hoc test (p < 0.05. The Z250 sample exposed to high power presented a higher sorption compared to the X-tra Fil and SonicFill samples. In xtra power mode, the values of Z250 and SonicFill were similar to each other and higher compared to those of X-tra Fil. Only SonicFill exhibited significantly different sorption values depending on the curing mode, the highest of which was achieved when using the xtra power mode. The highest solubility values were obtained for SonicFill. No statistically significant differences were found among other groups. No significant correlation was detected between water sorption and solubility. The traditional composite group exhibited a higher water sorption values than the bulk-fills. The reduction in polymerization time significantly increased the sorption of SonicFill. SonicFill showed the highest water solubility value among the composites tested.

  17. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water

    International Nuclear Information System (INIS)

    Dalvit, Claudio; Pevarello, Paolo; Tato, Marco; Veronesi, Marina; Vulpetti, Anna; Sundstroem, Michael

    2000-01-01

    A powerful screening by NMR methodology (WaterLOGSY), based on transfer of magnetization from bulk water, for the identification of compounds that interact with target biomolecules (proteins, RNA and DNA fragments) is described. The method exploits efficiently the large reservoir of H 2 O magnetization. The high sensitivity of the technique reduces the amount of biomolecule and ligands needed for the screening, which constitutes an important requirement for high throughput screening by NMR of large libraries of compounds. Application of the method to a compound mixture against the cyclin-dependent kinase 2 (cdk2) protein is presented

  18. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    International Nuclear Information System (INIS)

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M; Yamaguchi, M; Yokoyama, K; Noto, K

    2009-01-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  19. Metals in bulk deposition and surface waters at two upland locations in northern England

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, A.J.; Tipping, E

    2003-02-01

    Surface water concentrations of potentially-toxic metals depend upon atmospheric deposition and catchment biogeochemical processes. - Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r{sup 2}{>=}0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) <1 mg l{sup -1}, were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l{sup -1}) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples, {mu}g l{sup -1}): Al 36-530, Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of

  20. Microbiological Tests Performed During the Design of the International Space Station ECLSS: Part 1, Bulk Phase Water and Wastewater

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recover Tests (WRT) from 1990-1998. These tests show that it is possible to recycle water from different sources including urine, and produce water that can exceed the quality of municpally produced tap water.

  1. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  2. Comparative feasibility study on retrofitting ballast water treatment system for a bulk carrier.

    Science.gov (United States)

    Jee, Jaehoon; Lee, Sangick

    2017-06-30

    Use of ballast water in ships causes harmful effects on marine environment accompanied by economic loss and negative impact on ecosystem and human health. To solve these problems, the international convention on ballast water management will take into force in September 2017. In this study, a comprehensive feasibility of retrofitting the ballast water treatment system for an ocean-going bulk carrier was conducted. The technologies involved, installation and operational aspects of direct flow and side stream electrolysis, UV, and ozone type BWTS are described in detail. The principal concept of each BWTS is explained and probable arrangements of retrofitting in engine room are suggested. The cost analysis is carried out for retrofitting 4 types of BWTS onboard the target ship by examining each processes of installation and operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lower-energy neutron sources for increasing the sensitivity of nuclear gages for measuring the water content of bulk materials

    International Nuclear Information System (INIS)

    Bailey, S.M.

    1977-01-01

    The sensitivity of a gage using a nuclear source for measuring the water content of bulk materials, such as plastic concrete, is increased by use of a lithium or fluorine neutron nuclear source. 3 figures

  4. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.

  5. Relation between Raman backscattering from droplets and bulk water: Effect of refractive index dispersion

    Science.gov (United States)

    Plakhotnik, Taras; Reichardt, Jens

    2018-03-01

    A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.

  6. Bulk density, cone index and water content relations for some Ghanian soils

    International Nuclear Information System (INIS)

    Agodzo, S.K.; Adama, I.

    2004-01-01

    Correlations were established between water content θ, bulk density ρ and cone index Δ for 4 Ghanaian soils, namely, Kumasi, Akroso, Nta and Offin series. The relationship between Δ and θ is in the form Δ = a θ 2 + b θ + c, where the correlation coefficients r 2 for the various soils were found to be very high. Similarly, Δ - ρ relationships were linear but the correlations got weaker with increasing sand content of the soil, as expected. Soil sample sizes and compaction procedures did not conform to standard procedures, yet the results did not deviate from what pertains when standard procedures are used. (author)

  7. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  8. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    Science.gov (United States)

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  9. Gamma-ray attenuation to measure water contents and/or bulk densities of porous materials

    International Nuclear Information System (INIS)

    Ferraz, E.S.B.

    1983-01-01

    Attenuation of gamma radiation during transmission through soil and porous materials has been used for approximately three decades as a method for determining volumetric water content, theta, and bulk density, rho. This method is particularly suited for laboratory determinations of theta and rho in soil columns but it also has been used with success under field conditions. Measurements of attentuation of a collimated beam of monoernergetic gamma-rays has been used successfully by many investigators to provide rapid, non-destructive determinations for small volumes of soil. For stable soils, i.e. soils which do not swell upon wetting or shrink upon drying, rho may be assumed to remain constant during water flow through the soil, and thus changes in intensity or transmitted radiation may be attributed to changes in water content, theta. However, for unstable soils, the dry bulk density is subject to change with time during water flow through the soil and cannot be assumed to be a constant. Several investigators have utilized either a single beam of dual-energy gamma photons or two separate monoenergetic photon beams with greatly different energies to simultaneously determine theta and rho in these soils. A general review of gamma-ray attenuation methods for determining theta and rho in laboratory soil cores and in field soil profiles is reported in this paper. Theoretical equations for transmission and attenuation of gamma radiation in soils are presented for both single and double beams of gamma photons. Sensitivity, precision, accuracy, and experimental errors for the method are evaluated and discussed with respect to the theory. (author)

  10. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  11. The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution

    International Nuclear Information System (INIS)

    Russo, Daniela

    2008-01-01

    Kosmotropic (order-making) and chaotropic (order-breaking) co-solvents influence stability and biochemical equilibrium in aqueous solutions of proteins, acting indirectly through the structure and dynamics of the hydration water that surrounds the protein molecules. We have investigated the influence of kosmotropic and chaotropic co-solvents on the hydrogen bonding network dynamics of both bulk water and hydration water. To this end the evolution of bulk water and hydration water dynamics of a prototypical hydrophobic amino acid with polar backbone, N-acetyl-leucine-methylamide (NALMA), has been studied by quasielastic neutron scattering as a function of solvent composition. The results show that bulk water and hydration water dynamics, apart from a dynamical suppression that depends on the NALMA solute, exhibit the same dependence on addition of co-solvent for all of the co-solvents studied (urea, glycerol, MgSO 4 , and dimethyl sulfoxide). The hydrophobic solute and the high concentration water-structuring additive have the same effect on the water hydrogen bonding network. Water remains the preferential hydration of the hydrophobic side chain and backbone. We also find that the reorganization of the bulk water hydrogen bond network, upon addition of kosmotrope and chaotrope additives, is not dynamically perturbed, and that the hydrogen bond lifetime is maintained at 1 ps as in pure bulk water. On the other hand the addition of NALMA to the water/co-solvent binary system causes reorganization of the hydrogen bonds, resulting in an increased hydrogen bond lifetime. Furthermore, the solute's side chain dynamics is not affected by high concentrations of co-solvent. We shall discuss the hydration dynamics results in the context of protein folding and protein-solvent interactions

  12. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    Science.gov (United States)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  13. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  14. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  15. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  16. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    International Nuclear Information System (INIS)

    Davloor, R.; Harper, B.

    2011-01-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  17. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Harper, B. [Bruce Power, Tiverton, ON (Canada)

    2011-07-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  18. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2 mm increments. The restorations were evaluated using slightly......, 4 SDR-CeramX mono+ and 6 CeramX mono +-only restorations. The main reasons for failure were tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1.3% (p = 0...

  19. Automated Clean Chemistry for Bulk Analysis of Environmental Swipe Samples - FY17 Year End Report

    Energy Technology Data Exchange (ETDEWEB)

    Ticknor, Brian W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Metzger, Shalina C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McBay, Eddy H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hexel, Cole R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tevepaugh, Kayron N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bostick, Debra A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-30

    Sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment to shorten lengthy and costly manual chemical purification procedures. This development addresses a serious need in the International Atomic Energy Agency’s Network of Analytical Laboratories (IAEA NWAL) to increase efficiency in the Bulk Analysis of Environmental Samples for Safeguards program with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on COTS equipment. It was modified for uranium/plutonium separations using renewable columns packed with Eichrom TEVA and UTEVA resins, with a chemical separation method based on the Oak Ridge National Laboratory (ORNL) NWAL chemical procedure. The newly designed prepFAST-SR has had several upgrades compared with the original prepFAST-MC2. Both systems are currently installed in the Ultra-Trace Forensics Science Center at ORNL.

  20. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  1. Independent principal component analysis for simulation of soil water content and bulk density in a Canadian Watershed

    Directory of Open Access Journals (Sweden)

    Alaba Boluwade

    2016-09-01

    Full Text Available Accurate characterization of soil properties such as soil water content (SWC and bulk density (BD is vital for hydrologic processes and thus, it is importance to estimate θ (water content and ρ (soil bulk density among other soil surface parameters involved in water retention and infiltration, runoff generation and water erosion, etc. The spatial estimation of these soil properties are important in guiding agricultural management decisions. These soil properties vary both in space and time and are correlated. Therefore, it is important to find an efficient and robust technique to simulate spatially correlated variables. Methods such as principal component analysis (PCA and independent component analysis (ICA can be used for the joint simulations of spatially correlated variables, but they are not without their flaws. This study applied a variant of PCA called independent principal component analysis (IPCA that combines the strengths of both PCA and ICA for spatial simulation of SWC and BD using the soil data set from an 11 km2 Castor watershed in southern Quebec, Canada. Diagnostic checks using the histograms and cumulative distribution function (cdf both raw and back transformed simulations show good agreement. Therefore, the results from this study has potential in characterization of water content variability and bulk density variation for precision agriculture.

  2. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  3. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  4. Ten years of Brazilian ballast water management

    Science.gov (United States)

    Castro, Maria Cecilia Trindade; Hall-Spencer, Jason M.; Poggian, Cecília Fonseca; Fileman, Timothy W.

    2018-03-01

    In 2005, Brazil addressed the environmental challenges posed by ballast water through a unilateral regulation, called the Maritime Standard N° 20 (NORMAM-20), applied to all shipping in her waters. This world-leading decision was the culmination of a process that started during the 1990‧s. Here, we summarize how these ballast water regulations were brought in and adopted and present the findings of 10 years of enforcement (2005-2015) in 39 ports along the Brazilian coast. We show that compliance with the Brazilian standard has increased significantly since the regulations were implemented (p < 0.001). After five years of implementation, non-compliance decreased probably reflecting an increase in awareness of the Brazilian Standard and a shift in the shipping industry commitment to minimize and control the spread of invasive species through ballast water. The Brazilian experience shows that very high levels (97%) of compliance with ballast water management regulations can be made to work in a region of global importance to the maritime industry. In the last decade, the rules governing ballast water in Brazil have evolved to address the demands from the maritime community and to provide updates such as imminent requirements for the use of ballast water management systems on board ships. These regulations are rarely cited when ballast water regulations are discussed internationally, yet there is much to learn from the proactive approach taken by Brazil such as what is feasible and enforceable.

  5. Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers procedures for determining water absorption, bulk density, apparent porosity, and apparent specific gravity of fired unglazed whiteware products. 1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  7. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  8. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  9. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    Science.gov (United States)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  10. Eighty years of cooperative water science

    Science.gov (United States)

    Stone, Mandy L.

    2017-05-09

    The Equus Beds aquifer in south-central Kansas is a primary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current and future demands. The Equus Beds ASR project is a recent part of an 80-year cooperative water science effort with the city of Wichita. The U.S. Geological Survey (USGS) Kansas Water Science Center characterizes river and aquifer water-quality and quantity and evaluates changes that may or may not be related to ASR. The USGS data are used by the city of Wichita to make informed management decisions, satisfy regulatory requirements, and serve as a baseline to detect any subsequent changes that may be related to ASR.

  11. Antioxidant Efficacies of Rutin and Rutin Esters in Bulk Oil and Oil-in-Water Emulsion

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Sørensen, Ann-Dorit Moltke; Jacobsen, Charlotte

    2017-01-01

    concentrations (25 and 200 µM) was assessed in bulk oil and in an o/w emulsion system without and with iron addition. All evaluated compounds revealed antioxidant effects. However, rutin and BHT were the most efficient antioxidants in bulk oil followed by rutin palmitate, whereas rutin laurate acted as either......The use of flavonoids as antioxidants in food formulations is limited due to their solubility and thereby their localization in the food products. However, enzymatic alkylation of flavonoids with lipophilic moieties alters their lipophilicity and thereby partitioning within different phases...... in a food product. This study aimed to evaluate the antioxidative efficiency of two derivatives of rutin, namely rutin laurate (C12:0) and rutin palmitate (C16:0) compared with their parent compound rutin and with butylated hydroxytoluene (BHT). Their efficiency as antioxidants at two different...

  12. Control of filamentous bulking by means of aluminium poly chloride and a cationic polyelectrolyte in the Calasparra waste water treatment plant (Murcia, Spain); Control del bulking filamentoso mediante policloruro de aluminio y polielectrolito cationico en la EDAR de Calasparra (Murcia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The use of synthetic polymers, such as cationic polyelectrolyte and coagulants as poly chlorure of alumino (PAX-18 known commercially) have shown efficiency in the treatment of bulking produced by Type 021 N and Microthrix parvicella. In case of the Water Sewage Treatment Plant of Calasparra (Murcia, Spain), the reception of waste waters from agroalimentary and literacy industries gives way to good conditions for the proliferation of these microorganisms. Dosage of both products has shown efficiency and has permitted to increase the treatment capacity of the installations, which was very reduced by effect of bulking processes. (Author) 2 refs.

  13. Cometary water-group ions in the region surrounding Comet Giacobini-Zinner - Distribution functions and bulk parameter estimates

    Science.gov (United States)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Richardson, I. G.; Sanderson, T. R.; Tsurutani, B. T.

    1991-01-01

    The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.

  14. Acetabular Reconstruction with the Burch-Schneider Antiprotrusio Cage and Bulk Allografts: Minimum 10-Year Follow-Up Results

    Directory of Open Access Journals (Sweden)

    Dario Regis

    2014-01-01

    Full Text Available Reconstruction of severe pelvic bone loss is a challenging problem in hip revision surgery. Between January 1992 and December 2000, 97 hips with periprosthetic osteolysis underwent acetabular revision using bulk allografts and the Burch-Schneider antiprotrusio cage (APC. Twenty-nine patients (32 implants died for unrelated causes without additional surgery. Sixty-five hips were available for clinical and radiographic assessment at an average follow-up of 14.6 years (range, 10.0 to 18.9 years. There were 16 male and 49 female patients, aged from 29 to 83 (median, 60 years, with Paprosky IIIA (27 cases and IIIB (38 cases acetabular bone defects. Nine cages required rerevision because of infection (3, aseptic loosening (5, and flange breakage (1. The average Harris hip score improved from 33.1 points preoperatively to 75.6 points at follow-up (P<0.001. Radiographically, graft incorporation and cage stability were detected in 48 and 52 hips, respectively. The cumulative survival rates at 18.9 years with removal for any reason or X-ray migration of the cage and aseptic or radiographic loosening as the end points were 80.0% and 84.6%, respectively. The use of the Burch-Schneider APC and massive allografts is an effective technique for the reconstructive treatment of extensive acetabular bone loss with long-lasting survival.

  15. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110 in bulk water

    Directory of Open Access Journals (Sweden)

    Giulia Serrano

    2015-02-01

    Full Text Available Despite the rising technological interest in the use of calcium-modified TiO2 surfaces in biomedical implants, the Ca/TiO2 interface has not been studied in an aqueous environment. This investigation is the first report on the use of in situ scanning tunneling microscopy (STM to study calcium-modified rutile TiO2(110 surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED analysis shows a pattern typical for the surface segregation of calcium, which is present as an impurity on the TiO2 bulk. In situ STM images of the surface in bulk water exhibit one-dimensional rows of segregated calcium regularly aligned with the [001] crystal direction. The in situ-characterized morphology and structure of this Ca-modified TiO2 surface are discussed and compared with UHV-STM results from the literature. Prolonged immersion (two days in the liquid leads to degradation of the overlayer, resulting in a disordered surface. X-ray photoelectron spectroscopy, performed after immersion in water, confirms the presence of calcium.

  16. Effect of different bulking agents on water variation and thermal balance and their respective contribution to bio-generated heat during long-term storage sludge biodrying process.

    Science.gov (United States)

    Liu, Tiantian; Cui, Chongwei; He, Junguo; Tang, Jian

    2018-04-17

    Biodrying was first used for the post-treatment of long-term storage sludge with vinasse as bulking agents. The effect of different bulking agents on water and heat variation and their respective contributions to bio-generated heat during storage sludge biodrying were investigated. Three different bulking agents (beer lees and distillers grains, with conventional straw used for comparison) were mixed with storage sludge for biodrying for an 18-day period. The results revealed the treatment with beer lees as bulking agent achieved the best performance with the highest water removal capacity (658 g kg -1 initial water). The extent of organic degradation in the mixture was related to the degradation ability of the bulking agents. The degradation of C- and H-containing materials (e.g., carboxylic acid) accounted for volatile solids (VS) loss. Water and thermal analyses showed that evaporation was the main way of water loss (accounting for 90%), while evaporation heat was the main component of heat consumption (accounting for 56.67-60.62%).The biodegradation of bulking agents contributed a high proportion of the bio-generated heat consumed by water evaporation (82.35-86.67%).

  17. Connecting diffusion and entropy of bulk water at the single particle ...

    Indian Academy of Sciences (India)

    The relation between the dynamic (e.g., diffusion) and thermodynamic (e.g., entropy) properties of water and water-like liquids has been an active area of research for a long time. Although several studies have investigated the diffusivity and entropy for different systems, these studies have probed either the configurational ...

  18. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    Science.gov (United States)

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  19. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  20. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    Science.gov (United States)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  1. Bottled water, spas, and early years of water chemistry

    Science.gov (United States)

    Back, William; Landa, Edward R.; Meeks, Lisa

    1995-01-01

    Although hot springs have been used and enjoyed for thousands of years, it was not until the late 1700s that they changed the course of world civilization by being the motivation for development of the science of chemistry. The pioneers of chemistry such as Priestley, Cavendish, Lavoisier, and Henry were working to identify and generate gases, in part, to determine their role in carbonated beverages. In the 18th century, spas in America were developed to follow the traditional activities of popular European spas. However, they were to become a dominant political and economic force in American history on three major points: (1) By far the most important was to provide a place for the leaders of individual colonies to meet and discuss the need for separation from England and the necessity for the Revolutionary War; (2) the westward expansion of the United States was facilitated by the presence of hot springs in many locations that provided the economic justification for railroads and settlement; and (3) the desire for the preservation of hot springs led to the establishment of the National Park Service. Although mineral springs have maintained their therapeutic credibility in many parts of the world, they have not done so in the United States. We suggest that the American decline was prompted by: (1) the establishment of The Johns Hopkins School of Medicine in 1893; (2) enactment of the Pure Food and Drug Act of 1907; and (3) the remarkable achievement of providing safe water supplies for American cities by the end of the 1920s. The current expanding market for bottled water is based in part on bottled water being an alternative beverage Ito alcohol and sweetened drinks and the inconsistent palatability and perceived health hazards of some tap waters.

  2. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Xu, Can; Feldman, Leonard C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Bloch, Joseph [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); NRCN, Beer-Sheva 84190 (Israel); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup ¯}) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  3. More accurate X-ray scattering data of deeply supercooled bulk liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Neuefeind, Joerg C [ORNL; Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Paschek, Dietmar [Rostock University, Rostock, Germany

    2011-01-01

    Deeply supercooled water droplets held container-less in an acoustic levitator are investigated with high energy X-ray scattering. The temperature dependence X-ray structure function is found to be non-linear. Comparison with two popular computer models reveals that structural changes are predicted too abrupt by the TIP5P model, while the rate of change predicted by TIP4P is in much better agreement with experiment. The abrupt structural changes predicted by the TIP5P model to occur in the temperature range between 260-240K as water approaches the homogeneous nucleation limit are unrealistic. Both models underestimate the distance between neighbouring oxygen atoms and overestimate the sharpness of the OO distance distribution, indicating that the strength of the H-bond is overestimated in these models.

  4. Dismantlement and removal of Old Hydrofracture Facility bulk storage bins and water tank, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    The Old Hydrofracture Facility (OHF), located at Oak Ridge National Laboratory (ORNL), was constructed in 1963 to allow experimentation and operations with an integrated solid storage, mixing, and grout injection facility. During its operation, OHF blended liquid low-level waste with grout and used a hydrofracture process to pump the waste into a deep low-permeable shale formation. Since the OHF Facility was taken out of service in 1980, the four bulk storage bins located adjacent to Building 7852 had deteriorated to the point that they were a serious safety hazard. The ORNL Surveillance and Maintenance Program requested and received permission from the US Department of Energy to dismantle the bins as a maintenance action and send the free-released metal to an approved scrap metal vendor. A 25,000-gal stainless steel water tank located at the OHF site was included in the scope. A fixed-price subcontract was signed with Allied Technology Group, Inc., to remove the four bulk storage bins and water tank to a staging area where certified Health Physics personnel could survey, segregate, package, and send the radiologically clean scrap metal to an approved scrap metal vendor. All radiologically contaminated metal and metal that could not be surveyed was packaged and staged for later disposal. Permissible personnel exposure limits were not exceeded, no injuries were incurred, and no health and safety violations occurred throughout the duration of the project. Upon completion of the dismantlement, the project had generated 53,660 lb of clean scrap metal (see Appendix D). This resulted in $3,410 of revenue generated and a cost avoidance of an estimated $100,000 in waste disposal fees

  5. Peptide salt bridge stability: From gas phase via microhydration to bulk water simulations

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel

    2012-01-01

    Roč. 137, č. 18 (2012), 185101/1-185101/8 ISSN 0021-9606 R&D Projects: GA ČR GBP208/12/G016 Institutional research plan: CEZ:AV0Z40550506 Keywords : salt bridge * hydration * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  6. An organic water-gated ambipolar transistor with a bulk heterojunction active layer for stable and tunable photodetection

    Science.gov (United States)

    Xu, Haihua; Zhu, Qingqing; Wu, Tongyuan; Chen, Wenwen; Zhou, Guodong; Li, Jun; Zhang, Huisheng; Zhao, Ni

    2016-11-01

    Organic water-gated transistors (OWGTs) have emerged as promising sensing architectures for biomedical applications and environmental monitoring due to their ability of in-situ detection of biological substances with high sensitivity and low operation voltage, as well as compatibility with various read-out circuits. Tremendous progress has been made in the development of p-type OWGTs. However, achieving stable n-type operation in OWGTs due to the presence of solvated oxygen in water is still challenging. Here, we report an ambipolar OWGT based on a bulk heterojunction active layer, which exhibits a stable hole and electron transport when exposed to aqueous environment. The device can be used as a photodetector both in the hole and electron accumulation regions to yield a maximum responsivity of 0.87 A W-1. More importantly, the device exhibited stable static and dynamic photodetection even when operated in the n-type mode. These findings bring possibilities for the device to be adopted for future biosensing platforms, which are fully compatible with low-cost and low-power organic complementary circuits.

  7. Water quality for the year 2000

    International Nuclear Information System (INIS)

    Newman, A.

    1991-01-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings

  8. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  9. Optimal allocation of bulk water supplies to competing use sectors based on economic criterion - An application to the Chao Phraya River Basin, Thailand

    Science.gov (United States)

    Divakar, L.; Babel, M. S.; Perret, S. R.; Gupta, A. Das

    2011-04-01

    SummaryThe study develops a model for optimal bulk allocations of limited available water based on an economic criterion to competing use sectors such as agriculture, domestic, industry and hydropower. The model comprises a reservoir operation module (ROM) and a water allocation module (WAM). ROM determines the amount of water available for allocation, which is used as an input to WAM with an objective function to maximize the net economic benefits of bulk allocations to different use sectors. The total net benefit functions for agriculture and hydropower sectors and the marginal net benefit from domestic and industrial sectors are established and are categorically taken as fixed in the present study. The developed model is applied to the Chao Phraya basin in Thailand. The case study results indicate that the WAM can improve net economic returns compared to the current water allocation practices.

  10. Water-resources activities, North Dakota District, Fiscal Year 1992

    Science.gov (United States)

    Martin, Cathy R.

    1993-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1992. Information on each project includes objectives, approach, progress, plans for fiscal year 1993, and completed and planned report products.

  11. Electrophoretic deposition on graphene of Au nanoparticles generated by laser ablation of a bulk Au target in water

    International Nuclear Information System (INIS)

    Semaltianos, N G; Hendry, E; Chang, H; Wears, M L

    2015-01-01

    The characteristic property of nanoparticles generated by laser ablation of metallic targets in liquids to be surface electrically charged can be exploited for the deposition of the nanoparticles onto electrically conducting substrates directly from the synthesized colloidal solution by using the method of electrophoretic deposition (EPD). The method benefits from the high quality of the interface between the deposited nanoparticles and the substrate due to the ligand-free nanoparticle surfaces and thus providing hybrid materials with advanced and novel properties. In this letter, an Au bulk target was laser ablated in deionized (DI) water for the generation of an Au nanoparticle colloidal solution. Under the present conditions of ablation, nanoparticles with diameters from 4 and up to 67 nm are formed in the solution with 80% of the nanoparticles having diameters below ∼20 nm. Their size distribution follows a log-normal function with a median diameter of 8.6 nm. The nanoparticles were deposited onto graphene on a quartz surface by anodic EPD performed at 30 V for 20 min and a longer time of 1 h. A quite uniform surface distribution of the nanoparticles was achieved with surface densities ranging from ∼15 to ∼40 nanoparticles per μm 2 . The hybrid materials exhibit clearly the plasmon resonance absorption of the Au nanoparticles. Deposition for short times preserves the integrity of graphene while longer time deposition leads to the conversion of graphene to graphene oxide, which is attributed to the electrochemical oxidation of graphene. (letter)

  12. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  13. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  14. The Relations Between Soil Water Retention Characteristics, Particle Size Distributions, Bulk Densities and Calcium Carbonate Contents for Danish Soils

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Balstrøm, Thomas; Breuning-Madsen, Henrik

    2005-01-01

    functions developed in HYPRES (Hydraulic Properties of European Soils). Introducing bulk density as a predictor improved the equation for pressure head –1 kPa but not for lower ones. The grouping of data sets in surface and subsurface horizons or in textural classes did not improve the equations. Based...

  15. A randomized controlled three year evaluation of "bulk-filled" posterior resin restorations based on stress decreasing resin technology

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2014-01-01

    -hybrid resin composite (Ceram X mono) layer. In the second cavity, the hybrid resin composite was placed in 2mm increments. The restorations were evaluated using slightly modified USPHS criteria at baseline and then yearly during 3 years. Caries risk and parafunctional habits of the participants were estimated...

  16. Water-resources activities, North Dakota District, fiscal year 1990

    Science.gov (United States)

    Martin, Cathy R.

    1991-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes waterresources activities of the Water Resources Division in North Dakota in fiscal year 1990. Information on each project includes objectives, approach, progress in fiscal year 1990, plans for fiscal year 1991, completed and planned report products, and the name of the project chief.

  17. Real-time soft error rate measurements on bulk 40 nm SRAM memories: a five-year dual-site experiment

    Science.gov (United States)

    Autran, J. L.; Munteanu, D.; Moindjie, S.; Saad Saoud, T.; Gasiot, G.; Roche, P.

    2016-11-01

    This paper reports five years of real-time soft error rate experimentation conducted with the same setup at mountain altitude for three years and then at sea level for two years. More than 7 Gbit of SRAM memories manufactured in CMOS bulk 40 nm technology have been subjected to the natural radiation background. The intensity of the atmospheric neutron flux has been continuously measured on site during these experiments using dedicated neutron monitors. As the result, the neutron and alpha component of the soft error rate (SER) have been very accurately extracted from these measurements, refining the first SER estimations performed in 2012 for this SRAM technology. Data obtained at sea level evidence, for the first time, a possible correlation between the neutron flux changes induced by the daily atmospheric pressure variations and the measured SER. Finally, all of the experimental data are compared with results obtained from accelerated tests and numerical simulation.

  18. An approach to the research on ion and water properties in the interphase between the plasma membrane and bulk extracellular solution.

    Science.gov (United States)

    Hibino, Hiroshi; Takai, Madoka; Noguchi, Hidenori; Sawamura, Seishiro; Takahashi, Yasufumi; Sakai, Hideki; Shiku, Hitoshi

    2017-07-01

    In vivo, cells are immersed in an extracellular solution that contains a variety of bioactive substances including ions and water. Classical electrophysiological analyses of epithelial cells in the stomach and small intestine have revealed that within a distance of several hundred micrometers above their apical plasma membrane, lies an extracellular layer that shows ion concentration gradients undetectable in the bulk phase. This "unstirred layer", which contains stagnant solutes, may also exist between the bulk extracellular solution and membranes of other cells in an organism and may show different properties. On the other hand, an earlier study using a bacterial planar membrane indicated that H + released from a transporter migrates in the horizontal direction along the membrane surface much faster than it diffuses vertically toward the extracellular space. This result implies that between the membrane surface and unstirred layer, there is a "nanointerface" that has unique ionic dynamics. Advanced technologies have revealed that the nanointerface on artificial membranes possibly harbors a highly ordered assembly of water molecules. In general, hydrogen bonds are involved in formation of the ordered water structure and can mediate rapid transfer of H + between neighboring molecules. This description may match the phenomenon on the bacterial membrane. A recent study has suggested that water molecules in the nanointerface regulate the gating of K + channels. Here, the region comprising the unstirred layer and nanointerface is defined as the interphase between the plasma membrane and bulk extracellular solution (iMES). This article briefly describes the physicochemical properties of ions and water in the iMES and their physiological significance. We also describe the methodologies that are currently used or will be applicable to the interphase research.

  19. Precipitation and stream water stable isotope data from the Marys River, Oregon in water year 2015.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Water stable isotope data collected from a range of streams throughout the Marys River basin in water year 2015, and precipitation data collected within the basin at...

  20. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    Science.gov (United States)

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  1. Hydrologic conditions in New Hampshire and Vermont, water year 2011

    Science.gov (United States)

    Kiah, Richard G.; Jarvis, Jason D.; Hegemann, Robert F.; Hilgendorf, Gregory S.; Ward, Sanborn L.

    2013-01-01

    Record-high hydrologic conditions in New Hampshire and Vermont occurred during water year 2011, according to data from 125 streamgages and lake gaging stations, 27 creststage gages, and 41 groundwater wells. Annual runoff for the 2011 water year was the sixth highest on record for New Hampshire and the highest on record for Vermont on the basis of a 111-year reference period (water years 1901–2011). Groundwater levels for the 2011 water year were generally normal in New Hampshire and normal to above normal in Vermont. Record flooding occurred in April, May, and August of water year 2011. Peak-of-record streamflows were recorded at 38 streamgages, 25 of which had more than 10 years of record. Flooding in April 2011 was widespread in parts of northern New Hampshire and Vermont; peak-of-record streamflows were recorded at nine streamgages. Flash flooding in May 2011 was isolated to central and northeastern Vermont; peakof- record streamflows were recorded at five streamgages. Devastating flooding in August 2011 occurred throughout most of Vermont and in parts of New Hampshire as a result of the heavy rains associated with Tropical Storm Irene. Peak-ofrecord streamflows were recorded at 24 streamgages.

  2. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  3. Six-year longitudinal study of Fasciola hepatica bulk milk antibody ELISA in the dairy dense region of the Republic Ireland.

    Science.gov (United States)

    Munita, M P; Rea, R; Bloemhoff, Y; Byrne, N; Martinez-Ibeas, A M; Sayers, R G

    2016-11-01

    Completion of the F. hepatica lifecycle is dependent on suitable climatic conditions for development of immature stages of the parasite, and its snail intermediate host. Few investigations have been conducted regarding temporal variations in F. hepatica status in Irish dairy herds. The current study aimed to conduct a longitudinal study examining annual and seasonal trends in bulk milk seropositivity over six years, while also investigating associations with soil temperature, rainfall and flukicide treatment. Monthly bulk milk samples (BTM) were submitted by 28 herds between March 2009 and December 2014. In all, 1337 samples were analysed using a Cathepsin L1 ELISA. Soil temperature, rainfall and management data were obtained for general estimating equation and regression analyses. A general decrease in milk seropositivity was observed over the six year study period and was associated with an increased likelihood of treating for liver fluke (OR range=2.73-6.96). Annual and seasonal analyses of rainfall and F. hepatica BTM status yielded conflicting results. Higher annual rainfall (>1150mm) yielded a lower likelihood of being BTM positive than annual rainfall of hepatica in wetter years, although a 'wash effect' by high rainfall of the free living stages and snails cannot be ruled out. Higher seasonal rainfall (>120mm), however, was associated with increased ELISA S/P% values (Coefficient=9.63S/P%; P=0.001). Soil temperature was not found to influence F. hepatica to the same extent as rainfall and may reflect the lack of severe temperature fluctuations in Ireland. Flukicides active against both immature and mature F. hepatica were approximately half as likely to record a positive F. hepatica herd BTM status than a flukicide active against only the mature stage of the parasite (OR≅0.45; Phepatica data, which can vary significantly. Additionally, it highlights the progress that can be achieved in fluke control by application of a continuous BTM monitoring program

  4. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  5. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    Science.gov (United States)

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society

  6. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia

    Institute of Scientific and Technical Information of China (English)

    John C.Radcliffe; Declan Page; Bruce Naumann; Peter Dillon

    2017-01-01

    Australia has developed extensive policies and guidelines for the management of its water.The City of Salisbury,located within metropolitan Adelaide,South Australia,developed rapidly through urbanisation from the 1970s.Water sensitive urban design principles were adopted to maximise the use of the increased run-off generated by urbanisation and ameliorate flood risk.Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquifer for subsequent irrigation.This paper outlines how a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies.Salisbury's success with stormwater harvesting led to the formation of a pioneering water business that includes linking projects from nine sites to provide a non-potable supply of 5 × 106 m3 ·year-1.These installations hosted a number of applied research projects addressing well configuration,water quality,reliability and economics and facilitated the evaluation of its system as a potential potable water source.The evaluation showed that while untreated stormwater contained contaminants,subsurface storage and end-use controls were sufficient to make recovered water safe for public open space irrigation,and with chlorination,acceptable for third pipe supplies.Drinking water quality could be achieved by adding microfiltration,disinfection with UV and chlorination.The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems.The full cost of supply was determined to be AUD$1.57 m-3 for non-potable water for public open space irrigation,much cheaper than mains water,AUD $3.45 m-3 at that time.Producing and storing potable water was found to cost AUD$1.96 to $2.24 m-3.

  7. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  8. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  9. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  10. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, Matthew C.; Hirsch, R.M.

    2010-01-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  11. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  12. Predicting available water of soil from particle-size distribution and bulk density in an oasis-desert transect in northwestern China

    Science.gov (United States)

    Li, Danfeng; Gao, Guangyao; Shao, Ming'an; Fu, Bojie

    2016-07-01

    A detailed understanding of soil hydraulic properties, particularly the available water content of soil, (AW, cm3 cm-3), is required for optimal water management. Direct measurement of soil hydraulic properties is impractical for large scale application, but routinely available soil particle-size distribution (PSD) and bulk density can be used as proxies to develop various prediction functions. In this study, we compared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at 34 points with experimental SWCC data in an oasis-desert transect (20 × 5 km) in the middle reaches of the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in predicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model agreed better with the experimental values than those derived from the AP model and Rosetta program. The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW values. The MV model has the advantages of having robust physical basis, being independent of database-related parameters, and involving subclasses of texture data. These features make it promising in predicting soil water retention at regional scales, serving for the application of hydrological models and the optimization of soil water management.

  13. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    Science.gov (United States)

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  14. Water Resources Research Grant Program project descriptions, fiscal year 1987

    Science.gov (United States)

    ,

    1987-01-01

    This report contains information on the 34 new projects funded by the United States Geological Survey 's Water Resources Research Grant Program in fiscal year 1987 and on 3 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), and a project description that includes: (1) identification of water related problems and problem-solution approach (2) contribution to problem solution, (3) objectives, and (4) approach. The 34 projects include 12 in the area of groundwater quality problems, 12 in the science and technology of water quality management, 1 in climate variability and the hydrologic cycle, 4 in institutional change in water resources management, and 5 in surface water management. For the three completed projects, the report furnishes the grant number; project title; performing organization; principal investor(s); starting data; data of receipt of final report; and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report contains tables showing: (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization. (Author 's abstract)

  15. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

    Science.gov (United States)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.

    2018-02-01

    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  16. Carbon-13 composition of bulk dry wines by irm-EA/MS and irm-13C NMR: An indicator of vine water status

    Directory of Open Access Journals (Sweden)

    Guyon Francois

    2017-01-01

    Full Text Available Measurements performed on a set of 32 authentic wines (not submitted to any oenological treatment and their ethanol, recovered by distillation, show high correlation between δ13C of bulk wine and its ethanol. These measurements were performed by isotope ratio monitoring by mass spectrometry coupled to an elemental analyzer (irm-EA/MS. Then a series of wines produced by vines of which water status was assessed during the growing season with predawn leaf water potential measurements, was studied by irm-EA/MS. As expected δ13C is correlated to vine water status conditions, as a result of stomatal closure. The ethanol of these specific wines was also analyzed by isotope ratio monitoring and by nuclear magnetic resonance (irm-13C NMR to determine carbon-13 composition on the two specific sites of the ethanol skeleton. If these measurements confirm the correlation between 13C composition and vine growth conditions, the 13C stereospecific information does not make vine water status assessment more precise.

  17. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil.

    Science.gov (United States)

    Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J

    2008-08-27

    The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.

  18. Streamflow of 2016—Water year summary

    Science.gov (United States)

    Jian, Xiaodong; Wolock, David M.; Lins, Harry F.; Brady, Steven J.

    2017-09-26

    The maps and graphs in this summary describe national streamflow conditions for water year 2016 (October 1, 2015, to September 30, 2016) in the context of streamflow ranks relative to the 87-year period of 1930–2016, unless otherwise noted. The illustrations are based on observed data from the U.S. Geological Survey’s (USGS) National Streamflow Network. The period of 1930–2016 was used because the number of streamgages before 1930 was too small to provide representative data for computing statistics for most regions of the country.In the summary, reference is made to the term “runoff,” which is the depth to which a river basin, State, or other geographic area would be covered with water if all the streamflow within the area during a specified period was uniformly distributed on it. Runoff quantifies the magnitude of water flowing through the Nation’s rivers and streams in measurement units that can be compared from one area to another.In all the graphics, a rank of 1 indicates the highest flow of all years analyzed and 87 indicates the lowest flow of all years. Rankings of streamflow are grouped into much below normal, below normal, normal, above normal, and much above normal based on percentiles of flow (less than 10 percent, 10–24 percent, 25–75 percent, 76–90 percent, and greater than 90 percent, respectively). Some of the data used to produce the maps and graphs are provisional and subject to change.

  19. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm.

    Science.gov (United States)

    Tulea, Cristian-Alexander; Caron, Jan; Gehlich, Nils; Lenenbach, Achim; Noll, Reinhard; Loosen, Peter

    2015-10-01

    Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water–air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2  mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.

  20. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    Science.gov (United States)

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and

  1. The selective partitioning of the oligomers of polyethoxylated surfactant mixtures between interface and oil and water bulk phases.

    Science.gov (United States)

    Graciaa, Alain; Andérez, José; Bracho, Carlos; Lachaise, Jean; Salager, Jean-Louis; Tolosa, Laura; Ysambertt, Fredy

    2006-11-16

    Because their affinities for the oil and water phases vary considerably with the number of ethylene oxide units in their hydrophilic group, the ethoxylated nonionic species occurring in commercial products tend to behave in a non-collective way, with the low ethoxylation oligomers partitioning mostly in the oil phase. This results in a surfactant mixture at the interface which is more hydrophilic than the one which was introduced in the system in the first place. The pseudophase model is used to study the partitioning in Winsor III type systems, and to estimate the deviation of the interfacial mixture composition from the overall one. New results indicate that the selective partitioning into the oil phase increases when the oil phase becomes aromatic, when the total surfactant concentration decreases and when the water-to-oil ratio decreases.

  2. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 1: Present Conditions

    Science.gov (United States)

    2013-11-01

    There are two U.S. cement plants (Charlevoix and Alpena ) that supply all U.S. ports on the lakes. Ballast Water Treatment, U.S. Great Lakes...Marquette, MI Brevort, MI Buffington, IN Alpena , MI Bay City, MI Cleveland, OH Ashtabula, OH Duluth, MN Munising, MI Charlevoix, MI Burns Harbor, IN...Manitowoc Pathfinder Calumet Alpena Total shown: 40,699,415 mt Total, all U.S. Vsls: 42,508,108 mt % ballast moved by top 5 vsls

  3. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  4. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  5. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  6. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  7. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  8. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  9. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, M. C.; Hirsch, R. M.

    2010-03-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  10. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  11. Toward the second 50 years of Water Resources Research

    Science.gov (United States)

    Rajaram, H.

    2014-12-01

    Since the first issue in 1965, 49 volumes and 464 issues of Water Resources Research (WRR) have been published, including more than 13,800 contributions that received more than 380,000 citations. WRR has always maintained a forward-looking vision, providing an interdisciplinary platform to nurture the initiation and development of numerous sub-disciplines and research themes in hydrology, water resources, and earth sciences and over the last 50 years. This vision, supported in no small measure by a dedicated community of researchers who submitted their best research to WRR, have helped the journal maintain its international leadership in this field. As we enter the second 50 years of WRR, new trends in scientific publishing, open access publication and web-based discussion forums, pose challenges (and opportunities) for sustaining WRR's leadership role. In this presentation, we will present the vision of the present editorial board for the future of WRR, and discuss several steps we are undertaking to adapt the journal to modern trends in communicating scientific research. This includes the introduction of new article types, such as the forthcoming "Debates on Water Resources", targeted special sections, and efforts to improve the timeliness of the review process. We humbly stand on the shoulders of the thirty-four dedicated previous editors of WRR, and remain open to receiving suggestions from the AGU hydrologic community.

  12. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  13. Temperature impacts on the water year 2014 drought in California

    Science.gov (United States)

    Shukla, Shraddhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.

    2015-01-01

    California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.

  14. [Effects of biochar addition into soils in semiarid land on water infiltration under the condition of the same bulk density].

    Science.gov (United States)

    Qi, Rui-Peng; Zhang, Lei; Yan, Yong-Hao; Wen, Man; Zheng, Ji-Yong

    2014-08-01

    Making clear the effects of biochar addition on soil water infiltration process can provide the scientific basis for the evaluation of the influence of biochar application on soil hydrology in semi-arid region. In this paper, through the soil column simulation method in laboratory, the effects of biochar of three sizes (1-2 mm, 0.25-1 mm and ≤ 0.25 mm) at 4 doses (10, 50, 100 and 150 g x kg(-1)) on the cumulative infiltration, the permeability and the stable infiltration rate of two different soils (anthrosol and aeolian sandy soil) were studied. The results showed that the infiltration capacity of the anthrosol was obviously increased compared to the control, however, the one in the aeolian sandy soil was decreased due to the biochar addition. At 100 minutes after infiltration starting, the averaged cumulative infiltration was increased by 25.1% in the anthrosol with comparison to the control. Contrarily, the averaged cumulative infiltration was decreased by 11.1% in the aeolian sandy soil at 15 minutes after infiltration starting. When the dose was the same, biochar with different particle sizes improved the infiltration for the anthrosol, but for the different dose treatments, the particle size of biochar which showed the greatest improvement was different. As for the aeolian sandy soil, the infiltration increased at the dose of 10 g x kg(-1) after the addition of biochar with different particle sizes, while decreased at the higher dose of 50, 100 and 150 g x kg(-1). The cumulative infiltration of the aeolian sandy soil was decreased with the increase in addition amount of biochar with the same particle size, while it was not so for the anthrosol. The determination coefficient fitted by the Philip infiltration model ranged from 0.965 to 0.999, suggesting this model was suitable for the simulation of soil water infiltration process after biochar application. Statistical analysis of main effects showed that the biochar particle size, the biochar addition amount

  15. Water fluoridation in 40 Brazilian cities: 7 year analysis

    Directory of Open Access Journals (Sweden)

    Suzely Adas Saliba MOIMAZ

    2013-01-01

    Full Text Available Objectives Fluoride levels in the public water supplies of 40 Brazilian cities were analyzed and classified on the basis of risk/benefit balance. Material and Methods Samples were collected monthly over a seven-year period from three sites for each water supply source. The samples were analyzed in duplicate in the laboratory of the Center for Research in Public Health - UNESP using an ion analyzer coupled to a fluoride-specific electrode. Results A total of 19,533 samples were analyzed, of which 18,847 were artificially fluoridated and 686 were not artificially fluoridated. In samples from cities performing water fluoridation, 51.57% (n=9,720 had fluoride levels in the range of 0.55 to 0.84 mg F/L; 30.53% (n=5,754 were below 0.55 mg F/L and 17.90% (n=3,373 were above 0.84 mg F/L (maximum concentration=6.96 mg F/L. Most of the cities performing fluoridation that had a majority of samples with fluoride levels above the recommended parameter had deep wells and more than one source of water supply. There was some variability in the fluoride levels of samples from the same site and between collection sites in the same city. Conclusions The majority of samples from cities performing fluoridation had fluoride levels within the range that provides the best combination of risks and benefits, minimizing the risk of dental fluorosis while preventing dental caries. The conduction of studies about water distribution systems is suggested in cities with high natural fluoride concentrations in order to optimize the use of natural fluoride for fluoridation costs and avoid the risk of dental fluorosis.

  16. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp

    2014-07-18

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.

  17. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    International Nuclear Information System (INIS)

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi

    2014-01-01

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase

  18. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    Science.gov (United States)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  19. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    Science.gov (United States)

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  20. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    Science.gov (United States)

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  1. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    Directory of Open Access Journals (Sweden)

    Ningning Ma

    Full Text Available A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK, application of inorganic fertilizer (NPK, combined application of inorganic fertilizer with maize straw (NPK+S and addition of biochar with inorganic fertilizer (NPK+B. Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  2. Lower Charles River Bathymetry: 108 Years of Fresh Water

    Science.gov (United States)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  3. Deepwater Horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool.

    Science.gov (United States)

    Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen

    2014-08-19

    Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.

  4. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    Science.gov (United States)

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  5. Correction of temperature and bulk electrical conductivity effects on soil water content measurements using ECH2O EC-5, TE and 5TE sensors

    Science.gov (United States)

    Rosenbaum, Ulrike; Huisman, Sander; Vrba, Jan; Vereecken, Harry; Bogena, Heye

    2010-05-01

    For a monitoring of dynamic spatiotemporal soil moisture patterns at the catchment scale, automated and continuously measuring systems that provide spatial coverage and high temporal resolution are needed. Promising techniques like wireless sensor networks (e.g. SoilNet) have to integrate low-cost electromagnetic soil water content sensors [1], [2]. However, the measurement accuracy of such sensors is often deteriorated by effects of temperature and soil bulk electrical conductivity. The objective of this study is to derive and validate correction functions for such temperature and electrical conductivity effects for the ECH2O EC-5, TE and 5TE sensors. We used dielectric liquids with known dielectric properties for two different laboratory experiments. In the first experiment, the temperature of eight reference liquids with permittivity ranging from 7 to 42 was varied from 5 to 40°C. All sensor types showed an underestimation of permittivity for low temperatures and an overestimation for high temperatures. In the second experiment, the conductivity of the reference liquids was increased by adding NaCl. The highest deviations occurred for high permittivity and electrical conductivity between ~0.8 and 1.5 dS/m (underestimation from 8 to 16 permittivity units depending on sensor type). For higher electrical conductivity (2.5 dS/m), the permittivity was overestimated (10 permittivity units for the EC-5 and 7 for the 5TE sensor). Based on these measurements on reference liquids, we derived empirical correction functions that are able to correct thermal and conductivity effects on measured sensor response. These correction functions were validated using three soil samples (coarse sand, silty clay loam and bentonite). For the temperature correction function, the results corresponded better with theoretical predictions after correction for temperature effects on the sensor circuitry. It was also shown that the application of the conductivity correction functions improved

  6. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  7. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  8. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    Full Text Available The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range. In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86% of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE, Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1 was resistant to 36 antibiotics, while P. rettgeri (OSR3 was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80% strains each, and 88/93 (95% strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides

  9. Fiscal Year 1988 program report: Alaska Water Research Center

    International Nuclear Information System (INIS)

    Kane, D.L.

    1990-01-01

    The contents of this study includes: water problems and issues of Alaska; program goals and priorities; research project synopses are: radium levels in, and removal from, ground waters of interior alaska; assessment of stream-flow sediment transport for engineering projects; productivity within deep glacial gravels under subarctic Alaska rivers; nitrogen-cycle dynamics in a subarctic lake; and the use of peat mounds for treatment of household waste water

  10. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  11. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  12. A Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  13. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  14. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    at farm level requires careful consideration of the implications of decisions made during both development (planning and design), and .... water if the emitter package is properly designed and the wind speed is less .... The structure and con-.

  15. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    Science.gov (United States)

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  16. Hydrogeochemical transport modeling of 24 years of Rhine water infiltration in the dunes of the Amsterdam Water Supply.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Appelo, C.A.J.; Olsthoorn, T.N.

    1998-01-01

    Water quality changes were modelled along a flowpath in a plume of artificially recharged, pretreated Rhine water in the dunes of the Amsterdam Water Supply, after 24 years of infiltration. The hydrogeochemical transport model PHREEQC was extended with dispersion/diffusion and kinetics for selected

  17. Southern California Water Bulletin for 1953: General review of the water resources of Southern California for the water year of 1952-53 with special reference to the surface runoff for the water year of 1951-52

    Science.gov (United States)

    Hofman, Walter; Briggs, R.C.; Littlefield, W.M.

    1954-01-01

    This WATER BULLETTIN is one of a series issued annually since June 1944. Its main purpose is to present a brief analysis of those phases of the local water supply associated with the work of the Geological Survey. The first part of this review deals with the water resources for the water year ending September 30, 1953. It contains a brief analysis of the annual precipitation, the provisional runoff at a few stations, the changes in water reserves both in surface reservoirs and underground, and the imported waters. It concludes by pointing out the deficiences in the local water reserves. This bulletin has been prepared by the Surface Water Branch; the section on ground-water conditions was prepared chiefly from information supplied by the Ground Hater Branch.

  18. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.

    Science.gov (United States)

    Li, Hongying; Qin, Lijie; He, Hongshi

    2018-06-01

    Rice is a special crop, and its production differs from that of other crops because it requires a thin layer of water coverage for a long period. The calculation of the water footprint of rice production should differ from that of other crops owing to the rice growing process. This study improved the calculation of blue and grey water footprints of rice production and analyzed the variations in the water footprints for rice production under different rainfall years in Jilin Province. In the drought year, the green water footprint was the lowest and the blue water footprint was the highest among the three years, while in the humid year, the green water footprint was the highest and the blue water footprint was not the lowest. The areas with higher water footprints were found in the east and west regions of Jilin Province, while the areas with lower water footprints were found in the middle east and middle regions of Jilin Province. Blue water was the primary water resource for rice production, although more precipitation provided the highest green water in the humid year; also, the spatial distributions of water footprints were not the same under different rainfall years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  20. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  1. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  2. Water-resources activities, North Dakota District, fiscal year 1994-95

    Science.gov (United States)

    Martin, Cathy R.

    1995-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1994. Information on each project includes objectives, approach, progress, plans for fiscal year 1995, and completed and planned report products.

  3. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  4. Fiscal Year 1988 program report: Rhode Island Water Resources Center

    International Nuclear Information System (INIS)

    Poon, C.P.C.

    1989-07-01

    The State of Rhode Island is active in water resources planning, development, and management activities which include legislation, upgrading of wastewater treatment facilities, upgrading and implementing pretreatment programs, protecting watersheds and aquifers throughout the state. Current and anticipated state water problems are contamination and clean up of aquifers to protect the valuable groundwater resources; protection of watersheds by controlling non-point source pollution; development of pretreatment technologies; and deterioring groundwater quality from landfill leachate or drainage from septic tank leaching field. Seven projects were included covering the following subjects: (1) Radon and its nuclei parents in bedrocks; (2) Model for natural flushing of aquifer; (3) Microbial treatment of heavy metals; (4) Vegetative uptake of nitrate; (5) Microbial process in vegetative buffer strips; (6) Leachate characterization in landfills; and (7) Electrochemical treatment of heavy metals and cyanide

  5. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  6. Clean Water Act 303(d) Listed Impaired Waters and their Causes of Impairment from All Years

    Data.gov (United States)

    U.S. Environmental Protection Agency — Waters identified as impaired as well as their associated causes of impairment from all approved Clean Water Act 303(d) lists submitted by the states. Includes all...

  7. Randomized 3-year Clinical Evaluation of Class I and II Posterior Resin Restorations Placed with a Bulk-fill Resin Composite and a One-step Self-etching Adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2015-01-01

    PURPOSE: To evaluate the 3-year clinical durability of the flowable bulk-fill resin composite SDR in Class I and Class II restorations. MATERIALS AND METHODS: Thirty-eight pairs of Class I and 62 pairs of Class II restorations were placed in 44 male and 42 female patients (mean age 52.4 years......). Each patient received at least two extended Class I or Class II restorations that were as similar as possible. In all cavities, a one-step self-etching adhesive (XenoV+) was applied. One of the cavities of each pair was randomly assigned to receive the flowable bulk-fill resin composite SDR...... in increments up to 4 mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with an ormocer-based nanohybrid resin composite (Ceram X mono+). In the other cavity, only the resin composite CeramX mono+ was placed in 2 mm increments. The restorations were...

  8. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  9. Sources of trends in water-quality data for selected streams in Texas, 1975-89 water years

    Science.gov (United States)

    Schertz, T.L.; Wells, F.C.; Ohe, D.J.

    1994-01-01

    Sources of trends in water-quality data for selected streams in Texas for the 1975-89 water years were investigated in this study. The investigation of sources was confined to distinct geographic patterns in the trend indicators for one constituent or for a group of related constituents.

  10. The impact of agriculture terraces on soil organic matter, aggregate stability, water repellency and bulk density. A study in abandoned and active farms in the Sierra de Enguera, Eastern Spain.

    Science.gov (United States)

    Cerdà, Artemi; Burguet, Maria; Keesstra, Saskia; Prosdocimi, Massimo; Di Prima, Simone; Brevik, Erik; Novara, Agata; Jordan, Antonio; Tarolli, Paolo

    2016-04-01

    Soil erosion, land degradation, lack of organic matter, erodible soils, rock outcrops… are a consequence of the human abuse and misuse of the soil resources. And this is a worldwide environmental issue (Novara et al., 2011; Vanlauwe et al., 2015; Musinguzi et al., 2015; Pereira et al., 2015; Mwagno et al., 2016). Agriculture terraces are a strategy to reduce the soil erosion, improve the soil fertility and allow the ploughing (Cerdà et al., 2010; Li et al., 2014). Although this idea is well accepted there are few scientific evidences that demonstrate that soils in the terraced areas are more stable, fertile and sustainable that the soil in non terraced areas. In fact, the ploughing in comparison to the abandoned or not ploughed land results in the soil degradation (Lieskovský and Kenderessy, 2014; Gao et al., 2015; Parras-Alcántara et al., 2014). This is mainly due to the lack of vegetation that increase the surface runoff (Cerdà et al., 1998; Keesstra et al., 2007). And why is necessary to develop also in terraced landscapes soil erosion control strategies (Mekonnen et al., 2015a; Mekonnen et al., 2015b; Prosdocimi et al., 2016). Our objective was to assess the soil organic matter content (Walkley and Black, 1934), the soil bulk density (ring method), the aggregate stabilility (drop impact) and the water repellency (Water Drop Penetration Time test) in four study sites in the Sierra de Enguera. Two sites were terraced: one abandoned 40 years before the measurements and the other still active with olive crops. And two control sites non-terraced. We used the paired plot strategy to compare the impact of terracing and abandonment. At each site we collected randomly 50 soil samples at 0-2 cm, 4-6 and 8-10 cm depth. At each sampling point 100 WDPT measurements where carried out, and one sample for the bulk density, and one for the organic matter, and one for the soil aggregate stability were collected. The soil surface samples shown the largest differences. The

  11. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  12. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  13. The Effect of Bulk Depth and Irradiation Time on the Surface Hardness and Degree of Cure of Bulk-Fill Composites

    Directory of Open Access Journals (Sweden)

    Farahat F

    2016-09-01

    Full Text Available Statement of Problem: For many years, application of the composite restoration with a thickness less than 2 mm for achieving the minimum polymerization contraction and stress has been accepted as a principle. But through the recent development in dental material a group of resin based composites (RBCs called Bulk Fill is introduced whose producers claim the possibility of achieving a good restoration in bulks with depths of 4 or even 5 mm. Objectives: To evaluate the effect of irradiation times and bulk depths on the degree of cure (DC of a bulk fill composite and compare it with the universal type. Materials and Methods: This study was conducted on two groups of dental RBCs including Tetric N Ceram Bulk Fill and Tetric N Ceram Universal. The composite samples were prepared in Teflon moulds with a diameter of 5 mm and height of 2, 4 and 6 mm. Then, half of the samples in each depth were cured from the upper side of the mould for 20s by LED light curing unit. The irradiation time for other specimens was 40s. After 24 hours of storage in distilled water, the microhardness of the top and bottom of the samples was measured using a Future Tech (Japan- Model FM 700 Vickers hardness testing machine. Data were analyzed statistically using the one and multi way ANOVAand Tukey’s test (p = 0.050. Results: The DC of Tetric N Ceram Bulk Fill in defined irradiation time and bulk depth was significantly more than the universal type (p < 0.001. Also, the DC of both composites studied was significantly (p < 0.001 reduced by increasing the bulk depths. Increasing the curing time from 20 to 40 seconds had a marginally significant effect (p ≤ 0.040 on the DC of both bulk fill and universal studied RBC samples. Conclusions: The DC of the investigated bulk fill composite was better than the universal type in all the irradiation times and bulk depths. The studied universal and bulk fill RBCs had an appropriate DC at the 2 and 4 mm bulk depths respectively and

  14. Study on characteristics of water resources in Beijing in recent 15 years

    Science.gov (United States)

    Chuan, L. M.; Zheng, H. G.; Zhao, J. J.; Wang, A. L.; Zhang, X. J.

    2018-02-01

    In order to understand the characteristics of water supply and water usage in Beijing in recent 15 years, a variety of statistical datasets were collected and field investigations were carried out, to analyze the total water resource, the characteristics and trends of water resource supply, utilization and distribution during 2000-2014. The results showed that the total amount of water resources in Beijing is maintained at 1.61~3.95 billion m3, and the surface water accounts for about 1/3, and the groundwater accounts for 2/3. Agricultural water and living water were the dominated consumption in the past 15 years in Beijing, accounted for 35.3% and 38.9% of the total amount, followed by industrial water, which accounting for 17.9% of total water consumption, and water used in environment is relatively small, only accounting for 7.8% of the total amount. This study can provide theoretical support for the establishment and management of water conservation policies and the rational utilization of water resources in Beijing.

  15. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  16. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    International Nuclear Information System (INIS)

    Myers, J. E.; Jackson, L. M.

    2001-01-01

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work

  17. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  18. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  19. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    International Nuclear Information System (INIS)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.; Romero, R.P.

    1999-01-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane

  20. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  1. 100 years of California’s water rights system: patterns, trends and uncertainty

    Science.gov (United States)

    Grantham, Theodore E.; Viers, Joshua H.

    2014-08-01

    For 100 years, California’s State Water Resources Control Board and its predecessors have been responsible for allocating available water supplies to beneficial uses, but inaccurate and incomplete accounting of water rights has made the state ill-equipped to satisfy growing societal demands for water supply reliability and healthy ecosystems. Here, we present the first comprehensive evaluation of appropriative water rights to identify where, and to what extent, water has been dedicated to human uses relative to natural supplies. The results show that water right allocations total 400 billion cubic meters, approximately five times the state’s mean annual runoff. In the state’s major river basins, water rights account for up to 1000% of natural surface water supplies, with the greatest degree of appropriation observed in tributaries to the Sacramento and San Joaquin Rivers and in coastal streams in southern California. Comparisons with water supplies and estimates of actual use indicate substantial uncertainty in how water rights are exercised. In arid regions such as California, over-allocation of surface water coupled with trends of decreasing supply suggest that new water demands will be met by re-allocation from existing uses. Without improvements to the water rights system, growing human and environmental demands portend an intensification of regional water scarcity and social conflict. California’s legal framework for managing its water resources is largely compatible with needed reforms, but additional public investment is required to enhance the capacity of the state’s water management institutions to effectively track and regulate water rights.

  2. A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992-2014.

    Science.gov (United States)

    Wang, Dan; Singhasemanon, Nan; Goh, Kean S

    2017-07-01

    Diazinon is an organophosphorus insecticide that has been widely used in the USA and in California resulting in contamination of surface waters. Several federal and state regulations have been implemented with the aim of reducing its impact to human health and the environment, e.g., the cancellation of residential use products by the USEPA and dormant spray regulations by the California Department of Pesticide Regulation. This study reviewed the change in diazinon use and surface water contamination in accordance with the regulatory actions implemented in California over water years 1992-2014. We observed that use amounts began declining when agencies announced the intention to regulate certain use patterns and continued to decline after the implementation of those programs and regulations. The reduction in use amounts led to a downward trend in concentration data and exceedance frequencies in surface waters. Moreover, we concluded that diazinon concentrations in California's surface waters in recent years (i.e., water years 2012-2014) posed a de minimis risk to aquatic organisms.

  3. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  4. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  5. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  6. Short-Term Operations Plan for Collection of Bulk Quantity CBP Liquid in Support of a Pilot-Scale Treatabilty Evaluation with Water Recovery Inc

    Science.gov (United States)

    June 3, 2011 work plan for a pilot-scale treatability evaluation with a commercial wastewater treatment facility, Water Recovery Inc. (WRI) located in Jacksonville, Florida. Region ID: 04 DocID: 10749927, DocDate: 06-03-2011

  7. Soil water distribution on different number of growing years of alfalfa ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... dNational Engineering Research Center for Water-Saving and ... After alfalfa grew for >18 years, the annual recovery of its soil water at 0 - 200 cm soil depth was 1.49%, ... yield of following crops, or even lead to failure of the.

  8. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  9. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  10. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003

    NARCIS (Netherlands)

    Granier, A.; Reichstein, M.; Bréda, N.; Janssens, I.A.; Falge, E.; Ciais, P.; Grünwald, T.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Facini, O.; Grassi, G.; Heinesch, B.; Ilvesniemi, H.; Keronen, P.; Knohl, A.; Köstner, B.; Lagergren, F.; Lindroth, A.; Longdoz, B.; Loustau, D.; Mateus, J.; Montagnani, L.; Nys, C.; Moors, E.J.; Papale, D.; Peiffer, M.; Pilegaard, K.; Pita, G.; Pumpanen, J.; Rambal, S.; Rebmann, C.; Rodrigues, A.; Seufert, G.; Tenhunen, J.; Vesala, T.; Wang, Q.

    2007-01-01

    The drought of 2003 was exceptionally severe in many regions of Europe, both in duration and in intensity. In some areas, especially in Germany and France, it was the strongest drought for the last 50 years, lasting for more than 6 months. We used continuous carbon and water flux measurements at 12

  11. Characterisation of bulk solids

    Energy Technology Data Exchange (ETDEWEB)

    D. McGlinchey [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2005-07-01

    Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, including minerals processing. With contributions from leading authors in their respective fields, this book provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. Contents: Characterising particle properties; Powder mechanics and rheology; Characterisation for hopper and stockpile design; Fluidization behaviour; Characterisation for pneumatic conveyor design; Explosiblility; 'Designer' particle characteristics; Current industrial practice; and Future trends. 130 ills.

  12. Micromegas in a bulk

    International Nuclear Information System (INIS)

    Giomataris, I.; De Oliveira, R.; Andriamonje, S.; Aune, S.; Charpak, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, Ph.; Salin, P.

    2006-01-01

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine

  13. Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2005-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.

  14. Soil moisture transport during the 1974--1975 and 1975--1976 water years

    International Nuclear Information System (INIS)

    Last, G.V.; Easley, P.G.; Brown, D.J.

    1976-12-01

    The rate and direction of soil moisture movement in Hanford sediments were determined for the 1974-1975 and 1975-1976 water years. The data for these determinations was obtained from two large lysimeters located on the 200 area plateau near the center of the Hanford Reservation. During the 1974-75 water year, meteoric moisture percolated to a depth of 2.5 meters with a peak moisture content of 10.5 volume-percent. This percolation envelope was eliminated by evaporation during the hot dry summer of 1975. The 1975-76 water year had only 70 percent of the normal precipitation, thus the percolation envelope was small and penetrated to a depth of only two meters. However, in spite of this shallow depth and low volume of moisture, the percolation envelope was not eliminated by the end of the water year because of lower seasonal temperatures and higher humidity during the drying season. Moisture content of sediments in the 4-18 meter depth range showed no relative change throughout the two water years, and no moisture accumulated at the bottom of the lysimeters, which indicates there is no deep percolation of meteoric moisture at this site, and no recharge to the ground water

  15. Millennium scale radiocarbon variations in Eastern North Atlantic thermocline waters: 0-7000 years

    Energy Technology Data Exchange (ETDEWEB)

    Frank, N.; Tisnerat-Laborde, N.; Hatte, C. [LSCE, F-91190 Gif Sur Yvette, (France); Colin, C. [Univ Paris 11, IDES, Orsay, (France); Dottori, M.; Reverdin, G. [Univ Paris 06, LOCEAN, F-75252 Paris, (France)

    2009-07-01

    Complete text of publication follows: Deep water corals are exceptional archives of modern and past ocean circulation as combined U-series and radiocarbon dating allows to reconstruct seawater radiocarbon. Here we present thermocline water radiocarbon concentrations that have been reconstructed for the past {approx} 7000 years for the eastern north Atlantic, based on deep-water corals from Rockall Bank and Porcupine Seabight. We find that thermocline water radiocarbon values follow overall the mean atmospheric long term trend with an average offset of {Delta}{sup 14}C between intermediate water and atmosphere of -55{+-}5 per thousand until 1960 AD. Residual variations are strong ({+-}25 per thousand) over the past 7000 years and there is first evidence that those are synchronous to millennium scale climate variability. Over the past 60 years thermocline water radiocarbon values increase due to the penetration of bomb-radiocarbon into the upper intermediate ocean. Radiocarbon increases by {Delta}{sup 14}C of +95 per thousand compared to +210 per thousand for eastern North Atlantic surface waters. Moreover, bomb-radiocarbon penetration to thermocline depth occurs with a delay of {approx} 10-15 years. Based on high resolution ocean circulation models we suggest that radiocarbon changes at upper intermediate depth are today barely affected by vertical mixing and represent more likely variable advection and mixing of water masses from the Labrador Sea and the temperate Atlantic (including Mediterranean outflow water). Consequently, we assume that residual radiocarbon variations over the past 7000 years reflect millennium scale variability of the Atlantic sub-polar and sub-tropical gyres

  16. Properties of Concrete Exposed to Running Fresh Water for 24 Years

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2008-01-01

    A total of nine concretes, comprising three cement types, incorporation of fly ash, superplasticized high strength concrete and high performance concrete with microsilica, have been monitored during 24 years of exposure to running fresh water under Danish outdoor climatic conditions....... The compressive strength development has been measured, and durability aspects have been assessed after 6 and 21 years of exposure, with very positive results....

  17. Energy-water analysis of the 10-year WECC transmission planning study cases.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

  18. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was

  19. Constraints in using Cerium-animaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Pearce, N.J.G.; Mislankar, P.G.

    for paleo-oceanic redox conditions. Geochem. Cosmo- chim. Acta 5, 1361–1371. Lyle, M., Dymond, J., Heath, G.R., 1977. Copper–nickel enriched ferromanganese nodules and associated crusts from the Baur Basin, northwest Nazca plate. Earth Planet. Sci. Lett. 35.... Cosmo- chim. Acta 61, 2375–2388. Nozaki, Y., Horible, Y., Tsubota, H., 1981. The water column distribution of thorium isotopes in the western North Pacific. Earth Planet. Sci. Lett. 66, 73–90. Pattan, J.N., Banakar, V.K., 1997. Diagenetic remobilization...

  20. Stability of V2O5 Supported on Titania in the Presence of Water, Bulk Oxygen Vacancies, and Adsorbed Oxygen Atoms

    DEFF Research Database (Denmark)

    Kristoffersen, Henrik Høgh; Neilson, Hunter L.; Buratto, Steven K.

    2017-01-01

    ). In the case of oxidative dehydrogenation of alkanes and methanol, the reaction produces water, oxygen vacancies, and hydrogen atoms bound to the surface. For this article we use density functional theory to examine how the presence of these species on the surface affects a V2O5 cluster, which we assume......A catalyst consisting of vanadium oxide submonolayers supported on rutile titanium dioxide is used for a variety of reactions. One important question is the difference between the activity of monomeric clusters (having one vanadium atom) and polymeric clusters (having more than one vanadium atom...

  1. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    Science.gov (United States)

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  2. Fiscal Year 1990 program report: New York State Water Resources Institute

    International Nuclear Information System (INIS)

    Porter, K.S.

    1991-08-01

    New York has made major strides in reducing or eliminating point sources of water pollutants. Nonpoint sources have become the primary focus of many State water pollution control programs. Among the most critical remaining water pollutant sources in New York are toxics-contaminated sediments in surface water bodies and leaks and spills of toxic and hazardous materials. Contaminated sediments are implicated as a major origin of certain persistent synthetic organics accumulated by higher aquatic organisms, as well as representing an uncertain but large reservoir of contaminants which may be re-released during high flows. Spills and leaks represent threats to both surface and ground water. The State now responds to over 10,000 of these cases each year. A growing number of cases are leaking underground petroleum storage tanks, requiring long and expensive cleanup activities

  3. A Road Map for America's Water for the Next 20 Years

    Science.gov (United States)

    Lall, U.; Rising, J.; Ho, M. W.; Josset, L.; Allaire, M.; Troy, T.; Devineni, N.; Ruddell, B. L.; Pal, I.

    2016-12-01

    This talk will present a perspective from the America's Water Initiative team that has been discussing the past, present and future of water in America. Paleoclimate reconstructions reveal dramatic inter-annual to decadal structure in the variation in drought across America and provide a backdrop for increasing climate variability expected in the next century. At the same time our water infrastructure ranging from main pipes to dams is aging and in urgent need of renewal. Non-point source pollution from cities and agriculture continues to be a concern and poses a challenge for water supplies. At the same time, there has been progress on water use efficiency, and on the acceptability of water reuse. To assure water, energy and food security for the future, one needs significant investments in water infrastructure of all types, and the cumulative estimates for these run to nearly $3 trillion over the next 20 years. A discussion on infrastructure provision is not complete without a discussion on how use patterns (e.g., where and which crops are grown and how), economic and financial instruments (e.g., insurance associated with the failure of water supply or with flooding, water pricing and trading, capital for construction), regulatory instruments (e.g., standards and policies), technological innovation (e.g., in sensors to improve water utilization in agriculture or pervasive monitoring of drinking and environmental water quality, nanofiltration and resource extraction from waste streams), and governance of water systems. We present for discussion, a proposal for the next 5 and the next 20 years that lays out an adaptive strategy to apprach these issues, and the associated unknowns and challenges that we need to address. The America's Water initiative was launched by Columbia University in partnership with other Universities and representatives from the public and private sectors. A modeling platform that brings together climate, water, agricultural, energy and urban

  4. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 2: Analysis of On-Board Treatment Methods, Alternative Ballast Water Management Practices, and Implementation Costs

    Science.gov (United States)

    2013-11-01

    on discharge 3 CleanBallast Ballast Water Management System RWO Marine Water Technology 55 μm automatic back-flushing disc filter, electrolysis ...did not independently validate manufacturers’ claims. BWT technologies which apply electric current to ballast water ( electrolysis ) are affected by low...salinity prior to electrolysis , and the feed water must be preheated when the ballast water temperatures drop below 15 ºC. 1. Power Consumption

  5. Bulk Soil Organic Matter d2H as a Precipitation Proxy

    Science.gov (United States)

    Williams, E. K.; Terwilliger, V. J.; Nakamoto, B. J.; Berhe, A. A.; Fogel, M. L.

    2016-12-01

    The stable hydrogen isotopic composition (d2H) of leaf waxes have traditionally been used to infer modern and paleoclimate precipitation sources. However, the extent to which evapotranspiration of leaf waters affects the d2H of plant leaf waxes remains hotly contested with offsets varying between species. Because of the relative importance of root organic matter contribution to bulk soil pools compared to litter/leaves and the minimal fractionation between soil water and root material, it is plausible that bulk soil organic matter d2H may be an option for modern and paleoclimate precipitation reconstructions. In this study, we analyzed the non-exchangeable d2H composition of roots, litter, leaves, and bulk soils along an elevation gradient in the southern Sierra Nevada range (USA). Our results show a consistent offset of 30 ± 3‰ in bulk soil organic matter in surface soils from the measured precipitation. This consistent relationship with precipitation was not found in any of the other organic materials that we measured and implies that d2H bulk soil organic matter can record precipitation signals regardless of above-ground species composition. Additionally, we utilized physical density fractionation to determine which fractions (which vary in level of mineral association and in turnover time) of the soil control this relationship. These findings and how this relationship holds with depth will be presented in conjunction with data from a soil profile on the Ethiopian plateau spanning 6000 years.

  6. Efficient "on-the-fly" calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kühne, Thomas D

    2015-11-05

    We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.

  7. Numerical simulation of flood inundation using a well-balanced kinetic scheme for the shallow water equations with bulk recharge and discharge

    Science.gov (United States)

    Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip

    2016-04-01

    The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.

  8. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  9. Hydrologic data for the Walker River Basin, Nevada and California, water years 2010–14

    Science.gov (United States)

    Pavelko, Michael T.; Orozco, Erin L.

    2015-12-10

    Walker Lake is a threatened and federally protected desert terminal lake in western Nevada. To help protect the desert terminal lake and the surrounding watershed, the Bureau of Reclamation and U.S. Geological Survey have been studying the hydrology of the Walker River Basin in Nevada and California since 2004. Hydrologic data collected for this study during water years 2010 through 2014 included groundwater levels, surface-water discharge, water chemistry, and meteorological data. Groundwater levels were measured in wells, and surface-water discharge was measured in streams, canals, and ditches. Water samples for chemical analyses were collected from wells, streams, springs, and Walker Lake. Chemical analyses included determining physical properties; the concentrations of major ions, nutrients, trace metals, dissolved gases, and radionuclides; and ratios of the stable isotopes of hydrogen and oxygen. Walker Lake water properties and meteorological parameters were monitored from a floating platform on the lake. Data collection methods followed established U.S. Geological Survey guidelines, and all data are stored in the National Water Information System database. All of the data are presented in this report and accessible on the internet, except multiple-depth Walker Lake water-chemistry data, which are available only in this report.

  10. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  11. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    Science.gov (United States)

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  12. Soil water erosion under different cultivation systems and different fertilization rates and forms over 10 years

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-12-01

    Full Text Available The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa , soybean (Glycine max , common vetch (Vicia sativa , maize (Zea mays , fodder radish (Raphanus sativus , and black beans (Phaseolus vulgaris . The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

  13. Possibilities and limitations in the use of bulk explosives for undergound blasting work

    Energy Technology Data Exchange (ETDEWEB)

    Thum, W.

    1982-06-01

    Conditions for the use of bulk explosives - Characterization of the explosives - ANFO - Water gel blasting agents - Underground application of bulk explosives - Comparison of application criteria - Dead-pressing effects - Modifications of application technology - Loading systems.

  14. An empirical method to estimate bulk particulate refractive index for ocean satellite applications

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    An empirical method is presented here to estimates bulk particulate refractive index using the measured inherent and apparent optical properties from the various waters types of the Arabian Sea. The empirical model, where the bulk refractive index...

  15. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  16. Water resources data for Florida, water year 1992. Volume 1B. Northeast Florida ground water. Water-data report (Annual) October 1, 1991-September 30, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Water resources data for the 1992 for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 10 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 32 streams, continuous or daily tide stage for 3 sites, periodic stage for 23 streams, peak discharge for 3 streams, and peak stage for 11 streams; continuous or daily elevations for 36 lakes, periodic elevations for 47 lakes; continuous ground-water levels for 75 wells, periodic ground-water levels for 123 wells, and miscellaneous water-level measurements for 864 wells; and quality-of-water data for 38 surface-water sites and 66 wells

  17. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  18. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  19. Four years experience with filtration systems in commercial nurseries for eliminating Phytophthora species from recirculation water

    Science.gov (United States)

    T. Ufer; M. Posner; H.-P. Wessels; S. Wagner; K. Kaminski; T. Brand; Werres S.

    2008-01-01

    In a four year project, three different filtration systems were tested under commercial nursery conditions to eliminate Phytophthora spp. from irrigation water. Five nurseries were involved in the project. Slow sand filtration systems were tested in three nurseries. In the fourth nursery, a filtration system with lava grains (Shieer® Bio filtration)...

  20. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water

  1. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard

    Energy Technology Data Exchange (ETDEWEB)

    Lordan, J.; Pascual, M.; Villar, J.M.; Fonseca, F.; Papió, J.; Montilla, V.; Rufat, J.

    2015-07-01

    Mulching techniques have emerged in recent years to overcome soil constraints and improve fruit tree productivity. The object of this study was to evaluate the effects of a low-cost organic mulch application in a newly planted peach orchard under a ridge planting system. Three treatments were performed in 12 elementary plots using a randomized complete block design. The orchard was drip-irrigated. Mulch was applied in two treatments, which differed in fertigation (none vs. multi-nutrient fertigation), while the third treatment did not include either mulch or fertigation and served as the control. Treatments were compared in terms of their effects on the physical properties of the soil, crop response, and water-use efficiency. Mulch treatments did not alter the soil bulk density. However, the mulch significantly (p=0.0004) increased the water infiltration rate (2.21 mm/h vs. 121 mm/h), which is a key issue when working in high frequency irrigation systems under soil limiting conditions. Similarly, mulched treatments showed a more favorable water status both in the second and the third year, which was translated in a better crop response. Thus, mulched treatments recorded higher yields both in the second (+155%, p=0.0005) and the third year (+53%, p=0.0007) of the experiment. Water use efficiency (WUEagr) was higher in the mulch treatments (+50% in average, p=0.0007) than in the control in the third year of the study. On the basis of our results, we propose that organic-mulching techniques should be considered as a beneficial practice to apply in fruit-trees production under limiting soil conditions.(Author)

  2. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard

    Directory of Open Access Journals (Sweden)

    Joan Lordan

    2015-12-01

    Full Text Available Mulching techniques have emerged in recent years to overcome soil constraints and improve fruit tree productivity. The object of this study was to evaluate the effects of a low-cost organic mulch application in a newly planted peach orchard under a ridge planting system. Three treatments were performed in 12 elementary plots using a randomized complete block design. The orchard was drip-irrigated. Mulch was applied in two treatments, which differed in fertigation (none vs. multi-nutrient fertigation, while the third treatment did not include either mulch or fertigation and served as the control. Treatments were compared in terms of their effects on the physical properties of the soil, crop response, and water-use efficiency. Mulch treatments did not alter the soil bulk density. However, the mulch significantly (p=0.0004 increased the water infiltration rate (2.21 mm/h vs. 121 mm/h, which is a key issue when working in high frequency irrigation systems under soil limiting conditions. Similarly, mulched treatments showed a more favorable water status both in the second and the third year, which was translated in a better crop response. Thus, mulched treatments recorded higher yields both in the second (+155%, p=0.0005 and the third year (+53%, p=0.0007 of the experiment. Water use efficiency (WUEagr was higher in the mulch treatments (+50% in average, p=0.0007 than in the control in the third year of the study. On the basis of our results, we propose that organic-mulching techniques should be considered as a beneficial practice to apply in fruit-trees production under limiting soil conditions.

  3. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    Science.gov (United States)

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  4. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  5. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  6. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  7. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  8. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  9. Twenty years of experience with central softening in The Netherlands : Water quality – Environmental benefits – Costs

    NARCIS (Netherlands)

    Hofman, J.A.M.H.; Kramer, O.J.I.; van der Hoek, J.P.; Nederlof, M; Groenendijk, M

    2006-01-01

    Central softening has been utilized by the Dutch water utilities since the late 1970s. It was introduced in the water treatment process as a method to supply water with an optimum water composition to prevent lead and copper release and to prevent excessive scaling. Twenty years of experience show

  10. Water quality changes in a polluted stream over a twenty-five-year period

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J.; Skousen, J. [West Virginia University, Morgantown, WV (United States). Div. for Plant & Soil Science

    2003-04-01

    The Deckers Creek watershed in northern West Virginia (United States), containing a land area of 166 km{sup 2}, has along history of industrial development and attendant environmental abuses from both land and Water pollution practices. The water in Deckers Creek was sampled in 1974 at 9 locations along the main stem and resampled in 1999-2000 to determine water quality changes over this 25-year period. Water samples were analyzed for pH, acidity, alkalinity, iron, and calcium at both times, while aluminum, manganese, zinc, and fecal coliform (FC) bacteria densities were added in 1999-2000. Water at almost all sampling points showed lower acidity and metal contents in 1999-2600 compared with 1974. Water pH increased at the mouth from 5.4 in 1974 to 6.0 in 1999-2000. Acidity and iron concentrations, were decreased an average of 70% in the upper stretches of the creek. however, one major untreated point source of water from an abandoned underground mining complex continues to degrade the quality of-the creek in its lower stretches. In the upper section, the. water quality in Deckers Creek has improved due to decreased surface and underground coal-mining activities, reclamation of abandoned and recently permitted surface mined lands, and natural healing of past land use scars from timbering and mining over time. The decrease in mineral. extraction activities and the reclamation of disturbed lands has occurred due to the passage and enforcement of water quality and land reclamation laws and regulations.

  11. 222Rn in private well water in the vicinity of uranium mines over ten years

    International Nuclear Information System (INIS)

    Yunoki, Eiji; Kataoka, Toshio; Michihiro, Kenshu; Sugiyama, Hirokazu; Shimizu, Mitsuo; Mori, Tadashige

    1994-01-01

    There are many small uranium mines of the sedimentary type in Kamisaibara, Okayama Prefecture, Japan. As inhabitants in Kamisaibara consume water from privately-dug wells, it is important to investigate distributions of 222 Rn in privately-dug well water in the vicinity of the mines. The determination of 222 Rn in well water was carried out from April 1980 to October 1990. Though small in area (16 km 2 ), each well water has its own characteristic activity concentrations of 222 Rn. The activity concentrations of 222 Rn are almost constant for each specific well over a long period (about 10 years). In general, the correlation coefficients for several sampling points are small. As Akawase and Tennoh are situated in the same rock type, the correlation coefficient is the highest value in this area. The estimated dose equivalent for the human stomach is approximately 0.4-54 μSv/year. The type of distribution of 222 Rn in privately-dug well water is log normal. (author)

  12. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  13. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  14. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    Science.gov (United States)

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish

  15. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  16. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  17. Nitrate exposure from drinking water in Denmark over the last 35 years

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte

    2014-01-01

    users were far more prone to exposure to elevated nitrate concentrations than consumers connected to public supplies. While the fraction exposed to elevated nitrate concentrations amongst public supply users has been decreasing since the 1970s, it has been increasing amongst private well users, leading......In Denmark, drinking water quality data covering the entire country for over 35 years are registered in a publicly-accessible database. These data were analysed to determine the fraction of population exposed to elevated nitrate concentrations. Data from 2,852 water supply areas from the 98 Danish...... municipalities were collected in one dataset. Public water supplies are extensively registered; private wells supplying only few households are neither monitored nor registered sufficiently. The study showed that 5.1% of the Danish population was exposed to nitrate concentrations 25 mg L−1 in 2012. Private well...

  18. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1995-02-01

    Precipitation totals of 245 and 210 mm were measured at UE-29 UZN {number_sign}91 and UE-29 UZN {number_sign}92 respectively, during the 1992 water year, October 1, 1991 to September 30, 1992. Approximately ninety percent of the precipitation fell during the period December 27 to April 2. Localized streamflow was generated in the Fortymile Wash drainage basin during the February 12-15, 1992 and March 31, 1992 precipitation, and infiltrated into the streambed materials. The streamflow went across the UE-29 UZN {number_sign}91 neutron-access borehole location and within several meters of the UE-29 UZN {number_sign}92 location. Neutron logging in these boreholes showed increases in the volumetric water content of the unsaturated alluvium and indicated streamflow infiltrated to a depth of approximately 5 meters. The volumetric water content in the upper 5 meters then gradually decreased during the remaining part of the water year. Ground-water levels rose over one meter in wells UE-29 a{number_sign}1 and UE-29 a{number_sign}2, and one-half meter in neutron-access borehole LJE-29 UZN {number_sign}91 following the streamflows. Water level declines of 0.5 meter in UE-29 a{number_sign}1 and rises of 0.2 meter in UE-29 a{number_sign}2 and 0.1 meter in UE-29 UZN {number_sign}91 coincided with a June 29, 1992 earthquake at the Little Skull Mountain, located approximately 27 kilometers southeast of the wells.

  19. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water year 1992

    International Nuclear Information System (INIS)

    Savard, C.S.

    1995-01-01

    Precipitation totals of 245 and 210 mm were measured at UE-29 UZN number-sign 91 and UE-29 UZN number-sign 92 respectively, during the 1992 water year, October 1, 1991 to September 30, 1992. Approximately ninety percent of the precipitation fell during the period December 27 to April 2. Localized streamflow was generated in the Fortymile Wash drainage basin during the February 12-15, 1992 and March 31, 1992 precipitation, and infiltrated into the streambed materials. The streamflow went across the UE-29 UZN number-sign 91 neutron-access borehole location and within several meters of the UE-29 UZN number-sign 92 location. Neutron logging in these boreholes showed increases in the volumetric water content of the unsaturated alluvium and indicated streamflow infiltrated to a depth of approximately 5 meters. The volumetric water content in the upper 5 meters then gradually decreased during the remaining part of the water year. Ground-water levels rose over one meter in wells UE-29 a number-sign 1 and UE-29 a number-sign 2, and one-half meter in neutron-access borehole LJE-29 UZN number-sign 91 following the streamflows. Water level declines of 0.5 meter in UE-29 a number-sign 1 and rises of 0.2 meter in UE-29 a number-sign 2 and 0.1 meter in UE-29 UZN number-sign 91 coincided with a June 29, 1992 earthquake at the Little Skull Mountain, located approximately 27 kilometers southeast of the wells

  20. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

    OpenAIRE

    Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W

    2000-01-01

    To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the produc...

  1. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    Science.gov (United States)

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  3. Gas and water permeability tests of 25 year old concrete from the NPD Nuclear Generating Station

    International Nuclear Information System (INIS)

    Mills, R.H.

    1990-05-01

    Permeability tests on cores recovered from concrete which had been in service for 25 years in the Nuclear Power Demonstration (NPD) reactor showed rates of mass transfer of gas and water which were greater than young fresh concrete of the same proportions and that reported in previous AECB reports. This transparency of the concrete was also 2 orders of magnitude greater than that of comparable concrete which had been stored in the laboratory atmosphere for 19 years. Analysis of the effluent in water permeability tests revealed the presence of unusual amounts of soluble materials, mainly Na and K but little Ca, in the reactor concrete. This suggested service-related deterioration of the concrete rather than the release of soluble Ca by continuing hydration of cement

  4. Ten years of radiometric monitoring in water samples in Uruguay potables plants

    International Nuclear Information System (INIS)

    Perruni, P.

    2000-01-01

    The work exposes the summary of having been radiometrics obtained during the last 10 years in several water treatment plants of the national territory, with the purpose of determining if in the total dose to the one that this exposed one naturally the population of the country, is important the contribution of polluting radioactives in the drinkable water, in function of the geographical area and the time of the year. The investigation is framed inside the Program of Control Radiometrics of Products of Fission in waters, floors, foods and aerosols of the Uruguay developed by the Radiochemistry Department, of the Nuclear Research Center, Montevideo (UY) The samples of water filter, they process and they analyze according to laboratory protocols, had duplicated by each plant, parallel with radio-active, white bottom measures and standards. The results net average obtained for each factory, gave below the one it limits of detection: 2 BQ/Kg for geometry Marinelli and 0.02 BQ/g for plane geometry, with 99,3% of dependability (standard 3 deviations), very below the maximum values admitted by International Organisms (WHO, FAO, ICRP) [es

  5. Water-resources investigations in Dinosaur National Monument, Utah-Colorado, fiscal year 1970

    Science.gov (United States)

    Sumsion, C.T.

    1971-01-01

    Water-resources data were acquired during fiscal year 1970 by the U.S. Geological Survey at Dinosaur National Monument, Utah-Colorado, for the U.S. National Park Service as part of a continuing project. The data provide a basis for planning the development, management, and use of the available water resources to provide adequate water supplies. Thirty-one springs, 19 in relatively inaccessible areas, were evaluated as sources of water supplies. Seven potential well sites were evaluated for drilling depths in specific aquifers. A well drilled in Echo Park near the confluence of the Green and Yampa Rivers was tested. The pumping test showed the well to yield 130 gallons per minute with a drawdown of 1.96 feet; specific capacity of the well at 130 gallons per minute is 66 gallons per minute per foot. Water samples for chemical analysis were - collected from nine springs and one well; all except that from Disappointment Spring, were of good chemical quality.

  6. Nitrate exposure from drinking water in Denmark over the last 35 years

    International Nuclear Information System (INIS)

    Schullehner, Jörg; Hansen, Birgitte

    2014-01-01

    In Denmark, drinking water quality data covering the entire country for over 35 years are registered in a publicly-accessible database. These data were analysed to determine the fraction of population exposed to elevated nitrate concentrations. Data from 2,852 water supply areas from the 98 Danish municipalities were collected in one dataset. Public water supplies are extensively registered; private wells supplying only few households are neither monitored nor registered sufficiently. The study showed that 5.1% of the Danish population was exposed to nitrate concentrations > 25 mg L −1 in 2012. Private well users were far more prone to exposure to elevated nitrate concentrations than consumers connected to public supplies. While the fraction exposed to elevated nitrate concentrations amongst public supply users has been decreasing since the 1970s, it has been increasing amongst private well users, leading to the hypothesis that the decrease in nitrate concentrations in drinking water is mainly due to structural changes and not improvement of the groundwater quality. A combination of this new drinking water quality map with extensive Danish health registers would permit an epidemiological study on health effects of nitrate, as long as the lack of data on private well users is addressed. (paper)

  7. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China

    Science.gov (United States)

    Li, Siyue; Ye, Chen; Zhang, Quanfa

    2017-08-01

    Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.

  8. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  9. Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995

    Science.gov (United States)

    Owens, D.W.; Corsi, Steven R.; Rappold, K.F.

    1997-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss

  10. Two-year water degradation of self-etching adhesives bonded to bur ground enamel.

    Science.gov (United States)

    Abdalla, Ali I; Feilzer, Albert J

    2009-01-01

    To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were used. The root of each tooth was removed and the crown was sectioned into two halves. The convex enamel surfaces were reduced by polishing on silicon paper to prepare a flat surface that was roughened with a parallel-sided diamond bur with abundant water for five seconds. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm in height/0.75 mm in internal diameter) was placed on the treated surfaces and cured. A resin composite was then inserted into the tube and cured. For each adhesive, two procedures were carried out: A--the specimens were kept in water for 24 hours, then the tube was removed and the microshear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/minute; B--the specimens were stored in water for two-years before microshear testing. The fractured surface of the bonded specimens after each test procedure was examined by SEM. For the 24-hour control, there was no significant difference in bond strength between the tested adhesives. After two years of water storage, the bond strength of Admira Bond, Clearfil SE Bond and Futurabond DC decreased, but the reduction was not significantly different from that of 24 hours. For Clearfil S Tri Bond and Hybrid Bond, the bond strengths were significantly reduced compared to their 24-hour results.

  11. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  12. Effects of 50-years unmanaged water resource in Southern Tuscany coastal plains (Italy)

    Science.gov (United States)

    Rossetto, R.; Debolini, M.; Galli, M. A.; Bonari, E.

    2012-04-01

    original 4 Mm3. Having a reduced access to water resources, most of the farms during the 90's moved to more efficient water uses (drip irrigation) to save crops from leaf burns or switched to less-water-demanding, but less profitable crops. As a consequence, less competitive areas in the production-distribution chain suffered aquifer' salinisation and were progressively abandoned. As far as drinking water supply, the area is facing water scarcity during the summer period; desalination plants are planned. In one of the plain the water utility pumps out salinised groundwater that is then desalinized with an obvious increase in energy consumption. Although water management needs have grown during the last 50 years and several studies outlined the importance of planning this resource, conflicts among stakeholders and political issues make such problems of difficult solution. Today large dam building seems to be quite unreliable both because of the construction time and the financial issues related. At the same time feasible projects, driven also by innovative and more profitable agricultural development, call for wastewater reuse and artificial aquifer recharge starting at least from pilot tests in priority areas.

  13. Thirteen years of integrated precipitable water derived by GPS at Mario Zucchelli Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Pierguido Sarti

    2013-06-01

    Full Text Available Since 1998, the Italian Antarctic Programme has been funding space geodetic activities based on the use of episodic and permanent global positioning system (GPS observations. As well as their exploitation in geodynamics, these data can be used to sense the atmosphere and to retrieve and monitor its water vapor content and variations. The surface pressure p and temperature Ts at the GPS tracking sites are necessary to compute the zenith hydrostatic delay (ZHD, and consequently, the precipitable water. At sites where no surface information is recorded, the p and Ts values can be retrieved from, e.g., global numerical weather prediction models. Alternatively, the site-specific ZHD values can be computed by interpolation of the ZHD values provided in a grid model (2.5° × 2.0°. We have processed the data series of the permanent GPS site TNB1 (Mario Zucchelli Station, Antarctica from 1998 to 2010, with the purpose of comparing the use of grid ZHD values as an alternative to the use of real surface records. With these approaches, we estimate almost 7 × 104 hourly values of precipitable water over 13 years, and we find discrepancies that vary between 1.8 (±0.2 mm in summer and 3.3 (±0.5 mm in winter. In addition, the discrepancies of the two solutions show a clear seasonal dependency. Radiosounding measurements were used to derive an independent series of precipitable water. These agree better with the GPS precipitable water derived from real surface data. However, the GPS precipitable water time series is dry biased, as it is ca. 77% of the total moisture measured by the radiosoundings. Both the GPS and radiosounding observations are processed through the most up-to-date strategies, to reduce known systematic errors.

  14. Bulk and compound-specific isotope analysis of long-chain n-alkanes from a 85,000 year sediment core from Lake Peten Petén Itzá, Guatemala

    Science.gov (United States)

    Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.

    2013-12-01

    Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.

  15. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. CHANGES OF WATER BALANCE COMPONENTS OF MIDFOREST POND IN A HYDROLOGICAL YEARS OF A DIFFERENT METEOROLOGICAL CONDITION COURSE

    Directory of Open Access Journals (Sweden)

    Mariusz Korytowski

    2014-10-01

    years. Evaporation from pond surface which was from 408 mm (2009/2010 to 835 mm (2002/2003 was the dominant factor of outgoing part of water balance. Outflow from the pond to neighboring areas had significant participation – about 44% of precipitation, in water balance in wet 2009/2010 hydrological year.

  17. Long Island Sound Water Temperatures During the Last Two Thousand Years

    Science.gov (United States)

    Warren, C. E.; Varekamp, J. C.; Thomas, E.

    2010-12-01

    The Long Island Sound (LIS), sometimes called the “urban sea”, is a large estuary in the heavily populated coastal zone between New York City and the Connecticut - Rhode Island border. LIS has seen dramatic environmental shifts since colonial times, including major changes in aquatic food extraction, land use, contaminant and nutrient inputs, and climate change. Annual seasonal hypoxic/anoxic events, especially common in westernmost LIS, have been identified as potentially severe stressors for LIS biota including valuable fisheries species such as lobsters and shellfish. These conditions develop when the Sound becomes stratified in midsummer and oxygen consumption from the oxidation of organic matter exceeds oxygen resupply from the atmosphere or photosynthesis. Severity, lateral extent and frequency of hypoxia/anoxia is influenced by the amount of organic matter available for oxidation, both marine organic matter (produced by algal blooms in response to influx of N-rich effluents from waste water treatment plants) and terrestrial organic matter. These events are also influenced by the severity of stratification, determined by differences in density from temperature and salinity gradients of surface and bottom waters. Studies of cores in western and central LIS, dated using Hg-pollution profiles, 210Pb - 137Cs, and 14C, indicate that eutrophication and hypoxia have occurred in LIS only over the last ~150 years, with the possible exception of the Narrows (closest to NY) where it may have occurred before colonial times. Salinity decreased as well over the last 150 years, possibly due to changes in land use or deflection of fresh water from the Hudson River. Temperature variability in LIS over the last few thousand years has not been clearly documented, as several paleotemperature proxies are difficult to use in estuarine settings. Oxygen isotope values of carbonate microfossils are influenced by salinity fluctuations, and Mg/Ca values in these shells may be

  18. Year-long metagenomic study of river microbiomes across land use and water quality

    Directory of Open Access Journals (Sweden)

    Thea eVan Rossum

    2015-12-01

    Full Text Available Select bacteria, such as Escherichia coli or coliforms, have been widely used as sentinels of low water quality; however, there are concerns regarding their predictive accuracy for the protection of human and environmental health. To develop improved monitoring systems, a greater understanding of bacterial community structure, function and variability across time is required in the context of different pollution types, such as agricultural and urban contamination. Here, we present a year-long survey of free-living bacterial DNA collected from seven sites along rivers in three watersheds with varying land use in Southwestern Canada. This is the first study to examine the bacterial metagenome in flowing freshwater (lotic environments over such a time span, providing an opportunity to describe bacterial community variability as a function of land use and environmental conditions. Characteristics of the metagenomic data, such as sequence composition and average genome size, vary with sampling site, environmental conditions, and water chemistry. For example, average genome size was correlated with hours of daylight in the agricultural watershed and, across the agriculturally and urban-affected sites, k-mer composition clustering corresponded to nutrient concentrations. In addition to indicating a community shift, this change in average genome size has implications in terms of the normalisation strategies required, and considerations surrounding such strategies in general are discussed. When comparing abundances of gene functional groups between high- and low-quality water samples collected from an agricultural area, the latter had a higher abundance of nutrient metabolism and bacteriophage groups, possibly reflecting an increase in agricultural runoff. This work presents a valuable dataset representing a year of monthly sampling across watersheds and an analysis targeted at establishing a foundational understanding of how bacterial lotic communities

  19. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    Science.gov (United States)

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  20. Water and beverage consumption patterns among 4 to 13-year-old children in the United Kingdom.

    Science.gov (United States)

    Vieux, Florent; Maillot, Matthieu; Constant, Florence; Drewnowski, Adam

    2017-05-19

    The UK government has announced a tax on sugar-sweetened beverages. The aim of this study was to assess consumption patterns for plain drinking water relative to sugary beverages among UK children. Dietary intake data for 845 children aged 4-13 years came from the nationally representative cross-sectional National Diet and Nutrition Survey, 2008-2011. Beverage categories were drinking water (tap or bottled), milk, 100% fruit juices, soda, fruit drinks, tea, coffee, sports drinks, flavored waters, and liquid supplements. Consumption patterns were examined by age group, gender, household incomes, time and location of consumption, region and seasonality. Total water consumption from drinking water, beverages, and foods, and the water-to-calorie ratios (L/kcal) were compared to the EFSA (European Food Safety Authority) adequate intake standards. Total water intake (1338 ml/d) came from plain water (19%), beverages (48%), and food moisture (33%). Plain drinking water provided 258 g/d (241 g/d for children aged 4-8 years; 274 g/d for 9-13 years), mostly (83.8%) from tap. Water and beverages supplied 901 g /d of water. Tap water consumption increased with income and was highest in the South of England. The consumption of bottled water, soda, tea and coffee increased with age, whereas milk consumption declined. About 88.7% of children did not meet EFSA adequate intake standards. The daily water shortfall ranged from 322 ml/d to 659 ml/d. Water-to-calorie ratio was 0.845 L/1000 kcal short of desirable levels of 1.0-1.5 L/1000 kcal. Total water intake were at 74.8% of EFSA reference values. Drinking water consumption among children in the UK was well below US and French estimates.

  1. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh Five-year Plan

    International Nuclear Information System (INIS)

    Gu, Alun; Teng, Fei; Wang, Yu

    2014-01-01

    Highlights: • Energy and water limit China’s sustainable development. • Current energy policies fail to address water saving issues. • The energy-water coefficient is estimated for both direct use and indirect use. • Water saving effects associated with energy-saving policies is calculated. • Water-energy nexus should be enhanced in key industrial sectors. - Abstract: Energy and water have become major factors limiting sustainable development in China. Energy efficiency and optimization of water management are critical for the healthy growth of the Chinese economy. Current national energy policies fail to adequately address water use issues. Similarly, current water policies do not consider the impact of energy consumption and greenhouse gas emissions. Consequently, few studies have investigated the relationship between energy consumption and water use. The present study analyzes the energy-water nexus in Chinese industries using input–output tables. Coefficients that characterize the relationship between energy consumption and water are used to describe the supply-consumption relationship between the water supply and primary energy sectors. Next, we calculate the water-saving effects associated with the enforcement of energy-saving policies in selected industrial sectors during the eleventh Five-year Plan, from 2005 to 2010. These calculations address the ferrous metals, non-ferrous metals, petrochemical engineering, building materials, and electricity industries as well as key light industries. Our findings indicate that energy-saving efforts in these industries will result in savings in water consumption. This study suggests that a cooperative relationship between water and energy conservation efforts should be an important factor in creating policies that encourage simultaneous savings of both resources. Additionally, the study indicates that government should promote water- and energy-saving techniques in key industrial sectors to encourage

  2. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003

    DEFF Research Database (Denmark)

    Granier, A.; Reichstein, M.; Breda, N.

    2007-01-01

    stand to estimate the water balance terms: trees and understorey transpiration, rainfall interception, throughfall, drainage in the different soil layers and soil water content. This model calculated the onset date, duration and intensity of the soil water shortage (called water stress) using measured...... measured and modelled soil water content. Our analysis showed a wide spatial distribution of drought stress over Europe, with a maximum intensity within a large band extending from Portugal to NE Germany. Vapour fluxes in all the investigated sites were reduced by drought, due to stomatal closure, when...... the relative extractable water in soil (REW) dropped below ca. 0.4. Rainfall events during the drought, however, typically induced rapid restoration of vapour fluxes. Similar to the water vapour fluxes, the net ecosystem production decreased with increasing water stress at all the sites. Both gross primary...

  3. 4R Water Quality Impacts: An Assessment and Synthesis of Forty Years of Drainage Nitrogen Losses.

    Science.gov (United States)

    Christianson, L E; Harmel, R D

    2015-11-01

    The intersection of agricultural drainage and nutrient mobility in the environment has led to multiscale water quality concerns. This work reviewed and quantitatively analyzed nearly 1,000 site-years of subsurface tile drainage nitrogen (N) load data to develop a more comprehensive understanding of the impacts of 4R practices (application of the right source of nutrients, at the right rate and time, and in the right place) within drained landscapes across North America. Using drainage data newly compiled in the "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database, relationships were developed across N application rates for nitrate N drainage loads and corn ( L.) yields. The lack of significant differences between N application timing or application method was inconsistent with the current emphasis placed on application timing, in particular, as a water quality improvement strategy ( = 0.934 and 0.916, respectively). Broad-scale analyses such as this can help identify major trends for water quality, but accurate implementation of the 4R approach will require site-specific knowledge to balance agronomic and environmental goals. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Learner's Guide: Water Quality Monitoring. An Instructional Guide for the Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    This learner's guide is designed to meet the training needs for technicians involved in monitoring activities related to the Federal Water Pollution Act and the Safe Drinking Water Act. In addition it will assist technicians in learning how to perform process control laboratory procedures for drinking water and wastewater treatment plant…

  5. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    Science.gov (United States)

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network and constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of water resources in the State. Six sites from the Ambient Water-Quality Monitoring Network, with data available from the 1993 through 2008 water years, were chosen to compare water-quality conditions and long-term trends of dissolved oxygen, selected physical properties, total suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorous, fecal indicator bacteria, and selected trace elements. The six sites used in the study were classified in groups corresponding to the physiography, main land use, and drainage basin size, and represent most stream types in Missouri. Long-term trends in this study were analyzed using flow-adjusted and non-flow adjusted models. Highly censored datasets (greater than 5 percent but less than 50 percent censored values) were not flow-adjusted. Trends that were detected can possibly be related to changes in agriculture or urban development within the drainage basins. Trends in nutrients were the most prevalent. Upward flow-adjusted trends in dissolved nitrate plus nitrite (as nitrogen) concentrations were identified at the Elk River site, and in total phosphorus concentrations at the South Fabius and Grand River sites. A downward flow-adjusted trend was identified in total phosphorus concentrations from Wilson Creek, the only urban site in the study. The downward trend in phosphorus possibly was related to a phosphorus reduction system that began operation in 2001 at a wastewater treatment plant upstream from the sampling site. Total suspended solids concentrations indicated an upward non-flow adjusted trend at the two northern sites (South Fabius

  6. Water Erosion in a Two Year Old Stand of Eucalyptus benthamii under three Plantation Methods

    Science.gov (United States)

    Padilha, J.; Bertol, I.; Marioti, J.; Ramos, J. C.; Flores, M. C.; Tanaka, M. S.; Paz González, A.

    2012-04-01

    The preparation of the soil is the main issue of soil management. Thus, it is also one of the main operations with regard to management of planted forest during the whole productive process. Soil preparation is thought to directly affect various processes of the hydrologic cycle, water erosion, crop productivity and, subsequently, play an important role both for the environment and for the invested capital. Therefore knowledge of the effect of each specific soil management system on forest production is viewed as an essential issue. Based on these considerations, the aim of this work was to quantify soil and water losses by water erosion during the seasons of the year with the highest rainfall intensity in the south hemisphere, i.e. spring and summer in a two year old stand planted with Eucalyptus benthamii. This tree species was planted following three different conditions: 1) soil mechanical preparation in furrows following the land slope, 2) soil mechanical preparation in furrows dug perpendicular to the slope and 3) semi-mechanical preparation by digging an individual hole for each plant. The field experiment was located in Otacílio Costa municipality, SC, Brazil, at the Gropp forest farm owned by the Kablin SA company, 841 m asl altitude. The soil was classified as a "Cambissolo Húmico Alumínico Léptico" according with the Brazilian Soil Classification System with a slope of about 0.12 m m-1. The experimental design consisted of randomly located erosion plots with 3 repetitions, thus a total of 9 plots. The surface area of the plots was 12 x 24 m and they were oriented so that the main side followed the land slope. Suspended sediments and water losses were channelled to collecting tank at the end of the plot. Runoff water and eroded sediments were weakly measured, so that they correspond to cumulative weakly rainfall. The highest soil and water losses were recorded in plots with furrows dug perpendicular to the slope and the lowest ones corresponded to the

  7. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters.

    Science.gov (United States)

    Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G

    2017-03-01

    Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.

  8. Water-resources investigations of the U.S. Geological Survey in New Mexico; fiscal year 1981

    Science.gov (United States)

    White, Robert R.; Wells, J.G.

    1983-01-01

    The Water Resources Division of the U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of the Nation 's surface and underground waters, and coordinates Federal water data acquisition activities. During fiscal year 1981, the New Mexico District had 40 active projects, released 19 reports, and answered hundreds of requests of water-related information. Investigations included the following: (1) chemical quality of surface water in New Mexico; (2) chemical quality of groundwater in New Mexico; (3) sediment transport in New Mexico streams; (4) surface water supply; (5) surface water diversions for irrigation; (6) streamflow characteristics; (7) effect of urban development on storm runoff; (8) inundation from floods; (9) effects of groundwater pumping; (10) long-term monitoring of groundwater levels; (11) groundwater and surface water relationships; (12) consumptive use by phreatophytes; (13) hydrologic impacts of energy development; and (14) groundwater supplies. (Lantz-PTT)

  9. Change in the southern U.S. water demand and supply over the next forty years

    Science.gov (United States)

    Steven C. McNulty; Ge Sun; Erika C. Cohen; Jennifer A. Moore Myers

    2008-01-01

    Water shortages are often considered a problem in the western United States, where water supply is limited compared to the eastern half of the country. However, periodic water shortages are also common in the southeastern United States due to high water demand and periodic drought. Southeastern U.S. municipalities spend billions of dollars to develop water storage...

  10. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  11. Induction detection of concealed bulk banknotes

    International Nuclear Information System (INIS)

    Fuller, Christopher; Chen, Antao

    2011-01-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects

  12. Induction detection of concealed bulk banknotes

    Science.gov (United States)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  13. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2018-03-01

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  14. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  15. The Effect of Aqueous Alteration in Antarctic Carbonaceous Chondrites from Comparative ICP-MS Bulk Chemistry

    Science.gov (United States)

    Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.

    2014-01-01

    Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.

  16. State of the quality of drinking water in households in children under five years in Peru, 2007-2010

    OpenAIRE

    Miranda, Marianella; Dirección Ejecutiva de Vigilancia Alimentaria y Nutricional, Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú. Nutricionista.; Aramburú, Adolfo; Dirección Ejecutiva de Vigilancia Alimentaria y Nutricional, Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú. Nutricionista.; Junco, Jorge; Asesoría en Nutrición y Salud - ASENSA SAC, Lima, Perú. Biólogo.; Campos, Miguel; Departamento de física, Informática y Matemáticas, facultad de Ciencias y filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. Médico, Doctor en Ciencias.

    2010-01-01

    Objective. To evaluate the proportion of children under five with access to quality water and its behavior according to geographical location, water supply and poverty status. Material and methods. Continuous survey (repeated cross), with multistage random sampling, being the universe children under five years living in Peru. We evaluated the presence of free chlorine in drinking water samples in the dwellings of 3570 children (Metropolitan Lima 666, Rest of Coast 755, Urban Sierra 703, R...

  17. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  18. Factors that affect public-supply water use in Florida, with a section on projected water use to the year 2020

    Science.gov (United States)

    Marella, R.L.

    1992-01-01

    Public-supply water use in Florida increased 242 percent between 1960 and 1987 from 530 Mgal/d (million gallons per day) to 1,811 Mgal/d. This change is primarily a result of increases in population and tourism since 1960. Public-supply utilities provide water to a variety of users. In 1985, 71 percent of the water used for public supply was delivered for residential uses, 15 percent for commercial uses, 9 percent for industrial uses, and the remaining 5 percent for public use or other uses. Residential use of public-supply water in Florida has increased nearly 280 Mgal/d, but has decreased in the proportion of total deliveries from 80 to 71 percent between 1975 and 1985. This trend resulted from increased tourism and related commercial services associated with population and visitors. One of several factors that influences public-supply water use in Florida is the increase in resident population, which increased from 4.95 million in 1960 to more than 12.0 million in 1987. Additionally, Florida's nonresident population increased from 18.8 million visitors in 1977, to 34.1 million visitors in 1987, and the part of Florida?s population that relies on public-supply water increased from 68 percent in 1960, to 86 percent in 1987. The public supply per capita use was multiplied by the projected populations for each county for the years 2000, 2010, and 2020 to forecast public-supply water use. Using medium projections, Florida?s population is expected to increase to nearly 16 million in the year 2000, to 18 million in the year 2010, and to almost 20 million in the year 2020, of which an estimated 13.5 million people will be supplied water from public-supply water systems in the year 2000, 15 million in 2010, and nearly 17 million by the year 2020. Public-supply water use is expected to increase to a projected (medium) 2,310 Mgal/d in the year 2000, 2,610 Mgal/d in the year 2010, and 2,890 Mgal/d in the year 2020. If the population exceeds the medium projections for the

  19. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    Energy Technology Data Exchange (ETDEWEB)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  20. Light Water Reactor Sustainability Research and Development Program Plan. Fiscal Year 2009-2013

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R and D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R and D programs. The purpose of the LWRS R and D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R and D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its

  1. Surface-atmospheric water cycle at Gale crater through multi-year MSL/REMS observations

    Science.gov (United States)

    Harri, A. M.; Genzer, M.; McConnochie, T. H.; Savijarvi, H. I.; Smith, M. D.; Martinez, G.; de la Torre Juarez, M.; Haberle, R. M.; Polkko, J.; Gomez-Elvira, J.; Renno, N. O.; Kemppinen, O.; Paton, M.; Richardson, M. I.; Newman, C. E.; Siili, T. T.; Mäkinen, T.

    2017-12-01

    The Mars Science laboratory (MSL) has been successfully operating for almost three Martian years. That includes an unprecedented long time series of atmospheric observations by the REMS instrument performing measurements of atmospheric pressure, relative humidity (REMS-H), temperature of the air, ground temperature, UV and wind speed and direction. The REMS-H relative humidity device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The REMS-H humidity instrument has created an unprecedented data record of more than two full Martian. REMS-H measured the relative humidity and temperature at 1.6 m height for a period of 5 minutes every hour as part of the MSL/REMS instrument package. We focus on describing the annual in situ water cycle with the REMS-H instrument data for the period of almost three Martian years. The results will be constrained through comparison with independent indirect observations and through modeling efforts. We inferred the hourly atmospheric VMR from the REMS-H observations and compared these VMR measurements with predictions of VMR from our 1D column Martian atmospheric model and regolith to investigate the local water cycle, exchange processes and the local climate in Gale Crater. The strong diurnal variation suggests there are surface-atmosphere exchange processes at Gale Crater during all seasons, which depletes moisture to the ground in the evening and nighttime and release the moisture back to the atmosphere during the daytime. On the other hand, these processes do not seem to result in significant water deposition on the ground. Hence, our modelling results presumably indicate that adsorption processes take place during the nighttime and desorption during the daytime. Other processes, e.g. convective

  2. Hydrologic drought of water year 2011 compared to four major drought periods of the 20th century in Oklahoma

    Science.gov (United States)

    Shivers, Molly J.; Andrews, William J.

    2013-01-01

    Water year 2011 (October 1, 2010, through September 30, 2011) was a year of hydrologic drought (based on streamflow) in Oklahoma and the second-driest year to date (based on precipitation) since 1925. Drought conditions worsened substantially in the summer, with the highest monthly average temperature record for all States being broken by Oklahoma in July (89.1 degrees Fahrenheit), June being the second hottest and August being the hottest on record for those months for the State since 1895. Drought conditions continued into the fall, with all of the State continuing to be in severe to exceptional drought through the end of September. In addition to effects on streamflow and reservoirs, the 2011 drought increased damage from wildfires, led to declarations of states of emergency, water-use restrictions, and outdoor burning bans; caused at least $2 billion of losses in the agricultural sector and higher prices for food and other agricultural products; caused losses of tourism and wildlife; reduced hydropower generation; and lowered groundwater levels in State aquifers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to compare the severity of the 2011 drought with four previous major hydrologic drought periods during the 20th century – water years 1929–41, 1952–56, 1961–72, and 1976–81. The period of water years 1925–2011 was selected as the period of record because few continuous record streamflow-gaging stations existed before 1925, and gaps in time existed where no streamflow-gaging stations were operated before 1925. In water year 2011, statewide annual precipitation was the 2d lowest, statewide annual streamflow was 16th lowest, and statewide annual runoff was 42d lowest of those 87 years of record. Annual area-averaged precipitation totals by the nine National Weather Service climate divisions from water year 2011 were compared to those during four previous major hydrologic drought

  3. Bulk delivery of explosives offers positive advantages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    The bulk delivery of precisely-formulated explosives directly to the shothole is a safe, secure and cost effective way of bringing rock to the quarry floor. This article describes several of the latest generation of Anfo trucks. The typical Anfo truck carries ammonium nitrate and fuel oil in bulk, together with several other mix constituents, including an emulsifying agent. These are designed to form the basis of a range of emulsion-type explosives. In effect, these are water in oil emulsions where the water phase consists of droplets of a saturated solution of the oxidizing material suspended in oil. The formulations may be further tailored to the shothole requirements by the addition of oils or waxes, which can alter the viscosity of the explosive. The precise and programmable controls which determine the exact quantities of materials delivered to the mixer mean that the explosive mixtures can be tailored exactly to the requirements of the blasting operation, be it the amount of rock to be dislodged, the geological conditions, or the state of the shothole - either wet or dry. 4 systems are described in detail. 3 figs.

  4. A Seven-Year Major and Trace Element Study of Rain Water in the Barcés River Watershed, A Coruña, NW Spain

    Science.gov (United States)

    Delgado, Jordi; Cereijo-Arango, José Luis; Juncosa-Rivera, Ricardo

    2016-04-01

    Precipitation constitutes an important source of soluble materials to surface waters and, in areas where they are diluted precipitation (either dry or wet) it can be the most relevant solute source. Certain trace elements may have a limited natural availability in soils and rocks although they can be important with respect the operation of different biogeochemical cycles, for the computation of local/regional atmospheric pollutant loads or from the global mass budget. In the present study we report the results obtained in a long-lasting (December 2008-December 2015) monitoring survey of the chemical composition of bulk precipitation as monthly-integrated samples taken at the headwaters of the Barcés river watershed (A Coruña, Spain). This location was selected based on the necessity of quantification of the chemical composition and elemental loads associated with the different water types (stream water, ground water and precipitation) contributing to the flooding of the Meirama lake. Available data includes information on meteorological parameters (air temperature, relative humidity, atmospheric pressure, wind speed and direction, total and PAR radiation and precipitation) as well as a wide bundle of physico-chemical (pH, redox, electrical conductivity, alkalinity, Li, Na, K, Mg, Ca, Sr, Mn, Fe, NH4, Cs, Rb, Ba, Zn, Cu, Sb, Ni, Co, Cr, V, Cd, Ag, Pb, Se, Hg, Ti, Sn, U, Mo, F, Cl, Br, SO4, NO3, NO2, Al, As, PO4, SIO2, B, O2, DIC, DOC) and isotopic (18Ov-smow and 2Hv-smow) constituents. The average pH of local precipitation is 5.6 (n=65) which is consistent with the expected value for natural, unpolluted rain water. Most of the studied elements (eg. Na, Ca, K, Mg, SiO2, etc.) shows significant increases in their concentration in the dry period of the year. That points towards a more significant contribution of dry deposition in these periods compared with the wet ones. The average electrical conductivity is about 67 S/cm while the average chloride

  5. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, C.; Duvivier, L.; Girasa, E. [LABORELEC, Chemistry of Water (Belgium); Brognez, J. [ELECTRABEL, TIHANGE Nuclear Power Station (Belgium)

    2002-07-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this

  6. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    International Nuclear Information System (INIS)

    Goffin, C.; Duvivier, L.; Girasa, E.; Brognez, J.

    2002-01-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this solution is no

  7. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  8. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  9. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    Full Text Available Introduction: In recent years, production techniques and equipment have been developed for conservation of tillage systems that have been adopted by many farmers. With proper management, overall yield averages for conventional and reduced tillage systems are nearly identical. Sometimes, field operations can be combined by connecting two or more implements. Combined operations reduce both fuel consumption, and time and labor requirements by eliminating at least one individual trip over the field. Light tillage, spraying, or fertilizing operations can be combined with either primary or secondary tillage or planting operations. Tillage helps seed growth and germination through providing appropriate conditions for soil to absorb sufficient temperature and humidity. Moreover, it helps easier development of root through reducing soil penetration resistance. Tillage is a time-consuming and expensive procedure. With the application of agricultural operations, we can save substantial amounts of fuel, time and energy consumption. Conservation tillage loosens the soil without turning, but by remaining the plant left overs, stems and roots. Bulk density reflects the soil’s ability to function for structural support, water and solute movement, and soil aeration. Bulk densities above thresholds indicate impaired function. Bulk density is also used to convert between weight and volume of soil. It is used to express soil physical, chemical and biological measurements on a volumetric basis for soil quality assessment and comparisons between management systems. This increases the validity of comparisons by removing the error associated with differences in soil density at the time of sampling. The aim of conservation tillage is to fix the soil structure. This investigation was carried out considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country

  10. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  11. Water and beverage consumption patterns among 4 to 13-year-old children in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Florent Vieux

    2017-05-01

    Full Text Available Abstract Background The UK government has announced a tax on sugar-sweetened beverages. The aim of this study was to assess consumption patterns for plain drinking water relative to sugary beverages among UK children. Methods Dietary intake data for 845 children aged 4–13 years came from the nationally representative cross-sectional National Diet and Nutrition Survey, 2008–2011. Beverage categories were drinking water (tap or bottled, milk, 100% fruit juices, soda, fruit drinks, tea, coffee, sports drinks, flavored waters, and liquid supplements. Consumption patterns were examined by age group, gender, household incomes, time and location of consumption, region and seasonality. Total water consumption from drinking water, beverages, and foods, and the water-to-calorie ratios (L/kcal were compared to the EFSA (European Food Safety Authority adequate intake standards. Results Total water intake (1338 ml/d came from plain water (19%, beverages (48%, and food moisture (33%. Plain drinking water provided 258 g/d (241 g/d for children aged 4–8 years; 274 g/d for 9–13 years, mostly (83.8% from tap. Water and beverages supplied 901 g /d of water. Tap water consumption increased with income and was highest in the South of England. The consumption of bottled water, soda, tea and coffee increased with age, whereas milk consumption declined. About 88.7% of children did not meet EFSA adequate intake standards. The daily water shortfall ranged from 322 ml/d to 659 ml/d. Water-to-calorie ratio was 0.845 L/1000 kcal short of desirable levels of 1.0–1.5 L/1000 kcal. Conclusion Total water intake were at 74.8% of EFSA reference values. Drinking water consumption among children in the UK was well below US and French estimates.

  12. Macrobenthic community structure in the northern Saudi waters of the Gulf, 14years after the 1991 oil spill

    KAUST Repository

    Joydas, Thadickal Viswanathan

    2012-02-01

    The 1991 Gulf oil spill heavily impacted the coastal areas of the Saudi waters of the Arabian Gulf and recent studies have indicated that even 15. years after the incident, macrobenthos had not completely recovered in the sheltered bays in the affected region such as, Manifa Bay. This study investigates the community conditions of macrobenthos in the open waters in one of the impacted areas, Al-Khafji waters, about 14. years after the spill. Diversity measures and community structure analyses indicate a healthy status of polychaete communities. The BOPA index reveals that oil sensitive amphipods were recolonized in the study area. This confirms that the benthic communities of the oil spill impacted area had taken only <14 years to recover in the open waters of the impacted areas. The study also reveals the existence of three distinct polychaete communities along the depth and sediment gradients. © 2011 Elsevier Ltd.

  13. Macrobenthic community structure in the northern Saudi waters of the Gulf, 14years after the 1991 oil spill

    KAUST Repository

    Joydas, Thadickal Viswanathan; Qurban, Mohammad Ali; Al-Suwailem, Abdulaziz M.; Krishnakumar, P. K.; Nazeer, Zahid B.; Cali, N. A.

    2012-01-01

    The 1991 Gulf oil spill heavily impacted the coastal areas of the Saudi waters of the Arabian Gulf and recent studies have indicated that even 15. years after the incident, macrobenthos had not completely recovered in the sheltered bays in the affected region such as, Manifa Bay. This study investigates the community conditions of macrobenthos in the open waters in one of the impacted areas, Al-Khafji waters, about 14. years after the spill. Diversity measures and community structure analyses indicate a healthy status of polychaete communities. The BOPA index reveals that oil sensitive amphipods were recolonized in the study area. This confirms that the benthic communities of the oil spill impacted area had taken only <14 years to recover in the open waters of the impacted areas. The study also reveals the existence of three distinct polychaete communities along the depth and sediment gradients. © 2011 Elsevier Ltd.

  14. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    Science.gov (United States)

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  15. Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam during Water Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Poch, L. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Veselka, T. D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year (WY) 2015. It is the seventh report in a series examining the financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined WYs 1997 to 2005 (Veselka et al. 2011); a report released in August 2011 examined WYs 2006 to 2010 (Poch et al. 2011); a report released June 2012 examined WY 2011 (Poch et al. 2012); a report released April 2013 examined WY 2012 (Poch et al. 2013); a report released June 2014 examined WY 2013 (Graziano et al. 2014); and a report released September 2015 examined WY 2014 (Graziano et al. 2015). An experimental release may have either a positive or negative impact on the financial value of energy production. Only one experimental release was conducted at GCD in WY 2015; specifically, a high flow experimental (HFE) release conducted in November 2014. For this experimental release, financial costs of approximately $2.1 million were incurred because the HFE required sustained water releases that exceeded the powerplant’s maximum flow rate. In addition, during the month of the experiment, operators were not allowed to shape GCD power production to either follow firm power customer loads or to respond to market prices. This study identifies the main factors that contribute to HFE costs and examines the interdependencies among these factors. It applies an integrated set of tools to estimate financial impacts by simulating the GCD operations under two scenarios: (1) a baseline scenario that mimics both HFE operations during the experiment and during the rest of the year when it complies with the 1996 ROD operating criteria, and (2) a “without experiments” scenario that is identical to the baseline except it assumes that the HFE did not occur. The Generation and Transmission Maximization (GTMax) model was the

  16. Water pollution control: Twenty-five years of progress and challenges for the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    Consistent with the goals of the new Clean Water Action Plan, the Office of Wastewater Management (OWM) has renewed its commitment to improving the quality of water in the United States for the benefit of all citizens.

  17. Modelling of water and chloride transport in concrete during yearly wetting/drying cycles

    NARCIS (Netherlands)

    Van Der Zanden, A.J.J.; Taher, A.; Arends, T.

    2015-01-01

    The simultaneous transport of water and chloride in concrete has been modelled. The water transport is described with a concentration dependent diffusion coefficient. The chloride transport is modelled with a convective part, caused by the water transport, and a diffusive part, caused by the

  18. Water-quality trends for selected sampling sites in the upper Clark Fork Basin, Montana, water years 1996-2010

    Science.gov (United States)

    Sando, Steven K.; Vecchia, Aldo V.; Lorenz, David L.; Barnhart, Elliott P.

    2014-01-01

    A large-scale trend analysis was done on specific conductance, selected trace elements (arsenic, cadmium, copper, iron, lead, manganese, and zinc), and suspended-sediment data for 22 sites in the upper Clark Fork Basin for water years 1996–2010. Trend analysis was conducted by using two parametric methods: a time-series model (TSM) and multiple linear regression on time, streamflow, and season (MLR). Trend results for 1996–2010 indicate moderate to large decreases in flow-adjusted concentrations (FACs) and loads of copper (and other metallic elements) and suspended sediment in Silver Bow Creek upstream from Warm Springs. Deposition of metallic elements and suspended sediment within Warm Springs Ponds substantially reduces the downstream transport of those constituents. However, mobilization of copper and suspended sediment from floodplain tailings and stream banks in the Clark Fork reach from Galen to Deer Lodge is a large source of metallic elements and suspended sediment, which also affects downstream transport of those constituents. Copper and suspended-sediment loads mobilized from within this reach accounted for about 40 and 20 percent, respectively, of the loads for Clark Fork at Turah Bridge (site 20); whereas, streamflow contributed from within this reach only accounted for about 8 percent of the streamflow at Turah Bridge. Minor changes in FACs and loads of copper and suspended sediment are indicated for this reach during 1996–2010. Clark Fork reaches downstream from Deer Lodge are relatively smaller sources of metallic elements than the reach from Galen to Deer Lodge. In general, small decreases in loads and FACs of copper and suspended sediment are indicated for Clark Fork sites downstream from Deer Lodge during 1996–2010. Thus, although large decreases in FACs and loads of copper and suspended sediment are indicated for Silver Bow Creek upstream from Warm Springs, those large decreases are not translated to the more downstream reaches largely

  19. A continuing 30-year decline in water quality of Jiaojiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Chun-ye Wang

    2015-01-01

    Full Text Available A quantitative description of a long-term series of aquatic environmental factors and their spatial distributions was generated using measured data from the Jiaojiang Estuary from 1982 to 2011. The aquatic environmental factors included suspended matter, salinity, and nutrients. Based on these factors, the aquatic ecosystem health in the Jiaojiang Estuary over the last 30 years was analyzed. The results indicated that the suspended matter concentration in the estuary was mainly affected by the amounts of suspended sediment and solid waste, with the value fluctuating over a long period, and the range of high concentration expanded continually; the salinity was mainly affected by precipitation and surface water resources, showing an overall decreasing trend, and the region with low salinity moved seaward and toward the reclamation areas; and the nutritional status, mainly affected by discharge of industrial wastewater and domestic sewage, was satisfactory in the 1980s and 1990s, but the status became severe in recent years. Reclamation had a great influence on these three factors: high reclamation strength led to a significant increase in the suspended matter concentration and a deterioration of the nutritional status, and the reclamation rate was negatively related with the salinity in the estuary. There was a significant positive correlation between the health status of the aquatic ecosystem and salinity, with a correlation coefficient of 0.93. The correlation coefficient between the health status and nutritional status was −0.71, while the correlation between the suspended matter concentration and health status was not as significant as that of the other two factors. The dynamics of the aquatic environment could be divided into four stages: sustainable health from the 1980s to the 1990s, continued deterioration from 2000 to 2003, improvement from 2004 to 2005, and secondary deterioration from 2006 to 2011. The Jiaojiang Estuary is faced with

  20. [State of the quality of drinking water in households in children under five years in Peru, 2007-2010].

    Science.gov (United States)

    Miranda, Marianella; Aramburú, Adolfo; Junco, Jorge; Campos, Miguel

    2010-01-01

    To evaluate the proportion of children under five with access to quality water and its behavior according to geographical location, water supply and poverty status. Continuous survey (repeated cross), with multistage random sampling, being the universe children under five years living in Peru. We evaluated the presence of free chlorine in drinking water samples in the dwellings of 3570 children (Metropolitan Lima 666, Rest of Coast 755, Urban Sierra 703, Rural Sierra 667, and Jungle 779). We evaluated the presence of total coliforms and E. coli in water samples of 2310 households (445 Metropolitan Lima, Rest of Coast 510, Urban Sierra 479, Rural Sierra Selva 393 and 483). The national proportion of children under five years living in households with adequate free chlorine in drinking water reaches 19.5% of the total, while water free of coliforms and E. coli is 38.3%. There is a marked difference in results by area of residence (the most affected areas were rural Sierra and Jungle), public network at home inside the dwelling and income quintiles. Children under five years living in households belonging to the rural areas and extreme poverty, have a great disadvantage to access quality water consumption. This situation represents a serious problem for the control of diarrheal diseases and children malnutrition.

  1. Water Resources Data, Colorado, Water Year 1999. Volume 1. Missouri River Basin, Arkansas River Basin, and Rio Grande Basin

    Science.gov (United States)

    2000-04-01

    because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any...CO WATER-QUALITY RECORDS LOCATIOI -Lat 38=16󈧖», long 104°43󈧇", in SEV4 NEV4 sec.36, T.20 S. ielt bank 200 ft downstream from northeast comer of

  2. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  3. Water and beverage consumption patterns among 4 to 13-year-old children in the United Kingdom

    OpenAIRE

    Florent Vieux; Matthieu Maillot; Florence Constant; Adam Drewnowski

    2017-01-01

    Abstract Background The UK government has announced a tax on sugar-sweetened beverages. The aim of this study was to assess consumption patterns for plain drinking water relative to sugary beverages among UK children. Methods Dietary intake data for 845 children aged 4–13 years came from the nationally representative cross-sectional National Diet and Nutrition Survey, 2008–2011. Beverage categories were drinking water (tap or bottled), milk, 100% fruit juices, soda, fruit drinks, tea, coffee,...

  4. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  5. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  6. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  7. Effects of water gymnastics on anthropometric variables of women aged 60 - 80 years

    Directory of Open Access Journals (Sweden)

    Adair da Silva Lopes

    2001-12-01

    Full Text Available This study aimed to analyze the effects of eight months of water gymnastics on the anthropometric variables of women aged 60 - 80 years. The sample comprised formed by 62 women (Experimental Group, EG, n = 50; Control Group, CG, n = 12, who were measured for body mass (kg, stature (cm, circumferences in cm (arms, normal chest, abdomen waist, hip, mid-thigh and calf and sum of skinfolds representing regional fat (trunk, limbs, central and peripheral, and total fat. The EG participated at all water activities for 32 weeks which, a total of 64 sessions, each lasting for about 45 min. Alpha level was set at p ≤ 0.05 for all comparisons. For pre-and-post test comparison of the EG, Student’s t test for dependent samples was used. The independent t test was used to compare both groups at the beginning and at the end of the experiment. According to the results the following can be stated: the water gymnastics program followed for 8 months, helped to statistically reduce body mass and body circumferences at waist, hip, mid-thigh and calf levels. Signifi cant differences in the distribution of regional body fat and total fat were observed found (p ≤ 0.05 at trunk and limbs and in peripheral and total body fat. ABSTRACT O presente estudo teve como objetivo analisar os efeitos de oito meses de hidroginástica sobre indicadores antropométricos de mulheres entre 60 e 80 anos de idade. Participaram da amostra 62 mulheres, divididas em dois grupos: experimental (GE, n = 50 e controle (GC, n = 12. Mediu-se a massa corporal (kg, estatura corporal (cm, perímetros, cm (tronco normal, abdômen na região da cintura, glútea, coxa e panturrilha e somatórios de dobras cutâneas (mm, representando a gordura por região (tronco, membros, central e periférica e a gordura total. O grupo experimental participou das atividades de hidroginástica durante 32 semanas, totalizando 64 sessões, com duração aproximada de 45 minutos. Para a análise dos dados entre o

  8. [100 years of drinking water regulation. Retrospective review, current situation and prospects].

    Science.gov (United States)

    Rakhmanin, Yu A; Krasovsky, G N; Egorova, N A; Mikhailova, R I

    2014-01-01

    There is considered the history of the development of legislative requirements to the regulation of the quality of drinking water in different countries and international organizations during the period from 1912 to the present time. In terms of comparative analysis there is analyzed the current state of regulatory frameworks of the Russian Federation, WHO, EU, Finland, the UK, Singapore, Australia, Japan, China, Nigeria, the United States and Canada in the field of providing favorable conditions of population drinking water use. There has been noted the significant progress in standardization of the content of the biogenic elements and chemical pollution of drinking water in the absence of uniform requirements to the composition and properties of drinking water globally, that is bound to the need to take into account the national peculiarities of drinking water supply within the separate countries. As promising directions for improving regulation of drinking water quality there are noted: the development of new standards for prioritized water pollution, periodic review ofstandards after appearance of the new scientific data on the biological action of substances, the use of the concept of risk, the harmonization of the normative values and the assessment of the possibility of introduction into the practice the one more criterion of profitableness of population water use--the bioenergetic state of the water.

  9. Loads and yields of deicing compounds and total phosphorus in the Cambridge drinking-water source area, Massachusetts, water years 2009–15

    Science.gov (United States)

    Smith, Kirk P.

    2017-09-12

    The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154

  10. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  11. One-year assessment of a solar space/water heater--Clinton, Mississippi

    Science.gov (United States)

    1981-01-01

    Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

  12. Applicability of adapted reservoir operation for water stress mitigation under dry year conditions

    NARCIS (Netherlands)

    Olsson, O.; Ikramova, M.; Bauer, M.; Froebrich, J.

    2010-01-01

    This paper introduces the conjunctive use of a deterministic water quality model and water balance criteria for supporting the assessment of simulation and to evaluate the effectiveness of proposed operation strategies. By this, the applicability of enhanced reservoir operation strategies addressing

  13. Depletion of barium and radium-226 in Black Sea surface waters over the past thirty years

    International Nuclear Information System (INIS)

    Kenison Falkner, K.K.; Edmond, J.M.; O'Neill, D.J.; Todd, J.F.; Moore, W.S.

    1991-01-01

    The nearly landlocked waters of the Black Sea support a valuable fishery, but are also particularly vulnerable to anthropogenic disturbance. Here we use dissolved barium and radium-226 as tracers, to investigate the biogeochemical health of the sea. Both elements are brought to surface waters by vertical mixing of deeper, enriched waters, and by rivers; these inputs should ordinarily be balanced by outflow of surface waters at the Bosphorus, and by biologically mediated removal of 226 Ra-bearing barite. We show, however, that surface-water inventories have been substantially depleted over the past few decades: recent (1988-89) barium concentrations were 1.6 times lower than in 1958 and 1967. These observations suggest that steady-state cycling of these elements has been perturbed by increased primary productivity, presumably fuelled by nutrients from industry and agricultural runoff, and to a lesser extent by decreased fluvial sediment loads owing to extensive impoundment of rivers in the region. (author)

  14. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  15. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  16. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  17. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  18. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

    Science.gov (United States)

    Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W

    2000-04-01

    To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the production of bromate. We applied clinical, epidemiologic, and toxicologic data on morbidity and mortality to calculate the net health benefit in DALYs. We estimated the median risk of infection with C. parvum as 10(-3)/person-year. Ozonation reduces the median risk in the baseline approximately 7-fold, but bromate is produced in a concentration above current guideline levels. However, the health benefits of preventing gastroenteritis in the general population and premature death in patients with acquired immunodeficiency syndrome outweigh health losses by premature death from renal cell cancer by a factor of > 10. The net benefit is approximately 1 DALY/million person-years. The application of DALYs in principle allows us to more explicitly compare the public health risks and benefits of different management options. In practice, the application of DALYs may be hampered by the substantial degree of uncertainty, as is typical for risk assessment.

  19. Assessment of water quality of the Tisa River (Vojvodina, North Serbia for ten year period using Serbian water quality index (SWQI

    Directory of Open Access Journals (Sweden)

    Leščešen Igor

    2014-01-01

    Full Text Available The WQI method is most frequently used in expert and scientific research and basically it provides a mechanism for cumulative representation, numeric expression and defining a certain level of water quality. This paper aims to assess water quality of the Tisa River in Vojvodina (North Serbia for the 2003 - 2012 period. Serbian Water Quality Index (SWQI was used for assessment of the river water quality. WQI is expressed as a single value ranging from 0 to 100 (best quality derived from numerous physical, chemical, biological and microbiological parameters. The results of SWQI for the Tisa River were mainly rated as good. Also, in this study it is noticed a clear decrease in water quality during warmer period of the year. Also, this study shows that water quality along the Tisa River decreases slightly but steadily down- stream, from Martonoš to Titel station and all along the length of the river provides values that according to SWQI descriptive quality indicator has been defined as good (72-83. The main problem of SWQI used in this paper is that it does not involve parameters of heavy metals concentration.

  20. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration

    2010-04-21

    releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were $11.9 million.

  1. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration, Colorado River Storage Project Management Center)

    2011-08-22

    Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.

  2. Water, soil and soccer: an experience of two years promoting humanistic competences and standardization of curricula

    Science.gov (United States)

    Licciardello, Feliciana; Consoli, Simona; Izquierdo, Guillermo; Parraguirre, Sebastián; Pérez-Palazón, María J.; Pimentel, Rafael; Polo, María J.; Taguas, Encarnación V.

    2015-04-01

    We present an experience of two years where a group of professors of University in Catania (Italy) and the University of Cordoba (Spain) created a practical case about hydrological planning in the context of similar subjects. The proposed work had to be solved and presented by teams of two students who competed following the philosophy of soccer leagues (national and champion). In the final match, the best teams of each country "played" and defended their work which was judged by an international committee of professors. The presentation and defense was carried out through videoconference so the fans in each country could support their teams. The winners in each country received a certificate of both Universities and the participation in the EGU Assembly 2014 and 2015 as coauthors of the present work. The objective of the practical case is the calculation of design peak flow for a rainfall quantile in a rural catchment following the Curve Number method developed by the Soil Conservation Service (1972.) This type of study implies different disciplines of Hydrology and Soil Sciences and the use of Geographic Information Systems and calculation and programming tools which is very useful to improve the students' technical skills. As for humanistic skills, an oral presentation in English allows improving their knowledge in foreign languages and to face a challenging experience which can be compared with an interview for a job. This teaching experience was very motivating for the students and the professors involved. The results of surveys done by the students indicated the improvement of the level of knowledge about hydrological engineering projects as well as the interest in managing water resources. This type of experience can be useful for other subjects or can integrate more teaching centres. REFERENCES: USDA Soil Conservation Service, 1972. National Engineering Handbook, Section 4, Hydrology. US Government Printing Office, Washington, DC, 544. Acknowledment

  3. Selected Hydrologic Data, Through Water Year 1998, Black Hills Hydrology Study, South Dakota

    National Research Council Canada - National Science Library

    Driscoll, Daniel G; Bradford, Wendell L; Moran, Michael J

    2000-01-01

    .... This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District...

  4. Caries status in 16 year-olds with varying exposure to water fluoridation in Ireland.

    LENUS (Irish Health Repository)

    Mullen, J

    2012-12-01

    Most of the Republic of Ireland\\'s public water supplies have been fluoridated since the mid-1960s while Northern Ireland has never been fluoridated, apart from some small short-lived schemes in east Ulster.

  5. Charles River Water Quality Improvements Earns an A- for the Second Time in the Past Five Years

    Science.gov (United States)

    EPA has given the Charles River a grade of A- for bacterial water quality in the river during 2017. This is only the second time the river has earned a grade as high as an A-minus, and both have occurred within the past five years.

  6. Saving on natural resources with SRO - desalination of industrial waste water for reuse at ESKOM Tutuka (two years operating experience)

    Energy Technology Data Exchange (ETDEWEB)

    Walt, Mike van der; Wessels, A.

    2001-07-01

    Natural resources are protected and saved with the new spiral reverse osmosis (SRO) plant at the Eskom Tutuka power station in the Mpumalanga province of South Africa. 7,000 m{sup 3}/day of saline underground mine water blended with 5,400 m{sup 3}/day of cooling water blowdown is pretreated and desalinated before the product water is returned to the cooling water circuit. Weir Envig designed, constructed, installed and commissioned the plant in phases between August 1998 and April 1999 with innovative use of existing infrastructure and phased removal of the live, ageing electrodialysis reversal plant. The plant performance during two years of operation is presented, which demonstrates that good pretreatment and cleaning system design allows SRO to produce consistent high-quality water from this difficult and varying feed. The result is a coal mine with no effluent problems, a new source of water for the power station and a treatment plant, which produces significantly better condenser cooling water and maintain zero liquid discharge. (orig.)

  7. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  8. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  9. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  10. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    Science.gov (United States)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total

  11. AECB staff annual report of Bruce Heavy Water Plant operation for the year 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Bruce Heavy Water Plant operation was acceptably safe in 1991. There were no breaches of any of the regulations issued under the authority of the Atomic Energy Control Act. There was one violation of the operating licence. For one hour on October 30, 1991, water leaving the plant contained more hydrogen sulphide than Ontario regulations allow. There was no threat to public health or safety or harm to the environment as a result of this violation. One worker was overcome by hydrogen sulphide. The worker did not lose consciousness, but had the symptoms of H 2 S poisoning. Ontario Hydro took actions to increase awareness of the Operating Policy and Principles at Bruce Heavy Water Plant during 1991. All personnel attended a training course, and Ontario Hydro is reviewing all Bruce Heavy Water Plant documentation to ensure it is consistent with the Operating Policies and Principles. Ontario Hydro met 13 of 15 safety-related system availability targets. The AECB is satisfied appropriate action is being taken to improve the performance of the other two systems. Ontario Hydro continued to put heavy emphasis on safety training; however, they did not meet some of their other training targets. Ontario Hydro completed all of the planned emergency exercises at Bruce Heavy Water Plant in 1991. (Author)

  12. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    International Nuclear Information System (INIS)

    Kadara, Rashid O.; Tothill, Ibtisam E.

    2008-01-01

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi 2 O 3 ) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi 2 O 3 (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 μg L -1 ) with limits of detection of 8 and 16 μg L -1 for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples

  13. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom); School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottinghamshire NG11 8NS (United Kingdom)], E-mail: kayusee2001@yahoo.co.uk; Tothill, Ibtisam E. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom)

    2008-08-08

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi{sub 2}O{sub 3}) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi{sub 2}O{sub 3} (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 {mu}g L{sup -1}) with limits of detection of 8 and 16 {mu}g L{sup -1} for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples.

  14. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Science.gov (United States)

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  15. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    Science.gov (United States)

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  16. 10 years of make-up water treatment with integrated reverse osmosis at Grosskraftwerk Mannheim

    International Nuclear Information System (INIS)

    Spindler, K.; Bloechl, H.; Bursik, A.

    1993-01-01

    Since 1982, at Grosskraftwerk Mannheim, a make-up water treatment in which three reverse osmosis plants are integrated, has been operating. The original high-pressure hollow fibre module of these plants has been replaced by low-pressure coil modules. The reasons for the change in system are described in the paper. In the low-pressure plant, coil modules have been installed by several manufacturers. The paper reports on experience with the low-pressure elements. The experience gained has been streamed into the planning proposals for the new make-up water treatment plant. (orig.) [de

  17. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    Science.gov (United States)

    Hultine, K R; Bush, S E; Ehleringer, J R

    2010-03-01

    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  18. ''In sutu'' radiation cleaning of underground water contaminated with cyanides - six years of experience

    International Nuclear Information System (INIS)

    Pastuszek, F.; Vacek, K.; Vondruska, V.

    1993-01-01

    Underground water, contaminated with cyanides, has been successfully cleaned using the hydraulic barrier method (assembly of pumped wells) since 1986. The average cyanide concentrations in the outflow exceeded 35 mg per litre. Contamination had to be eliminated before the discharge into the sewer system. The radiation approach ''in situ'' i.e. decomposition of cyanides by barrier, was applied and is still being used today. The cyanide concentration was lowered more than one order of magnitude. This process was approved by the Czechoslovak radiation security authorities and further applications of ''in situ'' regeneration of underground water contamination is anticipated. (author)

  19. The effects of plastic film mulching on maize growth and water use in dry and rainy years in Northeast China.

    Science.gov (United States)

    Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming

    2015-01-01

    Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m(-3)) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account.

  20. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  1. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  2. Evolution of the human-water relationships in the Heihe River basin in the past 2000 years

    Science.gov (United States)

    Lu, Z.; Wei, Y.; Xiao, H.; Zou, S.; Xie, J.; Ren, J.; Western, A.

    2015-05-01

    This paper quantitatively analyzed the evolution of human-water relationships in the Heihe River basin of northern China over the past 2000 years by reconstructing the catchment water balance by partitioning precipitation into evapotranspiration and runoff. The results provided the basis for investigating the impacts of societies on hydrological systems. Based on transition theory and the rates of changes of the population, human water consumption and the area of natural oases, the evolution of human-water relationships can be divided into four stages: predevelopment (206 BC-AD 1368), take-off (AD 1368-1949), acceleration (AD 1949-2000), and the start of a rebalancing between human and ecological needs (post AD 2000). Our analysis of the evolutionary process revealed that there were large differences in the rate and scale of changes and the period over which they occurred. The transition of the human-water relationship had no fixed pattern. This understanding of the dynamics of the human-water relationship will assist policy makers in identifying management practices that require improvement by understanding how today's problems were created in the past, which may lead to more sustainable catchment management in the future.

  3. Impacts of recent drought and warm years on water resources and electricity supply worldwide

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Sheffield, Justin; Wiberg, David; Wood, Eric F.

    2016-01-01

    Recent droughts and heatwaves showed the vulnerability of the electricity sector to surface water constraints with reduced potentials for thermoelectric power and hydropower generation in different regions. Here we use a global hydrological-electricity modelling framework to quantify the impacts of

  4. Two-year water degradation of self-etching adhesives bonded to bur ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2009-01-01

    To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were

  5. Water and Wastewater Technology; A Suggested 2-Year Post High School Curriculum.

    Science.gov (United States)

    Department of the Interior, Washington, DC.

    This curriculum guide with accompanying course outlines was developed by technical education specialists for teacher use in conducting courses of instruction for the preparation of water and wastewater technicians. The content objectives are to provide students with a background of knowledge in the diverse areas of applied sanitation which relate…

  6. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey.

    Science.gov (United States)

    Totaro, Michele; Valentini, Paola; Costa, Anna Laura; Frendo, Lorenzo; Cappello, Alessia; Casini, Beatrice; Miccoli, Mario; Privitera, Gaetano; Baggiani, Angelo

    2017-10-26

    Although the European reports highlight an increase in community-acquired Legionnaires' disease cases, the risk of Legionella spp. in private houses is underestimated. In Pisa (Italy) we performed a three-year survey on Legionella presence in 121 buildings with an independent hot water production (IB); 64 buildings with a central hot water production (CB); and 35 buildings with a solar thermal system for hot water production (TB). From all the 220 buildings Legionella spp. was researched in two hot water samples collected either at the recirculation point or on the first floor and on the last floor, while the potable water quality was analysed in three cold water samples collected at the inlet from the aqueduct network, at the exit from the autoclave, and at the most remote tap. Legionella pneumophila sg1, Legionella pneumophila sg2-16, and non- pneumophila Legionella species were detected in 26% of the hot water networks, mostly in CB and TB. In these buildings we detected correlations between the presence of Legionella and the total chlorine concentration decrease and/or the increase of the temperature. Cold water resulted free from microbiological hazards, with the exception of Serratia liquefaciens and Enterobacter cloacae isolated at the exit from two different autoclaves. We observed an increase in total microbial counts at 22 °C and 37 °C between the samples collected at the most remote taps compared to the ones collected at the inlet from the aqueduct. The study highlights a condition of potential risk for susceptible categories of population and supports the need for measures of risk assessment and control.

  7. Water and beverage consumption among children aged 4?13 years in France: analyses of INCA 2 (?tude Individuelle Nationale des Consommations Alimentaires 2006?2007) data

    OpenAIRE

    Vieux, Florent; Maillot, Matthieu; Constant, Florence; Drewnowski, Adam

    2016-01-01

    Objective To examine the consumption of plain water among children in France and compare total water intakes with guidelines issued by the European Food Safety Authority (EFSA). Design Nationally representative data were used to assess food, beverage and water consumption by sex, age group (4?8 years, 9?13 years), income-to-poverty ratio, eating occasion and location. Beverages were classified into nine groups: water (tap or bottled), milk, 100 % fruit juice, sodas, fruit drinks, hot beverage...

  8. Contamination of YBCO bulk superconductors by samarium and ytterbium

    Czech Academy of Sciences Publication Activity Database

    Volochová, D.; Jurek, Karel; Radušovská, M.; Piovarči, S.; Antal, V.; Kováč, J.; Jirsa, Miloš; Diko, P.

    2014-01-01

    Roč. 496, JAN (2014), s. 14-17 ISSN 0921-4534 Institutional support: RVO:68378271 Keywords : YBCO bulk superconductors * critical temperature * critical current density * peak effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.942, year: 2014

  9. Water Resources Data for California, Water Year 1988. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Polinoski, K.G.; Hoffman, E.B.; Smith, G.B.; Bowers, J.C.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 17 lakes and reservoirs; and water quality for 24 streams. Also included are 10 crest-stage partial-record stations, 5 miscellaneous measurement sites, and 16 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  10. Water Resources Data for California, Water Year 1987. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  11. Water resources data for California, water year 1979; Volume 1: Colorado River basin, Southern Great Basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1981-01-01

    Water-resources data for the 1979 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  12. Water resources data for California, water year 1978; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1979-01-01

    Water-resources data for the 1978 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. These data, a contribution to the National water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  13. Water Resources Data for California, water year 1981: Vol. 1. Colorado River basin, Southern Great basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1982-01-01

    Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  14. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake

    DEFF Research Database (Denmark)

    Skov, Christian; Perrow, M.R.; Berg, Søren

    2002-01-01

    evaluated between predatory fish and potential prey and between zooplanktivorous or benthivorous fish and water quality parameters. In addition, potential consumption of piscivorous fishes was calculated. 3. The density of fish feeding on larger zooplankton or benthos (roach >15 cm, crucian carp >15 cm......1. Piscivores (annual stocking of 1000 individuals ha(-1) of 0+ pike and a single stocking of 30 kg ha(-1) of large 20-30 cm perch) were stocked in seven consecutive years in a shallow eutrophic lake in Denmark. The stocking programme aimed at changing food-web structure by reducing...... zooplanktivorous and benthivorous fish, with resultant effects on lower trophic levels and ultimately water quality. 2. The fish community and water quality parameters (Secchi depth, concentrations of total phosphorus, chlorophyll a and suspended solids) were monitored between 1996 and 2000 and relationships were...

  15. Water-resources activities of the U.S. Geological Survey in Texas; fiscal year 1987

    Science.gov (United States)

    Mitchell, Alicia A.

    1988-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands and to examine the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  16. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation

    International Nuclear Information System (INIS)

    Tamtam, Fatima; Oort, Folkert van; Le Bot, Barbara; Dinh, Tuc; Mompelat, Sophie; Chevreuil, Marc; Lamy, Isabelle; Thiry, Medard

    2011-01-01

    Spreading of urban wastewater on agricultural land may lead to concomitant input of organic and inorganic pollutants. Such multiple pollution sites offer unique opportunities to study the fate of both heavy metals and pharmaceuticals. We examined the occurrence and fate of selected antibiotics in sandy-textured soils, sampled four years after cessation of 100 years irrigation with urban wastewater from the Paris agglomeration. Previous studies on heavy metal contamination of these soils guided our sampling strategy. Six antibiotics were studied, including quinolones, with a strong affinity for organic and mineral soil components, and sulfonamides, a group of more mobile molecules. Bulk samples were collected from surface horizons in different irrigation fields, but also in subsurface horizons in two selected profiles. In surface horizons, three quinolones (oxolinic acid, nalidixic acid, and flumequine) were present in eight samples out of nine. Their contents varied spatially, but were well-correlated one to another. Their distributions showed great similarities regarding spatial distribution of total organic carbon and heavy metal contents, consistent with a common origin by wastewater irrigation. Highest concentrations were observed for sampling sites close to irrigation water outlets, reaching 22 μg kg -1 for nalidixic acid. Within soil profiles, the two antibiotic groups demonstrated an opposite behavior: quinolones, found only in surface horizons; sulfamethoxazole, detected in clay-rich subsurface horizons, concomitant with Zn accumulation. Such distribution patterns are consistent with chemical adsorption properties of the two antibiotic groups: immobilization of quinolones in the surface horizons ascribed to strong affinity for organic matter (OM), migration of sulfamethoxazole due to a lower affinity for OM and its interception and retention in electronegative charged clay-rich horizons. Our work suggests that antibiotics may represent a durable

  17. Fiscal Year 1987 program report: Rhode Island Water Resource Research Center

    International Nuclear Information System (INIS)

    Poon, P.C.

    1988-07-01

    The 1987 program objective was to conduct studies and research of value to the New England region as well as to assist in the solution of problems in the State of Rhode Island. Current and anticipated state and regional-water problems are contamination of surface and groundwater by natural radioactivity such as radon, by chemicals from industrial and agricultural activities, septic tank and leach field, improperly managed landfills and the lack of public awareness and public participation in water-quality protection and management. It was found in the 1987 program that an epithermal neutron-activation analysis was best suitable for measuring uranium and thorium of which radon is the decayed product. Lower U and Th were found in calc-alkalic and mafic volcanic rocks while higher concentrations were found in the alkalic and peraluminous rocks. A computer model using finite-element method to simulate fluid flows through fractured porous media was developed for predicting the extent of ground-water contamination in the State

  18. Isotopic composition of Danube water in the pre-delta section from the years 2009 - 2012

    Directory of Open Access Journals (Sweden)

    RANK Dieter

    2013-12-01

    Full Text Available The isotopic composition of river water in the Danube Basin is mainly governed by the isotopic composition of precipitation in the catchment area, evaporation effects play only a minor role. Short-term and long-term isotope signals from precipitation are thus transmitted through the whole catchment. The isotopic composition of Danube water in the Delta region so provides an integrated isotope signal for climatic/hydrological conditions and changes in the whole catchment. The aim of this investigation was to establish a representative isotope monitoring near the Danube Delta. The results showed that the Danube River is regarding isotope content fully mixed at the bifurcation of the Danube Delta arms. Therefore routine sampling at only one location in the pre-delta region should be sufficient to obtain a representative isotope record for the whole Danube Basin. The δ 18 O time series from November 2009 to May 2012 (sampling twice a month shows seasonal variations in the range of -9.8 ‰ ± 0.7 ‰ with a minimum in spring and a maximum in autumn. The tritium results exhibit the influence of short term contaminations due to human activities. The expected “environmental” tritium content of river water in Central Europe would be about 10 TU. During this investigation 3 H values up to 100 TU were observed in the pre-delta section. This indicates short terms releases of tritium from local sources such as nuclear power plants in the Danube river system.

  19. Peculiarities of S.Typhi isolation from the river water polluted with radionuclides at different times of the year

    Energy Technology Data Exchange (ETDEWEB)

    Toichuev, R. M. [Institute of Medical Problems of the Southern Branch, Osh(Kyrgyzstan)

    2012-09-15

    Full text:Objective: to assess the effect of radionuclide pollution of river water on the isolation rate of S. Tuphi at different times of the year. Materials and methods: Since the number of typhoid fever cases reported in the Mayluusuu Valley (23 tailing pits and 16 tailing dumps are located in the area) tends to increase after the mudslides we collected river water specimens considering all these factors. Water specimens were collected from the Mayluusuu River, Shaidan-sai River, Kara-Unkur River and Ak-Buura River. Bacterial inoculation was performed in accordance with standard procedures. Concentration levels of pesticides (DDT, DDE, DDD, GCCG {alpha}, {beta}, {gamma} Aldrin and Dieldrin) were measured with a spectrograph. The present work was done in the framework of the ISTC Project KR-1516. Results and discussion: Out of the total of 2360 water specimens collected from the Shaidan-Sai River, S. Typhi was isolated from one (0.04%) water specimen. No cases of S. Typhi isolation from the water specimens collected from the Kara-Unkur River were reported for the past 10 years. Out of the total of 8969 water specimens collected from the Ak-Buura River, isolation of S. Typhi was reported in 4 (0.044%) cases. Starting from 2006 typhoid fever cases have been reported in the winter and spring times among the residents of the Mayluusuu Valley. A total of 1200 patients with a presumptive diagnosis of typhoid fever were admitted to the hospitals during the period. S. Typhi was isolated from 2 out of the total of 51 (3.9%) water specimens collected from the Mayluusuu River in the winter time, 4 (2.4%) out of the total 164 - in the spring time, 3.4% and 4.5% in the summer and autumn, respectively. Concentration levels of thorium (Th) and uranium (U) were 0.025-0.045 mg/l and 0.35-15.0 mg/l. No traces of the pesticides were found in water specimens. DDE at concentration of 0.024 mg/l and GCCG {alpha} (0.06 mg/l) were found in silt specimens collected downstream the Ak

  20. Water transports across 6 degrees N in Bay of Bengal on mean yearly and seasonal bases

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Mean vertical profiles of temperature and salinity are computed for each cell for North East Monsoon, South West Monsoon and full year. These mean profile for seven zones are used to compute mean geostrophic currents across 6 degrees N section...

  1. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  2. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  3. Efficient Bulk Operations on Dynamic R-Trees

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Hinrichs, Klaus; Vahrenhold, Jan

    2002-01-01

    In recent years there has been an upsurge of interest in spatial databases. A major issue is how to manipulate efficiently massive amounts of spatial data stored on disk in multidimensional spatial indexes (data structures). Construction of spatial indexes (bulk loading ) has been studied...... intensively in the database community. The continuous arrival of massive amounts of new data makes it important to update existing indexes (bulk updating ) efficiently. In this paper we present a simple, yet efficient, technique for performing bulk update and query operations on multidimensional indexes. We...... present our technique in terms of the so-called R-tree and its variants, as they have emerged as practically efficient indexing methods for spatial data. Our method uses ideas from the buffer tree lazy buffering technique and fully utilizes the available internal memory and the page size of the operating...

  4. Increasing Fruit, Vegetable and Water Consumption in Summer Day Camps-3-Year Findings of the Healthy Lunchbox Challenge

    Science.gov (United States)

    Beets, Michael W.; Tilley, Falon; Weaver, Robert G.; Turner-McGrievy, Gabrielle M.; Moore, Justin B.

    2014-01-01

    The objective of this study was to describe the 3-year outcomes (2011-2013) from the healthy lunchbox challenge (HLC) delivered in the US-based summer day camps (SDC) (8-10 hours day-1, 10-11 weeks summer-1, SDC) to increase children and staff bringing fruit, vegetables and water (FVW) each day. A single group pre- with multiple post-test design…

  5. The Effect of Talking Drawings on Five-Year-Old Turkish Children's Mental Models of the Water Cycle

    Science.gov (United States)

    Ahi, Berat

    2017-01-01

    The purpose of the current study is to determine the effect of talking drawings on Turkish preschool children's mental models of the water cycle. The study was conducted in the city of Kastamonu, located in the north-west of Turkey. A total of 40 five-year-old preschool children participated in the study in the spring term of the 2015-2016 school…

  6. Talent identification and early development of elite water-polo players: a 2-year follow-up study.

    Science.gov (United States)

    Falk, Bareket; Lidor, Ronnie; Lander, Yael; Lang, Benny

    2004-04-01

    The processes of talent detection and early development are critical in any sport programme. However, not much is known about the appropriate strategies to be implemented during these processes, and little scientific inquiry has been conducted in this area. The aim of this study was to identify variables of swimming, ball handling and physical ability, as well as game intelligence, which could assist in the selection process of young water-polo players. Twenty-four players aged 14-15 years underwent a battery of tests three times during a 2-year period, before selection to the junior national team. The tests included: freestyle swim for 50, 100, 200 and 400 m, 100-m breast-stroke, 100-m 'butterfly' (with breast-stroke leg motion), 50-m dribbling, throwing at the goal, throw for distance in the water, vertical 'jump' from the water, and evaluation of game intelligence by two coaches. A comparison of those players eventually selected to the team and those not selected demonstrated that, 2 years before selection, selected players were already superior on most of the swim tasks (with the exception of breast-stroke and 50-m freestyle), as well as dribbling and game intelligence. This superiority was maintained throughout the 2 years. Two-way tabulation revealed that, based on baseline scores, the prediction for 67% of the players was in agreement with the final selection to the junior national team. We recommend that fewer swim events be used in the process of selecting young water-polo players, and that greater emphasis should be placed on evaluation of game intelligence.

  7. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    Science.gov (United States)

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  8. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  9. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  10. Xerophilic mycopopulations of teas in bulk

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2011-01-01

    Full Text Available d.o.o., Novi Sad AU Krunić Vesna J. AF EKOLd.o.o., Novi Sad KW teas % mould contamination % thermal treatment KR nema Other the water, tea is the most popular beverage in the world today. They are used for ages, in the beginning as refreshing drinks, and later more for their healing properties. Teas have been demonstrated to show antioxidative, anti-carcinogenic, and anti-microbial properties. Considering that the teas, during the production, are not treated with any temperature, there is high risk for contamination with different type of microorganisms, especially with moulds. Moulds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes and under favorable conditions of temperature and humidity, moulds grow on many commodities including cereals, oil seeds, nuts, herbs and spices. Most of them are potential producers of mycotoxins which present a real hazard to human health. The aim of this work was to investigate total mould count and to identify moulds isolated from teas in bulk, than from teas treated with hot, sterile, distilled water and from the tea filtrates. Tested teas were peppermint, sage, yarrow, black tea, bearberry, lemon balm, mixture of teas from Zlatibor. In teas in balk was observed high contamination with different kinds of moulds (1.84-4.55 cfu/g, such as Aspergillus awamori, A. lovaniensis, A niger, A. phoenicus, A. repens, A. restrictus, A. sydowii, A. versicolor, Eurotium amstelodami, E. chevalieri, E. herbariorum, Penicillium chrysogenum, and Scopulariopsis brevicaulis. The most frequent were species from Aspergillus and Eurotium genera. Thermal treatment with hot, sterile, distilled water reduced the number of fungal colonies. Aspergillus awamori was the most resistant and appeared in six samples of filtrates of tea, Aspergillus niger in one sample and Penicillium chrysogenum in one sample.

  11. Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts

    Directory of Open Access Journals (Sweden)

    Hung-Ju Shih

    2018-02-01

    Full Text Available A 12-year sea-state hindcast for Taiwanese waters, covering the period from 2005 to 2016, was conducted using a fully coupled tide-surge-wave model. The hindcasts of significant wave height and peak period were employed to estimate the wave power resources in the waters surrounding Taiwan. Numerical simulations based on unstructured grids were converted to structured grids with a resolution of 25 × 25 km. The spatial distribution maps of offshore annual mean wave power were created for each year and for the 12-year period. Waters with higher wave power density were observed off the northern, northeastern, southeastern (south of Green Island and southeast of Lanyu and southern coasts of Taiwan. Five energetic sea areas with spatial average annual total wave energy density of 60–90 MWh/m were selected for further analysis. The 25 × 25 km square grids were then downscaled to resolutions of 5 × 5 km, and five 5 × 5 km optimal areas were identified for wave energy converter deployments. The spatial average annual total wave energy yields at the five optimal areas (S1–(S5 were estimated to be 64.3, 84.1, 84.5, 111.0 and 99.3 MWh/m, respectively. The prevailing wave directions for these five areas lie between east and northeast.

  12. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  13. AECB staff annual assessment of the Bruce Heavy Water Plant for the year 1995

    International Nuclear Information System (INIS)

    1996-06-01

    The Atomic Energy Control Board's staff annual assessment of the operation of Bruce Heavy Water Plant (BHWP) during 1995. BHWP operation was acceptably safe in 1995. At BHWP, Ontario Hydro complied with the regulations issued under the authority of the Atomic Energy Control Act. AECB is satisfied that BHWP did not pose any undue risk to public health or safety or to the environment. Ontario Hydro met all safety system and safety related system availability targets at BHWP in 1995. The emergency response capability is satisfactory. 2 figs

  14. AECB staff annual assessment of the Bruce Heavy Water Plant for the year 1994

    International Nuclear Information System (INIS)

    1995-06-01

    This report is the Atomic Energy Control Board staff assessment of the operation of Bruce Heavy Water Plant (BHWP) during 1994. BHWP operation was acceptably safe in 1994. At BHWP, Ontario Hydro did not breach any of the regulations issued under the authority of the Atomic Energy Control Act. There were four minor violations of the BHWP Operating Licence. In all cases, Ontario Hydro exceeded Ontario Hydro government limits for releases to the environment. None of the events threatened public health or the environment. 2 figs

  15. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    Science.gov (United States)

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water

  16. Hydrologic budgets for the Madison and Minnelusa aquifers, Black Hills of South Dakota and Wyoming, water years 1987-96

    Science.gov (United States)

    Carter, Janet M.; Driscoll, Daniel G.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2001-01-01

    The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area of South Dakota and Wyoming. Quantification and evaluation of various hydrologic budget components are important for managing and understanding these aquifers. Hydrologic budgets are developed for two scenarios, including an overall budget for the entire study area and more detailed budgets for subareas. Budgets generally are combined for the Madison and Minnelusa aquifers because most budget components cannot be quantified individually for the aquifers. An average hydrologic budget for the entire study area is computed for water years 1987-96, for which change in storage is approximately equal to zero. Annual estimates of budget components are included in detailed budgets for nine subareas, which consider periods of decreasing storage (1987-92) and increasing storage (1993-96). Inflow components include recharge, leakage from adjacent aquifers, and ground-water inflows across the study area boundary. Outflows include springflow (headwater and artesian), well withdrawals, leakage to adjacent aquifers, and ground-water outflow across the study area boundary. Leakage, ground-water inflows, and ground-water outflows are difficult to quantify and cannot be distinguished from one another. Thus, net ground-water flow, which includes these components, is calculated as a residual, using estimates for the other budget components. For the overall budget for water years 1987-96, net ground-water outflow from the study area is computed as 100 ft3/s (cubic feet per second). Estimates of average combined budget components for the Madison and Minnelusa aquifers are: 395 ft3/s for recharge, 78 ft3/s for headwater springflow, 189 ft3/s for artesian springflow, and 28 ft3/s for well withdrawals. Hydrologic budgets also are quantified for nine subareas for periods of decreasing storage (1987-92) and increasing storage (1993-96), with changes in storage assumed equal but opposite. Common

  17. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  18. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  19. Interannual and Diurnal Variability in Water Ice Clouds Observed from MSL Over Two Martian Years

    Science.gov (United States)

    Kloos, J. L.; Moores, J. E.; Whiteway, J. A.; Aggarwal, M.

    2018-01-01

    We update the results of cloud imaging sequences from the Mars Science Laboratory (MSL) rover Curiosity to complete two Mars years of observations (LS=160° of Mars year (MY) 31 to LS=160° of MY 33). Relatively good seasonal coverage is achieved within the study period, with just over 500 observations obtained, averaging one observation every 2-3 sols. Cloud opacity measurements are made using differential photometry and a simplified radiative transfer method. These opacity measurements are used to assess the interannual variability of the aphelion cloud belt (ACB) for MY 32 and 33. Upon accounting for a statistical bias in the data set, the variation is found to be year. Although a gap in data around local noon prevents a complete assessment, we find that cloud opacity is moderately increased in the morning hours (07:00-09:00) compared to the late afternoon (15:00-17:00).

  20. Densidade crítica ao crescimento de plantas considerando água disponível e resistência à penetração de um Argissolo Vermelho distrófico arênico Bulk density critical to the growth of plants considering available water and soil resistance to penetration of a Paleudalf

    Directory of Open Access Journals (Sweden)

    Cláudia Liane Rodrigues de Lima

    2007-08-01

    Full Text Available O estabelecimento de culturas está associado a condições restritivas impostas pelo tipo e pelo manejo de solo. O objetivo deste estudo foi avaliar o intervalo de densidade crítica de um Argissolo Vermelho distrófico arênico, considerando a disponibilidade de água para as culturas e os valores restritivos de resistência à penetração (1,5; 2,0; 2,5; 3,0 e 3,5MPa. A amostragem de um Argissolo Vermelho distrófico arênico sob plantio direto desde 1989, com estrutura de solo preservada, foi feita nas camadas de 0,00 a 0,10 m e 0,10 a 0,20m. As amostras (oito repetições foram saturadas em água, equilibradas em diferentes potenciais (-0,001; -0,004; -0,006; -0,033; -0,07 e -0,1MPa e dois grupos de amostras foram secadas em laboratório, por um período de 7 e 9 dias, perfazendo um total de 128 amostras. Após atingir o equilíbrio, foi avaliada a resistência à penetração e a densidade do solo. Um incremento na resistência à penetração possibilitou maiores intervalos de densidade adequados ao desenvolvimento das plantas, i.e., quando considerada uma resistência à penetração de 2MPa, o intervalo de densidade adequado foi de 1,44Mg m-3 a 1,76Mg m-3 e, para uma resistência de 3MPa, o intervalo foi de 1,53 a 1,88Mg m-3. Valores superiores e inferiores ao intervalo de densidade obtidos são críticos ao desenvolvimento de culturas, considerando a resistência à penetração e a disponibilidade de água.Crop establishment is linked to restrictive conditions imposed by soil type and soil management. This study aimed at evaluating the interval of bulk density critical for a Paleudalf, considering water availability to the crops and restrictive values to the root resistance to penetration (1.5; 2.0; 2.5; 3.0 e 3.5MPa. Soil samples, from a Paleudalf under no-tillage since 1989, with preserved structure were collected in the layers of 0.00 to 0.10m and 0.10 to 0.20m depth. The samples (eight replicates were saturated in water and

  1. A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes

    Science.gov (United States)

    Karlsen, R. H.; Smits, F. J. C.; Stuyfzand, P. J.; Olsthoorn, T. N.; van Breukelen, B. M.

    2012-08-01

    SummaryThis article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The model simulates the changes in water quality following artificial recharge of pre-treated water from the river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One observation dataset is used for model calibration, and another dataset for validation of model predictions. The total simulation time of the model is 50 years, from 1957 to 2007, with recharge composition varying on a monthly basis and the post audit is performed 26 years after the former model simulation period. The post audit revealed that the original model could reasonably predict conservative transport and kinetic redox reactions (oxygen and nitrate reduction coupled to the oxidation of soil organic carbon), but showed discrepancies in the simulation of cation exchange. Conceptualizations of the former model were inadequate to accurately simulate water quality changes controlled by cation exchange, especially concerning the breakthrough of potassium and magnesium fronts. Changes in conceptualization and model design, including the addition of five flow paths, to a total of six, and the use of parameter estimation software (PEST), resulted in a better model to measurement fit and system representation. No unique parameter set could be found for the model, primarily due to high parameter correlations, and an assessment of the predictive error was made using a calibration constrained Monte-Carlo method, and evaluated against field observations. The predictive error was found to be low for Na+ and Ca2+, except for greater travel times, while the K+ and Mg2+ error was restricted to the exchange fronts at some of the flow paths. Optimized cation exchange coefficients were relatively high, especially for potassium, but still within the observed range in literature. The exchange coefficient for potassium agrees with strong fixation on illite, a main clay mineral in

  2. "Engendering" Agenda 21: gender equality and water resource management: five years after Rio.

    Science.gov (United States)

    Hannan-andersson, C

    1997-01-01

    Agenda 21 acknowledges women's role in natural resources management at the local level and emphasizes the need for more women in senior positions to contribute positively to the implementation of environmental policy. This article assesses Agenda 21's approach to gender equality and its achievements. A few explicit references to women and water resource management (WRM) without consideration on the gender implications of the WRM policies and strategies were noted. The macro-oriented, technology-focused and supply-oriented approach of Agenda 21 on WRM hinders the inclusion of a gender perspective. There are two levels of implications of gender-blind intervention in relation to WRM: the issue of social justice and rights, and the negative impact of the neglect of gender inequality on overall planning and success of interventions. The inclusion of a gender perspective at policy and planning levels to facilitate the resolution of inconsistencies, as well as the importance of water sources and patterns of use knowledge for adequate policy development and planning was suggested. It is important that the WRM principle application utilize a sociocultural and gender perspective at both community and household levels before decisions are made on WRM interventions.

  3. Isotope paleoclimatology and Atlantic deep water history since 15 million years

    International Nuclear Information System (INIS)

    Blanc, P.L.

    1981-12-01

    18 O/ 16 O and 13 C/ 12 C ratios measurements in foraminiferal calcite are applied to the paleoclimatology of the North Atlantic and to the reconstruction of deep water exchanges between the Atlantic and Pacific Oceans, from middle miocene time (15 m.y. ago) to the present, on samples from 2 DSDP wells. Chapters 1 to 4 describe the structural frame and hydrological setting of these sites, and the stratigraphy of the deposits. A .4 m.y. lag between the initiation of the first boreal ice-caps and their extension to northern Europe is explained by the persistency of the North-Atlantic Drift. In chapters 5 to 8, the 13 C/ 12 C ratio of dissolved mineral carbon is used as a tracer of the residence time of the deep waters, the indications of which are preserved in benthonic foraminiferal calcite. It is shown that present-day type thermo-haline circulation was initiated 13.2 m.y. ago in the northern Atlantic, when the volcanic Scotland-Iceland-Greenland ridge subsided; that the closure of the Mediterranean sea during the Messinian (6.2 to 5 m.y. ago) caused this circulation to stop, and that the present circulation started again when the Mediterranean re-opened, at the beginning of the Pliocene [fr

  4. Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates

    Science.gov (United States)

    Cianfrani, C. M.

    2009-12-01

    Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates Christina M. Cianfrani Assistant Professor, School of Natural Science, Hampshire College, 893 West Avenue, Amherst, MA 01002 Sustainable water resources and low impact development principles are taught to first-year undergraduate students using an applied design project sited on campus. All students at Hampshire College are required to take at least one natural science course during their first year as part of their liberal arts education. This requirement is often met with resistance from non-science students. However, ‘sustainability’ has shown to be a popular topic on campus and ‘Sustainable Water Resources’ typically attracts ~25 students (a large class size for Hampshire College). Five second- or third-year students are accepted in the class as advanced students and serve as project leaders. The first-year students often enter the class with only basic high school science background. The class begins with an introduction to global water resources issues to provide a broad perspective. The students then analyze water budgets, both on a watershed basis and a personal daily-use basis. The students form groups of 4 to complete their semester project. Lectures on low impact design principles are combined with group work sessions for the second half of the semester. Students tour the physical site located across the street from campus and begin their project with a site analysis including soils, landcover and topography. They then develop a building plan and identify preventative and mitigative measures for dealing with stormwater. Each group completes TR-55 stormwater calculations for their design (pre- and post-development) to show the state regulations for quantity will be met with their design. Finally, they present their projects to the class and prepare a formal written report. The students have produced a wide variety of creative

  5. Water-saving impacts of Smart Meter technology: An empirical 5 year, whole-of-community study in Sydney, Australia

    Science.gov (United States)

    Davies, Kirsten; Doolan, Corinna; van den Honert, Robin; Shi, Rose

    2014-09-01

    In 2009-2010 Sydney Water, the primary water utility in Sydney, conducted a comprehensive Smart Metering trial in residential homes in the suburb of Westleigh, in Sydney's north. The trial involved 1923 participants residing in 630 households. A whole-of-community method of engagement was applied to capture the views of residents from 12 to 70+ years of age. The trial examined the effects of the technology on the water consumption of an intervention group compared with that of a matched control group. After removing properties that had been sold since the beginning of the trial, properties in the study group were matched with a control group property on the basis of the household size, property size and the presence (or otherwise) of a swimming pool. The effects of the technology on consumption were measured and analyzed for the period July 2009 to June 2010, coupled with qualitative information that was collected throughout the duration of the study. A key finding was that households with the in-home display (IHD) installed, reduced their consumption by an average of over 6.8% over the study period when compared to the control group. Since completion of the study the community has not had any further interventions. The trial created an opportunity to examine the longer-term effects of the technology (June 2008 to September 2013). Consumption data collected over the 3 year posttrial period revealed that the participant group consumed 6.4% per month less water when compared to the pretrial period, whilst the matched control group consumed 1.3% per month more water when compared to the pretrial period. The reduced consumption of the participant group was maintained over time, demonstrating the long-term value of this technology.

  6. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    Science.gov (United States)

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  7. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence.

    Science.gov (United States)

    Saint-Jacques, Nathalie; Parker, Louise; Brown, Patrick; Dummer, Trevor Jb

    2014-06-02

    Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health

  8. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence

    Science.gov (United States)

    2014-01-01

    Background Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Methods Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Results Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2–4.1]; 4.2 [2.1–6.3] and; 5.8 [2.9–8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35–4.0], 2.3 [0.59–6.4], and 3.1 [0.80–8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Conclusion Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these

  9. Estuarine River Data for the Ten Thousand Islands Area, Florida, Water Year 2005

    Science.gov (United States)

    Byrne, Michael J.; Patino, Eduardo

    2008-01-01

    The U.S. Geological Survey collected stream discharge, stage, salinity, and water-temperature data near the mouths of 11 tributaries flowing into the Ten Thousand Islands area of Florida from October 2004 to June 2005. Maximum positive discharge from Barron River and Faka Union River was 6,000 and 3,200 ft3/s, respectively; no other tributary exceeded 2,600 ft3/s. Salinity variation was greatest at Barron River and Faka Union River, ranging from 2 to 37 ppt, and from 3 to 34 ppt, respectively. Salinity maximums were greatest at Wood River and Little Wood River, each exceeding 40 ppt. All data were collected prior to the commencement of the Picayune Strand Restoration Project, which is designed to establish a more natural flow regime to the tributaries of the Ten Thousand Islands area.

  10. Water Resources Data for California, Water Year 1985. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 150 gaging stations; stage and contents for 17 lakes and reservoirs; water quality for 23 streams. Also included are 10 crest-stage partial-record stations, three miscellaneous measurement sites, and one waterquality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  11. Water resources data for California, water year 1980; Volume 1, Colorado River basin, Southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1981-01-01

    Volume 1 of water resources data for the 1980 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lake and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 51 stations; water levels for 165 observation wells. Also included are 9 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  12. Water Resources Data for California, Water Year 1986. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 144 gaging stations; stage and contents for 15 lakes and reservoirs; watet quality for 21 streams. Also included are crest-stage partial-record stations, 3 miscellaneous measurement sites, and 5 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  13. Should bulk cloudwater or fogwater samples obey Henry's law?

    Science.gov (United States)

    Pandis, Spyros N.; Seinfeld, John H.

    1991-06-01

    Mixing of droplets with different pH that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH, and bases like NH3 with respect to the original atmosphere. High supersaturations result only when the pH of the bulk droplet mixture exceeds the pKa of the species, in which pH range large pH differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used as weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of pH values of bulk aqueous samples during storage.

  14. Fiscal Year 2013 Net Zero Energy-Water-Waste Portfolio for Fort Leonard Wood

    Science.gov (United States)

    2014-12-01

    like many restaurants and food operators, throw away inedible (for humans) food scraps, such as banana peels, bones, and egg shells , without...and reseed- ing with native grasses. Application rates up to 64 tons/acre resulted in significantly enhanced plant cover and biomass production when...com- pared to sites that received no compost (Busby et al. 2006). Plant cover and biomass differences were still significantly higher five years

  15. Hydraulic residence time and iron removal in a wetland receiving ferruginous mine water over a 4 year period from commissioning.

    Science.gov (United States)

    Kusin, F M; Jarvis, A P; Gandy, C J

    2010-01-01

    Analysis of residence time distribution (RTD) has been conducted for the UK Coal Authority's mine water treatment wetland at Lambley, Northumberland, to determine the hydraulic performance of the wetland over a period of approximately 4 years since site commissioning. The wetland RTD was evaluated in accordance with moment analysis and modelled based on a tanks-in-series (TIS) model to yield the hydraulic characteristics of system performance. Greater hydraulic performance was seen during the second site monitoring after 21 months of site operation i.e. longer hydraulic residence time to reflect overall system hydraulic efficiency, compared to wetland performance during its early operation. Further monitoring of residence time during the third year of wetland operation indicated a slight reduction in hydraulic residence time, thus a lower system hydraulic efficiency. In contrast, performance during the fourth year of wetland operation exhibited an improved overall system hydraulic efficiency, suggesting the influence of reed growth over the lifetime of such systems on hydraulic performance. Interestingly, the same pattern was found for iron (which is the primary pollutant of concern in ferruginous mine waters) removal efficiency of the wetland system from the second to fourth year of wetland operation. This may therefore, reflect the maturity of reeds for maintaining efficient flow distribution across the wetland to retain a longer residence time and significant fractions of water involved to enhance the extent of treatment received for iron attenuation. Further monitoring will be conducted to establish whether such performance is maintained, or whether efficiency decreases over time due to accumulation of dead plant material within the wetland cells.

  16. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years

    Science.gov (United States)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.

    2014-10-01

    We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.

  17. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue

    International Nuclear Information System (INIS)

    Monteith, D.T.; Evans, C.D.

    2005-01-01

    The United Kingdom Acid Waters Monitoring Network (AWMN) was established in 1988 to determine the ecological impact of acidic emissions control policy on acid-sensitive lakes and streams. AWMN data have been used to explore a range of causal linkages necessary to connect changes in emissions to chemical and, ultimately, biological recovery. Regional scale reductions in sulphur (S) deposition have been found to have had an immediate influence on surface water chemistry, including increases in acid neutralising capacity, pH and alkalinity and declines in aluminium toxicity. These in turn can be linked to changes in the aquatic biota which are consistent with 'recovery' responses. A continuation of the current programme is essential in order to better understand apparent non-linearity between nitrogen (N) in deposition and runoff, the substantial rise in organic acid concentrations, and the likely impacts of forecast climate change and other potential constraints on further biological improvement. - After 15 years of the UK Acid Waters Monitoring Network, we can now draw clear conclusions regarding the impact of emission reductions on acidified UK fresh waters

  18. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  19. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  20. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  1. Econometric Analysis of Bulk Shipping: implications for investment strategies and financial decision-making

    NARCIS (Netherlands)

    S. Tsolakis

    2005-01-01

    textabstractThis thesis provides an econometric analysis of the bulk shipping markets and the implications for shipping investment and financial decision making. Chapter 1 sets the scene by providing a historic analysis of bulk shipping markets over the last 55 years. From this analysis, four

  2. Evaluation of nonpoint-source contamination, Wisconsin: Selected data for 1992 water year

    Science.gov (United States)

    Graczyk, D.J.; Walker, J.F.; Greb, S.R.; Corsi, Steven R.; Owens, D.W.

    1993-01-01

    This report presents the annual results of the U.S. Geological Survey's (USGS) watershed-management evaluation monitoring program in Wisconsin. The overall objective of each individual project in the program is to determine if the water chemistry in the receiving stream has changed as a result of the implementation of land-management practices in the watershed. This is accomplished through monitoring of water chemistry and ancillary variables before best-management practices (BMP's) are installed ('pre-BMP'), during installation ('transitional'), and after ('post-BMP') watershed- management plans have been completely implemented. Fecal-coliform (FC) counts ranged between 10 and 310,00/100 mL. A large range of values occurred within duplicate and triplicate samples as well as over time. The median percentage difference between duplicate and triplicate samples was 17 percent although 4 out of the total 60 duplicate and triplicate samples had differences greater than 100 percent. A decrease in FC counts generally occurred over the duration of the 4-day analyses. Linear regression models of the log-concentration values (dependent variable) with respect to time (independent variable) were calculated for all samples. Negative slopes were found for 14 of the 15 samples. Slopes varied from +0.5 to -38.4 percent gain/loss/day, with a median slope of -8.5 percent/day. A t-test was applied to the data to examine whether or not significant differences in FC counts exist with respect to holding times. Because the T-test only compares two treatments, the test was conducted 3 times (0 versus 24-hr holding time, 0 versus 48-hr holding time, and 0 versus 72-hr holding time). Setting the level of significance at p less than 0.05 and assuming equal variances, 27 percent (all from Bower and Otter Creeks) of the samples demonstrated a significant difference in colony count over the first 24 hr, 40 percent over 48 hr, and 47 percent over 72 hr. All samples that exhibited a significant

  3. Large-scale HTS bulks for magnetic application

    International Nuclear Information System (INIS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN 2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN 2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved

  4. Large-scale HTS bulks for magnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank N., E-mail: werfel@t-online.de [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany); Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany)

    2013-01-15

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN{sub 2} and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN{sub 2} allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  5. Adventures in Citizen Science: Lessons learned engaging volunteer water quality monitors for over 30 years.

    Science.gov (United States)

    Schloss, J. A.

    2012-12-01

    The New Hampshire Lakes Lay Monitoring Program was originally designed by faculty at the University of New Hampshire in 1979 to provide the capacity to better monitor for long-term lake water quality changes and trends. As participants became educated, empowered and engaged the program soon evolved to also become a participatory research enterprise. This resulted in not only providing useful information for informed local stewardship and protection at the local level but also for state and region-wide decision-making, state and federal assessments/reporting and advancing our understanding of lake and watershed science. Our successes and failures have been more dependent on understanding the particular human dimensions that influence our volunteers and less to do with the typical project management, quality assurance, and communication concerns we typically deal with in professional based research efforts. Our participants are extremely diverse in terms of their life experiences, interests and motivations so the key to long-term commitment and high quality participation is understanding the difference between a citizen monitor and your archetypical research technician or student. This presentation will highlight some important lessons learned on how to involve various types of volunteers from school groups to retirees, as well as particular approaches and concerns regarding program management, retention, quality control and communications.

  6. Results of two years of water training on jump height in postmenopausal women with moderate hip risk fracture

    Directory of Open Access Journals (Sweden)

    María Carrasco Poyatos

    2010-01-01

    Full Text Available The aim of the present study was to investigate the effect of a water-based calisthenics and resistance program on jump height in postmenopausal women with moderate hip risk fracture. 39 women were divided into three groups: swimming group (GN; n = 17, calisthenics and resistance group (GIR; n = 14, and control group (GC; n = 8. Body composition test included body mass index (IMC and waist to hip ratio (ICC. Jump height was assessed by a countermovement jump (CMJ. GN showed a significant (p<0.05 decrease in ICC (5.81%. GIR showed a significant decrease in IMC (3.65% and a significant increase in CMJ (15.5%. Two years of water-based calisthenics and resistance training can offer significant benefits in jump height in postmenopausal women with moderate hip risk fracture. Both exercise programs can also improve body composition.

  7. Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.

    Science.gov (United States)

    Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto

    2013-07-01

    Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Effects of Main Pollution Sources on Parameters of Water Quality of the Prut River Within the Limits of Chernivtsi in the Last Seven Years and Consequent Environmental Impacts

    Directory of Open Access Journals (Sweden)

    Hrytsku V.S.

    2016-06-01

    Full Text Available The results of the Prut River water quality monitoring in the last 7 years are dealt with. Attention is paid to situation of water quality worsening and to the reasons that caused it. Application of the method of water quality index’s integrated assessment has confirmed that it is not solely the degree of anthropogenic impact that affects the water quality, but also the effects of natural factors.

  9. Hydrodynamically induced dryout and post dryout important to heavy water reactors: A yearly progress report

    International Nuclear Information System (INIS)

    Ishii, M.; Revankar, S.T.; Babelli, I.; Lele, S.

    1992-06-01

    Recently, the safety of low pressure liquid cooled nuclear reactors has become a very important issue with reference to the operation of the heavy water reactors at Savannah River Plant. Under accident conditions such as loss-of-flow or loss-of-coolant, these reactors typically encounter unstable two-phase flow which may lead to the occurrence of dryout and subsequent fuel failure. An analytical study using the one-dimensional drift flux model was carried out to investigate the two-phase flow instability for Westinghouse Savannah River Site reactor. The analysis indicates that the first and higher order instabilities exist in the possible transient operational conditions. The instabilities are encountered at higher heat fluxes or lower flow rates. The subcooling has a stabilizing effect except at very low subcooling. An experimental loop has been designed and constructed to study the CBF induced by various flow instabilities. Details of this test loop are presented. Initial test results have been presented. The two-phase flow regimes and hydrodynamic behaviors in the post dryout region have been studied under propagating rewetting conditions. The effect of subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CBF location and hence on the flow regime encountered in the pre-CBF region

  10. Evaluation of water beef buffalo from birth to two years using different growth curves

    Directory of Open Access Journals (Sweden)

    W.R. Lamberson

    2010-02-01

    Full Text Available The buffalo is a domestic animal species of growing world-wide importance. Research to improve genetic improvement programs is important to maintain the productivity of buffalo. The objective this research was to evaluate the growth of Brazilian buffalo to two years of age with different growth curves. Growth curves consolidate the information contained in the weight-age data into three or four biologically meaningful parameters. The data included 31,452 weights at birth and 120, 205, 365, 550 and 730 days of buffalo (n = 5,178 raised on pasture without supplementation. Logistic, Gompertz, quadratic logarithmic, and linear hyperbolic curves (designated L, G, QL, and LH, respectively were fitted to the data by using proc NLIN of SAS (SAS Institute, Inc., Cary, NC, USA. The parameters estimates for L [WT= A * (((1 + exp (-k * AGE**-m] were A = 865.1 ± 5.42; k= 0.0028 ± 0.00002; M= 3.808 ± 0.007; R2 = 0.95. For G [WT= A * exp (-b * exp (-k * age] the parameters estimates were A= 967.6 ± 7.23; k = 0.00217 ± 0.000015; b = -2.8152 ± 0.00532. For QL [WT= A + b*age + k*(age*age + m*log (age] parameters estimates were A= 37.41 ± 0.48; k= 0.00019 ± 6.4E-6; b= 0.539 ± 0.006; m= 2.32 ± 0.23; R2=0.96. For LH [WT= A + b*AGE + k*(1/AGE] the parameters estimates were A= 23.15 ± 0.44; k=15.16 ± 0.66; b= 0.707 ± 0.001; R2= 0.96. Each of these curves fit these data equally well and could be used for characterizing growth to two years in beef buffalo.

  11. Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round

    International Nuclear Information System (INIS)

    Wang Shaowei; Liu Zhenyan; Li Yuan; Zhao Keke; Wang Zhigang

    2005-01-01

    This paper presents a split air conditioner with a new hybrid equipment of energy storage and water heater all year round (ACWES). The authors made a special design on the storage tank to adjust the refrigerant capacity in the storage coils under different functions, instead of adding an accumulator to the system. An ACWES prototype, rebuilt from an original split air conditioner, has been finished, and experimental study of the operation processes of the prototype was done from which some important conclusions and suggestions have been made, which were helpful in the primary design and improvement of an ACWES system for potential users

  12. CHANGES OF WATER BALANCE COMPONENTS OF MIDFOREST POND IN A HYDROLOGICAL YEARS OF A DIFFERENT METEOROLOGICAL CONDITION COURSE

    OpenAIRE

    Mariusz Korytowski; Czesław Szafrański

    2014-01-01

    The paper presents the results of the researches carried out at the catchment of water pond number one, located at Wielosławice Forestry of Siemianice Experimental Farm. The researches were carried out in three hydrological years 2002/2003, 2003/2004 i 2009/2010 of a different precipitation sums. The area of investigated catchment of pond number one is about 7,5 ha and its forestation totals 100 % and it is situated in a part of Niesób catchment - left-side tributary of Prosna River. Fresh ha...

  13. French experience in operating pressurized water reactor power stations. Ten years' operation of the Ardennes power station

    International Nuclear Information System (INIS)

    Teste du Bailler, A.; Vedrinne, J.F.

    1978-01-01

    In the paper the experience gained over ten years' operation of the Ardennes (Chooz) nuclear power station is summarized from the point of view of monitoring and control equipment. The reactor was the first pressurized water reactor to be installed in France; it is operated jointly by France and Belgium. The equipment, which in many cases consists of prototypes, was developed for industrial use and with the experience that has now been gained it is possible to evaluate its qualities and defects, the constraints which it imposes and the action that has to be taken in the future. (author)

  14. Water

    Science.gov (United States)

    ... drink and water in food (like fruits and vegetables). 6. Of all the earth’s water, how much is ocean or seas? 97 percent of the earth’s water is ocean or seas. 7. How much of the world’s water is frozen? Of all the water on earth, about 2 percent is frozen. 8. How much ...

  15. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict.

    Science.gov (United States)

    Vivar, M; Pichel, N; Fuentes, M; Martínez, F

    2016-04-15

    Drinking water access in the Saharawi refugee camps located in the Algerian desert is a challenge that is still an on-going problem after 40years of conflict. This work presents an analysis of the situation with emphasis on the water supply in health institutions (quantity and quality) including both sanitary inspections and a comprehensive water quality study. Results from sanitary inspections show that only half of the water supply installations at the hospitals are in adequate conditions and the rest present high risk of microbiological contamination. Water access in small medical community centres on the other hand present issues related to the non-availability of food-grade water tanks for the institutions (70%), the use of small 10l containers as the main water supply (40%), poor maintenance (60% under antihygienic conditions and 30% with damaged covers), and insufficient chlorine levels that prevent microbiological contamination. Regarding water quality analyses, raw water supply in Smara, El Aiun and Awserd camps present high conductivity and high levels of fluoride, chloride, nitrate and sulphate, but dropping to normal levels within the drinking-water standards after water treatment via reverse osmosis plants. But for the case of El Aiun and Awserd, the reverse osmosis plant only provides treated water to the population each 20days, so the population receives raw water directly and health risks should be evaluated. Finally, Dakhla water supply is the best in terms of physico-chemical parameters quality, currently providing safe drinking water after a chlorination stage. In summary, drinking water access has improved dramatically in the last years due to the efforts of local and international authorities but several issues remain to be solved: access to treated water for all the population, improved water quality controls (especially in Dakhla), expansion of distribution networks, and adequate storage systems and maintenance. Copyright © 2016 Elsevier B

  17. Assessment of the bacterial organisms in water from a lead-zinc ...

    African Journals Online (AJOL)

    Twenty-four (24) bulk water samples collected from a lead-zinc mining pit in Ishiagu, Ebonyi State, Nigeria over a period of 2 years were used to assess the bacterial population of the mining pit water. Nine bacterial organisms, which included Bacillus sp., Pseudomonas aeruginosa, Proteus sp., Escherichia coli, ...

  18. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years

    Science.gov (United States)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.

    2014-03-01

    We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.

  19. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  20. Water resources data for California, water year 1976; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1976 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic-data section. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  1. Water resources data for California, water year 1977; Volume 1: Colorado River Basin, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1978-01-01

    Water-resources data for the 1977 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Winchell Smith, Assistant District Chief for Hydrologic Data and Leonard N. Jorgensen, Chief of the Basic-Data Section. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  2. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    International Nuclear Information System (INIS)

    1999-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  3. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  4. The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    2001-03-01

    A model of microstructural evolution of MX-80 buffer is presented in the report.Quantification of the microstructure is made by use of digitalized micrographs taken by transmission electron microscopy using suitably impregnated specimens with appropriate thickness. The model is termed MMM, a successor of the earlier GMM. Practically useful microstructural parameters refer to the fraction of a thin section that represents dense and soft parts of the clay matrix. The derived microstructural parameters are directly coupled to the most important bulk physical properties, i.e. the hydraulic conductivity, gas penetrability, swelling pressure and cation/anion diffusion capacities. The study has shown that even at very high densities, softer and more pervious zones exist in the form of interconnected 'external' voids filled with more or less dense clay gels. At bulk densities exceeding 2000 kg/m{sup 3} after water saturation, the gel density is also high but for low bulk densities it may be so much reduced that the gels do not remain stable at high electrolyte content of the pore water. The fact that the density variations are small for high bulk densities means that the separation of matrix components ('fracturing') that is required for letting gas through is on the same order of magnitude as the bulk swelling pressure. For lower bulk densities, displacement or consolidation of the clay gels in 'external' voids is concluded to take place in conjunction with gas penetration. At high densities the limited degree of continuity and constrictions of the channels leading to anion-excluding charge conditions mean that the anion diffusion capacity is very low, while cation diffusion may be extensive because it takes place not only through channels but also through the inter lamellar space and along the surfaces of stacks of lamellae, i.e. by surface diffusion. Two Pre-Quaternary clays that have been investigated and characterized with respect to the

  5. The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions

    International Nuclear Information System (INIS)

    Pusch, R.

    2001-03-01

    A model of microstructural evolution of MX-80 buffer is presented in the report.Quantification of the microstructure is made by use of digitalized micrographs taken by transmission electron microscopy using suitably impregnated specimens with appropriate thickness. The model is termed MMM, a successor of the earlier GMM. Practically useful microstructural parameters refer to the fraction of a thin section that represents dense and soft parts of the clay matrix. The derived microstructural parameters are directly coupled to the most important bulk physical properties, i.e. the hydraulic conductivity, gas penetrability, swelling pressure and cation/anion diffusion capacities. The study has shown that even at very high densities, softer and more pervious zones exist in the form of interconnected 'external' voids filled with more or less dense clay gels. At bulk densities exceeding 2000 kg/m 3 after water saturation, the gel density is also high but for low bulk densities it may be so much reduced that the gels do not remain stable at high electrolyte content of the pore water. The fact that the density variations are small for high bulk densities means that the separation of matrix components ('fracturing') that is required for letting gas through is on the same order of magnitude as the bulk swelling pressure. For lower bulk densities, displacement or consolidation of the clay gels in 'external' voids is concluded to take place in conjunction with gas penetration. At high densities the limited degree of continuity and constrictions of the channels leading to anion-excluding charge conditions mean that the anion diffusion capacity is very low, while cation diffusion may be extensive because it takes place not only through channels but also through the inter lamellar space and along the surfaces of stacks of lamellae, i.e. by surface diffusion. Two Pre-Quaternary clays that have been investigated and characterized with respect to the microstructure represent two

  6. Child Intelligence and Reductions in Water Arsenic and Manganese: A Two-Year Follow-up Study in Bangladesh.

    Science.gov (United States)

    Wasserman, Gail A; Liu, Xinhua; Parvez, Faruque; Factor-Litvak, Pam; Kline, Jennie; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammed Nasir; van Geen, Alexander; Mey, Jacob L; Balac, Olgica; Graziano, Joseph H

    2016-07-01

    Arsenic (As) exposure from drinking water is associated with modest intellectual deficits in childhood. It is not known whether reducing exposure is associated with improved intelligence. We aimed to determine whether reducing As exposure is associated with improved child intellectual outcomes. Three hundred three 10-year-old children drinking from household wells with a wide range of As concentrations were enrolled at baseline. In the subsequent year, deep community wells, low in As, were installed in villages of children whose original wells had high water As (WAs ≥ 50 μg/L). For 296 children, intelligence was assessed by WISC-IV (Wechsler Intelligence Scale for Children, 4th ed.), with a version modified for the study population, at baseline and approximately 2 years later; analyses considered standardized scores for both Full Scale IQ and Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indices. Creatinine-adjusted urinary arsenic (UAs/Cr), blood As (BAs), and blood manganese (BMn) were assessed at both times. UAs/Cr concentrations declined significantly by follow-up for both the high (≥ 50 μg/L) and low (intelligence, plasma ferritin, head circumference, home environment quality, school grade, and BMn, UAs/Cr was significantly negatively associated with Full Scale IQ, and with all Index scores (except Processing Speed). After adjustment for baseline Working Memory scores and school grade, each 100-μg/g reduction in UAs/Cr from baseline to follow-up was associated with a 0.91 point increase in Working Memory (95% CI: 0.14, 1.67). The change in UAs/Cr across follow-up was not significantly associated with changes in Full Scale IQ or Index scores. Installation of deep, low-As community wells lowered UAs, BAs, and BMn. A greater decrease in UAs/Cr was associated with greater improvements in Working Memory scores, but not with a greater improvement in Full Scale IQ. Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Kline J

  7. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  8. Bulk Leisure--Problem or Blessing?

    Science.gov (United States)

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  9. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  10. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  11. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  12. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  13. Electronic structure of bulk AnO{sub 2} (An = U, Np, Pu) and water adsorption on the (111) and (110) surfaces of UO{sub 2} and PuO{sub 2} from hybrid density functional theory within the periodic electrostatic embedded cluster method

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Joseph P.W. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Kerridge, Andrew [Department of Chemistry, Lancaster University, Bailrigg, Lancaster LA1 4YP (United Kingdom); Austin, Jonathan [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington WA3 6AE (United Kingdom); Kaltsoyannis, Nikolas, E-mail: nikolas.kaltsoyannis@manchester.ac.uk [School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-12-15

    Generalised gradient approximation (PBE) and hybrid (PBE0) density functional theory (DFT) within the periodic electrostatic embedded cluster method have been used to study AnO{sub 2} bulk and surfaces (An = U, Np, Pu). The electronic structure has been investigated by examining the projected density of states (PDOS). While PBE incorrectly predicts these systems to be metallic, PBE0 finds them to be insulators, with the composition of the valence and conduction levels agreeing well with experiment. Molecular and dissociative water adsorption on the (111) and (110) surfaces of UO{sub 2} and PuO{sub 2} has been investigated, with that on the (110) surface being stronger than on the (111). Similar energies are found for molecular and dissociative adsorption on the (111) surfaces, while on the (110) there is a clear preference for dissociative adsorption. Adsorption energies and geometries on the (111) surface of UO{sub 2} are in good agreement with recent periodic DFT studies using the GGA+U approach, and our data for dissociative adsorption on the (110) surface of PuO{sub 2} match experiment rather well, especially when dispersion corrections are included. - Graphical abstract: The electronic structures of AnO{sub 2} (An = U, Np, Pu) are studied computationally with hybrid density functional theory, and the geometries and energetics of water adsorption on the low index surfaces are presented.

  14. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    Science.gov (United States)

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  15. Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: Occurrence, bulking and transformation

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.

    2005-01-01

    A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment < -1??0??; 2 mm) was entrained during flow. Copyright c 2004 John Wiley & Sons, Ltd.

  16. Bulk media assay using backscattered neutron spectrometry

    International Nuclear Information System (INIS)

    Csikai, J.

    2000-01-01

    This paper summarized a systematic study of bulk media assay using backscattered neutron spectrometry. The source-sample-detector geometry used for the measurements of leakage and elastically backscattered (EBS) spectra of neutrons is shown. Neutrons up to about 14 MeV were produced via 2 H (d,n) and 9 Be (d,n) reactions using different deuteron beam energies between 5 and 10 MeV at the MGC-20E cyclotron of ATOMKI (Debrecen). Neutron yields of the Pu-Be and 252 Cf sources were 5.25 x 10 6 n/s and 1.8 x 10 6 n/s, respectively. Flux density distributions of thermal and primary 14 MeV neutrons were measured for graphite, water and coal samples in various moderator (M)-sample (S)-reflector (R) geometries. Relative fractions and integrated yields of 252 Cf, Pu-Be and 14 MeV neutrons above the (n,n'γ) reaction thresholds for 12 C, 16 O and 28 Si isotopes vs sample thickness have also been determined. It was found that the integrated reaction rate vs sample thickness decreasing exponentially with different attenuation coefficients depending on the neutron spectrum and the composition of the sample. The spectra of neutrons from sources passing through slabs of water, graphite, sand, Al, Fe and Pb up to 20 cm in thickness have been measured by a PHRS system in the 1.2 to 1.5 MeV range. The leakage neutron spectra from a Pu-Be source placed in the center of 30 cm diameter sphere filled with water, paraffin oil, SiO 2 , zeolite and river sand were also measured. The measured spectra have been compared with the calculated results obtained by the three dimensional Monte-Carlo code MCNP-4A and point-wise cross sections from the ENDF/B-4, ENDF/B-6, ENDF/E-1, BROND-2 and JENDL-3.1 data files. New results were obtained for validation of different data libraries from a comparison on the measured and the calculated spectra. Some typical results for water, Al, sand and Fe are shown. A combination of the backscattered neutron spectrometry with the surface gauge used both for the

  17. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012

    Science.gov (United States)

    Wright, Peter R.

    2013-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health

  18. DIFFERENCES BETWEEN YOUNG (13-14 YEARS OF AGE WATER POLO PLAYERS SELECTED AND NOT SELECTED TO THE NATIONAL TEAM

    Directory of Open Access Journals (Sweden)

    Igor Štirn

    2010-09-01

    Full Text Available Young water polo players at age 13 to 14 years were examined once a year in a four- year period using three morphological and eight specific skill tests: body height and mass, vital capacity, swimming at distances 5, 25 and 200 meters, swimming 4x5 meters with changing directions, ball dribbling, vertical jump and reach, vertical eggbeater kick and velocity of a throw at the goal. From the sum of 139 players tested, a group of 73 non-selected and of 66 selected players to the national team (U16, wider selection were formed and checked for differences. Differences in all observed variables (except body mass were found between the groups (P<0.05. One significant discriminant function was revealed (canonical R = 0.52 and the accounted variance was 100 %, P = 0.000. The variables that most differentiated the groups were swimming tests at distances of 25 and 200 meters, followed by vertical-egg beater kick and throwing velocity, while morphological variables differentiated the groups least.

  19. Should bulk cloudwater or fogwater samples obey Henry's law

    Energy Technology Data Exchange (ETDEWEB)

    Pandis, S.N.; Seinfeld, J.H. (Department of Chemical Engineering and Environmental Quality Laboratory, California Institute of Technology, Pasadena, CA (USA))

    1991-06-20

    In this work we prove that mixing of droplets with different {ital p}H that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH and bases like NH{sub 3} with respect to the original atmosphere. The degree of supersaturation of the bulk liquid water sample for a particular species depends on its dissociation constant, on the initial {ital p}H of the bulk droplet mixture, and on the distribution of the {ital p}H and of the liquid water over the droplet spectrum. High supersaturations result only when the {ital p}H of the bulk droplet mixture exceeds the {ital p}K{sub {ital a}} of the species, in which {ital p}H range large {ital p}H differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used was weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of {ital p}H values of bulk aqueous samples during storage. {copyright} American Geophysical Union 1991

  20. Dietary arsenic consumption and urine arsenic in an endemic population: response to improvement of drinking water quality in a 2-year consecutive study.

    Science.gov (United States)

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Du Laing, Gijs; De Neve, Jan; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-01-01

    We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L(-1)) in a first year (group I) and for participants using water lower in arsenic (water in groups I and II males was 7.44 and 0.85 μg kg body wt.(-1) day(-1) (p water were reduced to below 50 μg L(-1) (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.(-1) day(-1) (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.

  1. A study of preparation techniques and properties of bulk nanocomposites based on aqueous albumin dispersion

    Science.gov (United States)

    Gerasimenko, A. Yu.; Dedkova, A. A.; Ichkitidze, L. P.; Podgaetskii, V. M.; Selishchev, S. V.

    2013-08-01

    Bulk nanocomposites prepared from an aqueous albumin dispersion with carbon nanotubes by removing the liquid component from the dispersion have been investigated. The composites were obtained by thermostating and exposure to LED and IR diode laser radiation. The nanocomposites obtained under laser irradiation retain their shape and properties for several years, in contrast to the composites fabricated in different ways (which decompose into small fragments immediately after preparation). The low density of the composites under study (˜1200 kg/m3), which is close to the density of water, is due to their high porosity. The hardness of stable nanocomposites (˜300 MPa) was found to be at the same level as the hardness of polymethylmethacrylate, aluminum, and iron and close to the hardness of human bone tissue. The cluster quasiordering of the inner structure of nanocomposites revealed by atomic force microscopy indicates the possibility of forming a bulk nanotube framework in them, which can be caused by the effect of the electric field of laser radiation and ensure their stability and hardness. The presence of a framework in nanocomposites provides conditions for self-assembly of biological tissues and makes it possible to apply laser-prepared nanocomposites as a component of surgical implants.

  2. Mathematical modelling in simulate bulk density as a function of shrinkage and collapse mechanics during drying of food products

    NARCIS (Netherlands)

    Almeida-Rivera, C.; Khalloufi, S.; Janssen, J.; Bongers, P.M.M.; Pierucci, S.; Buzzi Ferraris, G.

    2010-01-01

    During drying, food products undergo several physical and structural changes. These changes have a direct impact on properties such as bulk density which is involved in heat and mass transfer processes. Therefore, the prediction of the bulk density as function of water content will be an interesting

  3. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  4. Y-12 Plant Groundwater Protection Program: Groundwater and surface water sampling and analysis plan for Calendar Year 1998

    International Nuclear Information System (INIS)

    1997-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 1998 at the Department of Energy (DOE) Y-12 Plant. These monitoring activities are managed by the Y-12 Plant Environmental Compliance Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 1998 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. Groundwater and surface water monitoring will be performed during CY 1998 to comply with: (1) requirements specified in Resource Conservation and Recover Act (RCRA) post-closure permits regarding RCRA corrective action monitoring and RCRA detection monitoring; (2) Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous solid waste management facilities; and (3) DOE Order 5400.1 surveillance monitoring and exit pathway monitoring. Data from some of the sampling locations in each regime will be used to meet the requirements of more than one of the monitoring drivers listed above. Modifications to the CY 1998 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected monitoring wells, or wells could be removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  5. Sampling and analysis plan for groundwater and surface water monitoring at the Y-12 Plant during calendar year 1995

    International Nuclear Information System (INIS)

    1994-10-01

    This plan provides a description of the groundwater and surface-water quality monitoring activities planned for calendar year (CY) 1995 at the Department of Energy Y-12 Plant. Included in this plan are the monitoring activities managed by the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Other groundwater and surface water monitoring activities (e.g. selected Environmental Restoration Program activities, National Pollution Discharge Elimination System (NPDES) monitoring) not managed through the Y-12 Plant GWPP are not addressed in this report. Several monitoring programs will be implemented in three hydrogeologic regimes: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. For various reasons, modifications to the 1995 monitoring programs may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected wells, or wells could be added to or deleted from the monitoring network. All modifications to the monitoring programs will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  6. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    International Nuclear Information System (INIS)

    Gustafsson, David; Jansson, Per-Erik; Gaerdenaes, Annemieke; Eckersten, Henrik

    2006-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem

  7. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering; Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Eckersten, Henrik [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Crop Production Ecology

    2006-12-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem.

  8. Phenomenological Studies on Melt-Structure-Water Interactions (MSWI) during Postulated Severe Accidents: Year 2004 Activity. APRI 5 report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Park, H.S.; Nayak, A.K.; Hansson, R.C.; Chiferaw, D.; Stepanyan, A.; Rao, R.S.; Karbojian, A. [Royal Inst. of Technology, Stockholm (Sweden). Div. of Nuclear Power Safety

    2005-04-01

    This report presents descriptions of the major results obtained in the research program 'Melt-Structure-Water Interaction (MSWI)' at NPS/RIT during the year 2004. The primary objectives of the MSWI Project in year 2004 were to study (1) the in-vessel and exvessel melt/debris bed coolability process when melt is flooded with water, and (2) the energetics and characteristics of steam explosions. Our general approaches are to establish scaling relationships so that the data obtained in the experiments could be extended to prototypical accident geometries and conditions, develop phenomenological or computational models for the processes under investigation and validate the existing and newly developed models against data obtained at RIT and at other laboratories. In 2004, several experimental programs, such as the COMECO (Corium MElt COolability), POMECO (POrous MEdia COolability) and MISTEE (Micro-Interactions in STeam Explosion Experiments) programs were continued. The SIMECO (Simulation of MElt Coolability) program was restarted in 2004. The construction of the POMECO-GRAND (POrous MEdia COolability) facility was delayed due to lack of finances. However, existing POMECO facility was modified to study 3-D effects on debris coolability. In this report, the results from the COMECO experiment with high temperature oxidic melt, from the POMECO experiments for the multi-dimensional effects on debris bed coolability, from the SIMECO experiment for three-layer pool configuration and from the MISTEE experiments for steam explosion characteristics and loads are described. For analytical efforts, results from the COMETA code for the entire process of the steam explosions are discussed.

  9. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.

    Science.gov (United States)

    Reyes, Andres; Messina, Carlos D; Hammer, Graeme L; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-12-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Water-Quality Data for Selected National Park Units, Southern and Central Arizona and West-Central New Mexico, Water Years 2003 and 2004

    National Research Council Canada - National Science Library

    Brown, James G

    2005-01-01

    In 1992 the National Park Service began a Level 1 Water Quality Data Inventory program to make available to park managers the water-resource information with which to best manage each park and plan for the future...

  11. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet

  12. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    OpenAIRE

    Sandeep S. Nerkar; Ashok J. Tamhankar; Smita U. Khedkar; Cecilia Stålsby Lundborg

    2014-01-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observationa...

  13. United States streamflow probabilities and uncertainties based on anticipated El Niño, water year 2003

    Science.gov (United States)

    Dettinger, M.; Cayan, D.; Redmond, K.

    2002-01-01

    During the course of spring and summer 2002, tropical sea-surface temperatures in the eastern Pacific Ocean have warmed and the wind and pressure fields have shifted, so that by August, there was considerable confidence that water year (October–September) 2003 will be characterized by a weak to mild El Niño climate (http://iri.columbia.edu/climate/ENSO/currentinfo/archive/200208/QuickLook.html). At the same time, the Pacific Decadal Oscillation pattern of sea-surface temperatures in the North Pacific (Mantua et al., 1997) has shifted towards a more neutral state than in the past several years and will not be considered in detail here. Previous studies of the connections between El Niños and streamflow in the United States by the authors (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992; Cayan et al., 1999; Dettinger et al., 2001) indicate that El Niño conditions influence historical streamflow distributions to varying extents. These conclusions, along with those of other researchers, suggest that foreknowledge of El Niño conditions can inform seasonal outlooks for streamflows throughout the Americas and elsewhere. For example, Dettinger et al. (2001), as distilled here into Fig. 1, showed that historical annual streamflow totals have correlated negatively with the Southern Oscillation Index (SOI, which is negatively associated with El Niños) in the U.S. Southwest as well as in the subtropics of South America, and correlate positively in the U.S. Northwest, in much of tropical South America, and, perhaps, in southernmost South America. These interhemispheric bands of El Niño influence are a matter of considerable concern for water- and land-managers throughout the Americas, and expand upon results from previous studies in the western United States (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992), including a recent analysis by Pizarro and Lall (2002), where water availability and hydrologic extremes are particularly pressing issues.

  14. Effect of Opalescence(®) bleaching gels on the elution of bulk-fill composite components.

    Science.gov (United States)

    Schuster, Lena; Reichl, Franz-Xaver; Rothmund, Lena; He, Xiuli; Yang, Yang; Van Landuyt, Kirsten L; Kehe, Kai; Polydorou, Olga; Hickel, Reinhard; Högg, Christof

    2016-02-01

    Bleaching treatments can affect release of components from conventional composites. In this continuing study the influence of two different bleaching gels on the elution of bulk-fill composite components was investigated. The composites Tetric EvoCeram(®) Bulk Fill, QuiXFil™ and X-tra fil were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5 h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24 h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). Unbleached specimens were used as control group. A total of 7 different elutable substances have been identified from the investigated composites after bleaching-treatment. Three of them were methacrylates: 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and trimethylolpropane trimethacrylate (TMPTMA). Compared to the unbleached controls an increase in elution after PF 15%-treatment of following compounds was found: HEMA (Tetric EvoCeram(®) Bulk Fill), TEGDMA (QuiXFil™, X-tra fil) and 4-N,N-dimethylaminobenzoic acid butyl ethoxy ester (DMABEE) (Tetric EvoCeram(®) Bulk Fill, QuiXFil™, X-tra fil). Following compounds showed a reduction in elution after PF 35%-treatment compared to controls: TEGDMA (QuiXFil™) and DMABEE (Tetric EvoCeram(®) Bulk Fill). The highest concentration of HEMA was 0.22 mmol/l (Tetric EvoCeram(®) Bulk Fill, methanol, 7 d, PF 15%), the highest concentration of TEGDMA was 0.3 mmol/l (X-tra fil, water, 7 d, PF 15%) and the highest concentration of DMABEE was 0.05 mmol/l (QuiXFil™, water, 7 d, PF 35%). PF 15% and PF 35% can lead to reduced and/or increased elution of some bulk-fill components, compared to unbleached bulk-fill composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    Science.gov (United States)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    Soil erosion still remains a persistent issue in the world, and this in spite of the efforts to ameliorate soil management systems taken into account the point of view of environmental protection against soil losses. In South Brazil water erosion is mainly associated to rainfall events with a great volume and high intensity, which are more or less evenly distributed all over the year. Nowadays, direct drilling is the most widely soil management system used for the main crops of the region. However, some crops still are grown on conventionally tilled soils, which means mainly ploughing and harrowing and less frequently chisel ploughing. In Lages-Santa Catarina State, Brazil, a plot experiment under natural rain was started in 1992 on an Inceptisol with the aim of quantifying soil and water losses. Treatments included bare and vegetated plots. The crop succession was: oats (Avena strigosa), soybean (Glycine max), vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and beans (Phaseolus vulgaris). Soil tillage systems investigated in this study were: i) conventional tillage (CT), ii) reduced tillage (MT), iii) no tillage (NT) under crop rotation and iv) conventional tillage on bare soil (BS). Treatments CT and BS involved ploughing plus twice harrowing, whereas MT involved chisel ploughing plus harrowing. Rainfall erosivity from January 1 1992 to December 31 2009 was calculated. Soil losses from the BS treatment along the 17 year study period were higher than 1200 Mg ha-1. Crop cover significantly reduced erosion, so that under some crops soil losses in the CT treatment were 80% lower than in the BS treatment. In turn soil losses in the MT treatment, where tillage was performed by chiselling and harrowing, were on average about 50% lower than in the CT treatment. No tillage was the most efficient soil management system in reducing soil erosion, so that soil losses in the NT treatment were about 98% lower than in the BS treatment. The three

  16. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    Science.gov (United States)

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  17. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  18. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  19. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  20. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  1. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  2. The International Association of Hydrogeologists (IAH): reflecting on 60 years of contributions to groundwater science and water management

    Science.gov (United States)

    Struckmeier, Willi; Howard, Ken; Chilton, John

    2016-08-01

    The 60th anniversary of the founding of the International Association of Hydrogeologists (IAH) is an important milestone that allows pause for reflection on how the association has evolved over the years and the contributions it has made to groundwater science and water management. IAH was founded in 1956 at the 20th International Geological Congress and developed rapidly during the 1980s and 1990s in response to a growing global interest in groundwater mapping and in sound approaches to resource protection and sustainable aquifer management. Incorporated in 2000, IAH has now secured its position as the world's leading international association specialising in groundwater with over 4,100 members in 131 countries. Much credit for this success must go to members, past and present, whose individual efforts and collaboration with sister institutions are documented here. These members have shaped the association's goals and contributed selflessly to its scientific programmes, publications and educational and charitable activities. Looking ahead to the next 60 years, it is essential that IAH does not rest on past achievements but listens and adjusts to the needs of members while continuing to pursue its mission of furthering the understanding, wise use and protection of groundwater resources throughout the world.

  3. Water Resources Data--California, Water Year 2002, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.

    2003-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Water Resources Data -- California, Water Year 2003, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water resources data, California, water year 2004, volume 1: Southern Great Basin from Mexican border to Mono Lake Basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.; Pope, G.L.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 195 gaging stations and 10 crest-stage partial-record stations, stage and contents for 25 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 7 partial-record stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Bulk-memory processor for data acquisition

    International Nuclear Information System (INIS)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user

  7. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  8. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  9. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    pellet surface than the bulk of the pellet in leaching experiments. Thus, formation of oxidising species and radicals by radiolysis is expected to be disproportionately high as well. Therefore, when discussing high burnup fuel dissolution, the effect of the increased radiation field with burnup, as well as of the influence of the smaller grain size and increased porosity at the rim are mentioned as factors which contribute to increased dissolution rates. A third factor, increased fission product and actinide doping with burnup, has been discussed extensively in connection with increased resistance to air oxidation of the fuel. Samples from four different fuel rods, all operated in Pressurised Water Reactors (PWR), are used in the new series of corrosion experiments. They cover a burnup range from 58 to 75 MWd/kgU. The nuclide inventory of all four samples was determined by means of a combination of experimental nuclide analysis and sample specific modelling calculations. More than 40 different nuclides were analysed by isotope dilution analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), as well as other ICP-MS and gamma spectrometric methods. The content of roughly all fission products and actinides was also calculated separately for each sample. The experiments are performed under oxidising conditions in synthetic groundwater at ambient temperature. In order to make results as comparable as possible to those of the Series 11 experiments, the same procedure and the same leachant is used. At least nine consecutive contact periods of one and three weeks and two, three, six and twelve months are planned. The present report covers the first five contact periods up to a cumulative contact time of one year for all four samples and in addition the sixth period up to a cumulative contact time of two years for two of the samples. The samples, kept in position by a platinum wire spiral, are exposed to synthetic groundwater in a Pyrex flask. After the contact

  10. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    International Nuclear Information System (INIS)

    Zwicky, Hans-Urs; Low, Jeanett; Ekeroth, Ella

    2011-03-01

    pellet surface than the bulk of the pellet in leaching experiments. Thus, formation of oxidising species and radicals by radiolysis is expected to be disproportionately high as well. Therefore, when discussing high burnup fuel dissolution, the effect of the increased radiation field with burnup, as well as of the influence of the smaller grain size and increased porosity at the rim are mentioned as factors which contribute to increased dissolution rates. A third factor, increased fission product and actinide doping with burnup, has been discussed extensively in connection with increased resistance to air oxidation of the fuel. Samples from four different fuel rods, all operated in Pressurised Water Reactors (PWR), are used in the new series of corrosion experiments. They cover a burnup range from 58 to 75 MWd/kgU. The nuclide inventory of all four samples was determined by means of a combination of experimental nuclide analysis and sample specific modelling calculations. More than 40 different nuclides were analysed by isotope dilution analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), as well as other ICP-MS and gamma spectrometric methods. The content of roughly all fission products and actinides was also calculated separately for each sample. The experiments are performed under oxidising conditions in synthetic groundwater at ambient temperature. In order to make results as comparable as possible to those of the Series 11 experiments, the same procedure and the same leachant is used. At least nine consecutive contact periods of one and three weeks and two, three, six and twelve months are planned. The present report covers the first five contact periods up to a cumulative contact time of one year for all four samples and in addition the sixth period up to a cumulative contact time of two years for two of the samples. The samples, kept in position by a platinum wire spiral, are exposed to synthetic groundwater in a Pyrex flask. After the contact

  11. Small Water Enterprise in Rural Rwanda: Business Development and Year-One Performance Evaluation of Nine Water Kiosks at Health Care Facilities

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2017-12-01

    Full Text Available Small water enterprises (SWEs have lower capital expenditures than centralized systems, offering decentralized solutions for rural markets. This study evaluated SWEs in rural Rwanda, where nine health care facilities (HCF owned and operated water kiosks supplying water from onsite water treatment systems (WTS. SWEs were monitored for 12 months. Spearman’s Rank Correlation Coefficient (rs was used to evaluate correlations between demand for kiosk water and community characteristics, and between kiosk profit and factors influencing the cost model. On average, SWEs distributed 15,300 L/month. One SWE ran at a loss, four had profit margins of ≤10% and four had profit margins of 45–75%. Factors influencing SWE performance were intermittent water supply (87% of SWE closures were due to water shortage, consumer demand (demand was high where populations already used improved water sources (rs = 0.81, p = 0.02, price sensitivity (demand was lower where SWEs had high prices (rs = −0.65, p = 0.08, and production cost (water utility tariffs negatively impacted SWE profits (rs = −0.52, p < 0.01. Sustainability was more favorable in circumstances where recovery of capital expenditures was not expected, and the demand for treated water was sufficient to fund operational expenditures. Future research is needed to assess the extent to which kiosk revenue can support ongoing operational costs of WTS and kiosks both at HCF and in other contexts.

  12. Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.

    Science.gov (United States)

    Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin

    2017-10-01

    This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Big bang nucleosynthesis constraints on bulk neutrinos

    International Nuclear Information System (INIS)

    Goh, H.S.; Mohapatra, R.N.

    2002-01-01

    We examine the constraints imposed by the requirement of successful nucleosynthesis on models with one large extra hidden space dimension and a single bulk neutrino residing in this dimension. We solve the Boltzmann kinetic equation for the thermal distribution of the Kaluza-Klein modes and evaluate their contribution to the energy density at the big bang nucleosynthesis epoch to constrain the size of the extra dimension R -1 ≡μ and the parameter sin 2 2θ which characterizes the mixing between the active and bulk neutrinos

  14. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  15. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  16. Manganese in Drinking Water and Cognitive Abilities and Behavior at 10 Years of Age: A Prospective Cohort Study.

    Science.gov (United States)

    Rahman, Syed Moshfiqur; Kippler, Maria; Tofail, Fahmida; Bölte, Sven; Hamadani, Jena Derakhshani; Vahter, Marie

    2017-05-26

    Cross-sectional studies have indicated impaired neurodevelopment with elevated drinking water manganese concentrations (W-Mn), but potential susceptible exposure windows are unknown. We prospectively evaluated the effects of W-Mn, from fetal life to school age, on children's cognitive abilities and behavior. We assessed cognitive abilities and behavior in 1,265 ten-year-old children in rural Bangladesh using the Wechsler Intelligence Scale for Children (WISC-IV) and the Strengths and Difficulties Questionnaire (SDQ), respectively. Manganese in drinking water used during pregnancy and by the children at 5 y and 10 y was measured using inductively coupled plasma mass spectrometry. The median W-Mn was 0.20 mg/L (range 0.001–6.6) during pregnancy and 0.34mg/L (cognitive abilities. Stratifying by gender (p for interaction in general cognitive ability measures in girls but not in boys. W-Mn at all time points was associated with an increased risk of conduct problems, particularly in boys (range 24–43% per mg/L). At the same time, the prenatal W-Mn was associated with a decreased risk of emotional problems [odds ratio (OR)=0.39 (95% CI: 0.19, 0.82)] in boys. In girls, W-Mn was mainly associated with low prosocial scores [prenatal W-Mn: OR=1.48 (95% CI: 1.06, 1.88)]. Elevated prenatal W-Mn exposure was positively associated with cognitive function in girls, whereas boys appeared to be unaffected. Early life W-Mn exposure appeared to adversely affect children's behavior. https://doi.org/10.1289/EHP631.

  17. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  18. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-6: Data report

    International Nuclear Information System (INIS)

    Martin, R.J.; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1994-11-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from borehole USW NRG-6 at Yucca Mountain, Nevada. Measurements have been performed on four thermal/mechanical units, TCw, PTn, TSw1 and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the borehole. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water saturated specimens; however, some specimens of PTn were tested in a room dry condition. The nominal strain rate for the fracture experiments was 10 -5 s -1

  19. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  20. Solar disinfection of drinking water in the prevention of dysentery in South African children under 5 years: the role of participant motivation

    CSIR Research Space (South Africa)

    Du Preez, M

    2010-11-01

    Full Text Available This 1-year randomized controlled trial investigated the effect of SODIS of drinking water and motivation on the incidence of dysentery and nondysentery diarrhea among children of age 6 months to 5 years living in periurban communities in South...

  1. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay

  2. Small Water Enterprise in Rural Rwanda: Business Development and Year-One Performance Evaluation of Nine Water Kiosks at Health Care Facilities.

    Science.gov (United States)

    Huttinger, Alexandra; Brunson, Laura; Moe, Christine L; Roha, Kristin; Ngirimpuhwe, Providence; Mfura, Leodomir; Kayigamba, Felix; Ciza, Philbert; Dreibelbis, Robert

    2017-12-16

    Small water enterprises (SWEs) have lower capital expenditures than centralized systems, offering decentralized solutions for rural markets. This study evaluated SWEs in rural Rwanda, where nine health care facilities (HCF) owned and operated water kiosks supplying water from onsite water treatment systems (WTS). SWEs were monitored for 12 months. Spearman's Rank Correlation Coefficient (r s ) was used to evaluate correlations between demand for kiosk water and community characteristics, and between kiosk profit and factors influencing the cost model. On average, SWEs distributed 15,300 L/month. One SWE ran at a loss, four had profit margins of ≤10% and four had profit margins of 45-75%. Factors influencing SWE performance were intermittent water supply (87% of SWE closures were due to water shortage), consumer demand (demand was high where populations already used improved water sources (r s = 0.81, p = 0.02)), price sensitivity (demand was lower where SWEs had high prices (r s = -0.65, p = 0.08)), and production cost (water utility tariffs negatively impacted SWE profits (r s = -0.52, p Future research is needed to assess the extent to which kiosk revenue can support ongoing operational costs of WTS and kiosks both at HCF and in other contexts.

  3. [Structure and dynamics of microemulsions in bulk, at interfaces, and in confined geometries

    International Nuclear Information System (INIS)

    1993-01-01

    The authors have been constructing a special purpose small angle neutron scattering spectrometer (SAND) in collaboration with IPNS of Argonne National Laboratory and Texaco Research Laboratories in Beacon, New York. The spectrometer, having a moderate neutron flux, will be uniquely suited for detailed studies of complex fluids in their various phases. This spectrometer will be fully available to general users of the small angle scattering community after a year of testing and upon installation of the auxiliary equipment. The general research objective of the MIT group is to continue studies of the microstructural relationship to phase-behavior in three-component microemulsion systems. Specifically, they shall study the (1) variation of bulk structures when a microemulsion undergoes a non-wetting to wetting transition, (2) correlating interfacial reflectivity measurements of these wetting transitions to the SANS results, (3) use the contrast variation technique they recently developed for measuring the mean and Gaussian curvatures of the surfactant sheet to study the structural inversion of water-in-oil to oil-in-water microemulsions and the transition of disordered bicontinuous microemulsion to ordered lamellar phases, (4) investigation of the effects of spatial confinement on the phase behavior and structure of bicontinuous microemulsions, and finally (5) they shall continue the study of the recently discovered non-exponential relaxation of droplet density fluctuations near the critical and percolation points in water-in-oil droplet microemulsions

  4. Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: seven years of monitoring (2000-2006).

    Science.gov (United States)

    Abu Amr, S S; Yassin, M M

    2008-11-01

    To assess total and faecal coliform contamination in water wells and distribution networks over the past 7 years, and their association with human health in Khan Yunis Governorate, Gaza Strip. Historical data and interview questionnaire. Data were obtained from the Palestinian Ministry of Health on total and faecal coliform contamination in water wells and distribution networks, and on the incidence of water-related diseases