WorldWideScience

Sample records for water wells

  1. Water Well Locations - Conservation Wells

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The conservation well layer identifies the permitted surface location of oil and gas conservation wells that have not been plugged. These include active, regulatory...

  2. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  3. Private Well Water and Fluoride

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  4. Nationwide rural well water survey

    International Nuclear Information System (INIS)

    Korkka-Niemi, K.; Sipilae, A.; Hatva, T.; Hiisvirta, L.; Lahti, K.; Alfthan, G.

    1993-01-01

    The quality of water in 1 421 drinking-water wells was monitored in a nationwide well water study. Samples were taken once from all wells, and during three seasons from 421 wells. The wells were selected in such a way that me sample would be as representative as possible of the quality of the drinking-water in households' own wells in rural areas. The study comprised general water quality parameters, influence of sampling season, and factors related to the type, the condition and the pollution of the wells. In part of the well waters selenium, radioactivity and pesticides were determined. The effect of plumbing materials on the quality of water was also examined. (33 refs., 148 figs., 71 tabs.)

  5. Gas in your water well

    International Nuclear Information System (INIS)

    2011-03-01

    In Alberta, the presence of carbon dioxide, methane or hydrogen sulphide in water wells is common. The aim of this paper is to provide information to private owners of water wells. It is stated in this document that spurting taps or a gurgling noise indicate that there is gas in your water well; you can determine which gas it is by collecting a sample and having it analyzed. In order to address the risks associated with the presence of gas in the water well, the well pit or well pump should be properly vented to avoid any oxygen deficiency in the atmosphere. It is also possible to get rid of the gas by lowering the pump intake. It is also mentioned that the development of coalbed methane in Alberta should not contaminate private wells since regulations aimed at avoiding this have been implemented. This paper provided useful information to help private owners manage the presence of gas in their water wells.

  6. Lead and Drinking Water from Private Wells

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  7. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  8. Radon in private drinking water wells

    International Nuclear Information System (INIS)

    Otahal, P.; Merta, J.; Burian, I.

    2014-01-01

    At least 10 % of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq.l -1 . This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. (authors)

  9. Treatment of radon rich well water

    International Nuclear Information System (INIS)

    Mose, D.; Mushrush, G.; Chrosniak, C.

    1991-01-01

    Private wells supply potable water to about 25% of the homes in northern Virginia, and almost all water wells contain radon, a carcinogenic radionuclide derived form uranium in rocks and soil. The average Virginia well provides about 2,000-3,000 pCi/l of dissolved radon; the US Environmental Protection Agency has proposed that 300 pCi/l of should be the allowed maximum for public water supplies. To estimate the ability of activated charcoal to remove radon from private well water, a home supplied by a water well carrying at sign 4,000 pCi/l was studied. Following 1 year of water measurements, an in-line tank containing 1 cubic foot of activated charcoal was installed, and a subsequent 6 month interval of radon measurements on untreated and on treated water was conducted. Although removal rates of more than 90% have been reported, this study home showed a 60-70% radiation removal in the tank. A high percentage removal rate was reached in less than a month after installation, and was maintained for about 4 months, but the removal rate declined to about 50% by the end of the testing interval. Additional studies are being conducted to determine the effect of using different charcoal volumes, different charcoal types; also being studied is the gamma emission of the charcoal tank

  10. Well Waters Fluoride in Enugu, Nigeria

    Directory of Open Access Journals (Sweden)

    ISI Ogbu

    2012-03-01

    Full Text Available Abnormal fluoride levels in drinking water have been associated with adverse health effects. To determine the fluoride content of well waters in Enugu, southeastern Nigeria, water samples from 50 artisan wells chosen by multistage sampling procedure from the 5 zones of Enugu municipality were analyzed in duplicates for their fluoride content. The zonal mean values were 0.60, 0.70, 0.62, 0.62, and 0.63 mg/L for Abakpa Nike, Achara Layout, Obiagu/ Ogui, Trans Ekulu and Uwani, respectively (p<0.05. The mean value for the whole city was 0.63 mg/L. Although, the mean level of fluoride recorded in this study is currently within safe limits (1.5 mg/L, WHO 2011, it is important to monitor continuously the fluoride content of well waters in the municipality in view of the increasing industrial activities going on in the city and heavy reliance on well water for domestic purposes and the widespread use of consumer products containing fluoride.

  11. Uranium speciation and removal from well water

    International Nuclear Information System (INIS)

    Ayaz, B.; DeVol, T.; Navratil, J.D.

    2001-01-01

    The purpose of this work was to determine the form of uranium present in the well water and to test the effectiveness of common household treatment devices to remove uranium and radium. Batch tests with activated carbon, iron powder, anion exchange resin and cation exchange resin were used to characterize the form of uranium in the drinking water. In the tests, water and the separation materials were first equilibrated, filtered and then analyzed by alpha spectrometry. The results of the batch tests showed that it is possible to remove greater than 90% of the uranium and radium in the drinking water by using any of the sorbents listed above. Simple filtration with 0.1 μm had little to no impact on uranium removal. Results of tests using household treatment devices will also be presented. (authors)

  12. Potential Well Water Contaminants and Their Impacts

    Science.gov (United States)

    The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.

  13. Well Head Protection Areas For Public Non-Community Water Supply Wells In New Jersey

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Well Head Protection Area for a Public Non-Community Water Supply Well (PNCWS) in New Jersey is a map area calculated around a Public Non-Community Water Supply...

  14. Promoting the management and protection of private water wells.

    Science.gov (United States)

    Simpson, Hugh

    Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.

  15. Radon concentrations in well water in Sichuan Province, China

    International Nuclear Information System (INIS)

    Chen Yibin; Wu Qun; Zhang Bo; Chen Daifu

    1998-01-01

    There are 110 million people in Sichuan Province, China. Although most of the people in cities of Sichuan use river water, which contains low levels of radon, as potable water, people in countryside and in some communities of big cities still use well water as domestic consumption. This paper reports the radon concentrations in well water investigated in four cities, i.e. Chengdu, Chongqing, Leshan and Leijiang in Sichuan Province. Of the 80 wells investigated, the radon concentrations range from 3.5 to 181.6 KBqm -3 . Of the four cities, Chongqing has the highest well water radon concentration with the average 49.6 ± 54.1 KBqm -3 and the greatest variation. The investigation in four cities showed that the radon concentrations in well water are much higher than that in tap-water. In Chongqing where there are complex geological structures, mainly granite stratum, for example, the average radon concentration in well water is 112 times higher than that in the tap-water, and even much higher than that in river water in Yangtse River, Jialing River, Jinsha River and Mingjiang River. The population in four cities is about one sixth of the total population in Sichuan Province. Because of the common use of well water and the high radon concentrations in well water in Sichuan Province, the health effect of radon in well water to the public should be stressed. (author)

  16. Carcinogenic risk associated with radon-enriched well water

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    1997-01-01

    A comparison has been made between radon in drinking water and the incidence of cancer using a set of home occupants in Virginia and Maryland. In a subset of people who drink radon-free but chlorinated drinking water from a reservoir, about 3% develop some type of cancer. In a subset of people who drink low-radon water from private water wells, about 3% develop cancer. In a subset who drink high-radon well water, about 6% develop cancer. A comparison with Environmental Protection Agency (EPA) estimates of cancer related to airborne radon indicates that for the general population, the incidence of radon-related cancer from drinking water is similar to the incidence of cancer from inhaled radon. For the 10% of the population that consumes well water and, in particular, for the 5% of the population that consumes high-radon well water, the drinking water carries a considerably higher cancer risk than inhaling airborne radon

  17. Impact of hydraulic well restoration on native bacterial communities in drinking water wells.

    Science.gov (United States)

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems.

  18. Impact of Hydraulic Well Restoration on Native Bacterial Communities in Drinking Water Wells

    Science.gov (United States)

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229

  19. Bacteriological analysis of well water samples in Sagamu | Idowu ...

    African Journals Online (AJOL)

    Majority of the population in semi-urban and urban areas of Nigeria depend on wells as their source of water supply. Due to increasing cases of water-borne diseases in recent times, this study was carried out to examine the microbial quality of well water in Sagamu, Nigeria as a way of safeguarding public health against ...

  20. Description of calls from private well owners to a national well water hotline, 2013

    International Nuclear Information System (INIS)

    Ridpath, Alison; Taylor, Ethel; Greenstreet, Charlene; Martens, Margaret; Wicke, Heather; Martin, Colleen

    2016-01-01

    Water Systems Council (WSC) is a national, non-profit organization providing education and resources to private household well owners. Since 2003, WSC has provided wellcare®, a toll-free telephone hotline to answer questions from the public regarding well stewardship. In order to identify knowledge gaps regarding well stewardship among private well owners, we obtained data from WSC and reviewed calls made during 2013 to wellcare®. WSC records data from each wellcare® call—including caller information, primary reason for call, main use of well water, and if they were calling about a cistern, private well, shared well, or spring. We searched for calls with key words indicating specific contaminants of interest and reviewed primary reasons for calls. Calls classified as primarily testing-related were further categorized depending on whether the caller asked about how to test well water or how to interpret testing results. During 2013, wellcare® received 1100 calls from private well owners who were residents of 48 states. Among these calls, 87 (8%) mentioned radon, 83 (8%) coliforms, 51 (5%) chemicals related to fracking, 34 (3%) arsenic, and 32 (3%) nitrates key words. Only 38% of private well owners reported conducting any well maintenance activities, such as inspecting, cleaning, repairing the well, or testing well water, during the previous 12 months. The primary reason for calls were related to well water testing (n = 403), general information relating to wells (n = 249), contaminants (n = 229), and well water treatment (n = 97). Among calls related to testing, 319 had questions about how to test their well water, and 33 had questions about how to interpret testing results. Calls from private well owners to the wellcare® Hotline during 2013 identified key knowledge gaps regarding well stewardship; well owners are generally not testing or maintaining their wells, have questions about well water testing treatment, and concerns about well water contaminants

  1. Description of calls from private well owners to a national well water hotline, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Ridpath, Alison, E-mail: etf4@cdc.gov [Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, MS-F-60, Chamblee, GA 30341 (United States); Taylor, Ethel [Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, MS-F-60, Chamblee, GA 30341 (United States); Greenstreet, Charlene; Martens, Margaret; Wicke, Heather [Water Systems Council, 1101 30th St NW, Washington, DC 20007 (United States); Martin, Colleen [Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, MS-F-60, Chamblee, GA 30341 (United States)

    2016-02-15

    Water Systems Council (WSC) is a national, non-profit organization providing education and resources to private household well owners. Since 2003, WSC has provided wellcare®, a toll-free telephone hotline to answer questions from the public regarding well stewardship. In order to identify knowledge gaps regarding well stewardship among private well owners, we obtained data from WSC and reviewed calls made during 2013 to wellcare®. WSC records data from each wellcare® call—including caller information, primary reason for call, main use of well water, and if they were calling about a cistern, private well, shared well, or spring. We searched for calls with key words indicating specific contaminants of interest and reviewed primary reasons for calls. Calls classified as primarily testing-related were further categorized depending on whether the caller asked about how to test well water or how to interpret testing results. During 2013, wellcare® received 1100 calls from private well owners who were residents of 48 states. Among these calls, 87 (8%) mentioned radon, 83 (8%) coliforms, 51 (5%) chemicals related to fracking, 34 (3%) arsenic, and 32 (3%) nitrates key words. Only 38% of private well owners reported conducting any well maintenance activities, such as inspecting, cleaning, repairing the well, or testing well water, during the previous 12 months. The primary reason for calls were related to well water testing (n = 403), general information relating to wells (n = 249), contaminants (n = 229), and well water treatment (n = 97). Among calls related to testing, 319 had questions about how to test their well water, and 33 had questions about how to interpret testing results. Calls from private well owners to the wellcare® Hotline during 2013 identified key knowledge gaps regarding well stewardship; well owners are generally not testing or maintaining their wells, have questions about well water testing treatment, and concerns about well water contaminants

  2. Spectral Noise Logging for well integrity analysis in the mineral water well in Asselian aquifer

    Directory of Open Access Journals (Sweden)

    R.R. Kantyukov

    2017-06-01

    Full Text Available This paper describes a mineral water well with decreasing salinity level according to lab tests. A well integrity package including Spectral Noise Logging (SNL, High-Precision Temperature (HPT logging and electromagnetic defectoscopy (EmPulse was performed in the well which allowed finding casing leaks and fresh water source. In the paper all logging data were thoroughly analyzed and recommendation for workover was mentioned. The SNL-HPT-EmPulse survey allowed avoiding well abandonment.

  3. Radiotracer investigations in oil production and water injection wells

    International Nuclear Information System (INIS)

    Eapen, A.C.; Jain, S.K.; Kirti

    1977-01-01

    Injection of gamma emitting radiotracers into oil wells followed by logging provides information on several aspects such as the identification of zones of seepage of water in the water injection wells and also the location of source of water entering oil producting wells. The experience gained in the application of bromine-82 and rubidium-86 as radiotracers in such studies at the Ankleshwar and Kalol oil fields in Gujarat and Nazira in Assam has been briefly reported. (author)

  4. Concentration of natural radionuclides in private drinking water wells

    International Nuclear Information System (INIS)

    Cerny, R.; Otahal, P.; Merta, J.; Burian, I.

    2017-01-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/Euroatom, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. (authors)

  5. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  6. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  7. [Food borne outbreak caused by the well water contaminated norovirus].

    Science.gov (United States)

    Tokutake, Yumi; Kobayashi, Masato; Akiyama, Miho; Aiki, Chikako; Nishio, Osamu

    2006-05-01

    In May 2004, 65 people from 18 groups of visitors to guesthouse (a traditional Japanese guesthouse) in the Nagano Prefecture, Japan developed acute gastroenteritis. Although these cases originally attributed to food poisoning, based on epidemiological and dietary surveys, there was nothing that is associated as a cause food. The same wall water was used throughout the guesthouse except in the kitchen, so testing was conducted on this water. Lordsdale variant strain of Norovirus was detected from both of the well water and the feces of patients and staff. The well supplying to the guesthouse was only 10 meters deep and fecal coliform group was also detected in the well water from the guesthouse. This suggested that the water source was contaminated by human feces.

  8. Private Well Owners | Drinking Water in New England | US ...

    Science.gov (United States)

    2017-07-06

    Recent studies in New England identified contamination of some private wells from methyl-tertiary-butyl ether (MtBE), radon and arsenic. But, many homeowners are not aware of this risk to their drinking water.

  9. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  10. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  11. Composition for limiting water influx into a well

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, A.Sh.; Budarina, L.A.; Kuznetsov, Ye.V.; Zhdanov, N.F.

    1982-01-01

    A composition is proposed for restricting water influx into a well. It contains acrylamide, ammonium persulfate, sodium hyposulfite, water and additive. It is distinguished by the fact that in order to improve water resistance of the copolymer formed in the bed and to preserve permeability of the bed for oil, it contains as an additive polymethacylic acid with the following ratio of components (% by weight): acrylamide 2.0-5.6; polymethacrylic acid 3.08.0; ammonium persulfate 0.020-0.072; sodium hyposulfite 0.018-0.068; water--the rest.

  12. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  13. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  14. Studies of radon mitigation in well water by aeration

    International Nuclear Information System (INIS)

    Mafra, Karina Cristina; Paschuk, Sergei A.; Denyak, Valeriy; Reque, Marilson; Correa, Janine Nicolosi; Barbosa, Laercio

    2011-01-01

    The 222 Rn concentration in natural water in different countries usually is about few Bq/L and is the subject of the National legislation as well as International norms and recommendations. The United States Environmental Protection Agency (USEPA) established a limit of 11.1 Bq/L for the radon level in drinking water and this limit is considered as guideline in Canada and many countries of the European Union. This work presents the results of study of radon ( 222 Rn) concentration reduction in well water using the aeration process developed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR). The water samples were collected from a well at Pinheirinho region of Curitiba in 2011. Experimental setup was based on the Radon Monitor (AlphaGUARD). The 222 Rn concentration was analyzed using the software DataEXPERT by Genitron Instruments, taking into account the volume of water sample, its temperature, atmospheric pressure and the total volume of the air in the vessels. Initial concentration of radon in water samples was 28,67 Bq/L which is bigger than maximum concentration recommended by USEPA. The mitigation was performed by means of diffusion aeration of water samples of 15L during the time interval of 24 hours following a period of 4 days. The efficiency of aeration mitigation was controlled by comparing the activity of radon in aerated water with reference water samples that were not aerated. Obtained results show very satisfactory decrease of 222 Rn activity in water samples even after few hours of intense aeration. (author)

  15. PARASITIC CONTAMINATION OF WELLS DRINKING WATER IN MAZANDARAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Z. Yousefi ، H. Ziaei hezarjaribi ، A. A. Enayati ، R. A. Mohammadpoor

    2009-10-01

    Full Text Available There is a direct relation between the prevalence of some parasitic diseases and the presence of those etiologic agents in water. The purpose of this research was to determine the contamination rate of wells drinking water to parasites in Mazandaran province in the north of Iran. 989 water samples were randomly taken based on the population of towns and number of health centers from 12 cities of Mazandaran province and transferred to the laboratory in sterile containers. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Direct method and Gram staining procedure were used to identify the parasites. If cryptosporidium was seen, floatation (sheather’s sugar and modified Ziehl-Neelsen staining method were performed. Parasites count was undertaken using McMaster counting slide (0.3 mL. 197 out of 989 water samples were contaminated with different parasites. From 197 contaminated samples, 20 different types of parasites were separated of which 53 (26.9% were pathogenic, 100 (50.8% non pathogenic, and 44 non-infective stages of parasites. Distance between wells and sources of contamination, type of water distribution systems, city and chlorination status had significantly statistical relationship with contamination prevalence (p<0.001. According to the results and considering the direct correlation between safe water and human health, proper implementation of providing hygienic drinking water should be enforced.

  16. Radon measurements in well and spring water in Lebanon

    International Nuclear Information System (INIS)

    Abdallah, Samer M.; Habib, Rima R.; Nuwayhid, Rida Y.; Chatila, Malek; Katul, Gabriel

    2007-01-01

    The variation of dissolved radon ( 222 Rn) levels in water supplies remains of interest because of the radiation-induced public health hazards. A large part of the Lebanese population relies on springs and wells for their drinking water. 222 Rn measurements in spring and well water sources were conducted using the E-PERM method at sites ranging from sea level to 1200m above sea level and across several geologic formations within Lebanon. The dissolved radon concentrations ranged from a low of 0.91BqL -1 in a coastal well source to a high of 49.6BqL -1 for a spring source in a mountainous region. Of the 20 sites sampled, only five had radon levels above 11BqL -1 and these mostly occurred in areas adjacent to well-known geological fault zones. A preliminary national average radon level was determined to be about 11.4BqL -1 . In general, as all determined concentrations were well below the 100 and 146BqL -1 revised reference levels proposed in the European Union and the United States, respectively, it is concluded that there is no reason to believe these water sources pose any radon-related hazard. On the other hand, at locations where water is collected directly from the springhead, it is advisable to have a settling/piping system installed allowing for further radon decay and radon loss into the air to alleviate any possible radon problem

  17. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    Science.gov (United States)

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  18. PASSIVE SAMPLING OF GROUND WATER MONITORING WELLS WITHOUT PURGING MULTILEVEL WELL CHEMISTRY AND TRACER DISAPPEARANCE

    Science.gov (United States)

    It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...

  19. Adsorption of dissolved uranium from well water. Part I

    International Nuclear Information System (INIS)

    Jasper, S.; Oldham, W.K.

    1982-01-01

    This study was undertaken in response to a request from the provincial Ministry of Health, to evaluate several methods for removal of uranium from well water in the Okanagan Valley of British Columbia. The naturally occurring uranium levels in some of these wells is above 100 ppb, and as the drinking water standard for uranium is 20 ppb, it has become necessary to develop an efficient, easily operated system to reduce uranium concentration. This study comprises the first step in this process by selecting the most appropriate adsorbent and estimating its efficiency and capacity

  20. Nephrotoxicity of uranium in drinking water from private drilled wells

    International Nuclear Information System (INIS)

    Selden, Anders I.; Lundholm, Cecilia; Edlund, Bror; Hoegdahl, Camilla; Ek, Britt-Marie; Bergstroem, Bernt E.; Ohlson, Carl-Goeran

    2009-01-01

    Objectives: To investigate the association between uranium in drinking water from drilled wells and aspects of kidney function measured by sensitive urine tests. Methods: Three hundred and one of 398 eligible subjects (75.6%) aged 18-74 years with daily drinking water supplies from private drilled wells located in uranium-rich bedrock (exposed group) volunteered to participate along with 153 of 271 local controls (56.4%) who used municipal water. Participants responded to a questionnaire on their water consumption and general health, and provided a morning urine sample and drinking water for analysis. Results: The uranium content of well water samples (n=153) varied considerably (range 100 μg/l), while uranium levels in all samples of municipal water (n=14) were below the limit of quantification (0.2 μg/l). Urinary levels of uranium were more than eight times higher in exposed subjects than in controls (geometric means 38 and 4.3 ng/l, respectively; p 2 =0.66). Levels of albumin, β 2 -microglobulin, protein HC as well as kappa and lambda immunoglobulin chains in urine from exposed and controls were similar. The N-acetyl-β-D-glucosaminidase (NAG) activity was significantly lower in the exposed group vs. controls, possibly secondary to differential storage duration of samples from the two groups. Even in regression models adjusting for gender, age and smoking no association of uranium in water and the kidney function parameters was observed. Using uranium in urine in the entire study group as a marker of exposure, however, a tendency of exposure-related increases of β 2 -microglobulin, protein HC and kappa chains were noted. This tendency was enhanced after exclusion of subjects with diabetes mellitus from the analysis. Conclusions: Uranium levels in urine were strongly correlated to levels in drinking water from drilled wells. There were no clear signs of nephrotoxicity from uranium in drinking water at levels recorded in this study, but some indications of an

  1. Monitoring of water quality of selected wells in Brno district

    Directory of Open Access Journals (Sweden)

    Marková Jana

    2016-06-01

    Full Text Available The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová. The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD, calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

  2. A Well Water Reverse Osmosis Desalination Unit Diagnosis

    International Nuclear Information System (INIS)

    Elfil, H.; Hila, M.; Hannachi, A.; Yeza, A.

    2009-01-01

    In this present work the diagnosis results of a reverse osmosis desalination unit are reported. Since 1997, the desalination unit was supplying a 1200 bed hotel. The feed water was driven from a well situated 300 m away form the sea. The water has an approximate salinity of 6gg.L -1 . The unit was producing 600 m 3 per day of desalinated water with a Total Dissolved Salts (TDS) of nearly 400 mg.L -1 . The desalination unit has two stages with 67 pour cent and 42 pour cent yields respectively giving an average yield of 81 pour cent. The behavior of all water streams with respect to aggressiveness and scaling tendency was assessed. The 2nd stage reject water was shown to exhibit a very high scaling behavior with an instantaneous precipitation in the absence of feed water chemical treatment. The analyses have shown that the produced water was very aggressive. The second stage module autopsy has revealed a sharp decrease of the membrane performances because of mineral as well as organic fooling buildup. The inorganic scale was essentially made of coesite and calcite and kaolinite clay. The presence of silica and clay could be attributed to an inadequate filtration pre-treatment process that was not able to retain all the suspended matter in the feed water. Whereas the presence calcite crystals at the membrane surface, reveals that the chemical inhibition performed at the pre-treatment process without adjusting the water pH was not able to prevent calcium carbonate precipitation. A periodic acid wash of the 2nd stage membranes is then necessary to guarantee this stage desired objectives.

  3. How Well are Water Companies Engaged in CSR?

    DEFF Research Database (Denmark)

    Lauesen, Linne Marie

    2014-01-01

    Purpose – The purpose of this paper is to investigate how well water companies in four different nationalities and political cultures are engaged in the CSR discourse. This question is relevant after more than 20 years of privatization of the public administration's bureaucracy and its adoption...... of management styles, behaviours and thinking from the private business sphere. This paper seeks to critically examine how water companies take part in the CSR discourse, by which institutional mechanisms this managerial “thinking” in terms of institutional “logics” has come about, and which adopted “meanings......” lie behind. Design/methodology/approach – The paper shows a qualitatively, ethnographic investigation and discourse analysis of privatized water companies from four different political and market economy nations; small- and medium-sized water companies from the social-democratic state of Denmark...

  4. 226Ra concentrations in some Illinois well waters

    International Nuclear Information System (INIS)

    Holtzman, R.B.; Gilkeson, R.H.

    1982-01-01

    226 Ra concentrations are reported for the waters from deep wells in 43 communities in Illinois. The concentrations range from 0.08 to 20.6 pCi/L. The effectiveness of additives (nitric acid or EDTA) in keeping the 226 Ra in solution in the samples is discussed

  5. Method for preventing plugging of water wells by clay

    Energy Technology Data Exchange (ETDEWEB)

    Blazhkov, V I

    1966-01-01

    A method is suggested for preventing the plugging of water-bearing sands by clay from drilling fluids. It consists in placing a cement plug in the upper nipple above the filter, in order to prevent its plugging during the installation. The drilling mud passes through the rinsing windows and fills the internal void of the filter column, thus preventing further percolation and plugging of the filter during its lowering. When a 2-filter column is lowered, the clay solution is pumped into the interval between the cement plug and the next filter; this is done gradually in proportion to the addition of new pipes. When the drilling mud level lowers in the annular space between the pipes, the mud cake, together with water-saturated sand, passes through the rinsing windows into the pipes and is removed to the surface by airlift or other methods. This procedure is described in detail, discussed for various conditions of well structure, and illustrated by schematic drawings. Its advantage is in the possibility of separate testing and production of all water-bearing zones in the well, and it does not require the use of pure water for well washing.

  6. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  7. Anomalies in oil and water wells and the Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.

    1980-01-01

    Bin County, Shandong Province, has a complicated fault structure resulting from the interaction of a number of fault blocks. An examination of the behavior of oil wells in various oilfields located in faulting areas showed anomalies in 7 of them related to the Tangshan earthquake. Three wells (Nos. 88, 101, and 102) showed sharp peaks in output within a month before the earthquake. One well (No. 278) showed a sharp peak in the oil-gas ratio in April and July of 1976. There was a sharp increase in the water content of the oil produced by one well (No. 285) in July. Finally, one well (4-Xi4-10) showed a decrease in the rate of change of static pressure, starting in March 1976 and achieving a plateau in June which persisted until October before the static pressure again began to change more rapidly.

  8. The corrosive well waters of Egypt's western desert

    Science.gov (United States)

    Clarke, Frank Eldridge

    1979-01-01

    The discovery that ground waters of Egypt's Western Desert are highly corrosive is lost in antiquity. Inhabitants of the oases have been aware of the troublesome property for many decades and early investigators mention it in their reports concerning the area. Introduction of modern well-drilling techniques and replacements of native wood casing with steel during the 20th century increased corrosion problems and, in what is called the New Valley Project, led to an intense search for causes and corrective treatments. This revealed that extreme corrosiveness results from combined effects of relatively acidic waters with significant concentrations of destructive sulfide ion; unfavorable ratios of sulfate and chloride to less aggressive ions; mineral equilibria and electrode potential which hinder formation of protective films; relative high chemical reaction rates because of abnormal temperatures, and high surface velocities related to well design. There is general agreement among investigators that conventional corrosion control methods such as coating metal surfaces, chemical treatment of the water, and electrolytic protection with impressed current and sacrificial electrodes are ineffective or impracticable for wells in the Western Desert's New Valley. Thus, control must be sought through the use of materials more resistant to corrosion than plain carbon steel wherever well screens and casings are necessary. Of the alternatives considered, stainless steel appears to. be the most promising where high strength and long-term services are required and the alloy's relatively high cost is acceptable. Epoxy resin-bonded fiberglass and wood appear to be practicable, relatively inexpensive alternatives for installations which do. not exceed their strength limitations. Other materials such as high strength aluminum and Monel Metal have shown sufficient promise to. merit their consideration in particular locations and uses. The limited experience with pumping in these desert

  9. Characterization of aluminum phosphate nanoparticles formed in a water well

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, S., E-mail: s.kaufhold@bgr.de; Houben, G.; Dietel, J. [Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (Germany); Bertmer, M. [Leipzig University, Institute of Experimental Physics II (Germany); Dohrmann, R. [Energie und Geologie (LBEG), Landesamt für Bergbau (Germany)

    2016-09-15

    In a drinking water well in Nethen, Germany, a yellowish precipitate, dominated by aluminum and phosphorus, affected the operation of the submersible pump by mechanically blocking the impellers. So far, aluminum-dominated well incrustations have been documented in only two cases and their mineralogical characterization was insufficient. The aim of the present study is to (1) present a third finding of Al-incrustations in wells, (2) provide a mineralogical and geochemical in-depth characterization of the precipitate, and (3) try to explain the reason for the problems it causes for drinking water production from this well. The yellow precipitate consists of nanoparticle aggregates and is a short-range ordered phase that could be described as a modified form of evansite with phosphate being the major anion, accompanied by some sulfate and carbonate. Additionally, aggregation with hydrous silicates and organic material is present, which could be simply adsorbed or co-precipitated. The precipitate formed as shallow acidic groundwater containing dissolved aluminum entered the well through a leaky casing seal. In the well it mixed with deeper groundwater of higher pH, causing Al-phosphate precipitations. The aggregates tended to accumulate at the entrance slots of the pump which therefore became blocked and had to be replaced.

  10. Well-Construction, Water-Level, and Water-Quality Data for Ground-Water Monitoring Wells for the J4 Hydrogeologic Study, Arnold Air Force Base, Tennessee

    National Research Council Canada - National Science Library

    Haugh, Connor J

    1996-01-01

    ...) in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality...

  11. Natural radioactivity in drinking water in private wells in Finland

    International Nuclear Information System (INIS)

    Vesterbacka, P.; Maekaeinen, I.; Arvela, H.

    2005-01-01

    Natural radioactivity in drinking water was determined in population-based random study of 472 private wells. The mean concentrations of 222 Rn, 226 Ra, 234 U, 238 U, 210 Pb and 210 Po in drilled wells were 460, 0.05, 0.35, 0.26, 0.04 and 0.05 Bq l -1 , and in wells dug in the soil were 50, 0.016, 0.02, 0.015, 0.013 and 0.007 Bq l -1 , respectively. Approximately 10% of the drilled wells exceeded a radon concentration of 1000 Bq l -1 and 18% a uranium concentration of 15 μg l -1 . The mean annual effective dose from natural radionuclides for a drilled well user was 0.4 mSv and 0.05 mSv for a user of a well dug in the soil. The effective dose arising from 222 Rn was 75% of the total of all natural radionuclides for drilled well users. As regards long-lived radionuclides, 210 Po and 210 Pb caused the largest portion of the effective dose. The dose arising from 238 U, 234 U and 226 Ra was only 8% of the total of all natural radionuclides. (authors)

  12. Study of well water quality around the town of Ivato

    International Nuclear Information System (INIS)

    Rajomamiandrisoa, J.R.

    2014-01-01

    The aim of this work is to determine the radioactivity of well water in Ivato, Antananarivo, Madagascar. We have taken ten (10) samples from different sites. Those samples were studied and analyzed, at the nuclear analysis department of the INSTN-Madagascar, using gamma spectroscopy. The main natural radionuclides present in these waters were uranium-238, thorium-232, and potassium-40. The activities that we have measured vary respectively from (3.5 ±0.1)Bq.kg -1 to (5.4 ±0.6)Bq.kg -1 with the average 4.3 Bq.kg -1 for the uranium-238,from (3.7 ±0.6)Bq.kg -1 to (6.1 ±0.2)Bq.kg -1 with the average 4.7 Bq.kg -1 for the thorium 232 and (5.1 ±0.5)Bq.kg -1 for the potassium-40. The activities of the elements like cesium-134, strontium-90 and cesium-137 corresponding to contaminations are small. We can say that well water in Ivato is drinkable and there is no risk for the public health. [fr

  13. Early Neolithic water wells reveal the world's oldest wood architecture.

    Science.gov (United States)

    Tegel, Willy; Elburg, Rengert; Hakelberg, Dietrich; Stäuble, Harald; Büntgen, Ulf

    2012-01-01

    The European Neolithization ~6000-4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ~7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters.

  14. Early Neolithic water wells reveal the world's oldest wood architecture.

    Directory of Open Access Journals (Sweden)

    Willy Tegel

    Full Text Available The European Neolithization ~6000-4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ~7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters.

  15. Gas Well Top Hole Locations, LP and LNG - Marcellus Gas Well Water Sources View

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains all approved water sources within water managment plans (WMP). A WMP contains water sources utilized in the fracture stimulation of Marcellus...

  16. ''Terek-3'' a well flowmeter for hot water

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, A; Bar-sliva, V

    1979-01-01

    For studying ther applicability of an injection well with injection of hot water (with temperature to 150-200/sup 0/C) it is necessary to have well flowmeters which have high sensitivity and performance capacity at this temperature. In developing the well remote flowmeter ''Terek-3'' the All-Union Scientific research and Planning-Design Institute for comprehensive automation of oil and gas industry made a decision to use a drive-less packer developed by the authors of the article for the well flowmeter ''Terek-1'' designed to study high-output wells. Because of the use of the drive-less packer, the sensitivity of the flowmeter was considerably improved and the lower limit of measurements were decreased to 60 m/sup 3//day. In order to reduce friction in the supports of the turbines, agate step bearings and cores were used made of steel 40KKhNM. The upper step bearing was installed in the instrument housing, and the lower in the body of the turbines. This reduces the possibility of its contamination in the measurement process. One should also bear in mind that with an increase in temperature, the viscosity of water diminshes (roughly 5-fold with temperature of 150/sup 0/C). Therefore, with a decrease in the influence of viscosity on the readings of the flowmeter in the instrument, a turbine was used suggested by V. I. Bar-Sliva. In this turbine the blades are separated from the step which guarantees not only the obtaining of the maximum moving momentum but also reduces the influence of the change in viscosity on the operation of the turbine. The impulse output signal obtained with rotation of the turbine with magnet is transmitted on a single-strand cable to a surface apparatus consisting of a condensator frequency meter and universal logging recorder N-381 which guarantees recording of the changed consumption on a diagram tape as a function of depth or time. Experimental samples of the well flowmeter ''Terek-3'' passed state inspection tests.

  17. Nationwide rural well water survey, the quality of household water and factors influencing it

    International Nuclear Information System (INIS)

    Korkka-Niemi, K.; Sipilae, A.; Hatva, T.; Hiisvirta, L.; Lahti, K.; Alfthan, G.

    1993-01-01

    The quality of water in 1 421 drinking—water wells was monitored in a nationwide well water study. Samples were taken once from all wells, and during three seasons from 421 wells. The wells were selected in such a way that the sample would be as representative as possible of the quality of the drinking—water in households’ own wells in ru— ral areas. The study comprised general water quality parameters, influence of sampling season, and factors related to the type, the condition and the pollution of the wells. In part of the well waters selenium, radioactivity and pesticides were determined. The effect of plumbing materials on the quality of water was also examined. The health—based criteria of the quality of drinking—water were not met in 50 — 70 % of the well waters monitored, depending upon the sampling time. The most common defects were the occurrence of bacteria indicating faecal pollution (2— 25 %) and a high concentration of nitrate (11 — 13 %) and fluoride (7 — 16 %). The tar— get values set for the other properties affecting the usableness of water were not met in 80 % of the well waters examined. The most common defects in this respect were the turbidity and the colour of water (40 — 50 %), the occurrence of iron (20 — 25 %) and manganese (20 %), and a low ph value. Depending upon the area, only 11 — 15 % of the wells met all the criteria related to the corrosive effect of the water. About 17 % of the households in the study suffered from periodical or continuous insufficiency of water. The types of well were dug wells with concrete sink rings in 72 %, and drilled bedrock wells in 20 % of te cases. The rest were spring wells or dug wells with stone walls. The condition of a well was, according 10 the judgement of the sampler, good in 58 %, satisfactory in 36 % and poor in 6 % of the households. Seasonal variation could be seen mainly in the occurrence of faecal bacteria. Distinct differences in the quality of water appeared

  18. Transport of thermal water from well to thermal baths

    Science.gov (United States)

    Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara

    2013-04-01

    The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2

  19. Analysis of water-level fluctuations in Wisconsin wells

    Science.gov (United States)

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    More than 60 percent of the residents of Wisconsin use ground water as their primary water source. Water supplies presently are abundant, but ground-water levels continually fluctuate in response to natural factors and human-related stresses. A better understanding of the magnitude, duration, and frequency of past fluctuations, and the factors controlling these fluctuations may help anticipate future changes in ground-water levels.

  20. Land subsidence caused by a single water extraction well and rapid water infiltration

    Directory of Open Access Journals (Sweden)

    I. Martinez-Noguez

    2015-11-01

    Full Text Available Nowadays several parts of the world suffer from land subsidence. This setting of the earth surface occurs due to different factors such as earth quakes, mining activities, and gas, oil and water withdrawal. This research presents a numerical study of the influence of land subsidence caused by a single water extraction well and rapid water infiltration into structural soil discontinuities. The numerical simulation of the infiltration was based on a two-phase flow-model for porous media, and for the deformation a Mohr–Coulomb model was used. A two-layered system with a fault zone is presented. First a single water extraction well is simulated producing a cone-shaped (conical water level depletion, which can cause land subsidence. Land Subsidence can be further increased if a hydrological barrier as a result of a discontinuity, exists. After water extraction a water column is applied on the top boundary for one hours in order to represent a strong storm which produces rapid water infiltration through the discontinuity as well as soil deformation. Both events are analysed and compared in order to characterize deformation of both elements and to get a better understanding of the land subsidence and new fracture formations.

  1. An evaluation of water production from the Gasbuggy reentry well

    Energy Technology Data Exchange (ETDEWEB)

    Power, Dean V; Bowman, Charles R [El Paso Natural Gas Company (United States)

    1970-05-01

    During the gas production testing of the Gasbuggy chimney, water production rates increased from an initial 4 to 5 barrels per 10{sup 6} standard cubic feet of gas to 40 to 50 barrels per 10{sup 6} standard cubic feet of gas. This unexpected occurrence hampered operations and increased waste disposal costs. A model is developed which calculates the amount of water produced from condensation of water vapor through the cooling and expansion of the gas in the production tubing. Results from this model are compared with the observed water production from November of 1968 through May of 1969. This comparison shows that up to seven times more water is being produced at high gas flow rates than can be explained by condensed vapor, indicating that water is being introduced into the production tubing in particulate or liquid form. A correlation of excess water with the pressure, temperature and gas flow velocity parameters is performed to determine the relationship between this excess water and these parameters. It is found that the excess produced water varied linearly with downhole pressure when a threshold gas flow velocity was exceeded. The relationship is expressed by the equation H{sub 2}0 (in barrels per day) =126.5-0.1473 BHP (in pounds per square inch). The threshold gas velocity for excess water production was found to be about 6 feet per second in the 7 in casing or 40 feet per second in the 2 7/8 in tubing. An examination of the radioactivity of the gas and water produced from GB-E indicates that the tritiated water vapor in the chimney and tubing has been diluted by extraneous water. The tritium in the gas decreased as expected from about 10.9 {mu}Ci/SCF in November 1968 to 6.2 {mu}Ci/SCF in late February 1969. During this same period, the tritium in the water decreased from about 1.2 {mu}Ci/ml to 0.12 {mu}Ci/ml. Examination of water chemistry, preshot and during the production testing, indicates that at early times when there was no excess water, the produced

  2. An evaluation of water production from the Gasbuggy reentry well

    International Nuclear Information System (INIS)

    Power, Dean V.; Bowman, Charles R.

    1970-01-01

    During the gas production testing of the Gasbuggy chimney, water production rates increased from an initial 4 to 5 barrels per 10 6 standard cubic feet of gas to 40 to 50 barrels per 10 6 standard cubic feet of gas. This unexpected occurrence hampered operations and increased waste disposal costs. A model is developed which calculates the amount of water produced from condensation of water vapor through the cooling and expansion of the gas in the production tubing. Results from this model are compared with the observed water production from November of 1968 through May of 1969. This comparison shows that up to seven times more water is being produced at high gas flow rates than can be explained by condensed vapor, indicating that water is being introduced into the production tubing in particulate or liquid form. A correlation of excess water with the pressure, temperature and gas flow velocity parameters is performed to determine the relationship between this excess water and these parameters. It is found that the excess produced water varied linearly with downhole pressure when a threshold gas flow velocity was exceeded. The relationship is expressed by the equation H 2 0 (in barrels per day) =126.5-0.1473 BHP (in pounds per square inch). The threshold gas velocity for excess water production was found to be about 6 feet per second in the 7 in casing or 40 feet per second in the 2 7/8 in tubing. An examination of the radioactivity of the gas and water produced from GB-E indicates that the tritiated water vapor in the chimney and tubing has been diluted by extraneous water. The tritium in the gas decreased as expected from about 10.9 μCi/SCF in November 1968 to 6.2 μCi/SCF in late February 1969. During this same period, the tritium in the water decreased from about 1.2 μCi/ml to 0.12 μCi/ml. Examination of water chemistry, preshot and during the production testing, indicates that at early times when there was no excess water, the produced water was distilled

  3. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    Science.gov (United States)

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  4. Water supply at Los Alamos: Current status of wells and future water supply

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Stoker, A.K.

    1988-08-01

    The municipal and industrial use of groundwater at the Los Alamos National Laboratory and Los Alamos County was about 1.5 billion gallons during 1986. From a total of 19 wells that range in age from 5 to 41 years, the water was pumped from 3 well fields. The life expectancy of a well in the area ranges from 30 to 50 years, dependent on the well construction and rate of corrosion of the casing and screen. Twelve of the wells are more than 30-years old and, of these, four cannot be used for production, three because of well damage and one because the quality of water is not suitable for use. Eight of the twelve oldest wells are likely to be unsuitable for use in the next 10 years because of well deterioration and failure. The remaining 7 wells include 2 that are likely to fail in the next 20 years. Five of the younger wells in the Pajarito well field are in good condition and should serve for another two or three decades. The program of maintenance and rehabilitation of pumps and wells has extended production capabilities for short periods of time. Pumps may be effectively repaired or replaced; however, rehabilitation of the well is only a short-term correction to increase the yield before it starts to decline again. The two main factors that prevent successful well rehabilitation are: (1) chemicals precipitated in the gravel pack and screen restrict or reduce the entrance of water to the well, which reduces the yield of the well, and (2) the screen and casing become corroded to a point of losing structural strength and subsequent failure allows the gravel pack and formation sand to enter the well. Both factors are due to long-term use and result in extensive damage to the pump and reduce the depth of the well, which in turn causes the yield to decline. Once such well damage occurs, rehabilitation is unlikely to be successful and the ultimate result is loss of the well. Two wells were lost in 1987 because of such damage. 29 refs., 15 figs., 15 tabs

  5. bacteriological analysis of well water samples in sagamu.

    African Journals Online (AJOL)

    Dr Oboro VO

    Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Nigeria. *Correspondence. ... All the water samples exceeded the standard limit of the most probable ... or disinfection and this could lead to outbreak of water borne diseases. ... The bottle was brought up to a surface.

  6. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...... that nylon should not be used in studies of contamination with organic compounds....

  7. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters

    DEFF Research Database (Denmark)

    Tang, Kam W.; McGinnis, Daniel F.; Frindte, Katharina

    2014-01-01

    The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane...... peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope...... analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water...

  8. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    Science.gov (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  9. Water quality considerations resulting in the impaired injectivity of water injection and disposal wells

    International Nuclear Information System (INIS)

    Bennion, D.B.; Thomas, F.B.; Imer, D.; Ma, T.

    2000-01-01

    An environmentally responsible way to improve hydrocarbon recovery is to maintain pressure by water injection. This is a desirable method because unwanted produced water from oil and gas wells can be re-injected into producing or disposal formations. The success of the operation, however, depends on injecting the necessary volume of water economically, below the fracture gradient pressure of the formation. Well placement, geometry and inherent formation quality and relative permeability characteristics are some of the many other factors which influence the success of any injection project. Poor injection or poor quality of disposal water can also compromise the injectivity for even high quality sandstone or carbonate formations. This would necessitate costly workovers and recompletions. This paper presented some leading edge diagnostic techniques and evaluation methods to determine the quality of injected water. The same techniques could be used to better understand the effect of potential contaminants such as suspended solids, corrosion products, skim/carryover oil and grease, scales, precipitates, emulsions, oil wet hydrocarbon agglomerates and many other conditions which cause injectivity degradation. 14 refs., 1 tab., 15 figs

  10. Learning Wellness: A Water Exercise Class in Zagreb, Croatia

    Science.gov (United States)

    Roberson, Donald N., Jr.

    2007-01-01

    The research reported in this article investigated the dynamics of a water exercise class with older adults in Zagreb, Croatia. It focused on 3 classes of older swimmers at a community exercise center. A total of 105 participants were asked to complete a short questionnaire. The questionnaire contained items on demographics, use of free time, and…

  11. Assessment of bacteriological quality of well water around Dogon ...

    African Journals Online (AJOL)

    ... Laboratory for analysis The Multiple tube fermentation technique was used to determine total coliform count and Eosin methylene blue was used to determine fecal coliform count. Some physicochemical parameters of the water samples such as turbidity, temperature, pH and dissolved oxygen (DO) were also determined.

  12. Oil-water flows in wells with powerful fracture reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, N.P.

    1979-01-01

    The character of two phase liquid flows from powerful layer fractures to bottom holes in Starogrodnen and Malgobek-Voznesenskiy fields in the Chechen-Ingush ASSR found in the late stage of operation. The studies were done with the electrothermometer TEG-36, the manometer MGN-2, the remote control thermal flow meter T-4, the remote control moisture meter VBST-1, the density meter GGP-1M, whose accuracy class is 1.0 and whose working limits are: temperature, up to 150/sup 0/C and pressure, up to 1000 kGs/cm/sup 2/. The breakdown of the linear filtration law and the gravitational division of the water-oil mixture phase occurred during fieldwork. The oil and water, etc., flow intervals were defined. The data from the moisture meter and the gamma density meter coincided.

  13. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  14. Rn-222 concentrations in private well water and in river water around Ningyo Toge area

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Eiji [Okayama, Prefectural Inst. for Environmental Science and Public Health (Japan)

    1997-02-01

    The Ningyo-Toge Works of Power Reactor and Nuclear Fuel Development Corporation have started the pilot plant for uranium refining and conversion in 1984 and thereafter been producing 6-uranium fluoride, which is a raw material for an uranium concentration plant. The operation of prototype reactor has started since 1989. In this study, radioactive contamination around the works under these circumstances has been monitored in the respects of Rn concentrations in well water and river one for more than 10 years. The radioactivities of well water sampled at 4 points in this area were in a range of 0.6-82.9 Bq/l. The differences in the activities seemed to be depending on petrological properties. For the river water, the Rn concentration was determined at 13 points in the area. Seasonal changes in the Rn concentrations were not significant (p<0.05) but there were significant changes among years during 1985-1995. Further, the radioactive levels of soils collected from riverbed at 5 points were significantly different both for {sup 238}U and {sup 226}Ra, but the ratios of {sup 238}U/{sup 226}Ra were consistent. Furthermore, there was no correlation between {sup 226}Ra and {sup 222}Rn concentrations in the river water. (M.N.)

  15. Extant or Absent: Formation Water in New York State Drinking Water Wells

    Science.gov (United States)

    Christian, K.; Lautz, L. K.

    2013-12-01

    The current moratorium on hydraulic fracturing in New York State (NYS) provides an opportunity to collect baseline shallow groundwater quality data pre-hydraulic fracturing, which is essential for determining the natural variability of groundwater chemistry and to evaluate future claims of impaired groundwater quality if hydraulic fracturing occurs in the State. Concerns regarding the future environmental impact of shale gas extraction in NYS include potential shallow groundwater contamination due to migration of methane or formation water from shale gas extraction sites. Treatment, storage and disposal of saline flowback fluids after gas extraction could also be a source of water contamination. In this study, we combine southern NYS shallow groundwater chemistry data from Project Shale-Water Interaction Forensic Tools (SWIFT, n=60), the National Uranium Resource Evaluation program (NURE, n=684), and the USGS 305(b) Ambient Groundwater Quality Monitoring program (USGS, n=89) to examine evidence of formation water mixing with groundwater using the methodology of Warner et al. (2012). Groundwater characterized as low salinity (20 mg/L Cl-). A plot of bromide versus chloride shows high salinity groundwater samples with Br/Cl ratios >0.0001 fall on the mixing line between low salinity groundwater and Appalachian Basin formation water. Based on the observed linear relationship between bromide and chloride, it appears there is up to 1% formation water mixing with shallow groundwater in the region. The presence of formation water in shallow groundwater would indicate the existence of natural migratory pathways between deep formation wells and shallow groundwater aquifers. A plot of sodium versus chloride also illustrates a linear trend for Type D waters (R^2= 0.776), but the relationship is weaker than that for bromide versus chloride (R^2= 0.924). Similar linear relationships are not observed between other ions and chloride, including Mg, Ca, and Sr. If high salinity

  16. The Influence of Water Access in Subjective Well-Being: Some Evidence in Yucatan, Mexico

    Science.gov (United States)

    Guardiola, Jorge; Gonzalez-Gomez, Francisco; Grajales, Angel Lendechy

    2013-01-01

    The literature on happiness or subjective well-being has explored the determinants of happiness without taking into consideration the role that water plays. In this paper we attempt to draw attention to water in subjective well-being studies. Approximately one hundred million people do not have access to water. A lack of clean water causes…

  17. A technique to circumvent lower density water trapping by tide-wells

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; VijayKumar, K.; Desa, E.S.; Desa, E.; Peshwe, V.B.

    A 3-year study of water density differences inside and outside of a conventional tide-well indicated that the average water density within the well is consistently lower than the external ambient waters. The tide-well at Goa is situated at the mouth...

  18. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  19. Analysis of Water Well Quality Drilling Around Waste Disposal Site in Makassar City Indonesia

    Science.gov (United States)

    Maru, R.; Baharuddin, I. I.; Badwi, N.; Nyompa, S.; Sudarso

    2018-02-01

    Clean water is one of human need which is very important in carrying out its life. Therefore, this article analyzes the quality of the well water dug around the landfill. The method used is a well water well sample taken from 4 wells around a landfill taken by a purposive sampling at a different distance. The parameters measured are physical, chemical, and biological properties. The results of the analysis were then compared with the standard of drinking water quality criteria allowed under The Regulation of Health Minister of Indonesia No. 416 year 1990 on the Terms and Supervision of Water Quality of the Minister of Health of the Republic of Indonesia. The result of the research shows that there are two wells whose water quality does not meet the physical requirement i.e Location of Points II and III, based on the construction of wells also does not meet the requirements of the wells in general. While at the well Locations Point I and IV the quality of water physically, chemically and biologically as well as well construction qualify. From the result of this research, the researcher give suggestion of the need to improve the physical condition of dug wells, it is necessary to do the extension to the well water user community for drinking water about the physical condition of the dug well, the need to monitor and supervise the quality of drinking water, and should involve the community to independently meet the needs absolute i.e clean water to drink.

  20. Radon and radon daughters' concentration in spring and wells waters from Presidente Prudente: preliminary results

    International Nuclear Information System (INIS)

    Osorio, Ana Maria Araya; Saenz, Carlos Alberto Tello; Pereira, Luiz Augusto Stuani

    2009-01-01

    This work presents the preliminary results about the concentration of radon and radon daughters in wells and springs water from Presidente Prudente. Six water samples were studied: three from well-water, two from springs water and one from potable water. For the determination of α-activity the samples were placed inside plastic containers where the CR-39 tracks detectors were outside the water. The track density of α-particles were measured by using optical microscopy. The results show that one sample from well-water presented higher concentration of radon and radon daughters than the other samples. (author)

  1. Aeromonas salmonicida bacteremia associated with chronic well water consumption in a patient with diabetes

    Directory of Open Access Journals (Sweden)

    Christine Ann Moore

    2017-01-01

    Full Text Available Aeromonas salmonicida is associated with superficial skin infections in fish. Its virulence factors allow colonization of water including surface water such as salt water, beaches, and fresh water wells. Moreover, it is possible for immunocompromised patients to develop invasive disease after chronic exposure to Aeromonas spp. through contaminated water. While there are reports of Aeromonas spp. bacteremia following water ingestion, there have been no reports of A. salmonicida bacteremia from water consumption. We report the first case of A. salmonicida bacteremia in a patient with diabetes due to chronic consumption of well water.

  2. Siting study for Test Area North potable water deep well project

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Wylie, A.H.

    1993-05-01

    This study was conducted to evaluate the suitability of various locations for a new potable ground water well at Test Area North (TAN). The new well is proposed to replace two existing wells located within a trichloroethylene (TCE) plume. Several locations were evaluated using computer simulations based on the hydrogeology of the site. The modeling effort involved: (1) producing a water table map, (2) superimposing the effects of pumping the proposed new production well on the water table map using the model CAPZONE, and (3) calculating the capture zone for these wells using the GWPATH model. A three dimensional contaminant transport model was used to evaluate siting a well in a deeper horizon of the aquifer. The following scenarios were investigated: (1) placing a new well 500 ft north of the existing wells; (2) locating a well 3,000 ft northwest of the existing wells; (3) deepening one of the existing wells 100 to 150 ft to produce water from beneath an interbed that acts as a hydraulic barrier; and (4) drilling a new well about 500 ft northwest of the existing wells to produce water from beneath the interbed. The recommended new well site (fourth scenario) is northwest of the existing wells, with the well completed from 500 to 600 ft below land surface to produce water from beneath the Q-R interbed. Locating the well northwest of the existing wells places the new well out of the TCE plume and reduces the possibility of transporting contaminated water across the interbed

  3. Community Engaged Cumulative Risk Assessment of Exposure to Inorganic Well Water Contaminants, Crow Reservation, Montana

    Science.gov (United States)

    Doyle, John T.; Lefthand, Myra J.; Young, Sara L.; Kindness, Larry; Other Medicine, Roberta; Ford, Timothy E.; Dietrich, Eric; Parker, Albert E.; Hoover, Joseph H.; Camper, Anne K.

    2018-01-01

    An estimated 11 million people in the US have home wells with unsafe levels of hazardous metals and nitrate. The national scope of the health risk from consuming this water has not been assessed as home wells are largely unregulated and data on well water treatment and consumption are lacking. Here, we assessed health risks from consumption of contaminated well water on the Crow Reservation by conducting a community-engaged, cumulative risk assessment. Well water testing, surveys and interviews were used to collect data on contaminant concentrations, water treatment methods, well water consumption, and well and septic system protection and maintenance practices. Additive Hazard Index calculations show that the water in more than 39% of wells is unsafe due to uranium, manganese, nitrate, zinc and/or arsenic. Most families’ financial resources are limited, and 95% of participants do not employ water treatment technologies. Despite widespread high total dissolved solids, poor taste and odor, 80% of families consume their well water. Lack of environmental health literacy about well water safety, pre-existing health conditions and limited environmental enforcement also contribute to vulnerability. Ensuring access to safe drinking water and providing accompanying education are urgent public health priorities for Crow and other rural US families with low environmental health literacy and limited financial resources. PMID:29304032

  4. Lower Colorado River GRP Public Water System Wells, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  5. Creating potentiometric surfaces from combined water well and oil well data in the midcontinent of the United States

    Science.gov (United States)

    Gianoutsos, Nicholas J.; Nelson, Philip H.

    2013-01-01

    For years, hydrologists have defined potentiometric surfaces using measured hydraulic-head values in water wells from aquifers. Down-dip, the oil and gas industry is also interested in the formation pressures of many of the same geologic formations for the purpose of hydrocarbon recovery. In oil and gas exploration, drillstem tests (DSTs) provide the formation pressure for a given depth interval in a well. These DST measurements can be used to calculate hydraulic-head values in deep hydrocarbon-bearing formations in areas where water wells do not exist. Unlike hydraulic-head measurements in water wells, which have a low number of problematic data points (outliers), only a small subset of the DST data measure true formation pressures. Using 3D imaging capabilities to view and clean the data, we have developed a process to estimate potentiometric surfaces from erratic DST data sets of hydrocarbon-bearing formations in the midcontinent of the U.S. The analysis indicates that the potentiometric surface is more readily defined through human interpretation of the chaotic DST data sets rather than through the application of filtering and geostatistical analysis. The data are viewed as a series of narrow, 400-mile-long swaths and a 2D viewer is used to select a subset of hydraulic-head values that represent the potentiometric surface. The user-selected subsets for each swath are then combined into one data set for each formation. These data are then joined with the hydraulic-head values from water wells to define the 3D potentiometric surfaces. The final product is an interactive, 3D digital display containing: (1) the subsurface structure of the formation, (2) the cluster of DST-derived hydraulic head values, (3) the user-selected subset of hydraulic-head values that define the potentiometric surface, (4) the hydraulic-head measurements from the corresponding shallow aquifer, (5) the resulting potentiometric surface encompassing both oil and gas and water wells, and (6

  6. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    International Nuclear Information System (INIS)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-01-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed

  7. Quality of well water at Toluca and Lerma, State of Mexico

    International Nuclear Information System (INIS)

    Gomez, A.C.; Segovia, N.; Iturbe, J.L.; Lopez, B.; Martinez, V.; Armienta, M.A.; Seidel, J.L.

    1999-01-01

    With the purpose to determine the characteristics and quality of the well water located in Toluca City and Lerma which are related with the net of potable water, it is determined physicochemical parameters, bacteriological characteristics as well as the radionuclide concentration and trace elements in water samples. Those studies can get information about possible pollutants of anthropogenic origin. In this work also were determined the isotopes 222 Rn and 226 Ra in the water samples. (Author)

  8. Saline-water intrusion related to well construction in Lee County, Florida

    Science.gov (United States)

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  9. Lead Content of Well Water in Enugu South-East Nigeria | Ogbu ...

    African Journals Online (AJOL)

    Aim: To study the lead content of well water in Enugu, Southeast Nigeria. Method: Wells (101) were located using the multistage sampling procedure and samples were collected into clean plastic containers. Analysis was done using atomic absorption spectrophotometer. Result: The means lead content of well water ...

  10. Effects of slow recovery rates on water column geochemistry in aquitard wells

    Science.gov (United States)

    Schilling, K.E.

    2011-01-01

    Monitoring wells are often installed in aquitards to verify effectiveness for preventing migration of surface contaminants to underlying aquifers. However, water sampling of aquitard wells presents a challenge due to the slow recovery times for water recharging the wells, which can take as long as weeks, months or years to recharge depending on the sample volume needed. In this study, downhole profiling and sampling of aquitard wells was used to assess geochemical changes that occur in aquitard wells during water level recovery. Wells were sampled on three occasions spanning 11years, 1year and 1week after they were purged and casing water showed substantial water chemistry variations. Temperature decreased with depth, whereas pH and specific conductance increased with depth in the water column after 11years of water level recovery. Less stable parameters such as dissolved O2 (DO) and Eh showed strong zonation in the well column, with DO stratification occurring as the groundwater slowly entered the well. Oxidation of reduced till groundwater along with degassing of CO2 from till pore water affects mineral solubility and dissolved solid concentrations. Recommendations for sampling slowly recovering aquitard wells include identifying the zone of DO and Eh stratification in the well column and collecting water samples from below the boundary to better measure unstable geochemical parameters. ?? 2011 Elsevier Ltd.

  11. Preliminary Assessment of Water Levels in Bedrock Wells in New Hampshire, 1984 to 2007

    Science.gov (United States)

    Ayotte, Joseph D.; Kernen, Brandon M.; Wunsch, David R.; Argue, Denise M.; Bennett, Derek S.; Mack, Thomas J.

    2010-01-01

    Analysis of nearly 60,000 reported values of static water level (SWL, as depth below land surface) in bedrock wells in New Hampshire, aggregated on a yearly basis, showed an apparent deepening of SWL of about 13 ft (4 m) over the period 1984–2007. Water-level data were one-time measurements at each well and were analyzed, in part, to determine if they were suitable for analysis of trends in groundwater levels across the state. Other well characteristics, however, also have been changing over time, such as total well depth, casing length, the length of casing in bedrock, and to some extent, well yield. Analyses indicated that many of the well construction variables are significantly correlated; the apparent declines in water levels may have been caused by some of these factors. Information on changes in water use for the period was not available, although water use may be an important factor affecting water levels.

  12. Environmental Impact on the Quality of Water from Hand-Dug Wells in Yola Environs

    Directory of Open Access Journals (Sweden)

    David Onoja PATRICK

    2007-01-01

    Full Text Available The impact of environmental conditions on the quality of water from seven hand-dug wells in Vinikilang, Shinko, Demsawo and Girei was studied. Monthly physical and chemical analyses were carried out on the well water samples. The results revealed that the environment has direct impact on the quality of water and also the type of contamination of the well water samples. Water samples from the wells have higher levels of heavy metals: Fe, Zn, Cu and Pb, above the permissible limits of (0.1 mg/l, 5 mg/l, 0.5 mg/l and 0.05 mg/l for Fe, Zn, Cu and Pb respectively WHO specifications, except well 1 whose Zn level was lower than the permissible limit. Wells close to abattoir, pit latrine, domestic refuse dumps, stagnant water and drainage showed higher amounts of coliform bacteria.

  13. On calculation of a steam-water flow in a geothermal well

    Science.gov (United States)

    Shulyupin, A. N.; Chermoshentseva, A. A.

    2013-08-01

    Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.

  14. 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2014. It also provides detailed information for new, modified, and decommissioned wells and holes. One new well was drilled and completed in Calendar Year 2014. No modifications were performed on any wells. No wells were decommissioned in Calendar Year 2014. Detailed construction information and a location map for the new well is provided. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990), the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003, and the Final Unified Decree issued August 26, 2014.

  15. Water levels in wells J-11 and J-12, 1989-91, Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water levels have been measured in the Yucca Mountain area, Nevada, since 1981 in order to gain a better understanding of the ground-water flow system in the area. Water levels in wells J-11 and J-12 have been periodically measured using calibrated reeled steel tapes since 1989, however, calculation of water-level altitude was not possible prior to 1993 due to missing reference elevations. These elevations were determined in 1993 by the U.S. Geological Survey. During 1989-91, water-level altitudes for well J-11 ranged from 732.09 to 732.40 meters and the mean water-level altitude was 732.19 meters. During 1989-91, water-level altitudes for well J-12 ranged from 727.84 to 728.03 meters, and the mean water-level altitude was 727.95 meters

  16. Study of an evaluation index system of well-off water conservancy in Yunnan Province

    Directory of Open Access Journals (Sweden)

    C. Chang

    2015-05-01

    Full Text Available To achieve good water conservancy under the well-off society before 2020, the future water conservancy planning is undergoing in Yunnan Province. In this study, by analysing the research results of domestic relevant water evaluation index systems and combining this with the water conservancy construction key of Yunnan Province, an unique evaluation index system was proposed to evaluate the well-off water conservancy level of Yunnan Province. It is composed of three levels which are the target layer, criterion layer and index layer. And the criterion layer includes six systems, namely flood control and drought relief mitigation, reasonable allocation of water resources, highly effective water utilization, water source protection and river health security, water management and securing of water development. The analytic hierarchy process (AHP was used to determine the weight of each index. According to the present situation of water development and the related water conservancy planning in Yunnan Province, the target value of each index and evaluation standards are put forward for Yunnan Province in 2020. The results show that the evaluation results are consistent with the actual condition of water development in Yunnan Province and can be used to examine the effects of well-off water conservancy planning.

  17. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  18. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    Science.gov (United States)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  19. Elevated levels of radioactivity in water wells in Los Angeles and Orange Counties, California

    International Nuclear Information System (INIS)

    Weigand, J.; Yamamoto, G.; Gaston, W.

    1987-01-01

    Levels of gross alpha particle radioactivity nearly three times the maximum contamination levels (MCL) have been detected for several years in well waters and related surface waters in Los Angeles and Orange Counties, California. A few elevated levels of uranium have also been recorded. The affected wells and related surface waters represent only a minor fraction of the water sampled and tested in this area. None of the excessive radioactivity is believed to persist in the municipal waters sold to the public, due to the customary blending of waters from several wells or sources which water purveyors practice. This papers is a preliminary survey of the occurrence, possible sources, fate, and implications of these elevated radioactivity levels

  20. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Directory of Open Access Journals (Sweden)

    Masashi Kato

    Full Text Available Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L and coexposure to barium (137 µg/L and arsenic (225 µg/L. The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L and barium (700 µg/L, but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium, in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  1. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Science.gov (United States)

    Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to barium in humans and propose a novel remediation system.

  2. Estimation of some heavy metals in polluted well water and mercury accumulation in broiler organs

    OpenAIRE

    Hussein, Hussein Khamis; Abu-Zinadah, Osama Abdullah; EL-Rabey, Haddad Abdulsameih; Meerasahib, Mohammed Fareez

    2013-01-01

    The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni) studied, mercury (Hg) revealed highest in concentration in well waters. The concentration of mercury in the ground water, beside in liver, kidney, muscle and blood samples of ten chickens fro...

  3. Study on Utilization of an Artesian Well as a Source of Water Supply at Raw Water Backup System (GBA01)

    International Nuclear Information System (INIS)

    Santosa Pujiarta; Yuyut Suraniyanto; Amril; Setyo Budi Utomo

    2012-01-01

    Raw water supply system (GBA01) is a unit of ponds used as a provider of raw water for secondary cooling system and free mineral water production systems. Source of raw water pond has been supplied from PAM Puspiptek with water conductivity between 126-310 μS / cm and a pH of 6 to 8, and this condition is maintained because there is no other source that is used to supply water to the reactor cooling water supply. This conductivity is always unstable, if during the dry season the conductivity is low trend, but in the rainy season the conductivity will be increase because the water contains a lot of mud. And one more problem that is important is if the PAM Puspiptek failed to supply fresh water to the reactor. So to handling and anticipate these things, necessary to optimize the deep well former Interatom legacy as a backup water supply for raw water supply system of the reactor. With a conductivity of 136 μS / cm, pH 7,4 and total hardness 37 ppm, the water from deep wells can be used as a backup supply of secondary raw water cooling system. (author)

  4. The occurrence of Aeromonas spp. in the bottled mineral water, well water and tap water from the municipal supplies

    Directory of Open Access Journals (Sweden)

    Denise de Oliveira Scoaris

    2008-10-01

    Full Text Available The aim of this work was to study the occurrence of Aeromonas sp in the bottled mineral water, well water and tap water from the municipal supplies. Positive samples were found for Aeromonas spp. 12.7% from the mineral water, 8.3% from the artesian water and 6.5% from the tap water. The recovery of Aeromonas spp. was significantly higher in the bottled mineral and artesian water than in the tap water from municipal supplies. The occurrence of the Aeromonas spp. did not correlate significantly with the contamination indicator bacteria (i.e. total coliforms in the artesian water samples. However, a significant correlation was found between Aeromonas spp. and total coliforms in the both mineral water and tap water samples. The presence or absence of a correlation between the indicator bacteria and Aeromonas could reflect the occasional appearance of the pathogen in the drinking water and the different rates of survival and recovery of these agents compared with those fecal indicators. The finding that 41.6, 14.8 and 9.0 % of the artesian water, bottled mineral water and tap water, respectively, sampled in the current study failed to meet the Brazilian standard for total coliforms in the drinking water should therefore be of concern.A porcentagem de amostras positivas para Aeromonas foi de 12.7% para água mineral, 8.3% para água de poço artesiano e 6.5% para água do sistema público de abastecimento. O isolamento de Aeromonas spp. foi significativamente maior em água mineral e água de poço artesiano do que em água do sistema público. A ocorrência de Aeromonas spp. não teve correlação significativa com os indicadores de contaminação tradicionalmente utilizados (coliformes totais em amostras de água de poço artesiano. No entanto, esta correlação foi positiva e significativa em água mineral e água do sistema público. A presença ou ausência de correlação entre bactérias indicadoras e a presença de Aeromonas pode refletir o

  5. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  6. Precursory changes in well water level prior to the March, 2000 eruption of Usu Volcano, Japan

    Science.gov (United States)

    Shibata, Tomo; Akita, Fujio

    The height of water levels in two wells located near Usu volcano, Japan, changed in a systematic fashion for several months prior to the eruption of Usu volcano on 31 March 2000. In one well, water-level decrease relative to normal levels was first observed at the beginning of October 1999. The decreasing water-level is postulated to result from groundwater flow into cracks widened by intruding magma during dike formation. From the beginning of January 2000, the rate of decrease became higher. During this time, the water level of the second well increased by 0.05 m and then gradually decreased. The water-level changes are consistent with volumetric expansion of magma inside the magma chamber, followed by intrusion of magma into the fracture system associated with widening of cracks. We conclude that water-level observations can provide information that may potentially be used to predict further volcanic eruptions.

  7. Effect of seasonal and long-term changes in stress on sources of water to wells

    Science.gov (United States)

    Reilly, Thomas E.; Pollock, David W.

    1995-01-01

    The source of water to wells is ultimately the location where the water flowing to a well enters the boundary surface of the ground-water system . In ground-water systems that receive most of their water from areal recharge, the location of the water entering the system is at the water table . The area contributing recharge to a discharging well is the surface area that defines the location of the water entering the groundwater system. Water entering the system at the water table flows to the well and is eventually discharged from the well. Many State agencies are currently (1994) developing wellhead-protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. In the analyses of ground-water flow systems, steady-state average conditions are frequently used to simplify the problem and make a solution tractable. Recharge is usually cyclic in nature, however, having seasonal cycles and longer term climatic cycles. A hypothetical system is quantitatively analyzed to show that, in many cases, these cyclic changes in the recharge rates apparently do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to indicate whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. Noncyclic long-term transient changes in water use, however, and cyclic stresses on systems with ratios less than 1 can and do affect the

  8. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  9. Logs and completion data for water and mass balance wells in Mortandad and Ten Site Canyons

    International Nuclear Information System (INIS)

    McLin, S.G.; Koch, R.J.

    1997-10-01

    Twenty-four monitoring wells were drilled and completed in December 1994 as part of a water and mass balance study for the shallow perched aquifer in the Mortandad Canyon alluvium and in the lower part of Ten-Site Canyon. The wells penetrated the alluvium containing the aquifer and were completed into the top of the weathered tuff. Twelve of these wells encountered the Tshirege Member (Cooing Unit 1 g) of the Bandelier Tuff below the canyon alluvium, while ten wells made contact with the Cerro Toledo interval, which lies between the Tshirege and Otowi Members of the Bandelier Tuff. The remaining two wells were completed into the alluvium above the weathered tuff contact. These wells provide access for continuous water level measurement and water sampling. Data from these new wells will be used to determine changes in alluvial aquifer water storage, water quality sampling, and estimation of seepage into the unsaturated Bandelier Tuff below the alluvium. This report documents drilling activities and well completion logs for the water and mass balance study. These wells also provide critical new data for fourteen north-south vertical cross-sections constructed for the canyon alluvium

  10. Quality of Source Water from Public-Supply Wells in the United States, 1993-2007

    Science.gov (United States)

    Toccalino, Patricia L.; Norman, Julia E.; Hitt, Kerie J.

    2010-01-01

    More than one-third of the Nation's population receives their drinking water from public water systems that use groundwater as their source. The U.S. Geological Survey (USGS) sampled untreated source water from 932 public-supply wells, hereafter referred to as public wells, as part of multiple groundwater assessments conducted across the Nation during 1993-2007. The objectives of this study were to evaluate (1) contaminant occurrence in source water from public wells and the potential significance of contaminant concentrations to human health, (2) national and regional distributions of groundwater quality, and (3) the occurrence and characteristics of contaminant mixtures. Treated finished water was not sampled. The 932 public wells are widely distributed nationally and include wells in selected parts of 41 states and withdraw water from parts of 30 regionally extensive aquifers used for public water supply. These wells are distributed among 629 unique public water systems-less than 1 percent of all groundwater-supplied public water systems in the United States-but the wells were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. Samples from the 629 systems represent source water used by one-quarter of the U.S. population served by groundwater-supplied public water systems, or about 9 percent of the entire U.S. population in 2008. One groundwater sample was collected prior to treatment or blending from each of the 932 public wells and analyzed for as many as six water-quality properties and 215 contaminants. Consistent with the terminology used in the Safe Drinking Water Act (SDWA), all constituents analyzed in water samples in this study are referred to as 'contaminants'. More contaminant groups were assessed in this study than in any previous national study of public wells and included major ions, nutrients, radionuclides, trace elements, pesticide compounds, volatile organic compounds (VOCs), and fecal

  11. Pesticides in water supply wells in Zealand, Denmark: A statistical analysis

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Thorling, Lærke

    2012-01-01

    Data from the Danish National Borehole Database are used to predict drinking water well vulnerability to contamination by pesticides, and to identify the dominant mechanisms leading to well pollution in Zealand, Denmark. The frequency of detection and concentrations of 4 herbicides and 3 herbicide...... metabolites are related to factors accounting for geology (thicknesses of sand, clay and chalk layers), geographical location (distance to surface water and distance to contaminated sites), redox conditions and well depth using logistic regression, the binomial test and Spearman correlation techniques....... Results show that drinking water wells located in urban areas are more vulnerable to BAM and phenoxy acids contamination, while non-urban area wells are more subject to bentazone contamination. Parameters accounting for the hydraulic connection between the well and the surface (well depth and thickness...

  12. THE UTILIZATION STRUCTURE OF THERMAL WATER WELLS AND ITS UNEXPLOITED CAPACITIES IN HUNGARY

    Directory of Open Access Journals (Sweden)

    BALÁZS KULCSÁR

    2014-12-01

    Full Text Available In order to mitigate Hungary’s vulnerability in energy supply and accomplish the renewable energy production targets, it is essential to discover exploitable alternative opportunities for energy production and step up the utilization of the available capacities. The purpose of this publication is to map up the utilization structure of the existing Hungarian thermal water wells, describe its changes over the past 16 years, reveal the associated reasons and define the unutilized well capacities that may contribute to increasing the exploitation of geothermal heat by municipalities. The studies have been conducted in view of the Cadaster of Thermal Water Wells of Hungary compiled in 1994, the well cadasters kept by the regional water management directorates, as well as the data of the digital thermal water cadaster of 2010. The calculations performed for the evaluation of data have been based on the ratios and respective utilization areas of the existing wells. In the past 150 years, nearly 1500 thermal water wells have been drilled for use by a broad range of economic operations. The principal goals of constructing thermal water wells encompass the use of water in balneology, water and heat supply to the agriculture, hydrocarbon research and the satisfaction of municipal water demands. In 1994, 26% of the facilities was operated as baths, 21% was used by agriculture, while 13% and 12% served communal and waterworks supply, respectively. Then in 2010, 31% of thermal water wells was continued to be used for the water supply of bathing establishments, followed by 20% for agricultural use, 19% for utilization by waterworks, 11% for observation purposes and 10% for communal use. During the 16 years between 1994 and 2010, the priorities of utilization often changed, new demands emerged in addition to the former utilization goals of thermal water wells. The economic landscape and changes in consumer habits have transformed the group of consumers, which

  13. Simulated response of water quality in public supply wells to land use change

    Science.gov (United States)

    McMahon, P. B.; Burow, K. R.; Kauffman, L. J.; Eberts, S. M.; BöHlke, J. K.; Gurdak, J. J.

    2008-07-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.

  14. Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA

    Directory of Open Access Journals (Sweden)

    Tiffany VanDerwerker

    2018-04-01

    Full Text Available We investigated if geologic factors are linked to elevated arsenic (As concentrations above 5 μg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS and two datasets of measured As concentrations in well water (one from public wells, the other from private wells, we evaluated occurrences of elevated As (above 5 μg/L based on geologic unit. We also constructed a logistic regression model to examine statistical relationships between elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of elevated As in well water than other geologic units in Virginia. Model results support these patterns, showing a higher probability for As occurrence above 5 μg/L in well water in these two units. Due to the lack of observations (<5% having elevated As concentrations in our data set, our model cannot be used to predict As concentrations in other parts of the state. However, our results are useful for identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility of GIS, this study approach can be applied to other areas with existing datasets of As concentrations in well water and accessible data on geology.

  15. Radioactivity levels in well water supplies within the greater Chicago area

    International Nuclear Information System (INIS)

    Kristoff, L.M.; Lordi, D.T.; Lue-Hing, C.

    1976-01-01

    The radiological analysis of well water supplies within the geographical boundaries of the Metropolitan Sanitary District of Greater Chicago was prompted by the relatively high total alpha levels encountered in wastewaters of a MSDGC water reclamation plant as compared to the wastewaters of the other waste treatment plants. Consequently, 87 wells constituting 42 water supplies were sampled and analyzed for total alpha and beta radioactivity. The wells were grouped according to depth. In general, both total alpha and total beta radioactivity concentrations were found to be a function of well depth. The relatively higher total alpha and beta activities in the wastewaters to one of the treatment plants was attributed to the higher levels found in the well water supply. Comparison with the USEPA's Drinking Water Regulations for Radionuclides (July 9, 1976) showed the maximum total alpha level of 15 pCi/liter was exceeded in 3 wells and 32 of the deep well waters had total alpha level greater than 5 pCi/liter. The total beta level of 50 pCi/liter was exceeded in 8 wells

  16. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    Science.gov (United States)

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of

  17. Research on wireless remote control scheme for the water source well of a uranium mine

    International Nuclear Information System (INIS)

    Wang Yun; Bao Feng

    2013-01-01

    Traditional wired electrical control method is applicable to simple control for the short-distance industrial equipment, but it is not suitable for the water source well of uranium mines requiring remote control. A kind of wireless remote control system based on high-speed radio modem communication technology was presented for the water source wells of a uranium mine, and the water source wells can be remotely controlled with the system. The component, implementation and characteristics of the control system are introduced. (authors)

  18. Naturally occurring radioactive elements, arsenic and other metals in drinking water from private wells

    International Nuclear Information System (INIS)

    Ek, Britt-Marie; Thunholm, Bo; Oestergren, Inger; Falk, Rolf; Mjoenes, Lars

    2008-04-01

    Approximately 50 % of all drinking water is extracted from groundwater. For private supply of drinking water almost 100 % emanates from groundwater. For approximately 1.2 of the 9 million Swedish citizens, private wells are the primary water source where 700 000 get their water from wells drilled in the bedrock. Radioactive elements and metals that occur naturally in the bedrock can be found in the well water. The radioactive elements include radon-222 ( 222 Rn), uranium (U), radium-226 ( 226 Ra) as well as polonium-210 ( 210 Po) and lead-210 ( 210 Pb), which are long-lived progeny of radon. In 2001 SGU and SSI initiated a collaboration to investigate the occurrence of radioactive elements and metals in water from private wells. Data sampling and analysis was completed in 2006. The aim of the project was to map the occurrence of radioactive elements in drinking water from private wells and to estimate their respective dose contribution. Another aim was to map metals and other elements in the water, to study temporal variations and possible co-variations between analysed elements. Sampling was conducted in a random fashion throughout the country. However, in regions where bedrock and soils are known to show enhanced concentrations of radioactive elements and arsenic the sampling density was increased. The analyses comprises: total beta activity, total alpha activity, radium-226, radon-222, uranium, aluminium, chloride, calcium, vanadium, chromium, iron, manganese, cobalt, nickel, copper, zink, arsenic, strontium, molybdenum, cadmium, barium, lead, thorium, boron, sodium, manganese, potassium, silica, alkalinity, sulfate, fluoride, phosphate, nitrate, pH and electric conductivity. In a few cases chemistry analyses of polonium-210 and lead-210 have been done. It was observed that the south-western part of Sweden, with exception for granite areas in the county of Bohuslaen, has relatively low concentrations of natural radioactive elements in the drinking water. The

  19. The influence of water polution of the sava river on the ranney wells in Beograd

    International Nuclear Information System (INIS)

    Boreli, F.

    1977-01-01

    To investigate the interconnection of the Sava, Sava lake and ranney wells waters the method of enviromental isotopes was used, that included the measurements of Tritium concentration and Oxygen and Hydrogen stable isotopes rations. Starting from the generally accepted simple hydrogeological aquifer model which supposes that the two water components contribute to the pumped ranney wells water, the water sampling was done from the Sava, the Sava lake and properly selected ranney wells R-2, R-4, R-8, and R-18, from December 1975 to October 1976. As the characteristic sampling position of the backside groundwater reservoir, a deep back positioned well was chosen. The dates of sampling corresponded to the high and low water levels of the Sava. The Tritium data indicate that the concentration in the pumped ranney wells water follows relatively well the concentration in the Sava and the Sava lake water with a time delay of less than 10 days. From the analysed correlation data on oxygene and hydrogene stable isotopes rations the participation of the backside aquifer groundwater in R-2, R-4 and R-18 is less than 10% and in R-8 between 20 and 30%

  20. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    Energy Technology Data Exchange (ETDEWEB)

    FA Spane, Jr.

    1999-12-16

    The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  1. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    Science.gov (United States)

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is

  2. Time-integrated radon measurements in spring and well waters by track technique

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Lenart, L.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''.

  3. Time-integrated radon measurements in spring and well waters by track technique

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''. (author)

  4. Standard for baseline water-well testing for coalbed methane/natural gas in coal operations

    International Nuclear Information System (INIS)

    2006-04-01

    Interest in developing coalbed methane (CBM) is increasing with the decline of conventional natural gas reserves. In Alberta, where CBM is in the early stages of development, the drilling, production and operational rules for CBM are the same as those that apply to natural gas. The government of Alberta is presently examining the rules and regulations that apply to CBM to determine if they are appropriate for responsible development and balanced with environmental protection. CBM development has the potential to affect water aquifers and water supply. As such, a new standard has been developed by Alberta Environment in collaboration with the Alberta Energy and Utilities Board which requires that companies involved in the development of shallow CBM must offer to test rural Albertan's water wells prior to drilling. The companies will submit baseline groundwater data to both Alberta Environment and the landowner. The broader application of groundwater testing will also support Alberta Environment's objective of mapping all groundwater resources in the province. This new standard will help achieve continued protection of provincial groundwater resources and Albertan's groundwater supplies. It will also facilitate responsible CBM development and the government's Water for Life strategy. This document explained the protocols for testing, sampling and analyzing groundwater. The standard provides scientific information to support achievement of the outcomes as well as a regulatory basis for water well testing and baseline data collection prior to CBM development. If a landowner registers a complaint regarding a perceived change in well water quantity and quality after CBM development, then the developers must retest the water well to address the landowner's concerns. The tests evaluate water well capacity, water quality, routine potability and analysis for water quality parameters, including major ionic constituents, bacteriological analysis and presence or absence of gas

  5. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    Science.gov (United States)

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  6. Relation between Nitrates in Water Wells and Potential Sources in the Lower Yakima Valley, Washington State

    Science.gov (United States)

    Results of a study EPA conducted to investigate the contribution of various sources to the high nitrate levels in groundwater and residential drinking water wells in the Lower Yakima Valley of Washington State.

  7. 76 FR 40679 - Household Water Well System Grant Program Announcement of Application Deadlines and Funding

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Household Water Well System Grant Program Announcement of Application Deadlines and Funding AGENCY: Rural Utilities Service, Department of Agriculture. ACTION: Notice of funding availability and solicitation of applications. SUMMARY: The Rural Utilities...

  8. Trials and tribulations of a new regulation: coal bed methane water well testing

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.; Swyngedouw, C.; Schneider, E. [Norwest Labs, Edmonton, AB (Canada); Lintott, D.; Swyngedouw, C.; Schneider, E. [Bodycote Testing Group, Toronto, ON (Canada)

    2006-07-01

    As of January 2006, coalbed methane (CBM) activity in Alberta was at 3600 producing wells with the potential for 25,000 to 50,000 wells. Coalbed methane risks and regulations were discussed. Regulatory initiatives, politics of coalbed methane, and a regulatory timeline was provided and the trials of a new regulation were presented. Other topics of discussion included: methane sampling and analysis; dissolved methane in water; gas isotopes; routine water potability; microbiology testing; and, sulfate reducing bacteria (SRB)/iron-related bacteria (IRB) method validation. The results of the microbial testing were presented. Although relatively few positive coliforms in wells were analyzed, most wells demonstrated positive presence for iron and sulfate bacteria. It was recommended that further research be conducted to evaluate the water sulfide concentration/turbidity, along with other parameters with presence and concentration of SRB and IRB bacteria as an indication of poor water quality. refs., tabs.

  9. 75 FR 14559 - Household Water Well System Grant Program Announcement of Application Deadlines and Funding

    Science.gov (United States)

    2010-03-26

    ... greatest need. Central water systems may not be the only or best solution to drinking water problems... Services for Persons with Limited English Proficiency. ''For information on limited English proficiency and..., social, financial, or other problems that require solutions. Demonstrate the well owners' need for...

  10. Influence of water pollution of the Sava River on the ranney wells in Beograd

    Energy Technology Data Exchange (ETDEWEB)

    Boreli, F [Belgrade Univ. (Yugoslavia). Elektrotehnicki Fakultet; Hadzisehovic, M; Stojakovic, R; Paligoric, D; Vukmirovic, Z; Lazarevic, V [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1977-01-01

    To investigate the interconnection of the Sava, Sava Lake, and ranney wells waters, the method of enviromental isotopes was used. This involved the measurement of tritium concentrations and oxygen and hydrogen stable isotope ratios. Starting from the generally accepted simple hydrogeological aquifer model which supposes that the two water components contribute to the pumped ranney wells water, the water sampling was done from the Sava, the Sava Lake, and properly selected ranney wells R-2, R-4, R-8, and R-18, from December 1975 to October 1976. As a representative sampling site of the backside groundwater reservoir, a deep back positioned well was chosen. The dates of sampling corresponded to the high and low water levels of the Sava. The tritium data indicated that the concentration in the pumped ranney wells water followed relatively closely the concentration in the Sava and the Sava Lake water with a time delay of less than 10 days. From the analyzed correlation data on oxygen and hydrogen stable isotope ratios, the participation of the backside aquifer groundwater in R-2, R-4, and R-18 was less than 10% and in R-8 between 20 and 30%.

  11. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    Science.gov (United States)

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  12. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction.

    Science.gov (United States)

    Jackson, Robert B; Vengosh, Avner; Darrah, Thomas H; Warner, Nathaniel R; Down, Adrian; Poreda, Robert J; Osborn, Stephen G; Zhao, Kaiguang; Karr, Jonathan D

    2013-07-09

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes gas wells (P = 0.0006). Ethane was 23 times higher in homes gas wells (P = 0.0013); propane was detected in 10 water wells, all within approximately 1 km distance (P = 0.01). Of three factors previously proposed to influence gas concentrations in shallow groundwater (distances to gas wells, valley bottoms, and the Appalachian Structural Front, a proxy for tectonic deformation), distance to gas wells was highly significant for methane concentrations (P = 0.007; multiple regression), whereas distances to valley bottoms and the Appalachian Structural Front were not significant (P = 0.27 and P = 0.11, respectively). Distance to gas wells was also the most significant factor for Pearson and Spearman correlation analyses (P gas wells was the only statistically significant factor (P gas (4)He to CH4 in groundwater were characteristic of a thermally postmature Marcellus-like source in some cases. Overall, our data suggest that some homeowners living gas wells have drinking water contaminated with stray gases.

  13. Ground water investigations in connection with planned energy wells in the Lena area, Melhus centre

    International Nuclear Information System (INIS)

    Storroe, Gaute

    2000-01-01

    In March 2000 the Norwegian Geologic Survey (NGU) was requested to carry out ground water investigations in the Lena area at Melhus centre by the firms E-Tek AS and Statoil. The background for the investigations was the plans of exploiting ground heat connected to a housing project lead by Selmer Bolig AS. The aim of the project was to document the possibilities for extracting ground heat from loose soil well(s) in the selected construction area. The needed amount of water is in the size of 50 m 3 /hour (14l/s). In addition the conditions of currents, ground water quality and possibilities for refiltering of the ground water was to be mapped. In conclusion it may be said that it most likely will be possible to meet the stipulated water requirements (50 m 3 /hour) by establishing a full scale production well within the construction area. The ground water currents in the Lena area run from north to south. The ground water surface is relatively flat with an incline of 0.1 - 0.2 % (1-2 mm/m). The possibilities for refiltering pumped water seem to be good. The conditions should be mapped more closely through refiltering tests. All of the collected ground water samples exceed the limiting values stipulated by the drinking water regulations as to alkalinity, sulphate, calcium, potassium and manganese. The tests from Obs2 and from the ''municipal well'' exceed the limits for chloride and sodium as well. This indicates that unwanted precipitations of both chalk and manganese may occur. Large quantities of sea salts (chloride and sodium) may also have a corrosive effect. Through calculations using the Ryznar's Stability Index (RSI) it is evident that the tests from Obs1 and Obs2 are in the limiting area between ''problem free water'' and ''corrosive water'', while the water from the municipal well must be characterised as very corrosive. According to information from the managing personnel there have not been registered problems with precipitations or corrosion in heat

  14. Effect of Pumping Strategies on Pesticide Concentrations in Water Abstraction Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Albrechtsen, Hans-Jørgen

    Pesticide use in agriculture is one of the main sources of groundwater contamination and poses an important threat to groundwater abstraction. Pesticides have been detected in 37% of Danish monitoring wells sampled, with 12 % exceeding drinking water guidelines. Field data captured in monitoring...... and pumping wells show that pesticide concentrations vary greatly in both time and space. This study aimed to use models to determine how pumping affects pesticide concentrations in drinking water wells placed in two hypothetical aquifer systems; a homogeneous layered aquifer and a layered aquifer...... in a pumping well capture zone were constructed using COMSOL Multiphysics. A series of simulations were conducted to examine the effect of pumping strategies (constant versus varying pumping rate), pesticide properties and aquifer hydrogeology on the concentration in drinking water wells. The results...

  15. Removal of natural radionuclides from drinking water from private wells in Finland

    International Nuclear Information System (INIS)

    Huikuri, Pia; Salonen, Laina; Turtiainen, Tuukka

    1999-01-01

    Removal of natural radionuclides is often necessary in Finland when household water is taken from a drilled well. Removal of radionuclides by various methods from Finnish groundwaters were studied in a EU-research project, TENAWA. The results indicated that radon can be removed very efficiently (up to 99%) by applying aeration or granular activated carbon (GAC) filtration. Uranium and radium were also removed (over 94%) by using strong base anion (SBA) and strong acid cation (SAC) resins. The capability of reverse osmosis (RO) equipment to remove radionuclides was over 90% for uranium, radium and polonium. The water quality analyses indicated that water quality remained mostly good during the water treatment. (au)

  16. Evaluation of the Purge Water Management System (PWMS) monitor well sampling technology at SRS

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Cardoso-Neto, J.E.; Williams, D.W.

    1997-01-01

    Due to the complex issues surrounding Investigation Derived Waste (IDW) at SRS, the Environmental Restoration Division has been exploring new technologies to deal with the purge water generated during monitoring well sampling. Standard procedures for sampling generates copious amounts of purge water that must be managed as hazardous waste, when containing hazardous and/or radiological contaminants exceeding certain threshold levels. SRS has obtained Regulator approval to field test an innovative surface release prevention mechanism to manage purge water. This mechanism is referred to as the Purge Water Management System (PWMS) and consists of a collapsible bladder situated within a rigid metal tank

  17. Combination gas-producing and waste-water disposal well. [DOE patent application

    Science.gov (United States)

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  18. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  19. An additive to well injection water for increasing the oil yield

    Energy Technology Data Exchange (ETDEWEB)

    Absov, M.T.; Abutalybov, M.G.; Aslanov, S.M.; Movruzov, E.N.; Musaev, R.A.; Tairov, N.D.

    1979-03-05

    This invention relates to oil production using flooding. The goal of this invention is to increase the oil yield of a producing formation. This is achieved by using a saponin solution as an additive to the water injected into the formation (with related organic substances which are complex organic nitrogen-free compounds from the glycoside group; these substances yield solution that foam easily with an agitation). The use of saponin facilitates good solubility in fresh, sea and formation (alkaline and hard) waters, as well as the absence of sediment formation during dissolution, low solid adsorption, and a significant decrease in the surface water tension on the oil-water boundary. The aqueous saponin solution makes it possible to decrease the production cost of oil, as well as to decrease the development time of the fields and the volume of water injected into the formation and to significantly increase the oil yield.

  20. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  1. Radon and radium measurement in well water at Curitiba (PR), Brazil

    International Nuclear Information System (INIS)

    Correa, Janine N.; Paschuk, Sergei A.; Perna, Allan F.N.; Kappke, Jaqueline; Claro, Flavio del; Denyak, Valeriy; Schelin, Hugo R.; Rocha, Zildete

    2011-01-01

    This study presents the results of 226 Ra and 222 Rn activity concentration measurements in well water in the city of Curitiba - Parana State of Brazil. Water samples were collected from 31 wells and submitted to the radioactivity measurements in the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR) in cooperation with CDTN-CNEN. Each water sample was submitted to 4 measurements of radon concentration with interval of three days. After two months the same samples were submitted once again to 222 Rn concentration measurements with an objective to evaluate indirectly the amount of 226 Ra contained in water samples. The 222 Rn concentration measurements were performed using AlphaGUARD radon monitor (Genitron Instruments) and 226 Ra concentration was evaluated using the decay curves of 222 Rn. Within few hours after extraction about 70% of water samples from monitored wells presented 222 Rn concentration values above the limit of 11.1 Bq/L recommended by the USEPA. Obtained activity values varied between 1.57 Bq/L - 215.16 Bq/L for radon concentration, and radium concentrations deviated within an interval of 0.61 Bq/L - 6.76 Bq/L. Obtained results showed that the biggest part of 222 Rn found in water samples was not originated from the 226 Ra compounds soluble in water but from gas exhalation by the soil adjacent to the well. The results of present research show the requirement of radioactivity monitoring of water extracted from artesian wells at Curitiba region and indicate the necessity of mitigation procedure development for better control of global alpha radioactivity in drinking water. (author)

  2. 222Rn in private well water in the vicinity of uranium mines over ten years

    International Nuclear Information System (INIS)

    Yunoki, Eiji; Kataoka, Toshio; Michihiro, Kenshu; Sugiyama, Hirokazu; Shimizu, Mitsuo; Mori, Tadashige

    1994-01-01

    There are many small uranium mines of the sedimentary type in Kamisaibara, Okayama Prefecture, Japan. As inhabitants in Kamisaibara consume water from privately-dug wells, it is important to investigate distributions of 222 Rn in privately-dug well water in the vicinity of the mines. The determination of 222 Rn in well water was carried out from April 1980 to October 1990. Though small in area (16 km 2 ), each well water has its own characteristic activity concentrations of 222 Rn. The activity concentrations of 222 Rn are almost constant for each specific well over a long period (about 10 years). In general, the correlation coefficients for several sampling points are small. As Akawase and Tennoh are situated in the same rock type, the correlation coefficient is the highest value in this area. The estimated dose equivalent for the human stomach is approximately 0.4-54 μSv/year. The type of distribution of 222 Rn in privately-dug well water is log normal. (author)

  3. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991-2004

    Science.gov (United States)

    DeSimone, Leslie A.

    2009-01-01

    As part of the National Water-Quality Assessment Program of the U.S. Geological Survey (USGS), water samples were collected during 1991-2004 from domestic wells (private wells used for household drinking water) for analysis of drinking-water contaminants, where contaminants are considered, as defined by the Safe Drinking Water Act, to be all substances in water. Physical properties and the concentrations of major ions, trace elements, nutrients, radon, and organic compounds (pesticides and volatile organic compounds) were measured in as many as 2,167 wells; fecal indicator bacteria and radionuclides also were measured in some wells. The wells were located within major hydrogeologic settings of 30 regionally extensive aquifers used for water supply in the United States. One sample was collected from each well prior to any in-home treatment. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). No individual contaminant was present in concentrations greater than available health benchmarks in more than 8 percent of the sampled wells. Collectively, however, about 23 percent of wells had at least 1 contaminant present at concentrations greater than an MCL or HBSL, based on analysis of samples from 1,389 wells in which most contaminants were measured. Radon, nitrate, several trace elements, fluoride, gross alpha- and beta-particle radioactivity, and fecal indicator bacteria were found most frequently (in one or more percent of wells) at concentrations greater than benchmarks and, thus, are of potential concern for human health. Radon concentrations were greater than the lower of two proposed MCLs (300 picocuries per liter or pCi/L) in about 65 percent of the wells and greater than the higher proposed MCL (4,000 pCi/L) in about 4 percent of wells. Nitrate, arsenic, manganese, strontium, and

  4. Water level fluctuations due to earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    J At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 percent of the total discharge, which was 0.94 1/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  5. Evaluation of radon concentration in well and tap waters in Bursa (Turkey)

    International Nuclear Information System (INIS)

    Akar Tarim, U.; Gurler, O.; Akkaya, G.; Kilic, N.; Yalcin, S.; Kaynak, G.; Gundogdu, O.

    2012-01-01

    222 Rn measurements in water samples collected from 27 wells and 19 taps that were supplied from the investigated wells were conducted using the AlphaGUARD PQ 2000PRO radon gas analyser at sites across several geologic formations within the city of Bursa (Turkey). The measured radon concentrations ranged from 1.46 to 53.64 Bq l -1 for well water and from 0.91 to 12.58 Bq l -1 for tap water. Of the 27 sites sampled, only 7 had radon levels above the safe limit of 11.1 Bq l -1 recommended by the USEPA. In general, all determined concentrations were well below the 100 Bq l -1 revised reference level proposed by the European Union. These values of radon concentrations in water samples are compared with those reported from other countries. Doses resulting from the consumption of these waters were calculated. The minimum and the maximum annual mean effective doses due to 222 Rn intake through water consumption were 0.02 μSv a -1 and 1.11 μSv a -1 , respectively. (authors)

  6. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    Science.gov (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  7. Use of inexpensive pressure transducers for measuring water levels in wells

    Science.gov (United States)

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  8. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    Science.gov (United States)

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Enterobacteriacea contamination of drinking water of the wells in Romeshkan town

    Directory of Open Access Journals (Sweden)

    esmaeyl Badparva

    2016-05-01

    Full Text Available Background: Water is a vital liquid which is contaminatied by multiple biological agents such as; parasites, fungi, viruses and bacteria. The Enterobactriaceae, especially E.Coli are the most important indicator of fecal contamination of water. The aim of this study was to evaluate the Enterobacteriaceae in drinking water of  the wells in Romeshkan town. Material and Methods: 160 of  2.5 liter water samples were collected and quickly transferred to the laboratory under the desired temperature then were concentrated by passing through a 0.45 µm filter. Then the bacteria were differentiated by culture in Macconkey medium and the grown single colonies were cultured on other differentiate media. Results: 18 (%11.25 of the drinking water of the wells were contaminated with E.Coli which in most cases accompanied with other Enterobactoaceae such as; Enterobacter, Citrobacter and Klebsiella. These contaminations had significant relationship with distance between sewage wells and damaged lids of wells. Conclusion: Although the contamination rate was lower than some previous studies, but according to standards of WHO, it is very high. It is suggested that authorities apply pipetting before wells waterborne diseases become epidemic.

  10. Application of statistical classification methods for predicting the acceptability of well-water quality

    Science.gov (United States)

    Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.

    2018-01-01

    The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.

  11. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    Science.gov (United States)

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  12. Evaluation of Nitrate Contaminaion of Drinking Water Wells in the City of Qom

    Directory of Open Access Journals (Sweden)

    Mohammadhossein Rahimi

    2017-09-01

    Full Text Available Groundwater is the only vital source of water for millions of people around the world and its contamination has dire impacts on human health, industrial activities, agriculture, and the environment. The drinking water in the City of Qom is supplied from neighboring water basins transferred by interbasin water transimission facilities and from water wells within the city. The growing demands and the consequent increasing water scarcity have augmented and foregrounded the significant role played by the water wells in this city. Nitrate as a widespread pollutant originates from human activities and the dumped wastes that lead to the gradual degradation of groundwater resources, which might go undetected for years. On the other hand, remediation of polluted aquifers is a formidable, cost-intensive, and, at times, impossible endeavor. In this study, groundwater resources in the city of Qom were investigated in terms of their nitrate concentration. For this purpose, 600 groundwater samples collected from 2006 to 2013 by the Qom Water and Sewage Company were used, 136 of which were found to be polluted with nitrate. In order to validate the data thus obtained and to identify the contaminated areas, additional samples were collected from 27 wells in December 2013 and subjected to the relevant analysis. The latter analysis revealed a mean nitrate concentration of 74 mg/L and a standard deviation of 37 mg/L, with nitrate contamination detected in 19 wells accounting for 70% of the sampling sites. Generally, the results indicate that the aquifers within the city of Qom suffer from nitrate contamination.

  13. Radon 222 levels in deep well waters of Toluca municipality (county)

    International Nuclear Information System (INIS)

    Olguin Gutierrez, Maria Teresa.

    1990-01-01

    The levels of Radon 222 were determined in 46 deep (50-180m) wells in the city and county of Toluca, as well as the annual radiation dose that the stomach admits when ingesting such water. The method used for the quantification of Radon 222 was liquid scintillation counting. The result revealed that levels of Radon 222 in the studied area in the range of 0 to 320 pCi l -1 . In the case of the equivalent annual dose that the stomach (empty) admits due to ingestion of water from the wells, values are in an interval between 0 to 95 mrem a -1 . This values are well below the level established by the International Commission of Radiological Protection (ICRP). The wells that had the higher concentration of Radon 222 were found in the regions of Lodo Prieto, Seminario; San Antonio Buenavista and La Trinidad Huichochitlan. (Author)

  14. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  15. Concentrations of 222Rn in well and tap waters of North-Eastern Attiki (Central Greece)

    International Nuclear Information System (INIS)

    Kritidis, Panaiotis; Angelou, Panaiotis.

    1984-07-01

    An alpha-scintillation system for determination of low 222 Rn concentrations in water is described. The use of vacuum sampling, the avoidance of sample transfer and the corrections applied result in low systematical errors. The method has been used for a preliminary investigation of 222 Rn concentrations in well waters of NE Attiki, where values between 4 and 345 pCi/1 have been observed. The additional annual effective dose equivalent due to the systematic domestic use of water with the highest radon concentration measured is estimated not to exceed 5 mrem. (author)

  16. Estimating an appropriate sampling frequency for monitoring ground water well contamination

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    1994-01-01

    Nearly 1,500 ground water wells at the Savannah River Site (SRS) are sampled quarterly to monitor contamination by radionuclides and other hazardous constituents from nearby waste sites. Some 10,000 water samples were collected in 1993 at a laboratory analysis cost of $10,000,000. No widely accepted statistical method has been developed, to date, for estimating a technically defensible ground water sampling frequency consistent and compliant with federal regulations. Such a method is presented here based on the concept of statistical independence among successively measured contaminant concentrations in time

  17. Effects of seasonal operation on the quality of water produced by public-supply wells.

    Science.gov (United States)

    Bexfield, Laura M; Jurgens, Bryant C

    2014-09-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  18. Remote sensing and GIS approach for water-well site selection, southwest Iran

    Science.gov (United States)

    Rangzan, K.; Charchi, A.; Abshirini, E.; Dinger, J.

    2008-01-01

    The Pabdeh-Lali Anticline of northern Khuzestan province is located in southwestern Iran and occupies 790 km2. This structure is situated in the Zagros folded belt. As a result of well-developed karst systems in the anticlinal axis, the water supply potential is high and is drained by many peripheral springs. However, there is a scarcity of water for agriculture and population centers on the anticlinal flanks, which imposes a severe problem in terms of area development. This study combines remotely sensed (RS) data and a geographical information system (GIS) into a RSGIS technique to delineate new areas for groundwater development and specific sites for drilling productive water wells. Toward these goals, RS data were used to develop GIS layers for lithology, structural geology, topographic slope, elevation, and drainage density. Field measurements were made to create spring-location and groundwater-quality GIS layers. Subsequently, expert choice and relational methods were used in a GIS environment to conjunctively analyze all layers to delineate preferable regions and 43 individual sites in which to drill water wells. Results indicate that the most preferred areas are, in preferential order, within recent alluvial deposits, the Bakhtiyari Conglomerates, and the Aghajari Sandstone. The Asmari Limestone and other units have much lower potential for groundwater supplies. Potential usefulness of the RSGIS method was indicated when six out of nine producing wells recently drilled by the Khozestan Water and Power Authority (which had no knowledge of this study) were located in areas preferentially selected by this technique.

  19. Water analysis from wells in Ezeiza and surrounding areas. Dissolved uranium

    International Nuclear Information System (INIS)

    Santagata, D.M.; Arguelles, Maria G.; Barbaro, Nestor O.

    2006-01-01

    In order to give an answer to the different social sectors, we sampled water from previously existing wells that reaches the Puelche aquifer. The uranium concentration was determined in these samples to obtain a preliminary checkup of water quality situation. For the analysis we considered the samples obtained inside the CAE as well as those sampled in the surrounding areas as Monte Grande, Claypole and Burzaco. The results show a correlation between the amount of dissolved salts and the presence of dissolved uranium. (author) [es

  20. Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction.

    Science.gov (United States)

    Alawattegama, Shyama K; Kondratyuk, Tetiana; Krynock, Renee; Bricker, Matthew; Rutter, Jennifer K; Bain, Daniel J; Stolz, John F

    2015-01-01

    Reports of ground water contamination in a southwestern Pennsylvania community coincided with unconventional shale gas extraction activities that started late 2009. Residents participated in a survey and well water samples were collected and analyzed. Available pre-drill and post-drill water test results and legacy operations (e.g., gas and oil wells, coal mining) were reviewed. Fifty-six of the 143 respondents indicated changes in water quality or quantity while 63 respondents reported no issues. Color change (brown, black, or orange) was the most common (27 households). Well type, when known, was rotary or cable tool, and depths ranged from 19 to 274 m. Chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, manganese and strontium were commonly found, with 25 households exceeding the secondary maximum contaminate level (SMCL) for manganese. Methane was detected in 14 of the 18 houses tested. The 26 wells tested for total coliforms (2 positives) and E. coli (1 positive) indicated that septic contamination was not a factor. Repeated sampling of two wells in close proximity (204 m) but drawing from different depths (32 m and 54 m), revealed temporal variability. Since 2009, 65 horizontal wells were drilled within a 4 km (2.5 mile) radius of the community, each well was stimulated on average with 3.5 million gal of fluids and 3.2 million lbs of proppant. PA DEP cited violations included an improperly plugged well and at least one failed well casing. This study underscores the need for thorough analyses of data, documentation of legacy activity, pre-drill testing, and long term monitoring.

  1. Drinking water from dug wells in rural ghana--salmonella contamination, environmental factors, and genotypes.

    Science.gov (United States)

    Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen

    2015-03-27

    Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control.

  2. PRODUCTION WELL WATER SHUT-OFF TREATMENT IN A HIGHLY FRACTURED SANDSTONE RESERVOIR; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    As domestic oil and gas fields approach maturity or even abandonment, new methods are being tested to add life to the fields. One area being addressed is the reduction of water production to extend the economic life of a field. In many fields a very common problem is permeability heterogeneity from matrix variations, fractures, or both. Conventional procedures to remediate high water rates in fractured networks, including cement squeezing, openhole packers, and liners are generally unsuccessful. The objective of this project was to test the viability of using sequential treatment of a production well with a cross-linked polymer to restrict water production from highly permeable and fractured zones. The field used for testing was the Ashley Valley field in northeastern Utah. The process proposed for testing in this field was the sequential application of small batches of a cross-linked polymer, chromium (III) polyacrylamide polymer (Marcit(trademark)). First, the highest permeability fractures were to be blocked, followed progressively by smaller fractures, and finally the higher permeability matrix channels. The initial application of this polymer in September 1997 in the Ashley Valley (AV) well No.2 did increase oil production while decreasing both water production and the relative permeability to water. The successive application of the polymer was considered as a method to increase both daily and ultimate oil production and reduce produced water. The second polymer treatment was conducted in October 1999 in AV No.2. The treatment consisted of 4,994 barrels of 1,500-mg/l to 9,000-mg/l polymer at surface injection pressures no higher than 380 psig. During injection, four offset wells showed polymer breakthrough and were shut in during the remaining treatment. Present oil and water production rates for AV No.2 are 14 BOPD and 2,700 BWPD, which is a 44% decrease in the oil rate and a 40% reduction in water from the rates after the first treatment. The decrease in

  3. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  4. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  5. Cross-well 4-D resistivity tomography localizes the oil-water encroachment front during water flooding

    Science.gov (United States)

    Zhang, J.; Revil, A.

    2015-04-01

    The early detection of the oil-water encroachment front is of prime interest during the water flooding of an oil reservoir to maximize the production of oil and to avoid the oil-water encroachment front to come too close to production wells. We propose a new 4-D inversion approach based on the Gauss-Newton approach to invert cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods.

  6. Contamination of water wells in Khoms city with pathogenic coliform bacteria

    International Nuclear Information System (INIS)

    Mahjoub, Tariq M.; Buazzi, Mahmoud M.; Jamil, Ahmad Y.

    2007-01-01

    240 Samples from 60 water wells in and around the area of city of Khoms city (in northwestern Libya) were analyzed over four successive seasons for count of faecal Coliform bacteria, of which antibiotic resistance was later assessed. Standard methods were used for analysis of faecla coliform bacteria. Water wells contained varying levels of faecal coliform bacteria ranging from a Most Probable Number of 0 to 1.8 x 10 3 cfu/100 ml, with zero isolates at autumn and winter seasons, while wells dug at private farms had the highest percentage of contamination, reaching 56.6% of wells in autumn, and also had the highest number of faecal coliform isolates, 1,8x10 3 cfu/100 ml, in spring and summer seasons, strains of isolated Escherichia coli were most sensitive to chloramphenicol, and most resistant to tetracycline. (author)

  7. High water level installation of monitoring wells for underground storage tanks

    International Nuclear Information System (INIS)

    Treadway, C.

    1990-01-01

    This paper briefly describes a common monitoring well installation design for shallow ground water contamination resulting from leaky underground storage tanks. The paper describes drilling techniques used in unconsolidated Florida aquifers using hollow-stem augers. It describes methods for the prevention of heaving sands and sand-locking problems. It then goes on to describe the proper well casing placement and sealing techniques using neat cements. The proper sell screen level is also discussed to maximize the detection of floating hydrocarbons

  8. Radium contamination in the Nizzana-1 water well, Negev Desert, Israel

    International Nuclear Information System (INIS)

    Minster, T.; Ilani, S.; Kronfeld, J.; Even, O.; Godfrey-Smith, D.I.

    2004-01-01

    In a search for fresh groundwater reserves in the northwestern Negev Desert of Israel, the Nizzana-1 water well drilled into the Judea Group aquifer encountered water that exhibits an anomalously high 226 Ra activity of 2.4 Bq/l, along with 133 Bq/l 222 Rn. The exploited well water is a mixture of the original Judea Group aquifer water and the underlying more saline artesian water of the Kurnub Group (or Nubian Sandstone) aquifer that is currently intruding via faults. Both aquifers elsewhere contain intrinsically low radioactivity. A study of the sedimentary sequence transected by the borehole revealed that much of the bituminous sequence of the Mount Scopus Group of Upper Cretaceous age is substantially depleted in 226 Ra. During its ascent, the Nubian Sandstone water flushes the moderately uranium enriched bituminous sediments, selectively leaching radium and/or receiving alpha-recoil additions of radium. These bituminous chalks and marls are regionally widespread. It is thus suggested that radium should be monitored where faulting allows for inter-aquiferial connections across uranium enriched bituminous sections

  9. Radium contamination in the Nizzana-1 water well, Negev Desert, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Minster, T. E-mail: tsevi.minster@mail.gsi.gov.il; Ilani, S.; Kronfeld, J.; Even, O.; Godfrey-Smith, D.I

    2004-07-01

    In a search for fresh groundwater reserves in the northwestern Negev Desert of Israel, the Nizzana-1 water well drilled into the Judea Group aquifer encountered water that exhibits an anomalously high {sup 226}Ra activity of 2.4 Bq/l, along with 133 Bq/l {sup 222}Rn. The exploited well water is a mixture of the original Judea Group aquifer water and the underlying more saline artesian water of the Kurnub Group (or Nubian Sandstone) aquifer that is currently intruding via faults. Both aquifers elsewhere contain intrinsically low radioactivity. A study of the sedimentary sequence transected by the borehole revealed that much of the bituminous sequence of the Mount Scopus Group of Upper Cretaceous age is substantially depleted in {sup 226}Ra. During its ascent, the Nubian Sandstone water flushes the moderately uranium enriched bituminous sediments, selectively leaching radium and/or receiving alpha-recoil additions of radium. These bituminous chalks and marls are regionally widespread. It is thus suggested that radium should be monitored where faulting allows for inter-aquiferial connections across uranium enriched bituminous sections.

  10. High Nitrogen Fertilization of Tobacco Crop in Headwater Watershed Contaminates Subsurface and Well Waters with Nitrate

    Directory of Open Access Journals (Sweden)

    D. R. Kaiser

    2015-01-01

    Full Text Available Our hypothesis was that subsurface and well waters in watershed with shallow, stony soils, steep landscapes, and cropped to tobacco are contaminated by nitrate. Nitrate in soil solution was monitored in (0.20 m and below (0.5 m root zone with tension lysimeters, in five transects. Water from two wells (beneath tobacco field and in native forest used for human consumption was also analyzed for nitrate. Soil bulk density, porosity, and saturated hydraulic conductivity were evaluated. Soil physical and hydrological properties showed great variation at different landscape positions and soil depths. Soil coarse grain size, high porosity, and saturated hydraulic conductivity favored leaching nitrate. Nitrate in soil solution from tobacco fields was greater than in natural environment. Nitrate reached depths bellow rooting zone with values as high as 80 mg L−1 in tobacco plantation. Water well located below tobacco plantation had high nitrate concentration, sometimes above the critical limit of 10 mg L−1. Tobacco cropping causes significant water pollution by nitrate, posing risk to human health. A large amount of nitrogen fertilizers applied to tobacco and nitrate in subsurface waters demonstrate the unsustainability of tobacco production in small farming units on steeps slopes, with stony and shallow soils.

  11. Assessing potential risks from exposure to natural uranium in well water

    International Nuclear Information System (INIS)

    Hakonson-Hayes, A.C.; Fresquez, P.R.; Whicker, F.W.

    2002-01-01

    Over 50% of the wells in the Nambe region of northern New Mexico exceed the US Environmental Protection Agency's recommended drinking water standard of 20 μg l -1 for 238 U; the highest in the area was measured at 1200 μg U l -1 . Uranium uptake was estimated in tomato (Lycopersicon esculentum), squash (Cucurbita pepo), lettuce (Lactuca scarriola), and radish (Raphanus sativus) irrigated with Nambe well water containing -1 . Plant uptake and human dose and toxicity associated with ingestion of water and produce and inhalation of irrigated soil related to gardening activities were evaluated. Uranium concentration in plants increased linearly with increasing U concentration in irrigation water, particularly in lettuce and radish. The estimated total committed effective dose for 70 years of maximum continuous exposure, via the three pathways to well water containing 1200 μg U l -1 , was 0.17 mSv with a corresponding kidney concentration of 0.8 μg U g -1 kidney

  12. Assessing potential risks from exposure to natural uranium in well water

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson-Hayes, A.C.; Fresquez, P.R. E-mail: fresquezp@lanl.gov; Whicker, F.W

    2002-07-01

    Over 50% of the wells in the Nambe region of northern New Mexico exceed the US Environmental Protection Agency's recommended drinking water standard of 20 {mu}g l{sup -1} for {sup 238}U; the highest in the area was measured at 1200 {mu}g U l{sup -1}. Uranium uptake was estimated in tomato (Lycopersicon esculentum), squash (Cucurbita pepo), lettuce (Lactuca scarriola), and radish (Raphanus sativus) irrigated with Nambe well water containing <1, 150, 500, and 1200 {mu}g U l{sup -1}. Plant uptake and human dose and toxicity associated with ingestion of water and produce and inhalation of irrigated soil related to gardening activities were evaluated. Uranium concentration in plants increased linearly with increasing U concentration in irrigation water, particularly in lettuce and radish. The estimated total committed effective dose for 70 years of maximum continuous exposure, via the three pathways to well water containing 1200 {mu}g U l{sup -1}, was 0.17 mSv with a corresponding kidney concentration of 0.8 {mu}g U g{sup -1} kidney.

  13. Effects of seasonal operation on the quality of water produced by public-supply wells

    Science.gov (United States)

    Bexfield, Laura M.; Jurgens, Bryant C.

    2014-01-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin.

  14. Reverse Osmosis Filter Use and High Arsenic Levels in Private Well Water

    Science.gov (United States)

    George, Christine M.; Smith, Allan H.; Kalman, David A.; Steinmaus, Craig M.

    2013-01-01

    Inorganic arsenic causes cancer, and millions of people worldwide are exposed to arsenic-contaminated water. Regulatory standards for arsenic levels in drinking water generally do not apply to private domestic wells. Reverse osmosis (RO) units commonly are used by well owners to reduce arsenic concentrations, but may not always be effective. In a survey of 102 homes in Nevada, 19 used RO devices. Pre- and post-RO filtration arsenic concentrations averaged 443 μg/l and 87 μg/l, respectively. The average absolute and percent reductions in arsenic concentrations after filtration were 356 μg/l and 79%, respectively. Postfiltration concentrations were higher than 10 μg/l in 10 homes and higher than 100 μg/l in 4 homes. These findings provide evidence that RO filters do not guarantee safe drinking water and, despite regulatory standards, some people continue to be exposed to very high arsenic concentrations. PMID:17867571

  15. Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.

    Science.gov (United States)

    Chen, Mei-Ying; Chang, Yan-Zin; Lu, Fung-Jou; Chen, Jian-Lian

    2010-01-01

    Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.

  16. Radioactivity of well water around the site of Tricastin-Pierrelatte

    International Nuclear Information System (INIS)

    2008-01-01

    This study has for principal objective the measurement of radioactivity of private well waters around the site of Pierrelatte-Tricastin, because there is no data available at this day concerning the radiological situation of this source of water supply in the local population. A campaign of sampling has been made between september and october 2007 on the cities of Bollene, Lapalud and Pierrelatte. At the laboratory, I.R.S.N. analysed more particularly uranium and its daughters, as well as some artificial radioisotopes (plutonium and americium) in order to identify an eventual influence of the nuclear site of Tricastin-Pierrelatte. This report presents successively the campaign of sampling, the results of measurements and compares them with the measurements of uranium concentration made by Areva NC in the field of the regulatory surveillance of waters in the surrounding of the site of Tricastin-Pierrelatte. (N.C.)

  17. Determination of water saturation in subsurface earth formations adjacent well boreholes

    International Nuclear Information System (INIS)

    Scott, Hubert D.

    1982-01-01

    There is provided a method of determining the water saturation of an earth formation surrounding a well borehole, comprising the steps of: (a) bombarding the earth formation with repetitive pulses of fast neutrons which are slowed down and thereafter engage in neutron capture reactions with materials in the vicinity of the borehole; (b) obtaining by use of a germanium gamma ray detector gamma ray spectra of the materials in the vicinity of the borehole; (c) obtaining from the gamma ray spectra a measure of the relative presence of chlorine to that of hydrogen in the formation; (d) obtaining a measure of apparent formation water salinity from the measure of relative presence of chlorine to hydrogen in the formation; and (e) obtaining the water saturation of the formation utilizing the apparent formation water salinity

  18. Microbial and trace metal content of well water in three rural ...

    African Journals Online (AJOL)

    Microbial and trace metal content of well water in three rural communities in Bauchi State, Nigeria*. E Ikeh, PN Durfee, RH Glew, R Amato, FJ Frost, DJ Vanderjagt. Abstract. No Abstract. Nigerian Journal of Health and Biomedical Sciences Vol. 5 (2) 2006: 66-70. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  19. Millennium Ecosystem Assessment: Ecosystems and human well-being: wetlands and water synthesis

    NARCIS (Netherlands)

    Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; Groot, de R.S.; Lévêque, C.; Milton, G.R.; Peterson, G.; Pritchard, D.; Ratner, B.D.; Reid, W.V.; Revenga, C.; Rivera, M.; Schutyser, F.; Siebentritt, M.; Stuip, M.; Tharme, R.; Butchard, S.; Dieme-Amting, E.; Gitay, H.; Raaymakers, S.; Taylor, D.

    2005-01-01

    The Wetlands and Water synthesis was designed for the Ramsar Convention to meet the need for information about the consequences of ecosystem change for human well-being and sought to strengthen the link between scientific knowledge and decision-making for the conservation and wise use of wetlands.

  20. Secondary transmission of cryptosporidiosis associated with well water consumption: two case studies.

    Science.gov (United States)

    Rezende, Natania Carol Cavalcante; Bezerra, Camila Loredana Pereira Alves Madeira; Almeida, Jéssica Jacinto Salviano de; Fernandes, Tatiane Uetti Gomes; Luz, Kleber Giovanni

    2016-04-01

    Cryptosporidiosis is a very prominent disease in the field of public health, and usually causes diarrhea. We describe two immunocompetent patients who presented with chronic diarrhea that was ultimately found to be caused by continuous exposure to well water contaminated with the microbial cysts (oocysts) of the Cryptosporidium spp parasite. We describe the patients' histories and possible explanations for their prolonged symptoms.

  1. 77 FR 26245 - Household Water Well System Grant Program Announcement of Application Deadlines and Funding

    Science.gov (United States)

    2012-05-03

    ... facilities to Rural Americans in greatest need. Central water systems may not be the only or best solution to... Services for Persons with Limited English Proficiency. '' For information on limited English proficiency... that require solutions. Demonstrate the well owners' need for financial and technical assistance...

  2. Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States

    Science.gov (United States)

    Nolan, Bernard T.; Hitt, Kerie J.

    2006-01-01

    Two nonlinear models were developed at the national scale to (1) predict contamination of shallow ground water (typically drinking. The new models have several advantages over previous national-scale approaches. First, they predict nitrate concentration (rather than probability of occurrence), which can be directly compared with water-quality criteria. Second, the models share a mechanistic structure that segregates nitrogen (N) sources and physical factors that enhance or restrict nitrate transport and accumulation in ground water. Finally, data were spatially averaged to minimize small-scale variability so that the large-scale influences of N loading, climate, and aquifer characteristics could more readily be identified. Results indicate that areas with high N application, high water input, well-drained soils, fractured rocks or those with high effective porosity, and lack of attenuation processes have the highest predicted nitrate concentration. The shallow groundwater model (mean square error or MSE = 2.96) yielded a coefficient of determination (R2) of 0.801, indicating that much of the variation in nitrate concentration is explained by the model. Moderate to severe nitrate contamination is predicted to occur in the High Plains, northern Midwest, and selected other areas. The drinking-water model performed comparably (MSE = 2.00, R2 = 0.767) and predicts that the number of users on private wells and residing in moderately contaminated areas (>5 to ≤10 mg/L nitrate) decreases by 12% when simulation depth increases from 10 to 50 m.

  3. Prevalence, species differentiation, haemolytic activity, and antibiotic susceptibility of aeromonads in untreated well water

    Directory of Open Access Journals (Sweden)

    Khalifa Sifaw Ghenghesh

    2001-02-01

    Full Text Available The use of untreated water for drinking and other activities have been associated with intestinal and extraintestinal infections in humans due to Aeromonas species. In the present study aeromonads were isolated from 48.7% of 1,000 water samples obtained from wells and other miscellaneous sources. Aeromonas species were detected in 45% of samples tested in spring, 34.5% in summer, 48% in autumn and 60% of samples tested in winter. Speciation of 382 strains resulted in 225 (59% being A. hydrophila, 103 (27% A. caviae, 42 (11% A. sobria and 11 (3% atypical aeromonads. Of 171 Aeromonas strains tested for their haemolytic activity, 53%, 49%, 40% and 37% were positive in this assay using human, horse, sheep and camel erythrocytes respectively. The results obtained indicate that potentially enteropathogenic Aeromonas species are commonly present in untreated drinking water obtained from wells in Libya (this may also apply to other neighbouring countries which may pose a health problem to users of such water supplies. In addition, ceftriaxone and ciprofloxacin are suitable drugs that can be used in the treatment of Aeromonas-associated infections, particularly in the immunocompromised, resulting from contact with untreated sources of water.

  4. Test plan for reactions between spent fuel and J-13 well water under unsaturated conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Hafenrichter, L.D.; Bates, J.K.

    1993-01-01

    The Yucca Mountain Site Characterization Project is evaluating the long-term performance of a high-level nuclear waste form, spent fuel from commercial reactors. Permanent disposal of the spent fuel is possible in a potential repository to be located in the volcanic tuff beds near Yucca Mountain, Nevada. During the post-containment period the spent fuel could be exposed to water condensation since of the cladding is assumed to fail during this time. Spent fuel leach (SFL) tests are designed to simulate and monitor the release of radionuclides from the spent fuel under this condition. This Test Plan addresses the anticipated conditions whereby spent fuel is contacted by small amounts of water that trickle through the spent fuel container. Two complentary test plans are presented, one to examine the reaction of spent fuel and J-13 well water under unsaturated conditions and the second to examine the reaction of unirradiated UO 2 pellets and J-13 well water under unsaturated conditions. The former test plan examines the importance of the water content, the oxygen content as affected by radiolysis, the fuel burnup, fuel surface area, and temperature. The latter test plant examines the effect of the non-presence of Teflon in the test vessel

  5. Radon Concentration And Dose Assessment In Well Water Samples From Karbala Governorate Of Iraq

    Science.gov (United States)

    Al-Alawy, I. T.; Hasan, A. A.

    2018-05-01

    There are numerous studies around the world about radon concentrations and their risks to the health of human beings. One of the most important social characteristics is the use of water wells for irrigation, which is a major source of water pollution with radon gas. In the present study, six well water samples have been collected from different locations in Karbala governorate to investigate radon concentration level using CR-39 technique. The maximum value 4.112±2.0Bq/L was in Al-Hurr (Al-Qarih Al-Easariah) region, and the lowest concentration of radon was in Hay Ramadan region which is 2.156±1.4Bq/L, with an average value 2.84±1.65Bq/L. The highest result of annual effective dose (AED) was in Al-Hurr (Al-Qarih Al-Easariah) region which is equal to 15.00±3.9μSv/y, while the minimum was recorded in Hay Ramadan 7.86±2.8μSv/y, with an average value 10.35±3.1μSv/y. The current results have shown that the radon concentrations in well water samples are lower than the recommended limit 11.1Bq/L and the annual effective dose in these samples are lower than the permissible international limit 1mSv/y.

  6. Property Grids for the Kansas High Plains Aquifer from Water Well Drillers' Logs

    Science.gov (United States)

    Bohling, G.; Adkins-Heljeson, D.; Wilson, B. B.

    2017-12-01

    Like a number of state and provincial geological agencies, the Kansas Geological Survey hosts a database of water well drillers' logs, containing the records of sediments and lithologies characterized during drilling. At the moment, the KGS database contains records associated with over 90,000 wells statewide. Over 60,000 of these wells are within the High Plains aquifer (HPA) in Kansas, with the corresponding logs containing descriptions of over 500,000 individual depth intervals. We will present grids of hydrogeological properties for the Kansas HPA developed from this extensive, but highly qualitative, data resource. The process of converting the logs into quantitative form consists of first translating the vast number of unique (and often idiosyncratic) sediment descriptions into a fairly comprehensive set of standardized lithology codes and then mapping the standardized lithologies into a smaller number of property categories. A grid is superimposed on the region and the proportion of each property category is computed within each grid cell, with category proportions in empty grid cells computed by interpolation. Grids of properties such as hydraulic conductivity and specific yield are then computed based on the category proportion grids and category-specific property values. A two-dimensional grid is employed for this large-scale, regional application, with category proportions averaged between two surfaces, such as bedrock and the water table at a particular time (to estimate transmissivity at that time) or water tables at two different times (to estimate specific yield over the intervening time period). We have employed a sequence of water tables for different years, based on annual measurements from an extensive network of wells, providing an assessment of temporal variations in the vertically averaged aquifer properties resulting from water level variations (primarily declines) over time.

  7. Horizontal single-trip gravel pack and selective simulation system for deep water extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Most of the reservoirs located in the deep water and ultra-deep water offshore South America are described as unconsolidated sandstone that require sand control on both producers and water injection wells. Horizontal Open Hole Gravel Pack completions are the preferred method of development. If completing heavy oil reservoirs, there is a necessity of longer horizontal open hole sections. Low fracture gradients may limit the length of gravel pack in the open hole section because of the pressure increase during the Beta wave proppant deposition phase. This system allows the gravel pack assembly to be installed and the gravel pack to be pumped during the alpha and beta wave deposition phases without the limitation of high pressures that could fracture the well. The benefits of the Horizontal Single-Trip Gravel Pack and Selective Stimulation System (HSTSSS) using the differential valve include the ability to complete longer horizontal intervals, valuable rig-time savings and, efficient mechanical diversion of the stimulation fluid. This paper outlines the application of the HSTSSS system using a differential valve to complete a horizontal well in offshore deep waters. The need for a differential valve is primarily in horizontal gravel packing operations when normal circulating rates and pressures around the open hole would exceed formation break down pressure. The valve is intended to be easily spaced out and run in the wash pipe. At a predetermined differential pressure the valve opens and the return flow path distance around the bottom of the tailpipe is shortened, thus reducing back pressure preventing filter cake damage without slowing the pump rate. In addition the said valve has to close to allow the selective stimulation to take place. Economic considerations along with completion efficiencies are especially important on deep water, subsea completions. The utilization of differential valves allows completion of extended-reach open hole wells and/or low fracture

  8. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  9. Clogging of water supply wells in alluvial aquifers by mineral incrustations, central Serbia

    Directory of Open Access Journals (Sweden)

    Majkić-Dursun Brankica

    2015-01-01

    Full Text Available The formation of incrustations on public water supply well screens reduces their performance considerably. The incrustations increase hydraulic losses, reduce the capacity of the well and screen, affect the quality of the pumped water and increase maintenance costs. In alluvial environments, the most common deposits are iron and manganese hydroxides. However, the rates of formation, compositions and levels of crystallization vary, depending on the geochemical characteristics of the alluvial environment, the microbiological characteristics of the groundwater and the abstraction method. Samples of 15 incrustations were collected from wells that tap shallow alluvial aquifers and were found to be dominated by iron. XRD analyses detected low-crystalline ferrihydrite and manganese hydroxide in the samples collected from the water supply source at Trnovče (Velika Morava alluvial. The incrustations from the Belgrade Groundwater Source revealed the presence of ferrihydrite and a substantial amount of goethite α-FeOOH. Apart from goethite, greigite (Fe3S4 was detected in three samples, while one sample additionally contained bernalite Fe(OH3 and monoclinic sulfur S8. Among carbonates, only siderite was detected. Iron oxidizing bacteria generally catalyze deposition processes in wells, while sulfate reducing bacteria (SRB play a role in the biogenic formation of greigite. Determining the nature of the deposited material allows better selection of rehabilitation chemicals and procedure. [Projekat Ministarstva nauke Republike Srbije, br. TR37014

  10. Corrosion Study of the Injection Equipments in Water in Al-Ahdeb Wells ‐Iraq

    Directory of Open Access Journals (Sweden)

    Hassan Abdulkadhim Alwan Alsaadi

    2015-01-01

    Full Text Available Water injection equipments such as pipelines, which are used in the second recovery of oil in the Al-Ahdeb wells, suffer from the corrosion in water during maintaining vacuum deoxygenated tower that used to decrease concentration of the dissolved oxygen gas in the water from 6.2-9.1 ppm to o.5 ppm. This study involved calculation the corrosion rates of the internal surfaces of the pipelines either during operation of the vacuum unit or when the tower out of operation. Finally, find the solution by one of the following suggestions. In the first suggestion removal of the dissolved O2 from water is achieved by increasing the dosage of the oxygen scavenger (sodium sulphite. The second suggestion involves removing the dissolved O2 from water by bubbling the oxygenated water with nitrogen gas. The study showed that the corrosion rates of various inside diameter pipelines are between 0.13 mm/yr and 1.5 mm/yr during operation of the vacuum tower and between 3.2 mm/yr and 18.5 mm/yr when the tower out of the operation. While the results showed that the corrosion rate of the pipelines when the tower out of operation reached to the acceptable value of 0.1 mm/y when the dissolved oxygen in the injected water removed by increasing the dosage of the sodium sulphite (Na2SO3 to 48-72 ppm. The results also explained that corrosion rates of the pipelines reached to 0.5 mm/y when the dissolved oxygen removed by bubbling the water with nitrogen gas.

  11. Evaluation of radon concentration in dwellings and well water of Parana State-Brazil

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi

    2011-01-01

    Considering the growing interest of International Agencies and national Governmental organs in studies and measurements of radon activity in air, soil gas and ground water (mainly from artesian wells) as well as scarceness of such measurements at Brazilian territory, present studies were initiated by the Laboratory of Applied Nuclear Physics of Federal University of Technology - Parana (UTFPR) in collaboration with the Institute of Radiation Protection and Dosimetry (IRD) and the Center of Nuclear Technology Development (CDTN) of Brazilian Commission on Nuclear Energy (CNEN). This Collaboration started in 2003. Radon monitoring program is based mainly on use of Solid State Nuclear Track Detectors for radon activity measurements in air. Continuous electronic radon detectors are used for radon measurements in soil gas and water. Current work presents the results of indoor 222 Rn activity of dwellings and working places of Curitiba-PR and radon concentration in ground water samples from artesian wells from aquifers of the same area. The indoor measurements of radon activity were performed using Solid State Nuclear Track Detectors CR-39. After the exposition, CR-39 detectors were submitted to chemical development which permitted to make alpha particle tracks counting. The results of calibration of CR-39 together with efficiency of used exhalation chambers as well as alpha particle tracks chemical development procedure were performed in cooperation with CDTN and collaboration with the National Institute of Radiological Sciences (NIRS). The major part of indoor 222 Rn concentration in residences was found below 100 Bq/m3. In the case of working places, all measurements present 222 Rn concentration bellow 100 Bq/m3. The studies of radon activity in water were performed using the samples of water from artesian wells submitted to recursive measurements by instant radon detector AlphaGUARD PQ2000 PRO during few weeks with intervals of about 4 days between each measurement

  12. Evaluation of repeated measurements of radon-222 concentrations in well water sampled from bedrock aquifers of the Piedmont near Richmond, Virginia, USA: Effects of lithology and well characteristics

    International Nuclear Information System (INIS)

    Harris, Shelley A.; Billmeyer, Ernest R.; Robinson, Michael A.

    2006-01-01

    Radon ( 222 Rn) concentrations in 26 ground water wells of two distinct lithologies in the Piedmont of Virginia were measured to assess variation in ground water radon concentrations (GWRC), to evaluate differences in concentrations related to well characteristics, lithology, and spatial distributions, and to assess the feasibility of predicting GWRC. Wells were sampled in accordance with American Public Health Association Method 7500 Rn-B, with modifications to include a well shaft profile analysis that determined the minimum purge time sufficient to remove the equivalent of one column of water from each well. Statistically significant differences in GWRC were found in the Trssu (1482±1711 pCi/L) and Mpg (7750±5188 pCi/L) lithologies, however, no significant differences were found among GWRC at each well over time. Using multiple regression, 86% of the variability (R 2 ) in the GWRC was explained by the lithology, latitudinal class, and water table elevation of the wells. The GWRC in a majority of the wells studied exceed US Environmental Protection Agency designated maximum contaminant level and AMCL. Results support modifications to sampling procedures and indicate that, in previous studies, variations in GWRC concentrations over time may have been due in part to differences in sampling procedures and not in source water

  13. Ionic interactions in the water zone at oil well-sites

    Energy Technology Data Exchange (ETDEWEB)

    Kleven, R.

    1996-11-01

    The aim of this doctoral thesis has been to obtain a better understanding of ionic behaviour in a water zone of sedimentary rock exposed to sea-water based drilling fluid and completion fluid. Interaction processes addressed have been ion exchange on the surface of the reservoir rocks and precipitation of divalent cations with sulphate ions from the sea water. Clay minerals are focused on because of their ability to conduct electricity through ion-exchange reactions. The most important parameters that the distribution of ions around a borehole depends upon are suggested to be (1) the ability of the sedimentary rocks to sorb/desorb ions, (2) the effect of added solutions on the sorption/desorption processes, (3) the mobility of ions. The first of four enclosed papers studies ionic interaction, mainly on homo-ionic clay mineral - salt solution, in batch experiments under pH, ionic strength and temperature conditions likely to occur in the field. Paper II investigates the use of tritiated water as a reference tracer in miscible displacement processes in porous sandstone cores. Ionic interaction processes during drilling of oil wells with conventional KCl bentonite mud tagged with HTO were studied by means of measured ionic and HTO concentration of water sampled in the near well-bore region. A tracer method was developed and ``tracer diagrams`` illustrate sorption/desorption processes. The water analyses, sampling procedure, and tracer techniques are presented in the third paper. Paper IV compares the interpretation of laboratory data and field data. 173 refs., 47 figs., 22 tabs.

  14. HYDRAULIC ELEVATOR INSTALLATION ESTIMATION FOR THE WATER SOURCE WELL SAND-PACK CLEANING UP

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2016-01-01

    Full Text Available The article offers design of a hydraulic elevator installation for cleaning up water-source wells of sand packs. It considerers the installation hydraulic circuit according to which the normal pump feeds the high-level tank water into the borehole through two parallel water lines. The water-jet line with washing nozzle for destroying the sand-pack and the supply pipe-line coupled with the operational nozzle of the hydraulic elevator containing the inlet and the supply pipelines for respectively intaking the hydromixture and removing it from the well. The paper adduces equations for fluid motion in the supply and the water-jet pipelines and offers expressions for evaluating the required heads in them. For determining water flow in the supply and the water-jet pipe lines the author proposes to employ graphical approach allowing finding the regime point in Q–H chart by means of building characteristics of the pump and the pipe-lines. For calculating the useful vertical head, supply and dimensions of the hydraulic elevator the article employs the equation of motion quantity with consistency admission of the motion quantity before and after mixing the flows in the hydraulic elevator. The suggested correlations for evaluating the hydraulic elevator efficiency determine the sand pack removal duration as function of its sizes and the ejected fluid flow rate. A hydraulic-elevator installation parameters estimation example illustrates removing a sand pack from a water-source borehole of 41 m deep and 150 mm diameter bored in the village of Uzla of Myadelsk region, of Minsk oblast. The working efficiency of a manufactured and laboratory tested engineering prototype of the hydraulic elevator installation was acknowledged in actual tests at the indicated borehole site. With application of graphical approach, the suggested for the hydraulic elevator installation parameters calculation procedure allows selecting, with given depth and the borehole diameter

  15. Lower Colorado River GRP Drinking Water Protection Area Buffers for Non-Transient Wells, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Water Pollution Control

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). Buffers include community wells and non-transient non-community...

  16. Estimation of some heavy metals in polluted well water and mercury accumulation in broiler organs

    Directory of Open Access Journals (Sweden)

    Hussein Khamis Hussein

    2013-10-01

    Full Text Available The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni studied, mercury (Hg revealed highest in concentration in well waters. The concentration of mercury in the ground water, beside in liver, kidney, muscle and blood samples of ten chickens from each of four poultry- production farms were estimated using atomic absorption spectrophotometer. The results showed that the kidney followed by liver had the highest bioaccumulation of mercury in all farm samples. The level of mercury in the ground water was 7.06µg/L. The relationship between mercury accumulation levels in the kidney and those in the liver tissues were proportionally correlated and altered with elevation in the antioxidant enzyme activities such as AST and ALT. These elevated enzymatic activities were induced by the level of toxicity. There was a significant elevation in the level of liver and kidney malondialdhyde (MDA, while the activities of antioxidant enzymes superoxide dismutase and catalase (SOD and CAT were significantly decreased. Biochemical observations were supplemented by histopathological examination of liver and kidney sections.

  17. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions.

    Science.gov (United States)

    Klunklin, Warinporn; Savage, Geoffrey

    2017-07-25

    Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics-such as dry matter, total soluble solids, and pH parameters-but there were no differences in the quality characteristics between the two treatments of the fruits ( p > 0.05); however, there were significant differences ( p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions.

  18. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  19. Development of single-well techniques for quantitative ground water studies

    International Nuclear Information System (INIS)

    Bachmat, Y.; Bugayevsky, M.; Mandel, S.; Behrens, H.; Drost, W.; Klotz, D.; Moser, H.

    1984-02-01

    The signle-well pulse technique was modified in such manner that the dispersivity of the ground water bearing strata can be derived from the measured results. An outline of the theoretical fundamentals is followed by solutions to apparative problems, i.e. tracer selection (Br-82, colour), set-up of measuring points, etc.. The method was tested in the laboratory and in a test field. Suitable, quick methods of evaluation were developed and the technical equipment was optimized for routine application. The method was tested in wells in Israel. (HP) [de

  20. Laboratory evaluation and field application of a water swellable polymer for fracture shutoff in injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Creel, Prentice [Kinder Morgan, Houston, TX (United States); Vasquez, Julio; Eoff, Larry [Halliburton, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper presents the laboratory evaluation and field application of a water swelling polymer (WSP) that can be bullheaded to shut off fractures in injection wells. The WSP is capable of absorbing 30 to 400 times its own weight in water. The material was evaluated for its effectiveness in providing controllable swelling rates, shutting off the flow of water in synthetic cores with simulated fractures, and providing long-term stability in H{sub 2}S and CO{sub 2} environments. In addition, this paper presents the field implementation of this technology along with successful case histories in west Texas. The water swellable material is mixed on the fly, entering fissures and fracture systems as they swell without invading the matrix of the rock. The rate of absorption can be controlled based on the specified particle size ranging from 600-mesh size up to 14 mm and the type of carrier fluid. This WSP presents an innovative technology for fracture, fissure, and highly eroded out permeability shutoff to improve the sweep efficiency of water and gas injection. In addition, the WSP is resistant to acid contamination and CO{sub 2} and H{sub 2}S environments. To date, more than 200 jobs have been performed with this technology. (author)

  1. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment

  2. Groundwater-Surface water interaction in agricultural watershed that encompasses dense network of High Capacity wells

    Science.gov (United States)

    Talib, A.; Desai, A. R.

    2017-12-01

    The Central Sands region of Wisconsin is characterized by productive trout streams, lakes, farmland and forest. However, stream channelization, past wetland drainage, and ground water withdrawals have disrupted the hydrology of this Central Sands region. Climatically driven conditions in last decade (2000-2008) alone are unable to account for the severely depressed water levels. Increased interception and evapotranspiration from afforested areas in central sand Wisconsin may also be culprit for reduced water recharge. Hence, there is need to study the cumulative effects of changing precipitation patterns, groundwater withdrawals, and forest evapotranspiration to improve projections of the future of lake levels and water availability in this region. Here, the SWAT-MODFLOW coupled model approach was applied at large spatio-temporal scale. The coupled model fully integrates a watershed model (SWAT) with a groundwater flow model (MODFLOW). Surface water and ground water flows were simulated integratively at daily time step to estimate the groundwater discharge to the stream network in Central Sands that encompasses high capacity wells. The model was calibrated (2010-2013) and validated (2014-2017) based on streamflow, groundwater extraction, and water table elevation. As the long-term trends in some of the primary drivers is presently ambiguous in Central Sands under future climate, as is the case for total precipitation or timing of precipitation, we relied on a sensitivity student to quantitatively access how primary and secondary drivers may influence future net groundwater recharge. We demonstrate how such an approach could then be coupled with decision-making models to evaluate the effectiveness of groundwater withdrawal policies under a changing climate.

  3. Water-Quality Changes Caused by Riverbank Filtration Between the Missouri River and Three Pumping Wells of the Independence, Missouri, Well Field 2003-05

    Science.gov (United States)

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    Riverbank filtration substantially improves the source-water quality of the Independence, Missouri well field. Coliform bacteria, Cryptosporidium, Giardia, viruses and selected constituents were analyzed in water samples from the Missouri River, two vertical wells, and a collector well. Total coliform bacteria, Cryptosporidium, Giardia, and total culturable viruses were detected in the Missouri River, but were undetected in samples from wells. Using minimum reporting levels for non-detections in well samples, minimum log removals were 4.57 for total coliform bacteria, 1.67 for Cryptosporidium, 1.67 for Giardia, and 1.15 for total culturable virus. Ground-water flow rates between the Missouri River and wells were calculated from water temperature profiles and ranged between 1.2 and 6.7 feet per day. Log removals based on sample pairs separated by the traveltime between the Missouri River and wells were infinite for total coliform bacteria (minimum detection level equal to zero), between 0.8 and 3.5 for turbidity, between 1.5 and 2.1 for Giardia, and between 0.4 and 2.6 for total culturable viruses. Cryptosporidium was detected once in the Missouri River but no corresponding well samples were available. No clear relation was evident between changes in water quality in the Missouri River and in wells for almost all constituents. Results of analyses for organic wastewater compounds and the distribution of dissolved oxygen, specific conductance, and temperature in the Missouri River indicate water quality on the south side of the river was moderately influenced by the south bank inflows to the river upstream from the Independence well field.

  4. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de

    2011-01-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  5. Well water radioactivity and risk of cancers of the urinary organs

    International Nuclear Information System (INIS)

    Kurttio, Paeivi; Salonen, Laina; Ilus, Taina; Pekkanen, Juha; Pukkala, Eero; Auvinen, Anssi

    2006-01-01

    Water from bedrock frequently contains higher concentrations of natural radionuclides than water from other sources. Bladder and kidneys receive a radiation dose when radioactive isotopes are excreted into urine. The subjects for this case-cohort study were selected from all drilled wells users in Finland. The study comprised 61 bladder cancer and 51 kidney cancer cases diagnosed between 1981 and 1995, as well as a random sample of 274 reference persons, stratified by age and sex. The median activity concentrations of radon in drilled wells used by bladder and kidney cancer cases and the reference cohort were 170, 140, and 130 Bq/L, respectively. The radium concentration was 0.01 Bq/L for all groups and the uranium concentrations were 0.08, 0.07, and 0.06 Bq/L, respectively. The bladder cancer risks associated with radon, radium, and uranium activity concentrations in drinking water were 1.02 (0.68-1.54) per log(100 Bq of radon/L), 0.73 (0.21-2.50) per log(0.1 Bq of radium/L), and 0.77 (0.32-1.89) per log(1 Bq of uranium/L). The corresponding figures for kidney cancer were 0.81 (0.47-1.37), 0.12 (0.01-1.10), and 0.92 (0.36-2.35), respectively. In conclusion, even though ingested radionuclides from drilled wells are a source of radiation exposure, they are not associated with a substantially increased risk of bladder or kidney cancers in concentrations occurring in drilled wells

  6. Cr(VI) occurrence and geochemistry in water from public-supply wells in California

    Science.gov (United States)

    Izbicki, John; Wright, Michael; Seymour, Whitney A.; McCleskey, R. Blaine; Fram, Miranda S.; Belitz, Kenneth; Esser, Bradley K.

    2015-01-01

    Hexavalent chromium, Cr(VI), in 918 wells sampled throughout California between 2004 and 2012 by the Groundwater Ambient Monitoring and Assessment-Priority Basin Project (GAMA-PBP) ranged from less than the study reporting limit of 1 microgram per liter (μg/L) to 32 μg/L. Statewide, Cr(VI) was reported in 31 percent of wells and equaled or exceeded the recently established (2014) California Maximum Contaminant Level (MCL) for Cr(VI) of 10 μg/L in 4 percent of wells. Cr(VI) data collected for regulatory purposes overestimated Cr(VI) occurrence compared to spatially-distributed GAMA-PBP data. Ninety percent of chromium was present as Cr(VI), which was detected more frequently and at higher concentrations in alkaline (pH ≥ 8), oxic water; and more frequently in agricultural and urban land uses compared to native land uses. Chemical, isotopic (tritium and carbon-14), and noble-gas data show high Cr(VI) in water from wells in alluvial aquifers in the southern California deserts result from long groundwater-residence times and geochemical reactions such as silicate weathering that increase pH, while oxic conditions persist. High Cr(VI) in water from wells in alluvial aquifers along the west-side of the Central Valley results from high-chromium in source rock eroded to form those aquifers, and areal recharge processes (including irrigation return) that can mobilize chromium from the unsaturated zone. Cr(VI) co-occurred with oxyanions having similar chemistry, including vanadium, selenium, and uranium. Cr(VI) was positively correlated with nitrate, consistent with increased concentrations in areas of agricultural land use and mobilization of chromium from the unsaturated zone by irrigation return.

  7. Uranium in agricultural soils and drinking water wells on the Swiss Plateau.

    Science.gov (United States)

    Bigalke, Moritz; Schwab, Lorenz; Rehmus, Agnes; Tondo, Patrick; Flisch, Markus

    2018-02-01

    Mineral phosphorus fertilizers are regularly applied to agricultural sites, but their uranium (U) content is potentially hazardous to humans and the environment. Fertilizer-derived U can accumulate in the soil, but might also leach to ground-, spring and surface waters. We sampled 19 mineral fertilizers from the canton of Bern and soils of three arable and one forest reference sites at each of four locations with elevated U concentrations (7-28 μg L -1 ) in nearby drinking water wells. The total U concentrations of the fertilizers were measured. The soils were analysed at three depth intervals down to 1 m for general soil parameters, total Cd, P, U and NaHCO 3 -extractable U concentrations, and 234/238 U activity ratios (AR). The U concentrations and AR values of the drinking water samples were also measured. A theoretical assessment showed that fertilizer-derived U may cause high U concentrations in leaching waters (up to approx. 25 μg L -1 ), but normally contributes only a small amount (approx. 0-3 μg L -1 ). The arable soils investigated showed no significant U accumulation compared to the forest sites. The close positive correlation of AR with NaHCO 3 -extractable U (R = 0.7, p water samples were close to 1, possibly suggesting an influence of fertilizer-derived U. However, based on findings from the literature and considering the heterogeneity of the catchment area, the agricultural practices, and the comparatively long distance to the groundwater, we conclude that fertilizer-derived U makes only a minor contribution to the elevated U concentrations in the water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydraulically Induced Seismicity in South-Eastern Brazil Linked to Water Wells

    Science.gov (United States)

    Convers, J.; Assumpcao, M.; Barbosa, J. R.

    2017-12-01

    While hydraulic stimulus on seismic activity is most commonly associated with hydraulic fracturing processes, we find in SE Brazil a rare case of seismicity influenced by hydraulic stimulation linked to seasonal rain and water wells in a farming area. These are thought to be the main factors influencing the seasonal seismicity activity in Jurupema, a farming town located in the interior of the state of Sao Paulo, southern Brazil. With temporary seismic station deployments during 2016 and 2017, we analyze the seismicity in this area, its temporal and spatial distribution, and its association with the drilling of ground water wells in this particular area. In a region where water wells are often drilled to provide irrigation for farming, these are often perforated down to about 100 m depth, penetrating below the uppermost sandstone rock layer ( 50 m) into a fractured basaltic rock layer, reaching the confined aquifer within it. While the wells are constantly pumped during the dry season, during the course of the rainy season (when these are not being used), a possible infiltration into the confined basaltic aquifer, from both the rainwater and the upper sandstone aquifer, adds changes to the pore pressure of the fractured rock, and modifies the tectonic pre-stress conditions, to facilitate stress release mechanisms in pre-existing faults and cracks. With our temporary seismic station deployments, we not only examine the seismicity in this region during both 2016 and 2017, but we additionally compare its characteristics to the nearby Bebedouro case in an apparent induced seismic case of analogous source, and seismic activity with magnitudes up to 2.9 occurring between 2005 and 2010.

  9. Detection of thallium and uranium in well water and biological specimens of an eastern Croatian population.

    Science.gov (United States)

    Curković, Mario; Sipos, Laszlo; Puntarić, Dinko; Dodig-Ćurković, Katarina; Pivac, Nela; Kralik, Kristina

    2013-09-01

    Abstract Using inductively-coupled plasma mass spectrometry (ICP-MS), we measured the concentrations of thallium and uranium in local water resources from three villages (Ćelije, Draž, and Potnjani) in eastern Croatia, with the aim to determine if they were associated with the levels of these same elements in the serum, urine, and hair collected from the residents of this area. The exposure of the local population to thallium and uranium through drinking water was generally low. ICP-MS was capable of measuring the levels of both of the elements in almost all of the analysed samples. Although there were differences in the concentrations of both elements in water samples and biological specimens taken from the residents, they did not reach the maximum contaminant level in any of the four sample types studied. Although hair was previously reported as an excellent indicator of occupational and environmental exposure to various elements, our study did not confirm it as a reliable biological material for tracing thallium and uranium levels, mainly due to the very low concentrations of these elements, often well below the detection limit. However, our results have shown that the concentration of thallium and uranium in drinking water can be effectively traced in urine samples.

  10. Water resources and the historic wells of Barbuda: tradition, heritage and hope for a sustainable future

    Directory of Open Access Journals (Sweden)

    Rebecca Boger

    2014-11-01

    Full Text Available The island of Barbuda has a relatively unique history, land tenure and geography. Unlike its Caribbean counterparts, the island is not suited to large-scale agriculture due to its arid climate and relatively thin soils. Instead, the enslaved and eventually free people of Barbuda developed a complex herding ecology centered on common land ownership. As a result, carefully designed historic wells are strategically located around the island. With the challenges brought about by climate change, an interdisciplinary, international team led by the Barbuda Research Complex is investigating the state of existing water and food resources and examining how the availability and quality of water resources have influenced local cultural practices. Barbudans and international scientists are working together to improve their resilience and live more sustainably in this new era of climatic adversity.

  11. Characteristics of a Sensitive Well Showing Pre-Earthquake Water-Level Changes

    Science.gov (United States)

    King, Chi-Yu

    2018-04-01

    Water-level data recorded at a sensitive well next to a fault in central Japan between 1989 and 1998 showed many coseismic water-level drops and a large (60 cm) and long (6-month) pre-earthquake drop before a rare local earthquake of magnitude 5.8 on 17 March 1997, as well as 5 smaller pre-earthquake drops during a 7-year period prior to this earthquake. The pre-earthquake changes were previously attributed to leakage through the fault-gouge zone caused by small but broad-scaled crustal-stress increments. These increments now seem to be induced by some large slow-slip events. The coseismic changes are attributed to seismic shaking-induced fissures in the adjacent aquitards, in addition to leakage through the fault. The well's high-sensitivity is attributed to its tapping a highly permeable aquifer, which is connected to the fractured side of the fault, and its near-critical condition for leakage, especially during the 7 years before the magnitude 5.8 earthquake.

  12. Determination of natural radioactivity in drinking water in private dug wells in Akure, Southwestern Nigeria

    International Nuclear Information System (INIS)

    Ajayi, O.S.; Owolabi, T.P.

    2007-01-01

    Complete text of publication follows. A gamma-ray survey and analysis of drinking water from 20 private dug wells from Akure, Southwestern Nigeria have been conducted in this work. These were done in order to quantify the activity concentrations of the gamma emitters 226 Ra and 228 Ra from 238 U and 232 Th series respectively as well as 40 K in these private well waters. Measurements were done using high-resolution high-purity (HPGe) vertical co-axial detectors (Canberra, GC 2018- 7500 model) coupled to a Canberra Multichannel Analyzer (MCA) computer system. Activity concentrations ranged from 0.57 to 26.86Bq l -1 , 0.20 to 60.06Bq l -1 and 0.35 to 29.01Bq l -1 for 226 Ra, 228 Ra and 40 K respectively. The measured radionuclide concentrations were compared with data from other parts of the world and used to estimated annual effective dose for age groups -1 , 0.02 to 38.80mSv y -1 and 0.05 to 481.60mSv y -1 for age group < 1y, 2-7y and ≥ 17y respectively. The total annual effective doses were considerably higher than both the World Health Organisation (WHO) and the International Commission on Radiological Protection (ICRP) recommended limits.

  13. Assessment of the Quality of Water from Hand-Dug Wells in Ghana

    Directory of Open Access Journals (Sweden)

    Marian Asantewah Nkansah

    2010-01-01

    Full Text Available This study focused upon the determination of physicochemical and microbial properties, including metals, selected anions and coliform bacteria in drinking water samples from hand-dug wells in the Kumasi metropolis of the Republic of Ghana. The purpose was to assess the quality of water from these sources. Ten different water samples were taken from different parts of Kumasi, the capital of the Ashanti region of Ghana and analyzed for physicochemical parameters including pH, electrical conductivity, total dissolved solids, alkalinity total hardness and coliform bacteria. Metals and anions analyzed were Ca, Mg, Fe, Mn, NO 3 – , NO 2 – , SO 4 2- , PO 4 2- , F – and Cl – . Bacteria analysed were total coliform and Escherichia coli. The data showed variation of the investigated parameters in samples as follows: pH, 6.30-0.70; conductivity (EC, 46-682 μS/cm; PO 4 3- , 0.67-76.00 mg/L; F – , 0.20-0.80 mg/L; NO 3 – , 0-0.968 mg/L; NO 2 – , 0-0.063 mg/L; SO 4 2- , 3.0-07.0 mg/L; Fe, 0-1.2 mg/L; Mn, 0-0.018 mg/L. Total coliform and Escherichia coli were below the minimum detection limit (MDL of 20 MPN per 100 ml in all the samples. The concentrations of most of the investigated parameters in the drinking water samples from Ashanti region were within the permissible limits of the World Health Organization drinking water quality guidelines.

  14. Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang, Indonesia.

    Science.gov (United States)

    Sadler, Ross; Maetam, Brooke; Edokpolo, Benjamin; Connell, Des; Yu, Jimmy; Stewart, Donald; Park, M-J; Gray, Darren; Laksono, Budi

    2016-09-01

    The levels of nitrate in 52 drinking water wells in rural Central Java, Indonesia were evaluated in April 2014, and the results were used for a health risk assessment for the local populations by using probabilistic techniques. The concentrations of nitrate in drinking water had a range of 0.01-84 mg/L, a mean of 20 mg/L and a medium of 14 mg/L. Only two of the 52 samples exceeded the WHO guideline values of 50 mg/L for infant methaemoglobinaemia. The hazard quotient values as evaluated against the WHO guideline value at the 50 and 95 percentile points were HQ50 at 0.42 and HQ95 at 1.2, respectively. These indicated a low risk of infant methaemoglobinaemia for the whole population, but some risk for the sensitive portion of the population. The HQ50 and HQ95 values based on WHO acceptable daily intake dose for adult male and female were 0.35 and 1.0, respectively, indicating a generally a low level of risk. A risk characterisation linking birth defects to nitrate levels in water consumed during the first three months of pregnancy resulted in a HQ50/50 values of 1.5 and a HQ95/5 value of 65. These HQ values indicated an elevated risk for birth defects, in particular for the more sensitive population. A sanitation improvement program in the study area had a positive effect in reducing nitrate levels in wells and the corresponding risk for public health. For example, the birth defect HQ50/50 values for a subset of wells surveyed in both 2014 and 2015 was reduced from 1.1 to 0.71. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mineralogic investigation into occurrence of high uranium well waters in upstate South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Richard, E-mail: wrichar@clemson.edu [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Meadows, Jason; Sojda, Scott; Price, Van; Temples, Tom [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Arai, Yuji [Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634-0315 (United States); Fleisher, Chris [Department of Geology, University of Georgia, Athens, GA 30602-2501 (United States); Crawford, Bruce; Stone, Peter [Bureau of Water, South Carolina Department of Health and Environmental Control, Columbia, SC 29201 (United States)

    2011-05-15

    Research Highlights: > Oxidative dissolution of uraninite in biotite granite is primary source of uranium in high-U well waters near Simpsonville, SC. > Uranium is chiefly transported as mixed uranyl hydroxyl-carbonate complexes. > Local reduction has resulted in secondary precipitation of uranium along fractures as coffinite. > Dissolution of uraninite and precipitation of coffinite were geologically recent. - Abstract: High levels of U (up to 5570 {mu}g/L) have been discovered in well waters near Simpsonville, South Carolina, USA. In order to characterize the mineralogical source of the U and possible structural controls on its presence, a deep (214 m) well was cored adjacent to one of the enriched wells. The highest gamma-ray emissions in the recovered core occur in coarse biotite granite at a depth just below 52 m. A slickenlined fault plane at 48.6 m and narrow pegmatite layers at depths of 113, 203 and 207 m also yield high gamma-ray counts. Thin sections were made from the above materials and along several subvertical healed fractures. Uraninite and coffinite are the principal U-rich minerals in the core. Other U-bearing minerals include thorite and thorogummite, monazite, zircon and allanite. Primary uraninite occurs in the biotite granite and in pegmatite layers. Secondary coffinite is present as tiny (<5 {mu}m) crystals dispersed along fractures in the granite and pegmatites. Coffinite also occurs along the slickenlined fault plane, where it is associated with calcite and calcic zeolite and also replaces allanite. Coffinite lacks radiogenic Pb, hence is considerably younger than the uraninite. Dissolution of partially oxidized Ca-rich uraninite occurring in the surficial biotite granite (or secondary coffinite in fracture zones) is likely the main source for the current high levels of U in nearby area wells. The high-U well waters have a carbonate signature, consistent with pervasive calcite vein mineralization in the core. Aqueous speciation calculations

  16. Ammonium assimilation and regeneration by size-fractionated plankton in permanently well-mixed temperate waters

    Digital Repository Service at National Institute of Oceanography (India)

    LeCorre, P.; Wafar, M.V.M.; Helguen, S.L; Maguer, J.F.

    ., 1991; L'Helguen, 1991). In an attempt to explain this phenomenon, Wafar et al. (1983) hypothesized that spring phytoplankton growth was supported mainly by a utilization of nitrate N. According to them, pronounced degradation of phytoplankton during... between them and the environmental factors, are reported elsewhere (L'Helguen et al., 1996). Method The study site (48°45'N; 3°57'40"W) was the same as earlier (Wafar et al., 1983; L'Helguen, 1991). Strong tidal currents keep the whole water column well...

  17. Acanthamoeba Species Keratitis in a Soft Contact Lens Wearer Molecularly Linked to Well Water

    Directory of Open Access Journals (Sweden)

    Samira Mubareka

    2006-01-01

    Full Text Available Acanthamoeba species keratitis has been associated with soft contact lens wear. In the present report, an epidemiological link was established between the patient's isolate and well water from the home using molecular methods. To the authors' knowledge, this is the first case in Canada where such a link has been established. Primary care practitioners and specialists, including ophthalmologists and infectious diseases specialists, must maintain a high degree of clinical suspicion in soft contact lens wearers with keratitis unresponsive to conventional topical and systemic treatment.

  18. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  19. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    International Nuclear Information System (INIS)

    Alsabagh, A.M.; Migahed, M.A.; Awad, Hayam S.

    2006-01-01

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV (∼96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules

  20. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    Energy Technology Data Exchange (ETDEWEB)

    Alsabagh, A.M. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt); Migahed, M.A. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt)]. E-mail: mohamedatiyya707@hotmail.com; Awad, Hayam S. [Chemistry Department, Faculty of Girls for Science, Art and Education, Ain Shams University, Asmaa Fahmi Street, Helliopolis, Cairo (Egypt)

    2006-04-15

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV ({approx}96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules.

  1. Microbiological quality of water from hand-dug wells used for domestic purposes in urban communities in Kumasi, Ghana

    DEFF Research Database (Denmark)

    Akple, M.; Keraita, Bernard; Konradsen, Flemming

    2011-01-01

    Assessment was done on the microbiological quality of water in hand-dug wells in urban communities in Kumasi, Ghana. A total of 256 water samples were taken from eight wells and examined for faecal coliforms, enterococci and helminths. High contamination levels were recorded in the wells, more so...

  2. Cost-effective sampling of ground water monitoring wells. Revision 1

    International Nuclear Information System (INIS)

    Ridley, M.; Johnson, V.

    1995-11-01

    CS is a systematic methodology for estimating the lowest-frequency sampling schedule for a given groundwater monitoring location which will still provide needed information for regulatory and remedial decision-making. Increases in frequency dictated by remedial actions are left to the judgement of personnel reviewing the recommendations. To become more applicable throughout the life cycle of a ground water cleanup project or for compliance monitoring, several improvements are envisioned, including: chemical signature analysis to identify minimum suites of contaminants for a well, a simple flow and transport model so that sampling of downgradient wells are increased before movement of contamination, and a sampling cost estimation capability. By blending qualitative and quantitative approaches, we hope to create a defensible system while retaining interpretation ease and relevance to decision making

  3. Modeling the potential impact of seasonal and inactive multi-aquifer wells on contaminant movement to public water-supply wells

    Science.gov (United States)

    Johnson, R.L.; Clark, B.R.; Landon, M.K.; Kauffman, L.J.; Eberts, S.M.

    2011-01-01

    Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi-aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi-aquifer well is more than a kilometer from the PWS well. The contribution from multi-aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi-aquifer well from an unconfined aquifer to a confined aquifer even when those multi-aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi-aquifer wells can increase the vulnerability of a confined-aquifer PWS well.

  4. Efficient infiltration of water in the subsurface by using point-wells: A field study

    Science.gov (United States)

    Lopik, J. V.; Schotting, R.; Raoof, A.

    2017-12-01

    The ability to infiltrate large volumes of water in the subsurface would have great value for battling flooding in urban regions. Moreover, efficient water infiltration is key to optimize underground aquifer storage and recovery (ASR), aquifer thermal energy storage (ATES), as well as construction dewatering systems. Usually, variable infiltration rates of large water quantities could have a huge hydrogeological impact in the upper part of (phreatic) aquifer systems. In urban regions, minimizing excessive groundwater table fluctuations are necessary. A newly developed method, Fast, High Volume Infiltration (FHVI), by Dutch dewatering companies can be used to enable fast injection into the shallow subsurface. Conventional infiltration methods are using injection wells that screen large parts of the aquifer depth, whereas FHVI uses a specific infiltration point (1-m well screen) in the aquifer. These infiltration points are generally thin, high permeable layers in the aquifer of approximately 0.5-2 meter thick, and are embedded by less permeable layers. Currently, much higher infiltration pressures in shallow aquifers can be achieved with FHVI (up to 1 bar) compared to conventional infiltration methods ( 0.2 bar). Despite the high infiltration pressures and high discharge rate near the FHVI-filter, the stresses on shallow groundwater levels are significantly reduced with FHVI. In order to investigate the mechanisms that enable FHVI, a field experiment is conducted in a sandy aquifer to obtain insight in the 3-D hydraulic pressure distribution and flow patterns around a FHVI-filter during infiltration. A detailed characterization of the soil profile is obtained by using soil samples and cone pressure tests with a specific hydraulic profiling tool to track the vertical variation in aquifer permeability. A tracer test with bromide and heat is conducted to investigate preferential flow paths. The experimental data show that tracking small heterogeneities in aquifers and

  5. Determination of natural radioactivity in irrigation water of drilled wells in northwestern Saudi Arabia.

    Science.gov (United States)

    Alkhomashi, N; Al-Hamarneh, Ibrahim F; Almasoud, Fahad I

    2016-02-01

    The levels of natural radiation in bedrock groundwater extracted from drilled wells in selected farms in the northwestern part of Saudi Arabia were addressed. The investigated waters form a source of irrigation for vegetables, agricultural crops, wheat, and alfalfa to feed livestock consumed by the general public. Information about water radioactivity in this area is not available yet. Therefore, this study strives to contribute to the quality assessment of the groundwater of these wells that are drilled into the non-renewable Saq sandstone aquifer. Hence, gross alpha and beta activities as well as the concentrations of (224)Ra, (226)Ra, (228)Ra, (234)U, (238)U, and U(total) were measured, compared to national and international limits and contrasted with data quoted from the literature. Correlations between the activities of the analyzed radionuclides were discussed. The concentrations of gross alpha and beta activities as well as (228)Ra were identified by liquid scintillation counting whereas alpha spectrometry was used to determine (224)Ra, (226)Ra, (234)U and (238)U after separation from the matrix by extraction chromatography. The mean activity concentrations of gross α and β were 3.15 ± 0.26 Bq L(-1) and 5.39 ± 0.44 Bq L(-1), respectively. Radium isotopes ((228)Ra and (226)Ra) showed mean concentrations of 3.16 ± 0.17 Bq L(-1) and 1.12 ± 0.07 Bq L(-1), respectively, whereas lower levels of uranium isotopes ((234)U and (238)U) were obtained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Depletion and capture: revisiting “The source of water derived from wells"

    Science.gov (United States)

    Konikow, Leonard F.; Leake, Stanley A.

    2014-01-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion and capture relative to groundwater withdrawals (extraction or pumpage) have not previously been well characterized. This study assesses the partitioning of long-term cumulative withdrawal volumes into fractions derived from storage depletion and capture, where capture includes both increases in recharge and decreases in discharge. Numerical simulation of a hypothetical groundwater basin is used to further illustrate some of Theis' (1940) principles, particularly when capture is constrained by insufficient available water. Most prior studies of depletion and capture have assumed that capture is unconstrained through boundary conditions that yield linear responses. Examination of real systems indicates that capture and depletion fractions are highly variable in time and space. For a large sample of long-developed groundwater systems, the depletion fraction averages about 0.15 and the capture fraction averages about 0.85 based on cumulative volumes. Higher depletion fractions tend to occur in more arid regions, but the variation is high and the correlation coefficient between average annual precipitation and depletion fraction for individual systems is only 0.40. Because 85% of long-term pumpage is derived from capture in these real systems, capture must be recognized as a critical factor in assessing water budgets, groundwater storage depletion, and sustainability of groundwater development. Most capture translates into streamflow depletion, so it can detrimentally impact ecosystems.

  7. EBR-II blanket fuel leaching test using simulated J-13 well water

    International Nuclear Information System (INIS)

    Fonnesbeck, J. E.

    1999-01-01

    This paper discusses the results of a pulsed-flow leaching test using simulated J-13 well water leachant. This test was performed on three blanket fuel segments from the ANL-W EBR-II nuclear reactor which were originally made up of depleted uranium (DU). This experiment was designed to mimic conditions which would exist if, upon disposal of this material in a geological repository, it came in direct contact with groundwater. These segments were contained in pressure vessels and maintained at a constant temperature of 90 C. Weekly aliquots of leachate were taken from the three vessels and replaced with an equal volume of fresh leachant. These weekly aliquots were analyzed for both 90 Sr and 137 Cs. The results of the pulsed-flow leach test showed the formation of uranium oxide (UO 2 ) and uranium hydride (UH 3 ) particulate with rapid release of the 137 Cs and 90 Sr to the leachant. On the fifth week of sampling, one of the vessels became over pressurized and vented gas when opened. The most reasonable explanation for the presence of gas in this vessel is that the unoxidized uranium metal in the blanket segment could have reacted with the surrounding water leachant to form hydrogen. However, an investigation is currently being undertaken to both qualify and quantify H 2 formation during uranium spent nuclear fuel corrosion in water

  8. Detection of behind casing water flow at an angle to the axis of a well borehole

    International Nuclear Information System (INIS)

    1980-01-01

    Methods and apparatus for detecting the undesired flow of water in cement channels or voids behind the casing in a producing well are described. A source of high-energy neutrons (approx. 14 MeV) is placed inside the well borehole opposite the area to be investigated for cement channelling, and used to irradiate the area. An oxygen 16 nucleus is transmuted upon capture of an approximately 10 MeV neutron to radioactive nitrogen 16. This decays with a half life of 7.1 sec by emission of a beta particle and high energy gamma rays. With a sufficiently high flux of bombarding neutrons enough nitrogen 16 is created to be detected at a pair of longitudinally spaced detectors. This measurement can be used directly to indicate the speed of flow of water in the cement channels. However the volume flow rate can be determined from the detection of the high energy gamma rays from the decay of the nitrogen 16. If a pulsed neutron source is used a more accurate detection is provided. The angle of flow can be determined by suitable instrumentation. Full specifications are given. (U.K.)

  9. In Vivo Cytogenotoxicity and Oxidative Stress Induced by Electronic Waste Leachate and Contaminated Well Water

    Directory of Open Access Journals (Sweden)

    Adeyinka M. Gbadebo

    2013-07-01

    Full Text Available Environmental, plant and animal exposure to hazardous substances from electronic wastes (e-wastes in Nigeria is increasing. In this study, the potential cytogenotoxicity of e-wastes leachate and contaminated well water samples obtained from Alaba International Electronic Market in Lagos, Nigeria, using induction of chromosome and root growth anomalies in Allium cepa, and micronucleus (MN in peripheral erythrocytes of Clarias gariepinus, was evaluated. The possible cause of DNA damage via the assessments of liver malondialdehyde (MDA, catalase (CAT, reduced glutathione (GSH and superoxide dismutase (SOD as indicators of oxidative stress in mice was also investigated. There was significant (p < 0.05 inhibition of root growth and mitosis in A. cepa. Cytological aberrations such as spindle disturbance, C-mitosis and binucleated cells, and morphological alterations like tumor and twisting roots were also induced. There was concentration-dependent, significant (p < 0.05 induction of micronucleated erythrocytes and nuclear abnormalities such as blebbed nuclei and binucleated erythrocytes in C. gariepinus. A significant increase (p < 0.001 in CAT, GSH and MDA with concomitant decrease in SOD concentrations were observed in the treated mice. Pb, As, Cu, Cr, and Cd analyzed in the tested samples contributed significantly to these observations. This shows that the well water samples and leachate contained substances capable of inducing somatic mutation and oxidative stress in living cells; and this is of health importance in countries with risk of e-wastes exposure.

  10. Concerning human well-being and ecosystems sustainability on water resources management for Qishan River

    Science.gov (United States)

    Wang, C. Y.; Ho, C. C.; Chang, L. C.

    2016-12-01

    There are no large hydraulic structures in Qishan River cause the less human interference than other major river in Taiwan. However, the aquatic habitats still suffer disturbance from the discharge changes greatly between wet and drought season, and Jiaxian Weir and Yuemei Weir draw surplus water from Qishan River to Nanhua Reservoir and Agongdian Reservoir respectively. The weir operation rule doesn't clear define how much environmental flow should be preserved for maintaining downstream ecological environment. Hence, the study proposes a process for evaluating environmental flow under considering impact on human well-being and ecosystems sustainability. Empirical formula, hydrological, hydraulic and habitat methodologies were used to propose the environmental flow alternatives. Next, water allocation model and Habitat model were used to analysis the impact of environment flow alternatives on human well-being and ecosystems sustainability. The results show the suggested environmental flow in Qishan River is estimated by MAF10%. The environmental flow is between 8.03 10.83 cms during wet season and is between 1.07 1.44cms during wet season. The simulation results also provide the evidence from diverse aspect to help different authorities realized what they get and lose. The information can advance to reach a consensus during negotiations with different authorities and help decision maker make decisions.

  11. Biogeochemistry of Produced Water from Unconventional Wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Drogos, D. L.; Nye, C.; Quillinan, S.; Urynowicz, M. A.; Wawrousek, K.

    2017-12-01

    Microbial activity in waters associated with unconventional oil and gas reservoirs is poorly described but can profoundly affect management strategies for produced water (PW), frac fluids, and biocides. Improved identification of microbial communities is required to develop targeted solutions for detrimental microbial activity such as biofouling and to exploit favorable activity such as microbial induced gas production. We quantified the microbial communities and inorganic chemistry in PW samples from cretaceous formations in six unconventional oil and gas wells in the Powder River Basin in northeast Wyoming. The wells are horizontal completions in the Frontier, Niobrara, Shannon, and Turner formations at depths of 10,000 to 12,000 feet, with PW temperatures ranging from 93oF to 130oF. Biocides utilized in frac fluids primarily included glutaraldehyde and Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC), with first production occurring in 2013. Geochemical results for PW are: pH 6.5 to 6.9; alkalinity (as CaCO3) 219 to 519 ppm; salinity 13,200 to 22,300 ppm; and TDS 39,364 to 62,725 ppm. Illumina MiSeq 16S rRNA sequencing identified the majority of communities in PW are related to anaerobic, thermophilic, halophilic, chemoheterotrophic, and chemoorganotrophic bacteria, including Thermotoga, Clostridiaceae, Thermoanaerobacter, Petrotoga, Anaerobaculum, Clostridiales, Desulfomicrobium, and Halanaerobiaceae. These findings are important for identification of biogeochemical reactions that affect the organic-inorganic-microbial interactions among reservoir rocks, formation waters, and frac fluids. Better understanding of these biogeochemical reactions would allow producers to formulate frac fluids and biocides to encourage beneficial microbial phenomena such as biogenic gas production while discouraging detrimental effects such as biofouling.

  12. Selected water-quality data from the Cedar River and Cedar Rapids well fields, Cedar Rapids, Iowa, 2006-10

    Science.gov (United States)

    Littin, Gregory R.

    2012-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer approximately 40 to 80 feet below land surface. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality of the aquifer since 1992. Cooperative reports between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, surface-water-groundwater interaction, and pesticides in groundwater and surface water. Water-quality analyses were conducted for major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. Physical characteristics (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were measured in the field and recorded for each water sample collected. This report presents the results of routine water-quality data-collection activities from January 2006 through December 2010. Methods of data collection, quality-assurance, and water-quality analyses are presented. Data include the results of water-quality analyses from quarterly sampling from monitoring wells, municipal wells, and the Cedar River.

  13. Element distribution study of drinking water and well sediments using the method of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Vircavs, M.; Taure, I.; Eglite, G.; Brike, Z.

    1996-01-01

    The method of instrumental activation analysis was used to estimate the distribution of major, minor and trace elements in well sediments, Riga tap water and well water used for drinking and for preparation of food. The chemical composition of drinking water (tap and well water) varies considerably in different districts of Riga and in different wells. The greatest concentration differences for Zn, Fe and Al are observed in tap water. Median concentrations of determined elements are smaller than maximum permissible concentrations (MPC). However, in some cases the concentration of Al and Fe higher than their MPC for tap water. The highest concentration ratios were observed for Ti, Cr and Zn in well sediments. (author). 19 refs, 2 tabs

  14. Simulating water-quality trends in public-supply wells in transient flow systems

    Science.gov (United States)

    Starn, J. Jeffrey; Green, Christopher T.; Hinkle, Stephen R.; Bagtzoglou, Amvrossios C.; Stolp, Bernard J.

    2014-01-01

    Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources as pumping changes in the basin over time. At individual wells, however, predicting specific water-quality changes remains challenging. The influence of pumping-induced transient groundwater flow on changes in mean age and source areas is significant. Mean age and source areas were mapped across the model domain to extend the results from observation wells to the entire aquifer to see where changes in concentrations of dissolved solids are expected to occur. The timing of these changes depends on accurate estimates of groundwater velocity. Calibration to tritium concentrations was used to estimate effective porosity and improve correlation between source area changes, age changes, and measured dissolved solids trends. Uncertainty in the model is due in part to spatial and temporal variations in tracer inputs, estimated tracer transport parameters, and in pumping stresses at sampling points. For tracers such as tritium, the presence of two-limbed input curves can be problematic because a single concentration can be associated with multiple disparate travel times. These shortcomings can be ameliorated by adding hydrologic and geologic detail to the model and by adding additional calibration data. However, the Salt Lake Valley model is useful even without such small-scale detail.

  15. Using operational data to estimate the reliable yields of water-supply wells

    Science.gov (United States)

    Misstear, Bruce D. R.; Beeson, Sarah

    The reliable yield of a water-supply well depends on many different factors, including the properties of the well and the aquifer; the capacities of the pumps, raw-water mains, and treatment works; the interference effects from other wells; and the constraints imposed by ion licences, water quality, and environmental issues. A relatively simple methodology for estimating reliable yields has been developed that takes into account all of these factors. The methodology is based mainly on an analysis of water-level and source-output data, where such data are available. Good operational data are especially important when dealing with wells in shallow, unconfined, fissure-flow aquifers, where actual well performance may vary considerably from that predicted using a more analytical approach. Key issues in the yield-assessment process are the identification of a deepest advisable pumping water level, and the collection of the appropriate well, aquifer, and operational data. Although developed for water-supply operators in the United Kingdom, this approach to estimating the reliable yields of water-supply wells using operational data should be applicable to a wide range of hydrogeological conditions elsewhere. Résumé La productivité d'un puits capté pour l'adduction d'eau potable dépend de différents facteurs, parmi lesquels les propriétés du puits et de l'aquifère, la puissance des pompes, le traitement des eaux brutes, les effets d'interférences avec d'autres puits et les contraintes imposées par les autorisations d'exploitation, par la qualité des eaux et par les conditions environnementales. Une méthodologie relativement simple d'estimation de la productivité qui prenne en compte tous ces facteurs a été mise au point. Cette méthodologie est basée surtout sur une analyse des données concernant le niveau piézométrique et le débit de prélèvement, quand ces données sont disponibles. De bonnes données opérationnelles sont particuli

  16. Rational risk-based decision support for drinking water well managers by optimized monitoring designs

    Science.gov (United States)

    Enzenhöfer, R.; Geiges, A.; Nowak, W.

    2011-12-01

    Advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. Considering the insufficient knowledge about hazards and transport properties within the catchment, current Water Safety Plans recommend that catchment managers and stakeholders know, control and monitor all possible hazards within the catchments and perform rational risk-based decisions. Our goal is to supply catchment managers with the required probabilistic risk information, and to generate tools that allow for optimal and rational allocation of resources between improved monitoring versus extended safety margins and risk mitigation measures. To support risk managers with the indispensable information, we address the epistemic uncertainty of advective-dispersive solute transport and well vulnerability (Enzenhoefer et al., 2011) within a stochastic simulation framework. Our framework can separate between uncertainty of contaminant location and actual dilution of peak concentrations by resolving heterogeneity with high-resolution Monte-Carlo simulation. To keep computational costs low, we solve the reverse temporal moment transport equation. Only in post-processing, we recover the time-dependent solute breakthrough curves and the deduced well vulnerability criteria from temporal moments by non-linear optimization. Our first step towards optimal risk management is optimal positioning of sampling locations and optimal choice of data types to reduce best the epistemic prediction uncertainty for well-head delineation, using the cross-bred Likelihood Uncertainty Estimator (CLUE, Leube et al., 2011) for optimal sampling design. Better monitoring leads to more reliable and realistic protection zones and thus helps catchment managers to better justify smaller, yet conservative safety margins. In order to allow an optimal choice in sampling strategies, we compare the trade-off in monitoring versus the delineation costs by accounting for ill

  17. Lower Colorado River GRP Drinking Water Wells, Arizona, 2012, Arizona Department of Environmental Quality

    Data.gov (United States)

    U.S. Environmental Protection Agency — The term public water system refers to any water system that has 15 or more service connections (hook-ups) or serves 25 or more people. Water systems that serve less...

  18. Selected Water-Quality Data from the Cedar River and Cedar Rapids Well Fields, Cedar Rapids, Iowa, 1999-2005

    Science.gov (United States)

    Littin, Gregory R.; Schnoebelen, Douglas J.

    2010-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer at approximately 40 to 80 feet deep. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality near the well fields since 1992. Previous cooperative studies between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, evaluation of surface and ground-water interaction, assessment of pesticides in groundwater and surface water, and to evaluate water quality near a wetland area in the Seminole well field. Typical water-quality analyses included major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. In addition, two synoptic samplings included analyses of additional pesticide degradates in water samples. Physical field parameters (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were recorded with each water sample collected. This report presents the results of water quality data-collection activities from January 1999 through December 2005. Methods of data collection, quality-assurance samples, water-quality analyses, and statistical summaries are presented. Data include the results of water-quality analyses from quarterly and synoptic sampling from monitoring wells, municipal wells, and the Cedar River.

  19. Depletion and capture: revisiting "the source of water derived from wells".

    Science.gov (United States)

    Konikow, L F; Leake, S A

    2014-09-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion and capture relative to groundwater withdrawals (extraction or pumpage) have not previously been well characterized. This study assesses the partitioning of long-term cumulative withdrawal volumes into fractions derived from storage depletion and capture, where capture includes both increases in recharge and decreases in discharge. Numerical simulation of a hypothetical groundwater basin is used to further illustrate some of Theis' (1940) principles, particularly when capture is constrained by insufficient available water. Most prior studies of depletion and capture have assumed that capture is unconstrained through boundary conditions that yield linear responses. Examination of real systems indicates that capture and depletion fractions are highly variable in time and space. For a large sample of long-developed groundwater systems, the depletion fraction averages about 0.15 and the capture fraction averages about 0.85 based on cumulative volumes. Higher depletion fractions tend to occur in more arid regions, but the variation is high and the correlation coefficient between average annual precipitation and depletion fraction for individual systems is only 0.40. Because 85% of long-term pumpage is derived from capture in these real systems, capture must be recognized as a critical factor in assessing water budgets, groundwater storage depletion, and sustainability of groundwater development. Most capture translates into streamflow depletion, so it can detrimentally impact ecosystems. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Investigation of radon concentration in drinking water from wells in Khartoum state

    International Nuclear Information System (INIS)

    Idriss, H. I. M.

    2009-07-01

    Radon( 2 ''2''2Rn) is a naturally occurring radioactive gas that is released into the surrounding environment. The presence of this gas in water mainly depends on its source in building material, soil and rocks. The main reason for radon determination in water comes from the fact that radon and its daughters are suspected to be directly responsible of hung cancer and some kidney diseases. This study covers the area Khartoum, state (Khartoum, Khartoum North and Omdurman). The study investigated the levels of radon concentration in water of 72 wells from Khartoum state was performed using gamma spectrometry system. The results showed that radon levels range between 1.6 and 345 Bq/L with mean value of 59 Bq/I. Comparing these values with global data indicates acceptable levels that can be observed for most of the samples. It is observed that 14 locations of the sites exceed the recommended levels adopted by some countries (Sweden, Finland, Slovak and Russia). On the basis of the results obtained, the annual effective dose received by the public due to ingestion of radon was calculated and found to be below the WHO reference dose level of 0.1 mSv.y - ''1, except 14 sites exceed the recommended levels. Three age categories were considered for dose estimation (1 years, 10 years and adults). The mean value of dose for the one year age is 0.49 mSv.y -1 and the mean value of dose for 10 years age 0.13 mSv.y - ''1 while the mean value obtained for adult is 0.11 mSv.y - ''1. (Author)

  1. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco

    Directory of Open Access Journals (Sweden)

    Edson C. Bortoluzzi

    2007-01-01

    Full Text Available In this work the exposure of wells and surface water to pesticides, commonly used for tobacco cropping, was assessed. Water consumption wells and surface water flows were sampled at different times. After a preconcentration step with solid phase extraction (SPE, the selected pesticides were determined by gas chromatography with electron capture detection (GC-ECD or high performance liquid chromatography with diode array detection (HPLC-DAD. No pesticides were detected in the well water samples and surface water flow in the winter season. However, in the spring and summer higher concentrations of chlorpyrifos and imidacloprid were found in the water source samples. Atrazine, simazine and clomazone were also found. The occurrence of pesticides in collected water samples was related with the application to tobacco.

  2. EBR-II blanket fuel leaching test using simulated J-13 well water.

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesbeck, J. E.

    1998-05-15

    A pulsed-flow leaching test is being conducted using three EBR-II blanket fuel segments. These samples are immersed in simulated J-13 well water. The samples are kept at a constant temperature of 90 C. Leachate is exchanged weekly and analyzed for various nuclides which are of interest from a mobility and longevity point of view. Our primary interest is in the longer-lived species such as {sup 99}Tc, {sup 237}Np, and {sup 241}Am. In addition, the behavior of U, Pu, {sup 90}Sr, and {sup 137}Cs are being analyzed. During the course of this experiment, an interesting observation has been made involving one of the samples which could indicate the possible rapid ''anoxic'' oxidation of uranium metal to UO{sub 2}.

  3. Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Yifei; Jia, Aiyin; Wu, Yue; Wu, Chunde; Chen, Lijun

    2015-01-01

    The effect of hydrodynamic cavitation (HC) on potable water disinfection of chemicals was investigated. The bore well water was introduced into HC set-up to examine the effect of HC alone and combination of HC and chemicals such as chlorine dioxide and sodium hypochlorite. The effect of inlet pressure and geometrical parameters on disinfection was studied using HC alone and the results showed that increasing inlet pressure and using more and bigger holes of orifice plates can result in a higher disinfection rates. When HC was combined with chemicals, HC can reduce the doses of the chemicals and shorten the time of disinfection. It was also found that the decrease in bacteria concentration followed a first-order kinetic model. As for the experiment of combination of HC and sodium hypochlorite for disinfection, HC not only improves the disinfection rate but also degrades natural organic matter and chloroform. Compared with only sodium hypochlorite disinfection, combined processes get higher disinfection rate and lower production of chloroform, particularly the pretreatment with HC enhances the disinfection rate by 32% and there is a simultaneous reduction in production of chloroform by 39%.

  4. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    Science.gov (United States)

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  5. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.

    Science.gov (United States)

    van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2010-11-01

    Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic

  6. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  7. Radon water to air transfer measured in a bathroom in an energy-efficient home with a private well

    International Nuclear Information System (INIS)

    Harley, Naomi H.; Chittaporn, Passaporn; Cook, Gordon B.; Fisenne, Isabel M.

    2014-01-01

    Monthly measurements of radon in kitchen and bath tap water along with indoor air concentrations were made from 1994 to 1996 in an energy-efficient home with a private well. The well supplies all water to the home. The radon in cold and hot kitchen water averaged 69±2 and 52±2 Bq l -1 , respectively. Radon in cold and hot water from the bath/shower room shower head averaged 60±1 and 38±2 Bq l -1 , respectively, whereas hot water collected in the shower at the tub base averaged 5±1 Bq l -1 or a 92 % radon loss to air. While the calculated transfer factor of 1/10 000, i.e. radon concentration in air to radon in water, conventionally applies to the whole house, measurements for the specific water release during showering in a bathroom exhibit a larger transfer factor of 1/2300, due to smaller room volume. (authors)

  8. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish numerical model boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  9. Well successfully drilled with high performance water-based fluid: Santos Basins, offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fornasier, Frank C.; Luzardo, Juan P. [Halliburton Company, Houston, TX (United States); Bishnoi, M.L. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India)

    2012-07-01

    Santos Basin is a 352,260 square kilometers (136,010 sq mi) offshore pre-salt basin. It is located in the South Atlantic Ocean, some 300 kilometers (190 mi) South East of Sao Paulo, Brazil. One of the largest Brazilian sedimentary basins, it is the site of several recent significant oil fields, including Tupi and Jupiter. The criteria for drilling fluid selection is based upon the following factors: maximum cost efficiency, environmental friendliness, optimum borehole stability, and ease of use. The recommended drilling fluid formulation takes into consideration the experience gained during the drilling of wells in the Santos Basin area. The operator wanted to use a high-performance water-based fluid (HPWBF) that could provide shale inhibition, wellbore stability, lubricity and improved rate of penetration (ROP) as an alternative to synthetic-based drilling fluids to present value in terms of economics and environmental friendliness. The HPWBF consists of three synergistic products: a hydration suppressant, a dispersion suppressant, and an accretion suppressant. The system is formulated based on customized solutions for managing the clay reactivity. High logistics costs require drilling fluids that can be prepared with sea water and discharged to the sea without environmental impact. The HPWBF is a clay-free system designed for maximum shale inhibition in highly reactive formations. The system can provide wellbore stability, high rates of penetration, and acceptable rheological properties over a wide range of temperatures, with the added benefit of allowing cuttings discharge based upon water base environmental restrictions. Since no oil is used in the formulation, the HPWBF eliminates the need for cuttings processing and monitoring equipment, and exceeds the environmental requirements by achieving an LC50 value of 345,478.22 ppm in comparison with the minimum requirement (LC50 > 30,000 ppm in 96 hr), permitting use and discharge to the sea. The HPWBF selected

  10. Reconnaissance of Volatile Synthetic Organic Chemicals at Public Water Supply Wells Throughout Puerto Rico, November 1984-May 1985

    Science.gov (United States)

    Guzman-Rios, Senen; Garcia, Rene; Aviles, Ada

    1987-01-01

    INTRODUCTION Ground water is the principal source of drinking water for about 850,000 people in Puerto Rico (National Water Summary, 1985). Ground-water withdrawals for public supply, agricultural, and industrial water uses in Puerto Rico are about 250 million gallons per day (Mgal/d) (Torres-Sierra and Aviles, 1985). The development of the most accessible surface water supplies will result in an increasing demand for ground water. Recent investigations conducted by the U. S. Geological Survey, WRD (USGS) have shown the presence of toxic synthetic organic chemicals in ground water throughout Puerto Rico (Gomez-Gomez and Guzman-Rios, 1982). Volatile synthetic organic chemicals (VOC's) have been detected in water from public water supply wells in concentrations ranging from 1 to 500 micrograms per liter (Guzman-Rios and Quinones-Marquez, 1984 and Guzman-Rios and Quinones-Marquez, 1985). As result of these findings, pumpage was discontinued at 6 wells operated by the Puerto Rico Aqueduct and Sewer Authority (PRASA), the Commonwealth of Puerto Rico agency responsible for public-water supply. Monitoring of 10 additional wells in the vicinity of those wells is being conducted by the USGS in cooperation with PRASA. In 1985, the USGS began a comprehensive islandwide study of VOC's in drinking water. The study was conducted in cooperation with the Puerto Rico Department of Health (PRDOH) and PRASA. Samples were collected from 243 public-water supply wells operated by PRASA (flgure 1). The authors wish to acknowledge the support, assistance and cooperation of the PRASA staff throughout Puerto Rico in the sample collection effort. The authors are especially grateful to Engineer Carlos Garcia-Troche from the PRASA main office in San Juan.

  11. Ion exchange-based treatment of "6"0Co contaminated well-water for storing γ irradiation source

    International Nuclear Information System (INIS)

    Bi Meng; Miao Shilin; Zhang Xiaolu; Zhang Youjiu

    2014-01-01

    Objective: To select an efficient ion exchange resin to purify the "6"0Co contaminated well-water for storing radioactive source and to ensure the radioactivity of "6"0Co in treated well-water below 10 Bq/L. Methods: The radioactivity of "6"0Co in the water samples was measured by using the potassium cobaltinitrite coprecipitation-β counting method. The treatment efficiencies of two different ion exchange resins for the simulated "6"0Co-bearing waste water were compared to select a better one to dispose of the "6"0Co contaminated well-water. Results: The treatment efficiency of MBD-15-SC mixed ion exchange resin was about 5.8 times higher than ZGCNR50 strong-acid cation exchange resin. The radioactivity of "6"0Co in the contaminated well-water could be reduced from 4.16 × 10"5 Bq/L to 1.16 Bq/L by two-stage sorption of MBD-15-SC mixed ion exchange resin. Conclusions: Using several times of two-stage MBD-15-SC mixed ion exchange resin could effectively purify the "6"0Co contaminated well-water. The quality of the treated well-water could meet the sewage discharge standards. (authors)

  12. Successful well test application of portable multi-phase flow meter for high gas-volume and high water-cut wells in east Kalimantan, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Kaura, Jiten D.; Finley, D.B. [PT Halliburton Indonesia, Jakarta (Indonesia); Sudradjat, Wangsa; Riyanto, Latief [Tota E and P Indonesie, Jakarta (Indonesia); Halverson, Martin [FlowSys AS, Bergen (Norway)

    2004-07-01

    Recently, testing was needed on production wells in East Kalimantan. The wells were in a mature field, and productivity from the wells field featured high water cut (WC) and extremely high gas-volume fractions (GVF). The WC and GVF ranged from 80 to 100% and 90 to 100%, respectively. Moreover, most of the wells are low productivity so they are very sensitive to back-pressure. The high WC, high GVF and low-productivity from these wells in this area present an extreme challenge for accurate production measurement. Barges are commonly used to perform well services in the swamp area of this marginal field, and production allocations from wells in this difficult area were previously monitored and measured with conventional well-test equipment on-board a well testing barge. The well test equipment traditionally used requires a large footprint, and the associated flaring presents an environmental situation in this sensitive swamp area. Hence, the MPFM solution was chosen. To better meet the challenges presented by the testing conditions, a portable multiphase flow meter (MPFM) was chosen to perform the testing from the well-testing barge. For comparative purposes, the MPFM was installed on the barge immediately upstream of the well testing equipment. Initial measurements with the MPFM yielded results that were {+-} 30% of the test separator reading. A slight modification was introduced to the MPFM system in the form of a gas knock-out (GKO) vessel. Subsequent measurements with the modified MPFM system yielded readings that were {+-}10% of the test separator reading. (author)

  13. Towards a Quantitative Framework for Evaluating Vulnerability of Drinking Water Wells to Contamination from Unconventional Oil & Gas Development

    Science.gov (United States)

    Soriano, M., Jr.; Deziel, N. C.; Saiers, J. E.

    2017-12-01

    The rapid expansion of unconventional oil and gas (UO&G) production, made possible by advances in hydraulic fracturing (fracking), has triggered concerns over risks this extraction poses to water resources and public health. Concerns are particularly acute within communities that host UO&G development and rely heavily on shallow aquifers as sources of drinking water. This research aims to develop a quantitative framework to evaluate the vulnerability of drinking water wells to contamination from UO&G activities. The concept of well vulnerability is explored through application of backwards travel time probability modeling to estimate the likelihood that capture zones of drinking water wells circumscribe source locations of UO&G contamination. Sources of UO&G contamination considered in this analysis include gas well pads and documented sites of UO&G wastewater and chemical spills. The modeling approach is illustrated for a portion of Susquehanna County, Pennsylvania, where more than one thousand shale gas wells have been completed since 2005. Data from a network of eight multi-level groundwater monitoring wells installed in the study site in 2015 are used to evaluate the model. The well vulnerability concept is proposed as a physically based quantitative tool for policy-makers dealing with the management of contamination risks of drinking water wells. In particular, the model can be used to identify adequate setback distances of UO&G activities from drinking water wells and other critical receptors.

  14. Analysis and Treatment of Waters from Hydraulically Fractured Oil and Gas Wells

    Science.gov (United States)

    Our research is largely focused on analyzing the chemical and microbiological components of the waters. In addition, we are conducting studies to biodegrade the organicpollutants within flowback and produced waters to develop the potential for inexpensive bioremediation technologies.

  15. Human well-being values of environmental flows enhancing social equity in integrated water resources management

    NARCIS (Netherlands)

    Meijer, K.S.

    2007-01-01

    This dissertation discusses how the importance of river flow-sustained ecosystems for local communities can be quantified for the purpose of balancing water supply and demand in Integrated Water Resources Management. Due to the development of water resources, for example through the construction of

  16. The Quality of Drinking Well Waters in Jos Metropolis, North Central ...

    African Journals Online (AJOL)

    Background: Water quality is a term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose. Water is said to be polluted if there is an excess, whatsoever, in the values (concentration levels) of the physical, chemical, biological or radioactive ...

  17. Effectiveness of Moringa oleifera defatted cake versus seed in the treatment of unsafe drinking water : case study of surface and well waters in Burkina Faso.

    OpenAIRE

    Kabore, Aminata; Savadogo, Boubacar; Rosillon, Francis; Traore, Alfred S.; Dianou, Dayéri

    2013-01-01

    Safe drinking water access for rural populations in developing countries remains a challenge for a sustainable develop-ment, particularly in rural and periurban areas of Burkina Faso. The study aims to investigate the purifying capacity of Moringa oleifera defatted cake as compared to Moringa oleifera seed in the treatment of surface and well waters used for populations alimentation. A total of 90 water samples were collected in sterile glass bottles from 3 dams’ water reservoirs, a river, an...

  18. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    Science.gov (United States)

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  19. A new cylindrical capacitance sensor for measurement of water cut in a low-production horizontal well

    International Nuclear Information System (INIS)

    Liu Xingbin; Hu Jinhai; Xie Zhonglin; Li Yiwei; Xu Wenfeng; Xu Lijun

    2009-01-01

    In a horizontal well with low flow rate, oil-water two-phase flow is stratified due to gravity. For measuring water cut accurately in a low-production horizontal well, a novel cylindrical capacitance sensor is proposed in this paper. The structure of the sensor is cylindrical and hollow with multi-layer structure which is consisted of inside insulation layer, electrode layer, outside insulation layer and metal casing from inside to outside. And the measurement principle is analyzed in this paper. The mathematical model is established, which shows that theoretically, there is a good relationship between the sensor response and water holdup. The response curve is monotone and the sensor has a good resolution and a high sensitivity in the whole range of water holdup. The electric field of cylindrical capacitance sensor was simulated respectively by using ANSYS software when the sensor is filled with pure water, pure oil and oil-water mixture. The results of the simulation are consistent with the mathematical model. Static experiments with the sensor filled with oil-water mixture were conducted finally. The results have verified the theoretical analysis and show that the proposed sensor is a viable solution to measuring water cut in a low-production horizontal well. Cylindrical capacitance sensor provides a good reference for the water cut in low-production horizontal well and has a good application prospect.

  20. Use of contaminated well water, example reference biospheres 1 and 2A

    International Nuclear Information System (INIS)

    Santucci, P.; Kontic, B.; Coughtrey, P.; McKenney, C.; Smith, G.

    2005-01-01

    The BIOMASS programme's Theme 1 evaluated a number of scenarios, which assisted in the development of practical guidance. A total of four Example Reference Biospheres were fully developed, with the assumptions, data, and models thoroughly documented. These Examples display both the practicality and the transparency available through the use of the Reference Biosphere Methodology. While the methodology is designed to promote transparency and traceability, proper documentation and justification is still the responsibility of the user. The Examples can also be used as generic analyses in some situations. Although it is anticipated that each of the Reference Biospheres explored within BIOMASS Theme 1 should be a useful practical example, the quantitative results of the model calculations are not intended to be understood as prescribed biosphere 'conversion factors'. In choosing to implement an Example, careful consideration would need to be given to their relevance (including associated data) to the particular assessment context at hand. In general, the more complex the model is, the more limited applicability it has for generic purposes. For example, ERB1A (direct use of well water for drinking) can be used straightforwardly, with minor or no adjustments, at a number of generic sites. Example 2A, however, for which climatic conditions and agricultural practices need to be specified, would need to be implemented for each specific situation

  1. Determination of Rn222 in samples of well water and domicile of the cities of Chihuahua and Aldama, Mexico

    International Nuclear Information System (INIS)

    Villalba, L.; Colmenero S, L.; Montero C, M.E.

    2004-01-01

    The study of the content of dissolved Rn 222 is presented in underground water and of domicile of the cities of Chihuahua and Aldama of the State of Chihuahua. The existence of the Rn 222 in the underground waters comes from its constant production in the rocks of the terrestrial bark. It has been determined that the radon is a noble gas of more solubility in the water, this solubility induces high concentrations in underground water, as well as bigger risk to the health in the human body once ingested or inhaled. Of the 32 wells studied in the cities of Chihuahua and Aldama, the content of dissolved Rn 222 in the water of 22 of them is bigger than 11 Bq/l and of 73 studied samples of water of domiciles 47 show bigger values that 11 Bq/l. These radon contents are attributable to the uraniferous rocks present in the aquifers. (Author)

  2. Temporal behavior of 222Radon, 226Radium and 238Uranium in deep water wells which provide Valle de Toluca with drinking water

    International Nuclear Information System (INIS)

    Pena, P.; Tamez, E.; Iturbe, J.L.; Acosta, A.; Segovia, N.; Carrillo, J.; Armienta, M.

    1994-01-01

    The presence of radionuclides in underground waters may be an indication of its origin and also the sign of the hydraulic properties of the aquifers layers where circulate. Additionally, the ingestion by human beings of water with radioactive elements (Radon 222, Radium 226, Uranium 238) can give as a result the accumulation of such elements in several organs of the body producing then health damages. In this work, the concentrations of Radon 222, Radium 226 and Uranium 238, in waters coming from deep wells which provide with drinking water the Toluca Valley, were determined. For this purpose, during a year (june 1991 to August 1992) ten wells were sampled with a tracking of the radionuclides concentration as well as the physical-chemical components of water; it was established the relationship presented by the analyzed waters with the local geology and the local and regional systems. (Author)

  3. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Due to growing population of Pakistan, there is a tremendous pressure on our agriculture sector to increase its production to meet the food and fiber requirement. Water is a basic need to increase the agriculture production and to bring more areas under cultivation. The exploitation of groundwater resources is increasing because of limited surface water availability. Statistics indicated that number of public and private tube-wells have increased to more than 5 lacs. Over exploitations of groundwater caused a number of environmental problems including salt water intrusion and increase in the soil and groundwater salinity. A large number of fresh water tube-wells have started pumping saline groundwater in various parts of Pakistan indicating up-coning of saline groundwater in the relatively fresh water aquifers. Use of poor quality groundwater for irrigation is considered as one of the major causes of salinity in the areas of irrigated agriculture. Indiscriminate pumping of the groundwater of marginal quality through skimming fresh water overlain by saline groundwater can not be helpful in the long run. It can add to the root zone salinity and ultimately reduction of crops yield. Mona Reclamation Experimental Project (MREP) is conducting a collaborative research study on 'Root Zone Salinity Management using Fractional Skimming Wells with Pressurized Irrigation' under a research and studies portfolio of the country wide National Drainage Programme (NDP) MREP, IWMI Pakistan and Water Resources Research Institute of PARC are collaborators in this joint research effort. MREP is responsible to specifically address the objective of the study to identify and test a limited number of promising skimming well techniques in the shallow fresh water aquifers which could control the saline water up-coning phenomenon as a consequence of groundwater pumping. Detailed investigations have been done at various locations in the north-central part of Chaj Doab (Sargodha Region) in the

  4. Reuse of effluents to full water wells; Reutilizacion de efluentes para recarga de acuiferos

    Energy Technology Data Exchange (ETDEWEB)

    Farinas, M.

    1995-04-01

    This paper has two aims: on the one hand it shows the interest to use recovered effluents to full water bearings, and on the other hand it sets up the characteristics that the reused water must have for this purpose depending on the fulling technique used. It is not going to explain the different treatments that water must suffer to be adequate for this objective. (Author)

  5. Investigation of Yasuj Landfill Leachate and its Impact on lawer Water Resource Quality (No.6 Tang‌konareh well

    Directory of Open Access Journals (Sweden)

    A Jamshidi

    2014-07-01

    Conclusion: According to the results, threats by water pollution and landfill waste wells downstream in Yasuj resources are predictable in the long term indirectly, therefore, necessary measures should be considered.

  6. Limitation of the influx of formation water into oil wells. Ogranichenie pritoka plastovykh vod v neftyanye skvazhiny

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, R.T.; Gazizov, A.Sh.; Gabdullin, R.G.; Yusupov, I.G.

    1976-01-01

    The problems of limiting the influx of water into oil wells are examined. On the basis of studies, systemization, and generalization of the reasons for the premature flooding of wells, the improvement of strata by polymer-cement solutions with consolidating liquid phases is considered. A detailed description is given of the technology and results of cementing well using solutions based on plugging cement and water-soluble phenol-formaldehyde resins of the TSD-9 type. Results are reported on the study of the properties of selective water-insulating substances based on acrylamide monomers and hydrolyzed polyacrylonitriles. Industrial testing of these materials is generalized. An economic evaluation is made of the efficiency of measures undertaken to prevent water influx into oil wells.

  7. Movement of the water-oil contact during operation of a single well in an inclined stratum

    Energy Technology Data Exchange (ETDEWEB)

    Kazymov, A Sh

    1965-01-01

    In this theoretical study the author develops equations which describe the movement of an oil-water interface toward a single well in an inclined stratum. The equations apply even if viscosities, densities, and permeabilities vary from place to place.

  8. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

    NARCIS (Netherlands)

    Prommer, H.; Stuijfzand, P.J.

    2005-01-01

    Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

  9. Risk to water wells of pathogens in drilling fluids[Section 7 : reviewed literature added November 2009

    Energy Technology Data Exchange (ETDEWEB)

    Abiola, A.T. [Olds College, Olds, AB (Canada); Ryan, C. [Calgary Univ., AB (Canada)

    2009-10-15

    Public concern regarding the presence of pathogens in surface waters used in drilling fluids and their potential impact on groundwater and water wells has increased in recent years. This report addressed those concerns. The most common sources of water for drilling fluids include dugouts, sloughs, small creeks and beaver dams. The Energy Resources Conservation Board commissioned a study to examine the abundance of pathogens in surface waters and to evaluate whether pathogens in surface waters that are used in drilling fluids have the ability to survive in or be transported through groundwater. The report was written for the general public and represents a professional opinion based on an extensive review of literature and professional experience. It described the risk to well water of pathogens in drilling fluids; pathogens in well water; and fate of pathogens in drilling fluids. The key findings of the report were that the subsurface of the earth presents a hostile environment to surface water pathogens. In addition to pathogen introduction from drilling fluid, pathogens can be introduced through animal waste, sewage and industrial or agricultural waste. Typically, the types of pathogens found in Alberta surface waters are not likely to survive the salt levels found in nontoxic drilling fluids. Pathogen transport into the subsurface is unlikely, even over shorter distances, because of the low infiltration distance of drilling fluids from the wellbore. 142 refs.

  10. Work plan for ground water elevation data recorder/monitor well installation at the New Rifle Site, Rifle, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River

  11. Work plan for ground water elevation data recorder/monitor well installation at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River

  12. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  13. 78 FR 38287 - Household Water Well System Grant Program Announcement of Application Deadlines and Funding

    Science.gov (United States)

    2013-06-26

    ... Americans in greatest need. Central water systems may not be the only or best solution to drinking water... Services for Persons with Limited English Proficiency.'' For information on limited English proficiency and... necessary, clearly identify the economic, social, financial, or other problems that require solutions...

  14. Well water quality in rural Nicaragua using a low-cost bacterial test and microbial source tracking.

    Science.gov (United States)

    Weiss, Patricia; Aw, Tiong Gim; Urquhart, Gerald R; Galeano, Miguel Ruiz; Rose, Joan B

    2016-04-01

    Water-related diseases, particularly diarrhea, are major contributors to morbidity and mortality in developing countries. Monitoring water quality on a global scale is crucial to making progress in terms of population health. Traditional analytical methods are difficult to use in many regions of the world in low-resource settings that face severe water quality issues due to the inaccessibility of laboratories. This study aimed to evaluate a new low-cost method (the compartment bag test (CBT)) in rural Nicaragua. The CBT was used to quantify the presence of Escherichia coli in drinking water wells and aimed to determine the source(s) of any microbial contamination. Results indicate that the CBT is a viable method for use in remote rural regions. The overall quality of well water in Pueblo Nuevo, Nicaragua was deemed unsafe, and results led to the conclusion that animal fecal wastes may be one of the leading causes of well contamination. Elevation and depth of wells were not found to impact overall water quality. However rope-pump wells had a 64.1% reduction in contamination when compared with simple wells.

  15. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Schaider, Laurel A., E-mail: schaider@silentspring.org; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO{sub 3}-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame

  16. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    International Nuclear Information System (INIS)

    Schaider, Laurel A.; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-01-01

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO_3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame (artificial

  17. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  18. Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR

    International Nuclear Information System (INIS)

    Chanpiwat, Penradee; Sthiannopkao, Suthipong; Cho, Kyung Hwa; Kim, Kyoung-Woong; San, Vibol; Suvanthong, Boukeo; Vongthavady, Chantha

    2011-01-01

    Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from -1 to 278 μg L -1 , with over half exceeding the WHO guideline of 10 μg L -1 . 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions. - Research highlights: → Tube-well waters were significantly contaminated with As, B, Ba, Mn, U and Fe. → As contaminated areas were mostly floodplains in the central and southern parts of Laos. → As (III) was a predominant species in 46% of tube-well water samples. → A positive association between water characteristics, B and Sr contents was found. → Total As, As (III) and Fe concentrations were positively associated among each other. - In the first international research on As and other trace element contamination of tube-well water in Lao PDR, concentrations of As, B, Ba, Mn, U, and Fe exceeding drinking water guidelines were found in samples taken mostly from Mekong River floodplain areas.

  19. Investigation of Radon in drinking water from wells of the North-Eastern region of Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Adrovic, Feriz; Dedic, Amela

    2008-01-01

    Some areas of the Tuzla region (B and H) suffer heavily from the shortage of quality drinking water. The only real long-term water resource in this region is the Lake Modrac, the largest accumulation lake in Bosnia and Herzegovina. Due to the fact that radon is soluble in water it can be transported by water to long distances. In cases of intake of waters rich in radon the most affected are sensitive cells within the abdomen and other internal organs. In order to satisfy the needs for drinking water, people are forced to excavate and drill wells. In the area of Tuzla region and the entire B and H excavated wells are very frequent, and so are drilled wells lately, due to more developed and cheaper technology for soil drilling. Such activities in this area, and the whole of B and H, are carried out in an unorderly manner and without previously completed chemical and radiological analyses of soil and water samples. The University of Tuzla formed the Laboratory for detection of radon in all environments, and the survey displayed in this paper have been the first investigation of that kind in B and H. Here we presented the results of radon survey of drinking waters from excavated and drilled wells in the area of Tuzla region (North-Eastern region of B and H). The measurements were conducted over the period of one year (2006), so as to make possible monitoring of variations of radon concentrations in dependence of meteorological changes. These investigation works showed that radon concentration at most locations was significantly higher in drilled wells than in excavated wells. Mean values of radon concentration in the tested water samples ranged within the interval of 101-4200 Bq/m 3 . Radon activity concentration was measured with the Alpha GAURD radon system (Genitron instruments-Frankfurt). (author)

  20. Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR

    Energy Technology Data Exchange (ETDEWEB)

    Chanpiwat, Penradee [School of Environmental Science and Engineering, Gwangju Institute of Science and Techonology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Sthiannopkao, Suthipong, E-mail: suthi@gist.ac.k [International Environmental Research Center (IERC), Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro - Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Cho, Kyung Hwa [School of Environmental Science and Engineering, Gwangju Institute of Science and Techonology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Kyoung-Woong, E-mail: kwkim@gist.ac.k [School of Environmental Science and Engineering, Gwangju Institute of Science and Techonology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); San, Vibol [Department of Environmental Science, Royal University of Phnom Penh (Cambodia); Suvanthong, Boukeo; Vongthavady, Chantha [Environmental Health Division, Center for Environmental Health and Water Supply, Ministry of Health, NongBone Road, Vientiane (Lao People' s Democratic Republic)

    2011-02-15

    Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from <0.5 {mu}g L{sup -1} to 278 {mu}g L{sup -1}, with over half exceeding the WHO guideline of 10 {mu}g L{sup -1}. 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions. - Research highlights: Tube-well waters were significantly contaminated with As, B, Ba, Mn, U and Fe. As contaminated areas were mostly floodplains in the central and southern parts of Laos. As (III) was a predominant species in 46% of tube-well water samples. A positive association between water characteristics, B and Sr contents was found. Total As, As (III) and Fe concentrations were positively associated among each other. - In the first international research on As and other trace element contamination of tube-well water in Lao PDR, concentrations of As, B, Ba, Mn, U, and Fe exceeding drinking water guidelines were found in samples taken mostly from Mekong River floodplain areas.

  1. Physico-chemical forms of natural radionuclides in drilled well waters and their removal by ion exchange

    International Nuclear Information System (INIS)

    Vaaramaa, K.

    2003-01-01

    Appreciable concentrations of natural uranium and its daughter radionuclides may occur in drinking water obtained from drilled wells when the bedrock contains these nuclides. Effective methods are needed to remove these radionuclides. A wide range of ion exchange materials, both organic and inorganic, were evaluated for the removal of 234,238 U, 226 Ra, 210 Po and 210 Pb from ground waters. Screenin tests were carried out, in which distribution coefficients (KD) were determined for the ion exchangers. The ion exchangers that gave the highest KD's were tested in column-mode experiments for the removal of the radionuclides from drilled well water. The most efficient exchanger for the removal of U from neutral and slightly alkaline waters was the strong base anion resin. The chelating aminophosphonate resin removed uranium very efficiently from slightly acidic water. As well, it was an efficient exchanger for the removal of toxic and harmful transition metals from drilled well waters. The strong and weak acid cation resins and zeolite A removed radium most efficiently. Large fractions of the total activity of polonium and lead were found to adsorb on equipment in the ion exchange studies. In investigation of this, the well waters were filtered through membranes to determine the soluble and particle-bound forms of 234,238 U, 226 Ra, 210 Po and 210 Pb. Eight of the waters were of Ca type and two were of Na-Cl type. Some of the waters also had high concentrations of Fe, Mn and humic substances. Uranium was present entirely in soluble form, probably as uranyl ion in soluble carbonate complexes. 226 Ra was in soluble form in the waters with low concentrations of Fe and Mn, but 10% of the total radium activity was bound to particles in Fe-Mn-rich waters. The speciation of Po is complex in natural waters; polonium was present in both soluble and particle-bound forms. A correlation was observed between the fractions of particle-bound 210 Po and the concentrations of iron in

  2. Trace Elements and Physico-Chemical Quality of the Well Waters in Mahitsy, Province of Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasolofonirina, M.; Randriamanivo, L.V.; Andrianarilala, M.T.; Raoelina Andriambololona

    2004-01-01

    The proposed study area of Mahitsy is located in the province of Antananarivo. Only 14.38% of the population in the rural zone has access to safe drinking water. Most of human population use wells or springs as the main source of drinking water. Wells are generally less than 20 meters deep and they are not properly sealed. Well waters investigated in January 2004 have a very large range of trace constituent and chemical composition in the zone of interest. Manganese concentrations range is 8μg.L -1 -1115 μg.L -1 and concentrations of barium vary in the range of 55μg.L -1 - 4967 μg.L -1 . 67% of monitored well waters are of manganese concentration higher than 50μg.L -1 and 44% contain barium with a concentration higher than 700μg.L -1 . Total dissolved solids vary between 8 mg.L -1 and 881 mg.L -1 and well water pHs are acidic (4.28 - 5.94). Nitrate concentrations monitored in Mahitsy groundwaters show that, 54% of the well water samples exceed 50 mg.L -1 (WHO guidelines value) and 84% exceed 13.5 mg.L -1 (indicative value of human activities). The nitrate content ranges from 4 to 489 mg.L -1 . Groundwater nitrate correlates positively with chloride and potassium. That would suggest that the high content of nitrate may result from the septic tank, the cesspool and the animal wastes storage, located next to the well. However, people draw water from groundwater for domestic purposes, as the water infrastructure remains undeveloped in the studied area. The measurement of trace constituents are performed using Total Relflection X-ray Fluorescence (TXRF) analytical method and the major ions are determined by Ion Chromatograph (IC) system.

  3. Establishing baseline water quality for household wells within the Marcellus Shale gas region, Susquehanna County, Pennsylvania, U.S.A

    International Nuclear Information System (INIS)

    Rhodes, Amy L.; Horton, Nicholas J.

    2015-01-01

    Highlights: • Laws do not specify how baseline tests are conducted prior to hydraulic fracturing. • Study estimates variability of groundwater chemistry for repeated measurements. • Water chemistry varies more geographically than at a single, household well. • A single, certified test can characterize baseline geochemistry of groundwater. • Multiple measurements better estimate upper limits of regional baseline values. - Abstract: Flowback fluids associated with hydraulic fracturing shale gas extraction are a potential source of contamination for shallow aquifers. In the Marcellus Shale region of northeastern Pennsylvania, certified water tests have been used to establish baseline water chemistry of private drinking water wells. This study investigates whether a single, certified multiparameter water test is sufficient for establishing baseline water chemistry from which possible future contamination by flowback waters could be reliably recognized. We analyzed the water chemistry (major and minor inorganic elements and stable isotopic composition) of multiple samples collected from lake, spring, and well water from 35 houses around Fiddle Lake, Susquehanna County, PA that were collected over approximately a two-year period. Statistical models estimated variance of results within and between households and tested for significant differences between means of our repeated measurements and prior certified water tests. Overall, groundwater chemistry varies more spatially due to heterogeneity of minerals within the bedrock aquifer and due to varying inputs of road salt runoff from paved roads than it does temporally at a single location. For wells located within road salt-runoff zones, Na + and Cl − concentrations, although elevated, are generally consistent through repeated measurements. High acid neutralizing capacity (ANC) and base cation concentrations in well water sourced from mineral weathering reactions, and a uniform stable isotopic composition for

  4. Evaluation and Assessment of Fluoride in Drinking Water Wells Damavand Villages Zoning in GIS According to DMF Index

    OpenAIRE

    Kave Kheirkhah Rahimabad; Amir Hessam Hasani; Reza Saeedi; Mir Masoud Kheirkhah Zarkesh; Mojtaba Sayadi

    2016-01-01

    Background:Fluoride is one the vital anions and the drinking water is the main source of preparing it for the human body. Nonetheless, the aim of this paper is to investigate the Fluoride rate in water supplying wells by using GIS environment according to decay, missing or filled (DMF) index.  Methods: This research is an analytic and cross-sectional descriptive study with sampling approach of 12 water supplying wells of Damavand villages in summer and autumn the year 2013. The Fluor...

  5. Well completion report - dissolution zone water wells (PD-8, PD-11, PD-12, PD-13), Palo Duro Basin, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    1984-04-01

    This report describes the drilling and testing of four dissolution zone water wells: Sawyer No. 2, Mansfield No. 2, Detten No. 2, and Harman No. 1; each in a different location in Texas. Drilling and testing were performed by Stone and Webster Engineering Corporation as a part of a nationwide program to identify potential locations for a nuclear waste repository. Stone and Webster worked under a contract with the US Department of Energy's Program Manager: Battelle Project Management Division, Office of Nuclear Waste Isolation. This report describes the drilling and testing activities actually performed (compared to the Field Test Plan), describes the problems encountered, and provides recommendations for future work. Data gathered during drilling and testing of the well are included as appendices to this report. These data are preliminary. They have been neither analyzed nor evaluated. 5 figures

  6. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  7. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  8. Prevalence of antibiotic resistance in bacteria isolated from drinking well water available in Guinea-Bissau (West Africa).

    Science.gov (United States)

    Machado, A; Bordalo, A A

    2014-08-01

    The dissemination of antibiotic-resistant bacteria and the spread of antibiotic resistance genes are a major public health concern worldwide, being even proposed as emerging contaminants. The aquatic environment is a recognized reservoir of antibiotic resistant bacteria, and antibiotic resistance genes have been recently detected in drinking water. In this study, the water quality and the prevalence of antibiotic resistance of heterotrophic culturable bacteria were characterized seasonally in wells that serve the population of Guinea-Bissau (West Africa) as the sole source of water for drinking and other domestic proposes. The results revealed that well water was unfit for human consumption independently of the season, owing to high acidity and heavy fecal contamination. Moreover, potentially pathogenic bacteria, which showed resistance to the most prescribed antibiotics in Guinea-Bissau, were isolated from well water, posing an additional health risk. Our results suggest that well water not only fosters the transmission of potential pathogenic bacteria, but also represents an important reservoir for the proliferation of antibiotic resistant bacteria, that can aggravate the potential to cause disease in a very vulnerable population that has no other alternative but to consume such water. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Environmental Analysis of The Impacts of Batik Waste Water Polution on The Quality of Dug Well Water in The Batik Industrial Center of Jenggot Pekalongan City

    Science.gov (United States)

    Budiyanto, Slamet; Anies; Purnaweni, Hartuti; Sunoko, Henna Rya

    2018-02-01

    The city of Pekalongan known as "Kota Batik" is one of Batik Industrial Centers in Indonesia with 917 batik industry. There are 203 batik industries located in Jenggot Village, which is the biggest batik industrial center in Pekalongan City. The process of making batik requires a dye derived from synthetic dyes containing heavy metals. Most of the waste is directly discharged into the environment without going through the processing first. This is due to the lack of optimal management of existing WWTP as well as lack of public awareness of environmental conservation. This condition has a negative impact on the surrounding community, especially in terms of environmental health. The result of measurement of 5 (five) batik industrial waste outlets and 5 point of batik waste water in residential sewer shows almost equal number for 3 (three) parameters of heavy metals Cd, Cr and Pb with average number: Cd 0.07 Mg / L, Cr 0.76 mg / L and Pb 0.78 mg / L. These three parameters exceed the maximum level of quality standard established by Government Regulation No.82 of 2001 on Water Quality Management and Water Pollution Control. The average result of the water quality measurement of the well digging population to the heavy metal content are: Cd 0,001 mg / L, Cr 0,002 mg / L and Pb 0.04 mg / L. Of the three parameters of heavy metals, heavy metals of Pb are on average higher than the maximum level of quality standards established by Decree of the Minister of Health Number. 492 / Menkes / Per / IV / 2010 regarding Water Quality Requirements. Potential occurrence of dug well water contamination due to infiltration of batik waste water is big enough. Survey results of 15 dug wells show that the construction of dug wells is not sufficient. There is a dug well with a damaged outer wall of 16.1%, damaged inner wall of 17.9% and a damaged well floor of 19.7%. Improper well construction impacts on the infiltration of batik waste water into the well. Survey results of physical well

  10. Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Mitchell, Peter I; Vintró, Luis León; Omarova, Aigul; Burkitbayev, Mukhambetkali; Nápoles, Humberto Jiménez; Priest, Nicholas D

    2005-06-01

    The concentration of tritium has been determined in well waters, streams and atomic lakes in the Sarzhal, Tel'kem, Balapan and Degelen Mountains areas of the Semipalatinsk Test Site. The data show that levels of tritium in domestic well waters within the settlement of Sarzhal are extremely low at the present time with a median value of 4.4 Bq dm(-3) (95% confidence interval:4.1-4.7 Bq dm(-3)). These levels are only marginally above the background tritium content in surface waters globally. Levels in the atomic craters at Tel'kem 1 and Tel'kem 2 are between one and two orders of magnitude higher, while the level in Lake Balapan is approximately 12,600 Bq dm(-3). Significantly, levels in streams and test-tunnel waters sourced in the Degelen Mountains, the site of approximately 215 underground nuclear tests, are a further order of magnitude higher, being in the range 133,000--235,500 Bq dm(-3). No evidence was adduced which indicates that domestic wells in Sarzhal are contaminated by tritium-rich waters sourced in the Degelen massif, suggesting that the latter are not connected hydrologically to the near-surface groundwater recharging the Sarzhal wells. Annual doses to humans arising from the ingestion of tritium in these well waters are very low at the present time and are of no radiological significance.

  11. Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Peter I [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Vintro, Luis Leon [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Omarova, Aigul [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Burkitbayev, Mukhambetkali [Department of Inorganic Chemistry, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Napoles, Humberto Jimenez [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Priest, Nicholas D [School of Health and Social Sciences, Middlesex University, Enfield EN3 4SA (United Kingdom)

    2005-06-01

    The concentration of tritium has been determined in well waters, streams and atomic lakes in the Sarzhal, Tel'kem, Balapan and Degelen Mountains areas of the Semipalatinsk Test Site. The data show that levels of tritium in domestic well waters within the settlement of Sarzhal are extremely low at the present time with a median value of 4.4 Bq dm{sup -3} (95% confidence interval: 4.1-4.7 Bq dm{sup -3}). These levels are only marginally above the background tritium content in surface waters globally. Levels in the atomic craters at Tel'kem 1 and Tel'kem 2 are between one and two orders of magnitude higher, while the level in Lake Balapan is approximately 12 600 Bq dm{sup -3}. Significantly, levels in streams and test-tunnel waters sourced in the Degelen Mountains, the site of approximately 215 underground nuclear tests, are a further order of magnitude higher, being in the range 133 000-235 500 Bq dm{sup -3}. No evidence was adduced which indicates that domestic wells in Sarzhal are contaminated by tritium-rich waters sourced in the Degelen massif, suggesting that the latter are not connected hydrologically to the near-surface groundwater recharging the Sarzhal wells. Annual doses to humans arising from the ingestion of tritium in these well waters are very low at the present time and are of no radiological significance.

  12. Ground-Water-Quality Data for Selected Wells in the Beaver Creek Watershed, West Tennessee

    National Research Council Canada - National Science Library

    Williams, Shannon D

    1996-01-01

    In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation, began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee...

  13. Combination of drainage, water supply and environmental protection as well as rational distribution of water resource in Zhengzhou mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Li, D.; Di, Z.Q.; Miao, Y.; Zhao, S.Q.; Guo, Q.W. [CUMT, Beijing (China). Resource Exploitation Engineering College

    2005-10-01

    The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environmental protection is becoming more and more serious. However, the contradiction can be solved by the scientific management of optimizing combination of drainage, water supply and environmental protection. The Philip multiple objectives simplex method used in this article has searched for a possible solution at the first step, and then it goes on searching to find out whether there is a weight number that can lead the solution to the biggest. It can reduce the randomness and difficulty of traditional weight method which determine the weight number artificially. Some beneficial coefficients are vague and the number is larger in the model of water resource dispatch. So the vague layer analysis method can consider these vague factors fully, combining the qualitative and quantitative analysis together. Especially, this method can quantify the experiential judgement of policy decider, and it will turn to be more suitable if the structure of objective factors is complex or the necessary data are absent. In the paper, the two methods above are used to solve the plans of drainage, water supply and optimizing distribution of water resource in the Zhengzhou mining district.

  14. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...... fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well...

  15. [Comparative study of some clinical and laboratory indicators in a group of patients using wells as source of drinking water and a control group using safe water].

    Science.gov (United States)

    Vasilescu, L; Ciochină, D A

    2011-01-01

    In time, well water, as a source of drinking and coking water, with physical-chemical, bacteriological, and biological indicators suggestive of alteration in water potability, determines complex, sometimes irreversible, metabolic disorders. Sixty individuals residing in a rural community were divided into 2 groups: study group -30 subjects using well water, and control group--30 subjects using safe water. For the study group the selection criteria were: age, sex, use of well water as drinking and cooking water, history suggestive of chronic poisoning (pregnancy course, birth weight, susceptibility to infectious agents, and current chronic diseases). In the study group, gestosis, prematurity, and altered body mass index are more frequent as compared to the subjects in the control group. The identified laboratory changes indicate moderate anemia, hepatic cytolysis, dyslipidemia, presence of nitrites in urine, and positive urine cultures. Long-term use of water with mineral constituents in excess, absent, or inadequate, the direct biological and chemical water pollution, or most frequently the indirect pollution through the soil determine, in time, complex, sometimes irreversible, metabolic disorders.

  16. Exploring links between water quality and E. coli O157:H7 survival potential in well waters from a rural area of southern Changchun City, China.

    Science.gov (United States)

    Ding, Meiyue; Li, Jiahang; Liu, Xiaodan; Li, Huiru; Zhang, Rui; Ma, Jincai

    2018-04-01

    Waterborne infectious disease outbreak associated with well water contamination is a worldwide public health issue, especially for rural areas in developing countries. In the current study, we characterized 20 well water samples collected from a rural area of southern Changchun city, China, and investigated the survival potential of Escherichia coli O157:H7 in those water samples. The results showed that nitrate and ammonia concentrations in some well water samples exceed the corresponding China drinking water standards, indicating potential contamination by local agricultural farms. Our results also revealed that the average survival time (ttd) of E. coli O157:H7 in all well water samples was 30.09 days, with shortest and longest ttd being 17.95 and 58.10 days, respectively. The ttds were significantly correlated with pH and the ratio of total nitrogen to total phosphorus. In addition, it was found that the shape parameter (p) and first decimal reduction parameter (δ) were negatively (P well water, suggesting that this pathogen could constitute a great public health risk.

  17. Borehole data package for the 100-K area ground water wells, CY 1994

    International Nuclear Information System (INIS)

    Williams, B.A.

    1994-01-01

    Borehole, hydrogeologic and geophysical logs, drilling, as-built diagrams, sampling, and well construction information and data for RCRA compliant groundwater monitoring wells installed in CY 1994 at the 100-K Basins

  18. All Known Water Wells in the State of Iowa (Public Version)

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Combined database of all wells with uniform attributes from detailed individual well databases (see General and Entity Attribute sections of metadata for individual...

  19. Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered or droughted

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, G.; Ortega, J.K.E.; Nerd, A.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1991-01-01

    Under well-watered conditions, chlorenchyma acidity in cladodes of Opuntia ficus-indica increased substantially at night, fully accounting for the 0.26-megapascal nocturnal increase in osmotic pressure in the outer 2 millimeters. Osmotic pressure in the inner part of the chlorenchyma and in the water-storage parenchyma did not change significantly over 24-hour periods. Three months of drought decreased nocturnal acid accumulation by 73% and essentially abolished transpiration; also, 27% of the chlorenchyma water and 61% of the parenchyma water was lost during such drought, but the average tissue osmotic pressure was little affected. Turgor pressure was maintained in the chlorenchyma after 3 months of drought, although it decreased sevenfold in the water-storage parenchyma compared with the well-watered condition. Moreover, the nocturnal increases in turgor pressure of about 0.08 megapascal in the outer part of the chlorenchyma was also unchanged by such drought. The water potential magnitudes favored water movement from the parenchyma to the chlorenchyma at the end of the night and in the reverse direction during the late afternoon. Experiments with tritiated water support this pattern of water movement, which is also in agreement with predictions based on electric-circuit analog models for Crassulacean acid metabolism plants.

  20. Determination of the sanitary protective zones around Stip underground water wells from the Bregalnica river alluvion by its comparison to the Zagreb underground water wells from the Sava river alluvion

    OpenAIRE

    Mircovski, Vojo

    2006-01-01

    Based on existing geological - hydrogeological data hydrogeological characteristics and hydrogeological parameters of the alluvial sediments of Stip sources of ground water from the river Bregalnica were determined. According to the granulometric analysis and data obtained pumping test of wells were determined and filtration features of water bearing alluvial sediments built of sand and gravel and their overlay sediments consisting of sands and dusty clay sands. In determination of the ...

  1. Improving recovery efficiency of water-drive channel sandstone reservoir by drilling wells laterally

    Energy Technology Data Exchange (ETDEWEB)

    Zhiguo, F.; Quinglong, D.; Pingshi, Z.; Bingyu, J.; Weigang, L. [Research Institute of Exploration and Development, Daqing (China)

    1998-12-31

    Example of drilling a horizontal well in reservoir rock of only four meter thick by using existing casing pipe of low efficiency vertical wells to induce production in the top remaining reservoir is described. The experience shows that drilling horizontal wells laterally in thin bodies of sandstone reservoirs and improve their productivity is a feasible proposition. Productivity will still be low, but it can be improved by well stimulation. 3 refs., 3 figs.

  2. Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa).

    Science.gov (United States)

    Machado, A; Bordalo, A A

    2014-09-01

    Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions.

  3. Procedures for the collection and preservation of groundwater and surface water samples and for the installation of monitoring wells

    International Nuclear Information System (INIS)

    Korte, N.; Kearl, P.

    1984-01-01

    Proper sampling procedures are essential for a successful water-quality monitoring program. It must be emphasized, however, that it is impossible to maintain absolutely in-situ conditions when collecting and preserving a water sample, whether from a flowing stream or an aquifer. Consequently, the most that can reasonably be expected is to collect a best possible sample with minimal disturbance. This document describes procedures for installing monitoring wells and for collecting samples of surface water and groundwater. The discussion of monitoring wells includes mention of multilevel sampling and a general overview of vadose-zone monitoring. Guidelines for well installation are presented in detail. The discussion of water-sample collection contains evaluations of sampling pumps, filtration equipment, and sample containers. Sample-preservation techniques, as published by several government and private sources, are reviewed. Finally, step-by-step procedures for collection of water samples are provided; these procedures address such considerations as necessary equipment, field operations, and written documentation. Separate procedures are also included for the collection of samples for determination of sulfide and for reactive aluminum. The report concludes with a brief discussion of adverse sampling, conditions that may significantly affect the quality of the data. Appendix A presents a rationale for the development and use of statistical considerations in water sampling to ensure a more complete water quality monitoring program. 51 references, 9 figures, 4 tables

  4. Reaction of Bullfrog tuff with J-13 well water at 900C and 1500C

    International Nuclear Information System (INIS)

    Oversby, V.M.; Knauss, K.G.

    1983-01-01

    A series of experiments was conducted on crushed tuff at 90 0 C and 150 0 C and on core wafer samples at 150 0 C. The results show the following: increasing the ratio of rock to water increases the rate of approach to steady-state concentrations in solution. Surface outcrop samples of Bullfrog tuff contain a minor component of highly soluble material believed to be a residue from the evaporation of surface runoff water in the pores of the rock. This material can be removed by shaking the crushed rock with water at room temperature and subjecting it briefly to heat with fresh water. Solution analyses for unfiltered samples that have reacted for short periods show higher concentrations of Al and Fe than do analyses for filtered samples; results for other elements are independent of filtration. This difference probably exists because of particulate matter in the solutions that dissolves when the samples are acidified prior to analysis. Agitation of samples during reaction produces sub-0.1 μ particles in the solutions. These particles dissolve when samples are acidified, resulting in abnormally high concentration values for some elements, such as Al and Fe. Comparison of the results for crushed rock with those for core wafers shows that the method of sample preparation does not have a large effect on the results of rock-water interaction studies

  5. Water-level fluctuations due to Earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 per cent of the total discharge, which was 0.94 l/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  6. Well balancing of the SWE schemes for moving-water steady flows

    Science.gov (United States)

    Caleffi, Valerio; Valiani, Alessandro

    2017-08-01

    In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.

  7. [Guaranteeing fetal well-being in water childbirth: is it possible?].

    Science.gov (United States)

    Dodero, D; Caporale, E; Cardamone, C; Corticelli, A; Messuti, G; Francescangeli, U; Sirito, R

    2000-01-01

    The criteria, which a modern obstetric department is based on, are to deliver serenely and naturally according to the mother's personal exigencies and preserving the child's right to his/her own safety. The attempt to offer the woman a natural place with respect for these principles has improved the knowledge about the physiologic changes of the female organism during labour and water birth. Our experience about water birth began on 1st of July 2000, the day of the inauguration of the new birth room of the maternal-infantile department of the hospital of Lavagna. We nursed 15 women during labour and water birth, 11 were multiparas, 4 were primiparas, the average age was 31-year-old. We used the existing criteria of maternal and fetal selection for the care of physiologic water birth with a low risk. Particularly, the fetal heart rate was monitored at least for 30 minutes before the immersion into water and then at scheduled intervals during labour. To this purpose we used a cardiotocograph provided with an ultrasound probe (with high density of crystals) and with a toco (with high sensitivity), both waterproof and wireless. In our sample the episiotomy was not performed and 3rd degree lacerations did not happen. The neonatal average weight was 3100 gr for the primiparas and 3040 gr for the multiparas, respectively. The Apgar measurement was never lower than 8. The average time of labour was 6 hours for the group of the primiparas and 4.25 hours for the multiparas, respectively. In conclusion the monitoring of fetal welfare during water labour does not substantially differ from the monitoring of traditional labour, but it requires specific equipments.

  8. Branding Plan for Arctic Well Spring Water: Establishing a Premium Brand in China

    OpenAIRE

    Lesonen, Essi

    2015-01-01

    The Chinese middle class has been growing at a fast pace during the past years and they have more purchasing power than ever. The growing middle class is also concerned about their health and safety and they are willing to spend money on premium international water. The idea for this thesis came from a group of people in Finland and China who are interested in exporting spring water from the Finnish Lapland to China. The reason for choosing China was the enormity and potential of the mark...

  9. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo

    2014-01-01

    ) within a dihaploid potato (Solanum tuberosum L.) mapping population under well-watered (WW) and drought-stress (DS) conditions. The factorial dependency of WUEi on several plant bio-physiological traits was analyzed, and clonal difference of WUEi was compared. Significant differences in WUEi were found......Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi...

  10. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    Science.gov (United States)

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  11. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  12. Analysis of the bacterial community composition in acidic well water used for drinking in Guinea-Bissau, West Africa.

    Science.gov (United States)

    Machado, Ana; Bordalo, Adriano A

    2014-08-01

    Potable water is a resource out of reach for millions worldwide, and the available water may be chemically and microbiologically compromised. This is particularly acute in Africa, where water-networks may be non-existent or restricted to a small fraction of the urban population, as in the case of Guinea-Bissau, West Africa. This study was carried out seasonally in Bolama (11°N), where unprotected hand-dug wells with acidic water are the sole source of water for the population. We inspected the free-living bacterial community dynamics by automated rRNA intergenic spacer analyses, quantitative polymerase chain reaction and cloning approaches. The results revealed a clear seasonal shift in bacterial assemblage composition and microbial abundance within the same sampling site. Temperature, pH and turbidity, together with the infiltration and percolation of surface water, which takes place in the wet season, seemed to be the driving factors in the shaping and selection of the bacterial community and deterioration of water quality. Analysis of 16S rDNA sequences revealed several potential pathogenic bacteria and uncultured bacteria associated with water and sediments, corroborating the importance of a culture-independent approach in drinking water monitoring. Copyright © 2014. Published by Elsevier B.V.

  13. Water quality of springs and water wells which are used in human consumption, in the Jocotitlan volcano region at State of Mexico

    International Nuclear Information System (INIS)

    Baca G, A.; Segovia, N.; Iturbe, J.L.; Martinez, V.; Armienta, M.A.; Seidel, J.L.

    1998-01-01

    In this work are presented the results of water quality of seven springs (San Antonio Enchisi, Las Fuentes, El Cerro, Pasteje, Los Reyes, Santa Cruz and Tiacaque) and two water wells (Jocotitlan No. 2 and La Providencia No. 35) which are used for human consumption and that are located surrounding area to Jocotitlan volcano, state of Mexico. It was determined the 222 Rn concentration through liquid scintillation, the 226 Ra by Gamma spectroscopy, the physical-chemical parameters (major elements) and bacteriological, using standardized methods. The minor elements and trace in solution were determined by Icp-Ms mass spectroscopy. The water quality was established in function of the standing standards. Therefore Las Fuentes, El Cerro, Santa Cruz, Tiacaque springs and the Jocotitlan No. 2 well, are drinkable water. So, Pasteje, Los Reyes, San Antonio Enchisi springs and the La Providencia No. 35 well are chemically drinkable but presenting bacteriological pollution. (Author)

  14. Investigating the potability of water from dug wells: A case study of ...

    African Journals Online (AJOL)

    Akurugu Bismark

    the necessary attention at all times. Although water is essential .... Figure 1. Map of Ghana and Bolgatanga municipality showing the location of the study area. Sample ..... high above ground (at least 1 m) and sited at least 30 m away from any ...

  15. Assessing the utility of ultraviolet irradiation to reduce bacterial biofilms in fish hatchery well water supplies

    Science.gov (United States)

    The accumulation of bacterial biofilms and consequent clogging of screens, pipes, and heat exchanger equipment is problematic for water supply systems contaminated with iron bacteria and other slime forming bacteria. Despite the ubiquitous threat posed by iron bacteria contamination in groundwater s...

  16. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  17. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  18. Use of well points to determine the thickness and extent of floating product atop the water table

    International Nuclear Information System (INIS)

    Liikala, T.L.; Lewis, R.; Gilmore, T.; Hoffmann, H.

    1994-01-01

    The release of petroleum products to the ground water is a widespread problem. Conventional plume tracking techniques are to drill wells and measure product thickness and extent. In this study, well points were installed to rapidly and inexpensively determine the thickness and extent of floating product atop the water table. Spills and leaks of JP-4 have produced a discrete full layer atop the water table at one site at Eielson Air Force Base near Fairbanks, Alaska. The 0.2- to 1.3-foot-thick layer was identified in two ground water monitoring wells at a depth of approximately 10 feet. The layer is contained within unconsolidated glaciofluvial sands and gravels. A comprehensive assessment of the product thickness and extent was necessary for the site remedial investigation/feasibility study. The emplacement of additional monitoring wells was discouraged because of time and budget constraints. The fuel layer was delineated with 18 screened well points. The points consist of 2-inch-diameter galvanized steel pipe. The points were driven into the floating products with a hollow-stem auger rig sampling hammer. The product thickness was measured with an interface probe. The presence of floating product could be measured immediately after emplacement; the product thickness measurements typically stabilized within three days. The product thickness compared favorably with those measured in adjacent monitoring wells

  19. DRINKING WATER QUALITY IN WELLS FROM AN AREA AFFECTED BY FLOOD EVENTS: CASE STUDY OF CURVATURE SUB-CARPATHIANS, ROMANIA

    Directory of Open Access Journals (Sweden)

    ŞENILĂ M.

    2015-03-01

    Full Text Available The present study evaluates the chemical parameters (inorganic anions and metals of drinking water of twenty-four wells and the presence of Escherichia coli in ten selected wells located in two villages from Buzau and Prahova Counties, in Curvature Sub-Carpathians, Romania, a rural area frequently affected by flood events. Water samples were collected in July 2014. Concerntrations of fluorides, nitrites, chlorides and phosphates were below the maximum allowable concentrations (MACs for drinking water established by European legislation (Drinking Water Directive 98/83/CE in all the analysed samples. Concentration of nitrates exceeded MAC (50 mg L-1 in five samples, while concentration of sulphates exceeded MAC (250 mg L-1 in two samples. Among the analysed metals, Mn exceeded MAC (50 μg L-1 in two samples, while Cu, Pb, Zn, Fe, Na, Cd, Cr, Cu, Ni and As concentrations did not exceeded the corresponding MACs. E. coli (over 2000 UFC 100 mL-1 was found in six water samples. The results show that majority of the studied parameters were below the threshold limits, however in some of the studied wells the water was found to be contaminated both by some chemical pollutants and by E. coli, which prepresent a risk for local population health.

  20. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  1. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys

    Science.gov (United States)

    Panja, Chameli; Saliba, Najat; Koel, Bruce E.

    1998-01-01

    Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.

  3. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, K.; Famiglietti, J. S.; David, C. H.; Reager, J. T., II

    2014-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  4. Determination of elemental and physico-chemical quality of well waters and assessment of their impacts on public health

    International Nuclear Information System (INIS)

    Randriamanivo, L.V.; Rasolofonirina, M.; Rakotondramanana, H.T.; Rasoazanany, E.O.; Razafy Andrianarivo, R.

    2001-01-01

    Water is one the most important constituents of the human environment. The relevance of determining pollutants in drinking water is obvious because it is among the pathways of contaminants to enter the organism. The aim of this work is to determine water quality and thus to assess the effects on humans. Total Reflection X-Ray Fluorescence analysis method (TXRF) has been applied for the measurements of trace elements in drinking water. The analyses were performed without any pre-concentration of samples. Colorimetric method was used for the analysis of major components of water. The samples were collected in the regions towards southern Antananarivo. Well waters were sampled because they are the type of drinking water consumed by the population in these regions. Analytical results showed that the determined concentrations of toxic elements such as chromium and lead are largely lower than the maximum allowed values, except two sites were lead concentration exceeds it. For Fe, five sites showed water samples having iron concentrations higher than Recommended Value (50 μg.L -1 ) fixed by the European Union. The mean values for barium and manganese were above the maximum allowed value established by law in some sites. This is mainly due to the geology of the terrain. Concerning nitrate, three sites showed higher concentration than the maximum allowed value.

  5. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    Science.gov (United States)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  6. Defining an optimum pumping-time requirement for sampling ground-water wells on the Hanford site

    International Nuclear Information System (INIS)

    Scharnhorst, N.L.

    1982-04-01

    The objective was to determine the optimum time period necessary to pump water from a well before a representative sample of the ground water can be obtained. It was assumed that a representative sample has been collected if the concentration of chemical parameters is the same in a number of samples taken consecutively, so that the concentration of parameters does not vary with time of collection. Ground-water samples used in this project were obtained by pumping selected wells on the Hanford Site. At each well, samples were taken at two minute intervals, and on each sample various chemical analyses were performed. Samples were checked for pH, sulfate, iron, specific conductivity, chloride, nitrate and alkalinity. The data showed that pH, alkalinity, sulfate and specific conductivity levels stabilized almost immediately after pumping of the well began. In many wells, the chloride and nitrate levels were unstable throughout the 38-minute sampling period. Iron levels, however, did not behave in either fashion. The concentration of iron in the samples was high when pumping began but dropped rapidly as pumping continued. The best explanation for this is that iron is flushed from the sides of the casing into the well when pumping begins. After several minutes of pumping, most of the dissolved iron is washed from the well casing and the iron concentration reaches a stable plateau representative of the iron concentration in the ground water.Since iron concentration takes longest to stabilize, the optimum pumping time for a well is based on the iron stabilization time for that well

  7. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    Science.gov (United States)

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  8. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    Science.gov (United States)

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  9. Testing tubewell platform color as a rapid screening tool for arsenic and manganese in drinking water wells.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Jacks, Gunnar

    2012-01-03

    A low-cost rapid screening tool for arsenic (As) and manganese (Mn) in groundwater is urgently needed to formulate mitigation policies for sustainable drinking water supply. This study attempts to make statistical comparison between tubewell (TW) platform color and the level of As and Mn concentration in groundwater extracted from the respective TW (n = 423), to validate platform color as a screening tool for As and Mn in groundwater. The result shows that a black colored platform with 73% certainty indicates that well water is safe from As, while with 84% certainty a red colored platform indicates that well water is enriched with As, compared to WHO drinking water guideline of 10 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 79%, 77%, and 81%, respectively. However, the certainty values become 93% and 38%, respectively, for black and red colored platforms at 50 μg/L, the drinking water standards for India and Bangladesh. The respective efficiency, sensitivity, and specificity are 65%, 85%, and 59%. Similarly for Mn, black and red colored platform with 78% and 64% certainty, respectively, indicates that well water is either enriched or free from Mn at the Indian national drinking water standard of 300 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 71%, 67%, and 76%, respectively. Thus, this study demonstrates that TW platform color can be potentially used as an initial screening tool for identifying TWs with elevated dissolved As and Mn, to make further rigorous groundwater testing more intensive and implement mitigation options for safe drinking water supplies.

  10. Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water.

    Science.gov (United States)

    Kumasaka, Mayuko Y; Yamanoshita, Osamu; Shimizu, Shingo; Ohnuma, Shoko; Furuta, Akio; Yajima, Ichiro; Nizam, Saika; Khalequzzaman, Md; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2013-03-01

    Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 μM arsenic and 10 μM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.

  11. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    Science.gov (United States)

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, road ( = 0.76, road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation.

    Science.gov (United States)

    Flanagan, Sara V; Johnston, Richard B; Zheng, Yan

    2012-11-01

    A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization's guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10-50 µg/L account for an annual 24,000 and perhaps as many as 19,000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0-15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children's Fund 2006-2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations.

  13. An econometric viability model for ongrowing sole (Solea senegalensis) in tanks using pumped well sea water

    OpenAIRE

    García García, J.; García García, B.

    2006-01-01

    Sole (Solea senegalensis) is of great interest to marine aquaculture in the Mediterranean because of its relatively fast growth and good commercial prospects (high price). However, the wide mean annual variation in the temperature of Mediterranean sea water (14-26 deg C) is a limiting factor for the ongrowing of this species; the optimum for this process is 19-20 deg C. One of the possible mid-term solutions for ensuring a constant year-round temperature is to ongrow these fish in tanks conta...

  14. Perspectives on impacts of water quality on agriculture and community well-being-a key informant study from Sri Lanka.

    Science.gov (United States)

    Thoradeniya, Bhadranie; Pinto, Uthpala; Maheshwari, Basant

    2017-11-04

    Integrated management of water quality is critical for sustaining food production and achieving overall well-being of a community. Further, understanding people's perceptions and engagement can play an important role in achieving water and food security. The main aim of this study was to investigate the perspectives of community and other stakeholders as to how water quality impacts on agriculture, livelihood and community well-being within rural farming communities of two dry zone districts of Sri Lanka. The study adopted 'key informant interviews' as the methodology to investigate community and other stakeholder perspectives to collect primary data over a period of four months. The interview contents were then examined using a frequency matrix and graphed using an Excel graphing tool. The raw text was also analysed to understand the broader patterns in the text. A fuzzy logic cognitive map (FCM) was developed using the relationships between various concepts and linkages provided by the key informants. All key informants were concerned with the quality of drinking water they consume and the water used for their food preparation. Key informants representing the farming community indicated that the use of poor quality groundwater with higher levels of hardness has made growing crops difficult in the region. The key informants also identified extensive and ongoing use of agro-chemicals and fertilisers as a major source of pollution in water bodies in both spatio-temporal scale. Based on key informant interviews, possible initiatives that can help improve surface water and groundwater qualities for both drinking and agricultural use in the dry zone of Sri Lanka can be categorised into four broader themes, viz., provision of filtering/treatment systems, reduction in the use of agro-chemical and fertilisers, education of community stakeholders and support of alternative options for portable water supplies. The study indicates that in the key informants' view of

  15. Arsenic in private well water part 3 of 3: Socioeconomic vulnerability to exposure in Maine and New Jersey.

    Science.gov (United States)

    Flanagan, Sara V; Spayd, Steven E; Procopio, Nicholas A; Marvinney, Robert G; Smith, Andrew E; Chillrud, Steven N; Braman, Stuart; Zheng, Yan

    2016-08-15

    Arsenic is a naturally occurring toxic element often concentrated in groundwater at levels unsafe for human consumption. Private well water in the United States is mostly unregulated by federal and state drinking water standards. It is the responsibility of the over 13 million U.S. households regularly depending on private wells for their water to ensure it is safe for drinking. There is a consistent graded association with health outcomes at all levels of socioeconomic status (SES) in the U.S. Differential exposure to environmental risk may be contributing to this persistent SES-health gradient. Environmental justice advocates cite overwhelming evidence that income and other SES measures are consistently inversely correlated with exposure to suboptimal environmental conditions including pollutants, toxins, and their impacts. Here we use private well household surveys from two states to investigate the association between SES and risks for arsenic exposure, examining the potentially cumulative effects of residential location, testing and treatment behavior, and psychological factors influencing behavior. We find that the distribution of natural arsenic hazard in the environment is socioeconomically random. There is no evidence that higher SES households are avoiding areas with arsenic or that lower SES groups are disproportionately residing in areas with arsenic. Instead, disparities in exposure arise from differing rates of protective action, primarily testing well water for arsenic, and secondly treating or avoiding contaminated water. We observe these SES disparities in behavior as well as in the psychological factors that are most favorable to these behaviors. Assessment of risk should not be limited to the spatial occurrence of arsenic alone. It is important that social vulnerability factors are incorporated into risk modeling and identifying priority areas for intervention, which should include strategies that specifically target socioeconomically vulnerable

  16. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  17. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue

    2017-10-01

    A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.

  18. Chronic Arsenic Toxicity from Drinking Well Water in a Rural Area

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Kazemifar

    2017-11-01

    Full Text Available Background: Drinking water is the most important cause of poisoning in the world. Iran is one of the countries with arsenic-contaminated water upper limit of normal. In this study, we decided to determine the effects of chronic arsenic poisoning on demographic, clinical and laboratory features of people. Methods: This descriptive-sectional study carried out on all people resided in Shahidabad Village, Qazvin Province in 2015. All of them were evaluated in terms of demographic features, blood pressure, diabetes, dermatologic, and neurologic lesions, and fasting blood sugar. People with exclusion criteria were excluded. The data were analyzed by SPSS software and descriptive statistics. Results: Out of 400 subjects, 278 (69.5% females and 122 (30.5% males, 88 (22% people had positive urine test for arsenic and 312 (78% subjects had negative urine test. The mean age of them was 48.9± 16.6 yr. The mean age and duration of residence in the region in arsenic positive group were significantly higher than arsenic negative group (P<0.05. Blood pressure, history of diabetes, dermatologic and neurologic lesions, and fasting blood sugar had no significant differences between two groups. Conclusion: Although there were no significant differences between two groups in terms of many clinical and laboratory findings but the prevalence of 22% of poisoning with arsenic in the selected population reveals the necessity of screening, preventive measures and appropriate treatments in people exposed to arsenic contamination.

  19. Preliminary physico-chemical results obtained on water using new data acquisition systems for deep wells

    International Nuclear Information System (INIS)

    Vinson, J.M.; Peyrus, J.C.

    1984-02-01

    Data acquisition systems recently developed in the context of research on deep storage facilities have provided with an initial set of interesting observations for the physico-chemical study of boreholes. It is possible to make correlations between the chemical compositions of water, pH and the nature of the substrate. The sampling done at Auriat with a Gerhardt-Owen probe shows the variability in the composition of water as a function of depth. The variation in calcium content, following that of pH, is particularly notable. Examination of pH measurements is of particular interest. A general gradient correlates exactly with the nature of the substrate. Whereas steel piping has a very alkaline pH, distinct pH values correspond to the two types of granite substrate. In this general gradient, series of disturbances can be seen which correspond perfectly to fracturation zones or large fractures. These most promising preliminary results lead to believe that in situ physico-chemical measurements should be continued and developed with a view to improved evaluation of the safety of deep storage facilities

  20. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  1. Predicting the risk of groundwater arsenic contamination in drinking water wells

    Science.gov (United States)

    Cao, Hailong; Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Li, Junxia; Zhan, Hongbin; Liu, Peng

    2018-05-01

    Arsenic (As)-contaminated groundwater is a global concern with potential detrimental effects on the health of hundreds of millions of people worldwide. However, the extent of this problem may be more severe than anticipated, as many wells have not been tested and may contain unsafe-level of As. An optimized statistical regression model was developed to predict the probability of geogenic high As groundwater (As > 10 μg/L) in this study. Easily obtained hydrogeochemical and geological parameters that are significantly related to As geochemical behaviors were selected as explanatory variables in the model. The results indicate that pH, Cl-, HCO3-, SO42-, and NO3- concentrations, stratigraphic information, and well depth are excellent predictors of As exposure in the Datong Basin, China. Predicted unsafe wells correspond well with the known distribution of high As groundwater in the Datong Basin. The successful application of a data set from Bangladesh also demonstrated the applicability and credibility of this proposed method.

  2. GROUND WATER ISSUE: NONAQUEOUS PHASE LIQUIDS COMPATIBILITY WITH MATERIALS USED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION.

    Science.gov (United States)

    This issue paper provides a comprehensive literature review regarding the compatibility of NAPLs with a wide variety of materials used at hazardous waste sites. A condensed reference table of compatibility data for 207 chemicals and 28 commonly used well construction and sampling...

  3. Physico-chemical and bacteriological quality of water from shallow wells in two rural communities in Benue state, Nigeria

    International Nuclear Information System (INIS)

    Terngu, A.J.; Hyacinth, O.A.; Rufus, S.A.

    2010-01-01

    Ground water abstraction from shallow wells is widely practiced in the Obi and in Oju rural areas of Benue State, Central Nigeria, as a means of fighting guinea worm infestation associated with the surface water sources (streams) in these areas. To ascertain the physico-chemical and bacteriological quality of the water used by the population, water samples from 27 shallow wells in Obi and 19 Oju were taken and examined for key health -related quality parameters using routine methods. In Obi, the ground water colour ranged from 4.0-80.0 TCU, conductivity 55.2- 1600.0 ILS/cm, pH 6.1-8.6, TDS 38.6-1286 mg/L, turbidity 1.0 - 55.0 NTU, arsenic 0.001- 0.210 mg/L, copper 0.01-2.53 mg/L, fluoride 0.08-1.82 mg/L and nitrate 10.8-63.0 mg/L; while in Oju, colour varied from 2.0-87.0 TCU, conductivity 1 07.4-1375 LS/cmp, H 6.4-8.53, TDS 75.2- 1150 mg/L, turbidity 3.0-48.0 NTU, arsenic 0.001-0.023 mg/L, copper 0.01-2.10 mg/L, fluoride 0.01-1.54 mg/L and nitrate 10.2-59.7 mg/L. Some of these values in some instances exceed the WHO standard for drinking water. Alongside with the presence significant total coliform count in most of the wells (0-47/100 mL in Oju and 0-53/100 mL in Obi), the available water is considered largely unsafe for human consumption as obtained. (author)

  4. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    Science.gov (United States)

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.

  5. Groundwater-based water wells characterization from Guinea Bissau (Western Africa): A risk evaluation for the local population.

    Science.gov (United States)

    Ferrante, Margherita; Signorelli, Salvatore Santo; Ferlito, Santina Letizia; Grasso, Alfina; Dimartino, Angela; Copat, Chiara

    2018-04-01

    The study conducted in two regions of Guinea Bissau, Oio and Cacheu, focusing on the characterization of the groundwater supplies sampled during the dry season and their associated risks for human health. Twenty samples were collected in wells located nearby pit latrines. In situ analyses were conducted with Semi-quantitative test strips for the determination of turbidity, pH, chloride, carbonate, sulfites, ammonium, nitrite and nitrate. The analysis of metals was performed by an ICP-MS Elan DRC-e and an ICP-OES Optima 8000. The Target Hazard Quotient (THQ) was applied to evaluate the risk of developing chronic systemic effects derived from exposure to metals. Values of concern of turbidity ammonium, and pH values were lower than the normal range for drinking water in most samples. From both regions, Fe and Al were occasionally found with values higher than the international thresholds fixed by the World Health Organization and by the European Commission for drinking water, while, only in one sample from Cacheu region Pb was found significantly above these limits. THQs resulted next to the level of risk (1) for the highest values found of Al, As, Fe and Mn. Of great concern is the resident risk obtained from a well water of Cacheu for the highest value of Pb (96.8μg/L), because the values of the resident risk found of 1 and 0.7 for child and adults respectively. The results obtained highlighted a close correlation between the chemistry of water and sediment and a correlation with the proximity of the water supplies with the latrines. This study evidenced the potential toxicity of the water supplies for the local populations and the risk of developing chronic systemic effects due to some physico-chemical parameters, the importance of functioning water pipeline system, the importance of maintaining adequate distance between latrines and drinking water access. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reduction in exposure to arsenic from drinking well-water in Bangladesh limited by insufficient testing and awareness.

    Science.gov (United States)

    Pfaff, A; Schoenfeld, A; Ahmed, K M; van Geen, A

    2017-01-01

    This study considers potential policy responses to the still very high levels of exposure to arsenic (As) caused by drinking water from shallow tubewells in rural Bangladesh. It examines a survey of 4,109 households in 76 villages of Araihazar upazila conducted two years after a national testing campaign swept through the area. The area is adjacent to the region where a long-term study was initiated in 2000 and where households are periodically reminded of health risks associated with well-water elevated in As. Results confirm that testing spurs switching away from unsafe wells, although the 27% fraction who switched was only about half of that in the long-term study area. By village, the fraction of households that switched varied with the availability of safe wells and the distance from the long-term study area. Lacking follow-up testing, two years only after the campaign 21% of households did not know the status of their well and 21% of households with an unsafe well that switched did so to an untested well. Well testing is again urgently needed in Bangladesh and should be paired with better ways to raise awareness and the installation of additional deep community wells.

  7. Variable speed control in wells turbine-based oscillating water column devices: optimum rotational speed

    Science.gov (United States)

    Lekube, J.; Garrido, A. J.; Garrido, I.

    2018-03-01

    The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.

  8. Environmental Analysis of The Impacts of Batik Waste Water Polution on The Quality of Dug Well Water in The Batik Industrial Center of Jenggot Pekalongan City

    Directory of Open Access Journals (Sweden)

    Budiyanto Slamet

    2018-01-01

    Full Text Available The city of Pekalongan known as "Kota Batik" is one of Batik Industrial Centers in Indonesia with 917 batik industry. There are 203 batik industries located in Jenggot Village, which is the biggest batik industrial center in Pekalongan City. The process of making batik requires a dye derived from synthetic dyes containing heavy metals. Most of the waste is directly discharged into the environment without going through the processing first. This is due to the lack of optimal management of existing WWTP as well as lack of public awareness of environmental conservation. This condition has a negative impact on the surrounding community, especially in terms of environmental health. The result of measurement of 5 (five batik industrial waste outlets and 5 point of batik waste water in residential sewer shows almost equal number for 3 (three parameters of heavy metals Cd, Cr and Pb with average number: Cd 0.07 Mg / L, Cr 0.76 mg / L and Pb 0.78 mg / L. These three parameters exceed the maximum level of quality standard established by Government Regulation No.82 of 2001 on Water Quality Management and Water Pollution Control. The average result of the water quality measurement of the well digging population to the heavy metal content are: Cd 0,001 mg / L, Cr 0,002 mg / L and Pb 0.04 mg / L. Of the three parameters of heavy metals, heavy metals of Pb are on average higher than the maximum level of quality standards established by Decree of the Minister of Health Number. 492 / Menkes / Per / IV / 2010 regarding Water Quality Requirements. Potential occurrence of dug well water contamination due to infiltration of batik waste water is big enough. Survey results of 15 dug wells show that the construction of dug wells is not sufficient. There is a dug well with a damaged outer wall of 16.1%, damaged inner wall of 17.9% and a damaged well floor of 19.7%. Improper well construction impacts on the infiltration of batik waste water into the well. Survey results

  9. Aeromonas presence in drinking water from collective reservoirs and wells in peri-urban area in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Tereza Pepe Razzolini

    2010-10-01

    Full Text Available Aeromonas genus is considered an emerging pathogen and its presence in drinking water supplies is a reason to public health concern. This study investigated the occurrence of Aeromonas in samples from collective reservoirs and wells used as drinking water sources in a peri-urban area. A total of 35 water samples were collected from collective reservoirs and 32 from wells bimonthly, from September 2007 to September 2008. Aeromonas spp determination was carried out using a Multiple-Tube Technique. Samples were inoculated into alkaline peptone water and the superficial film formed was transferred to blood agar plates amended with ampicillin. Typical Aeromonas colonies were submitted to a biochemical screening and then to biochemical tests for species differentiation. Aeromonas was detected in 13 (19% of the 69 samples examined (6 from collective reservoirs and 7 from wells. Concentrations of Aeromonas in collective reservoirs ranged from <0.3 to 1.2 x10²MPN/100mL and, in wells, from <0.3 to 2.4 x10²MPN/100mL. The most frequent specie in the collective reservoir samples was Aeromonas spp (68%, followed by A. encheleia (14% and A. allosaccharophila (8% and A. hydrophila (8%. Aeromonas spp (87% was the most frequent specie isolated from well samples, followed by A. allosacchariphila (8%, A. encheleia (2% and A. jandaei (5%. These data show the presence and diversity of Aeromonas genus in the samples analyzed and highlight that its presence in drinking water poses a significant public health concern.

  10. Hazard Evaluation for a Salt Well Centrifugal Pump Design Using Service Water for Lubrication and Cooling

    International Nuclear Information System (INIS)

    GRAMS, W.H.

    2000-01-01

    This report documents the results of a preliminary hazard analysis (PHA) covering the new salt well pump design. The PHA identified ten hazardous conditions mapped to four analyzed accidents: flammable gas deflagrations, fire in contaminated area, tank failure due to excessive loads, and waste transfer leaks. This document also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition were assigned

  11. Technical NoteEarthquake dates and water level changes in wells in the Eskisehir region, Turkey

    Directory of Open Access Journals (Sweden)

    G. Yuce

    2003-01-01

    Full Text Available Although satisfactory results have yet to be obtained in earthquake prediction, one of the most common indicators of an anomalous precursor is a change in groundwater level in existing wells. Further wells should thus be drilled in unconfined aquifers since these are more susceptible to seismic waves. The Eskisehir region lies in the transition zone between the Aegean extensional domain and the compressible northern Anatolian block. Limnigraphs, installed in 19 exploration wells in the Eskisehir region, recorded pre-seismic, co-seismic and post-seismic level changes during the earthquakes of 17 August Izmit (Mw= 7.4 and 12 November Duzce (Mw= 7.2 1999 that occurred along the North Anatolian Fault Zone. The Izmit and Duzce earthquakes affected groundwater levels, especially in confined aquifers. The aquifer characteristics before and after the earthquakes were unchanged so the aquifer is elastic in its behaviour. Further detailed geo-mechanical investigation of the confined aquifer in the Eskisehir region may improve understanding of earthquake prediction. Keywords: earthquake prediction, Eskisehir, hydrological warning, monitoring groundwater levels

  12. Quantitative microbial risk assessment of Cryptosporidium and Giardia in well water from a native community of Mexico.

    Science.gov (United States)

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Balderas-Cortés, José de Jesús; Mondaca-Fernández, Iram; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2015-01-01

    Cryptosporidium and Giardia are gastrointestinal disease-causing organisms transmitted by the fecal-oral route, zoonotic and prevalent in all socioeconomic segments with greater emphasis in rural communities. The goal of this study was to assess the risk of cryptosporidiosis and giardiasis of Potam dwellers consuming drinking water from communal well water. To achieve the goal, quantitative microbial risk assessment (QMRA) was carried out as follows: (a) identification of Cryptosporidium oocysts and Giardia cysts in well water samples by information collection rule method, (b) assessment of exposure to healthy Potam residents, (c) dose-response modelling, and (d) risk characterization using an exponential model. All well water samples tested were positive for Cryptosporidium and Giardia. The QMRA results indicate a mean of annual risks of 99:100 (0.99) for cryptosporidiosis and 1:1 (1.0) for giardiasis. The outcome of the present study may drive decision-makers to establish an educational and treatment program to reduce the incidence of parasite-borne intestinal infection in the Potam community, and to conduct risk analysis programs in other similar rural communities in Mexico.

  13. Evaluation and Assessment of Fluoride in Drinking Water Wells Damavand Villages Zoning in GIS According to DMF Index

    Directory of Open Access Journals (Sweden)

    Kave Kheirkhah Rahimabad

    2016-09-01

    Full Text Available Background:Fluoride is one the vital anions and the drinking water is the main source of preparing it for the human body. Nonetheless, the aim of this paper is to investigate the Fluoride rate in water supplying wells by using GIS environment according to decay, missing or filled (DMF index.  Methods: This research is an analytic and cross-sectional descriptive study with sampling approach of 12 water supplying wells of Damavand villages in summer and autumn the year 2013. The Fluoride concentration was measured by standard method SPADNS using MN-Nano color 400 Photometer in laboratory of Rural Water and Wastewater Company of Tehran. Then DMF was investigated for local students and finally the obtained data were modeled in GIS. Results: The average of Fluoride concentration was 0.094 to 0.212 mg/L in summer and 0.137 to 3.48 mg/L in autumn. The DMF index was estimated around 5.46 for all evaluated students that the mentioned index was 7.635 and 3.29 for male and female pupils respectively which are statistically significant difference. Conclusion: The amounts of fluorine in drinking water supplies in rural Damavand villages are lower than the international water standards. According to the results of experiments and lack of fluorine ion in the villages of this town, required fluorine should be done by drinkable water fluoridation and continuities of implementation plan for fluoride ion among the schools until reaching the fluoride concentration to the standard threshold, Supplying required fluorine of body by mouth-wash materials for people of this region

  14. Uranium isotopes in well water samples as drinking sources in some settlements around the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    Yamamoto, Masayoshi; Tomita, Junpei; Sakaguchi, Aya; Ohtsuka, Yoshihito; Hoshi, Masaharu; Apsalikov, Kazbek N

    Radiochemical results of U isotopes ( 234 U, 235 U and 238 U) and their activity ratios are reported for well waters as local sources of drinking waters collected from the ten settlements around the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan. The results show that 238 U varies widely from 3.6 to 356 mBq/L (0.3-28.7 μg/L), with a factor of about 100. The 238 U concentrations in some water samples from Dolon, Tailan, Sarzhal and Karaul settlements are comparable to or higher than the World Health Organization's restrictive proposed guideline of 15 μg (U)/L. The 234 U/ 238 U activity ratios in the measured water samples are higher than 1, and vary between 1.1 and 7.9, being mostly from 1.5 to 3. The measured 235 U/ 238 U activity ratios are around 0.046, indicating that U in these well waters is of natural origin. It is probable that the elevated concentration of 238 U found in some settlements around the SNTS is not due to the close-in fallout from nuclear explosions at the SNTS, but rather to the intensive weathering of rocks including U there. The calculated effective doses to adults resulting from consumption of the investigated waters are in the range 1.0-18.7 μSv/y. Those doses are lower than WHO and IAEA reference value (100 μSv/y) for drinking water.

  15. Well Water and Subsurface Salinity of Tuba Basin Langkawi by Hydrochemical Analysis and Vertical Electrical Resistivity Survey

    International Nuclear Information System (INIS)

    Umar Hamzah; Abdul Rahim Samsudin; Abdul Ghani Rafek; Khairul Azlan Razak

    2009-01-01

    Tuba basin is an alluvial deposit located between granitic hill in the western part of Tuba Island and the Setul formation sedimentary rocks in the eastern site of the island. This basin stretched along 3 km in the NE-SW direction with an estimated width of about 2 km. A geophysical survey using geo electrical technique was carried out to figure out the subsurface structure, to detect the presence of underground aquifers and to investigate any saltwater intrusion into these aquifers in the basin. Concentrations of several elements in the well water were also analyzed to investigate any occurrence of salt water intrusion into the coastal aquifers. For this purpose, the vertical electrical sounding surveys were carried out at 22 randomly distributed stations in the study area. Water samples were also taken from 11 wells for hydrochemical analysis in the laboratory. Our results showed that all water samples were of fresh water type. Electrical resistivity profile constructed from stations located in NE-SW direction from Teluk Berembang to Telok Bujur shows a wide range of resistivities ranging from 4 Ωm to infinity. The top layer with a thickness of 1-3 m and resistivity values of 4 - 12 Ωm is interpreted as clay zone. This layer is overlying a much thicker layer of 10-50 m with resistivity values of 2 - 280 Ωm representing sandy material that may contain fresh water or sand with brackish water. Layers with resistivity values from thousands ohm.m to infinity are interpreted as either granite or limestone bedrock. Maximum thickness observed in this resistivity survey is approximately 70 m. (author)

  16. Chemical mixtures in untreated water from public-supply wells in the U.S.--occurrence, composition, and potential toxicity.

    Science.gov (United States)

    Toccalino, Patricia L; Norman, Julia E; Scott, Jonathon C

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. Published by Elsevier B.V.

  17. An analysis of the chemical and microbiological quality of ground water from boreholes and shallow wells in Zimbabwe

    Science.gov (United States)

    Moyo, N. A. G.

    Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the

  18. Report of the committee to review the use of J-13 well water in Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Harrar, J.E.; Carley, J.F.; Isherwood, W.F.; Raber, E.

    1990-01-01

    The Waste Management Project Office of the Department of Energy conducted a special audit of the activities of the Nevada Nuclear Waste Storage Investigation Project at Livermore. It was noted that there never has been a comprehensive, well-documented examination of the basis for the use of J-13 water in the nuclear waste storage investigations. In each of the sections of This Report, an issue relating to the use of J-13 water has been addressed. 58 refs., 19 figs., 8 tabs

  19. Physico-chemical and Bacteriological Quality of Water from Shallow Wells in Two Rural Communities in Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Akaahan, Terngu J.

    2010-06-01

    Full Text Available Ground water abstraction from shallow wells is widely practiced in the Obi and in Oju rural areas of Benue State, Central Nigeria, as a means of fighting guinea worm infestation associated with the surface water sources (streams in these areas. To ascertain the physico-chemical and bacteriological quality of the water used by the population, water samples from 27 shallow wells in Obi and 19 Oju were taken and examined for key health-related quality parameters using routine methods. In Obi, the ground water colour ranged from 4.0-80.0 TCU, conductivity 55.2-1600.0 µS/cm, pH 6.1-8.6, TDS 38.6-1286 mg/L, turbidity 1.0-55.0 NTU, arsenic 0.001-0.210mg/L, copper 0.01-2.53mg/L, fluoride 0.08-1.82mg/L and nitrate 10.8-63.0mg/L, while in Oju, colour varied from 2.0-87.0 TCU, conductivity 107.4-1375 µS/cm, pH 6.4-8.53, TDS 75.2-1150 mg/L, turbidity 3.0-48.0 NTU, arsenic 0.001-0.023 mg/L, copper 0.01-2.10 mg/L, fluoride 0.01-1.54 mg/L and nitrate 10.2-59.7 mg/L. Some of these values in some instances exceed the WHO standard for drinking water. Alongside with the presence significant total coliform count in most of the wells (0-47/100 mL in Oju and 0-53/100 mL in Obi, the available water is considered largely unsafe for human consumption as obtained. It is concluded that, while ground water abstraction may be a safety measure against guinea worm infestation it, nevertheless presents other health challenges to the rural population in the area, as the quality of the ground water is generally low.

  20. Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka.

    Science.gov (United States)

    Jayasumana, Channa; Paranagama, Priyani; Agampodi, Suneth; Wijewardane, Chinthaka; Gunatilake, Sarath; Siribaddana, Sisira

    2015-01-18

    The chronic kidney disease of unknown etiology (CKDu) among paddy farmers in was first reported in 1994 and has now become most important public health issue in dry zone of Sri Lanka. The objective was to identify risk factors associated with the epidemic in an area with high prevalence. A case control study was carried out in Padavi-Sripura hospital in Trincomalee district. CKDu patients were defined using health ministry criteria. All confirmed cases (N = 125) fulfilling the entry criteria were recruited to the study. Control selection (N = 180) was done from people visiting the hospital for CKDu screening. Socio-demographic and data related to usage of applying pesticides and fertilizers were studied. Drinking water was also analyzed using ICP-MS and ELISA to determine the levels of metals and glyphosate. Majority of patients were farmers (N = 107, 85.6%) and were educated up to 'Ordinary Level' (N = 92, 73.6%). We specifically analyzed for the effect modification of, farming by sex, which showed a significantly higher risk for male farmers with OR 4.69 (95% CI 1.06-20.69) in comparison to their female counterparts. In the multivariable analysis the highest risk for CKDu was observed among participants who drank well water (OR 2.52, 95% CI 1.12-5.70) and had history of drinking water from an abandoned well (OR 5.43, 95% CI 2.88-10.26) and spray glyphosate (OR 5.12, 95% CI 2.33-11.26) as a pesticide. Water analysis showed significantly higher amount of hardness, electrical conductivity and glyphosate levels in abandoned wells. In addition Ca, Mg, Ba, Sr, Fe, Ti, V and Sr were high in abandoned wells. Surface water from reservoirs in the endemic area also showed contamination with glyphosate but at a much lower level. Glyphosate was not seen in water samples in the Colombo district. The current study strongly favors the hypothesis that CKDu epidemic among farmers in dry zone of Sri Lanka is associated with, history of drinking water from a well

  1. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence.

    Science.gov (United States)

    Flanagan, Sara V; Marvinney, Robert G; Zheng, Yan

    2015-02-01

    In 2001 the Environmental Protection Agency (EPA) adopted a new standard for arsenic (As) in drinking water of 10 μg/L, replacing the old standard of 50 μg/L. However, for the 12% of the U.S. population relying on unregulated domestic well water, including half of the population of Maine, it is solely the well owner's responsibility to test and treat the water. A mailed household survey was implemented in January 2013 in 13 towns of Central Maine with the goal of understanding the population's testing and treatment practices and the key behavior influencing factors in an area with high well-water dependency and frequent natural groundwater As. The response rate was 58.3%; 525 of 900 likely-delivered surveys to randomly selected addresses were completed. Although 78% of the households reported that their well has been tested, half of it was more than 5 years ago. Among the 58.7% who believe they have tested for As, most do not remember the results. Better educated, higher income homeowners who more recently purchased their homes are most likely to have included As when last testing. While households agree that water and As-related health risks can be severe, they feel low personal vulnerability and there are low testing norms overall. Significant predictors of including As when last testing include: having knowledge that years of exposure increases As-related health risks (risk knowledge), knowing who to contact to test well water (action knowledge), believing that regular testing does not take too much time (instrumental attitude), and having neighbors who regularly test their water (descriptive norm). Homeowners in As-affected communities have the tendency to underestimate their As risks compared to their neighbors. The reasons for this optimistic bias require further study, but low testing behaviors in this area may be due to the influence of a combination of norm, ability, and attitude factors and barriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Uranium theoretical speciation for drinking water from private drilled wells in Sweden – Implications for choice of removal method

    International Nuclear Information System (INIS)

    Norrström, Ann Catrine; Löv, Åsa

    2014-01-01

    Highlights: • Neutral charge uranium complexes dominated in the pH range 6.7–7.8. • The Ca concentration influence which calcium-UO 2 carbonate complexes was formed. • In the acidic pH range several different U complexes can comprise a large fraction of total complexes. • It is crucial to include all relevant chemical compounds in the model. • Before removal method is selected, some crucial parameters should be measured. - Abstract: Elevated concentrations of uranium (U) from natural sources have been measured in drinking water from private drilled wells in Sweden and many other countries world-wide. Although U is a radioactive element, radioactivity is not the main concern, but rather chemical toxicity, e.g. kidney damage. Uranium chemistry is complex and U in water has a very high tendency to form complexes with other compounds. Since speciation is crucial for the properties of U, and therefore the removal efficiency, this study determined theoretical U species in drinking water from private drilled wells using the geochemical model Visual MINTEQ. The drinking water samples used in modelling were from two datasets: (1) 76 water samples selected from a previous survey of 722 wells; and (2) samples of drinking water from 21 private wells sampled in May 2013. The results showed that neutrally charged U complexes dominated in the pH range 6.7–7.8, which is common in private drilled wells. This has important implications for removal method, since charge is an important factor for U removal efficiency. In the alkaline pH range, one of two calcium-UO 2 carbonate complexes dominated and calcium (Ca) concentration proved to be a key factor determining the Ca-UO 2 carbonate complex formed: the neutral Ca 2 UO 2 (CO 3 ) 3 0 (aq) or the negative CaUO 2 (CO 3 ) 3 2− . Complexes with organic carbon (C) varied greatly in the acidic range, indicating that it is crucial to measure organic C content in the water since it is critical for the dissolved organic matter

  3. Determination of the water quality and radon content in wells located at the Cuitzeo basin, Michoacan

    International Nuclear Information System (INIS)

    Alfaro, R.; Segovia, N.; Pena, P.; Lopez, M.B.E.; Martinez, V.; Armienta, M.A.; Rangel, J.; Seidel, J.L.

    2001-01-01

    Major elements, trace elements, presence of microorganisms and, radon content in wells located in urban and rural zones around the Cuitzeo lake at the Lerma River basin in Mexico were determined. The techniques to determine the parameters were the liquid scintillation method for 222 Rn, Icp-Ms for trace elements, conventional chemical analysis for major components and the counting in slide for the bacteriological determination. The average concentration of radon oscillated between 0.88 and 4.75 Bq/lt which, indicated a fast transit from the reload toward the spring exit. The major components and trace elements are analysed considering the geological characteristics of the sites in study. Faecal coliforms were not found. (Author)

  4. Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region

    International Nuclear Information System (INIS)

    Asikainen, M.; Kahlos, H.

    1979-01-01

    The concentrations of uranium, 226 Ra and 222 Rn were determined in 308 drilled and 58 dug wells in the Helsinki region. The study area was about 400 km 2 and geologically highly variable, with granites, amphibolites and migmatites the dominant rocks. The radioactivity of water in the dug wells was on a 'normal' level, but in numerous drilled wells it was anomalously high. In 14 drilled wells the concentration of uranium exceeded 1000 μg/l, the highest concentration being 14,870 μg/l. For 222 Rn the maximum concentration was 880,000 pCi/l. The 226 Ra/ 228 Ra and 230 Th/ 232 Th activity ratios showed the isotopes of the uranium series to be dominant in the study area. A state of disequilibrium between 238 U and 234 U was very common in the samples. The 234 U/ 238 U activity ratios varied in the range 1.0 to 4.0 regardless of the amount of uranium in the water. The conclusion can be drawn from the isotopic data that the high radioactivity of water is in some cases caused by primary uranium mineralizations, but mostly by uranium deposited in fissures of the bedrock. The paper includes a summary of the results of two studies carried out between 1967 and 1977. (author)

  5. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    Science.gov (United States)

    Morrissey, Daniel J.

    1989-01-01

    The highly permeable, unconfined, glacial-drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many of the communities that obtain part or all of their public water supply from ground water. Recent events have shown that these aquifers are highly susceptible to contamination that results from a number of sources, such as seepage from wastewater lagoons, leaking petroleum-product storage tanks, and road salting. To protect the quality of water pumped from supply wells in these aquifers, it is necessary to ensure that potentially harmful contaminants do not enter the ground in the area that contributes water to the well. A high degree of protection can be achieved through the application of appropriate land-use controls within the contributing area. However, the contributing areas for most supply wells are not known. This report describes the factors that affect the size and shape of contributing areas to public supply wells and evaluates several methods that may be used to delineate contributing areas of wells in glacial-drift, river-valley aquifers. Analytical, two-dimensional numerical, and three-dimensional numerical models were used to delineate contributing areas. These methods of analysis were compared by applying them to a hypothetical aquifer having the dimensions and geometry of a typical glacial-drift, river-valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial-drift aquifers in New England. The controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and

  6. Better well control through safe drilling margin identification, influx analysis and direct bottom hole pressure control method for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Veeningen, Daan [National Oilwell Varco IntelliServ (NOV), Houston, TX (United States)

    2012-07-01

    Currently, well control events are almost exclusively detected by using surface measurements. Measuring a volume increase in the 'closed loop' mud circulation system; a standpipe pressure decrease; or changes in a variety of drilling parameters provide indicators of a kick. Especially in deep water, where the riser comprises a substantial section of the well bore, early kick detection is paramount for limiting the severity of a well bore influx and improve the ability to regain well control. While downhole data is presently available from downhole tools nearby the bit, available data rates are sparse as mud pulse telemetry bandwidth is limited and well bore measurements compete with transmission of other subsurface data. Further, data transfer is one-directional, latency is significant and conditions along the string are unknown. High-bandwidth downhole data transmission system, via a wired or networked drill string system, has the unique capability to acquire real-time pressure and temperature measurement at a number of locations along the drill string. This system provides high-resolution downhole data available at very high speed, eliminating latency and restrictions that typically limit the availability of downhole data. The paper describes well control opportunities for deep water operations through the use of downhole data independent from surface measurements. First, the networked drill string provides efficient ways to identify pore pressure, fracture gradient, and true mud weight that comprise the safe drilling margin. Second, the independent measurement capability provides early kick detection and improved ability to analyze an influx even with a heterogeneous mud column through distributed along-string annular pressure measurements. Third, a methodology is proposed for a direct measurement method using downhole real-time pressure for maintaining constant bottom hole pressure during well kills in deep water. (author)

  7. A unified approach for designing a photovoltaic solar system for the underground water pumping well-34 at Disi aquifer

    International Nuclear Information System (INIS)

    Ebaid, Munzer S.Y.; Qandil, Hasan; Hammad, Mahmoud

    2013-01-01

    Highlights: • Photovoltaic system for the underground water pumping wells at Disi aquifer was designed. • Solar irradiation values on horizontal and tilted surfaces were identified. • Method of the worst month MWM and peak sun hours PSH method were applied. • Thirty-eight percentage of the total PV panels would not be used beyond the design conditions (December). • Dust accumulation problem were solved by cleaning or as a 5% power loss factor. - Abstract: This paper aims to present a detailed design of a standalone photovoltaic system used to power continuously a submersible water pump from a selected well (Well-34 of a current static water level, SWL = 147.3 m), out of 55 production wells located at the Disi aquifer, where each of these wells should have a continuously-operating water flow rate of 80 l/s (288 m 3 /h) according to the Disi project specifications. Initially, solar irradiation calculations on horizontal and tilted surfaces were carried out to identify the potential of solar energy available in kW h/m 2 /day in the Disi aquifer. Then, a system design approach based on the worst month of the year (December) was carried out to choose and size the components of photovoltaic system that is required to operate the submersible pump over the 25-year operation period. The system sizing implies defining the number and type of solar panels required to capture the available solar energy, the capacity and number of batteries, inverter rating, cable sizing, charge controller numbers and rating to ensure the maximum reliability of the system. Furthermore, beyond the design conditions of the worst month (December), extra energy can be produced by the PV system during the rest of the year time, which can be used for many purposes. Also, the design process considers the problem of dust accumulation on PV surfaces and this can be dealt with by periodic cleaning

  8. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  9. How well does ORIGEN predict spent LWR [Light Water Reactor] fuel characteristics

    International Nuclear Information System (INIS)

    Mailen, J.C.; Roddy, J.W.

    1987-01-01

    The ORIGEN computer code is widely used to estimate the radionuclide content (actinides, activation and fission products) of irradiated reactor fuel and the resultant heat generation and radiation levels associated with such fuel. These estimates are used as source terms in safety evaluations of operating reactors, for evaluation of fuel behavior and regulation of the at-reactor storage, for transportation studies, and for evaluation of the ultimate geologic storage of the fuel. Calculated values determined using several variations of ORIGEN have been compared with experimentally determined values for actual fuel for many, but not all, of the parameters desired. In most cases, the comparisons did not use the most recent ORIGEN2 program, the most recent data libraries, or currently required quality assurance (QA) procedures. Comparisons of fuel composition data with ORIGEN2 are very limited, and the only data with proper QA are currently being acquired by Battelle Pacific Northwest Laboratory. This survey summarizes the fuel data available in the open literature and, where given, the calculated values by ORIGEN. Plans for additional analyses of well-characterized reactor fuel samples to improve the validation of ORIGEN2 are discussed

  10. Factors Affecting Water Quality in Domestic Wells in the Upper Floridan Aquifer, Southeastern United States, 1998-2005

    Science.gov (United States)

    Berndt, Marian P.; Crandall, Christy A.; Deacon, Michael; Embry, Teresa L.; Howard, Rhonda S.

    2009-01-01

    The Floridan aquifer system is a highly productive carbonate aquifer that provides drinking water to about 10 million people in Florida, Georgia, and South Carolina. Approximately 1.6 million people rely on domestic wells (privately owned household wells) for drinking water. Withdrawals of water from the Floridan aquifer system have increased by more than 500 percent from 630 million gallons per day (2.38 cubic meters per day) in 1950 to 4,020 million gallons per day (15.2 cubic meters per day) in 2000, largely due to increases in population, tourism, and agriculture production. Water samples were collected from 148 domestic wells in the Upper Floridan aquifer in Florida, Georgia, South Carolina, and Alabama during 1998-2005 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The wells were located in different hydrogeologic settings based on confinement of the Upper Floridan aquifer. Five networks of wells were sampled con-sisting of 28 to 30 wells each: two networks were in unconfined areas, two networks were in semiconfined areas, and one network was in the confined area. Physical properties and concentrations of major ions, trace elements, nutrients, radon, and organic compounds (volatile organic compounds and pesticides) were measured in water samples. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). The MCL for fluoride of 4 milligrams per liter (mg/L) was exceeded for two samples (about 1 percent of samples). A proposed MCL for radon of 300 picocuries per liter was exceeded in about 40 percent of samples. Nitrate concentrations in the Upper Floridan aquifer ranged from less than the laboratory reporting level of 0.06 to 8 mg/L, with a median nitrate concentration less than 0.06 mg/L (as nitrogen). Nitrate concentrations did not exceed the

  11. Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia

    International Nuclear Information System (INIS)

    Benghanem, M.; Daffallah, K.O.; Joraid, A.A.; Alamri, S.N.; Jaber, A.

    2013-01-01

    Highlights: ► The best performance of helical pump has been reached for a deep well. ► Very high potential of solar energy at Saudi Arabia. ► Performance of solar water pumping system for a deep well of 120 m. ► We get the best efficiency of helical pump for the head of 80 m. ► The best configuration of PV generator (24 panels) has been obtained. - Abstract: The photovoltaic water pumping systems (PVWPS) constitute a potential option to draw down water in the remote desert locations for domestic usage and livestock watering. However, the widespread of this technique requires accurate information and experiences in such system sizing and installation. The aim of this work is to determine an optimum photovoltaic (PV) array configuration, adequate to supply a DC Helical pump with an optimum energy amount, under the outdoor conditions of Madinah site. Four different PV array configurations have been tested (6S × 3P, 6S × 4P, 8S × 3P and 12S × 2P). The tests have been carried for a head of 80 m, under sunny daylight hours, in a real well at a farm in Madinah site. The best results have been obtained for two PV array configurations (6S × 4P) and (8S × 3P) which are suitable to provide the optimum energy. Powered by the selected PV array configurations, the helical pump (SQF2.5-2) delivered a maximum daily average volume of water needed (22 m 3 /day).

  12. Modeled nitrate levels in well water supplies and prevalence of abnormal thyroid conditions among the Old Order Amish in Pennsylvania

    Directory of Open Access Journals (Sweden)

    Aschebrook-Kilfoy Briseis

    2012-02-01

    Full Text Available Abstract Background Nitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas. Nitrate intake from drinking water and dietary sources can interfere with the uptake of iodide by the thyroid, thus potentially impacting thyroid function. Methods We assessed the relation of estimated nitrate levels in well water supplies with thyroid health in a cohort of 2,543 Old Order Amish residing in Lancaster, Chester, and Lebanon counties in Pennsylvania for whom thyroid stimulating hormone (TSH levels were measured during 1995-2008. Nitrate measurement data (1976-2006 for 3,613 wells in the study area were obtained from the U.S. Geological Survey and we used these data to estimate concentrations at study participants' residences using a standard linear mixed effects model that included hydrogeological covariates and kriging of the wells' residuals. Nitrate levels estimated by the model ranged from 0.35 mg/L to 16.4 mg/L N-NO3-, with a median value of 6.5 mg/L, which was used as the cutpoint to define high and low nitrate exposure. In a validation analysis of the model, we calculated that the sensitivity of the model was 67% and the specificity was 93%. TSH levels were used to define the following outcomes: clinical hyperthyroidism (n = 10, clinical hypothyroidism (n = 56, subclinical hyperthyroidism (n = 25, and subclinical hypothyroidism (n = 228. Results In women, high nitrate exposure was significantly associated with subclinical hypothyroidism (OR = 1.60; 95% CI: 1.11-2.32. Nitrate was not associated with subclinical thyroid disease in men or with clinical thyroid disease in men or women. Conclusions Although these data do not provide strong support for an association between nitrate in drinking water and thyroid health, our results do suggest that further exploration of this hypothesis is warranted using studies that incorporate individual measures of both dietary and drinking water nitrate intake.

  13. [A hepatitis A outbreak caused by contaminated well water in a primary school of Jiangxi province, China, 2009].

    Science.gov (United States)

    Chen, Jing; Cheng, Hui-jian; Zhang, Li-jie; Zong, Jun; Ma, Hui-lai; Zhu, Bao-ping

    2011-10-01

    A hepatitis A outbreak in a primary school was reported by Gan County Center for Disease Control and Province (CDC) and an investigation was conducted to identify the possible source of infection and risk factors for transmission. A probable case was defined as having onset of jaundice (yellow urine, sclera or skin) or a 2-fold increase in Alanine aminotransferase with 2 or more, of the followings symptoms: anorexia, disgust of oil, abdominal pain, nausea, fatigue, vomiting, in students and staff of the primary school between 1 November 2008 and 14 February 2009. A confirmed case was IgM positive for hepatitis A, added on a probable case. We searched for cases through reviewing medical records in the township hospital and village clinics and conducting symptom screening among students or teachers. We also conducted a case-control study to compare the exposure histories of 19 cases and 53 anti-HAV-IgM negative controls randomly selected from those asymptomatic students in the same grade. 21 cases from all the students was identified, with the attack rate as 3.5%. The epidemic curve showed the two peaks of the outbreak were 28 days apart, both indicating that they were related to the exposure of the source of origin. 74% of the case-students drank the unboiled Well B water, compared to 42% of control-students (OR = 4.0, 95%CI: 1.1 - 15). The total bacterial count was 600 cfu/ml and the total coliform was 23 MPN/100 ml in one sample collected from the well water. This hepatitis A outbreak was caused by drinking contaminated water in Well B. We recommended that all the schools should use chlorinated municipal pipe water. Public health authorities should strengthen the supervision of quality of water in schools.

  14. Modeled nitrate levels in well water supplies and prevalence of abnormal thyroid conditions among the Old Order Amish in Pennsylvania.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Heltshe, Sonya L; Nuckols, John R; Sabra, Mona M; Shuldiner, Alan R; Mitchell, Braxton D; Airola, Matt; Holford, Theodore R; Zhang, Yawei; Ward, Mary H

    2012-02-17

    Nitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas. Nitrate intake from drinking water and dietary sources can interfere with the uptake of iodide by the thyroid, thus potentially impacting thyroid function. We assessed the relation of estimated nitrate levels in well water supplies with thyroid health in a cohort of 2,543 Old Order Amish residing in Lancaster, Chester, and Lebanon counties in Pennsylvania for whom thyroid stimulating hormone (TSH) levels were measured during 1995-2008. Nitrate measurement data (1976-2006) for 3,613 wells in the study area were obtained from the U.S. Geological Survey and we used these data to estimate concentrations at study participants' residences using a standard linear mixed effects model that included hydrogeological covariates and kriging of the wells' residuals. Nitrate levels estimated by the model ranged from 0.35 mg/L to 16.4 mg/L N-NO3(-), with a median value of 6.5 mg/L, which was used as the cutpoint to define high and low nitrate exposure. In a validation analysis of the model, we calculated that the sensitivity of the model was 67% and the specificity was 93%. TSH levels were used to define the following outcomes: clinical hyperthyroidism (n = 10), clinical hypothyroidism (n = 56), subclinical hyperthyroidism (n = 25), and subclinical hypothyroidism (n = 228). In women, high nitrate exposure was significantly associated with subclinical hypothyroidism (OR = 1.60; 95% CI: 1.11-2.32). Nitrate was not associated with subclinical thyroid disease in men or with clinical thyroid disease in men or women. Although these data do not provide strong support for an association between nitrate in drinking water and thyroid health, our results do suggest that further exploration of this hypothesis is warranted using studies that incorporate individual measures of both dietary and drinking water nitrate intake.

  15. Studies on mountain streams in the English lake district III. Aspects of water chemistry in Brownrigg Well, Whelpside Ghyll

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, D W; Carrick, T R

    1973-01-01

    Comparisons are made of pH and the concentrations of major ions in streamwater from Brownrigg Well (the source of Whelpside Ghyll) and from the River Duddon. PH in Brownrigg Well is usually >5.7, but the concentrations of sodium, potassium and possibly calcium are near to the minima required to support the amphipod Gammarus pulex. In contrast most insect taxa are not affected by low ionic concentrations. It is postulated that these had a wider distribution in mountain streams prior to the acidification of poorly buffered waters by acid rainfall resulting from large-scale combustion of fossil fuels.

  16. Uranium Speciation in Drinking Water from Drilled Wells in Southern Finland and Its Potential Links to Health Effects

    International Nuclear Information System (INIS)

    Prat, O.; Vercouter, Th.; Ansoborlo, E.; Fichet, P.; Perret, P.; Kurttio, P.; Salonen, L.

    2009-01-01

    Exceptionally high concentrations of natural uranium have been found in drinking water originating from drilled wells in Southern Finland. However, no clear clinical symptoms have been observed among the exposed population. Hence a question arose as to whether uranium speciation could be one reason for the lack of significant adverse health effects. Uranium species were determined using time-resolved laser-induced-fluorescence-spectroscopy. We performed multi-element chemical analyses in these water samples, and predictive calculations were carried out using up-to-date thermodynamic data. The results indicated good agreement between measurements and modeling. The low toxicity of Finnish bedrock water may be due to the predominance of two calcium dependent species, Ca 2 UO 2 (CO 3 ) 3 (aq) and CaUO 2 (CO 3 ) 3 2- , whose non toxicity for cells has been described previously. This interdisciplinary study describes chemical speciation of drinking water with elevated uranium concentrations and the potential consequence on health. From these results, it appears that modeling could be used for a better understanding of uranium toxicity of drinking water in the event of contamination. (authors)

  17. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  18. Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary).

    Science.gov (United States)

    Anda, Dóra; Makk, Judit; Krett, Gergely; Jurecska, Laura; Márialigeti, Károly; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2015-07-01

    In this study, scanning electron microscopy (SEM) and 16S rRNA gene-based phylogenetic approach were applied to reveal the morphological structure and genetic diversity of thermophilic prokaryotic communities of a thermal karst well located in Budapest (Hungary). Bacterial and archaeal diversity of the well water (73.7 °C) and the biofilm developed on the inner surface of an outflow pipeline of the well were studied by molecular cloning method. According to the SEM images calcium carbonate minerals serve as a surface for colonization of bacterial aggregates. The vast majority of the bacterial and archaeal clones showed the highest sequence similarities to chemolithoautotrophic species. The bacterial clone libraries were dominated by sulfur oxidizer Thiobacillus (Betaproteobacteria) in the water and Sulfurihydrogenibium (Aquificae) in the biofilm. A relatively high proportion of molecular clones represented genera Thermus and Bellilinea in the biofilm library. The most abundant phylotypes both in water and biofilm archaeal clone libraries were closely related to thermophilic ammonia oxidizer Nitrosocaldus and Nitrososphaera but phylotypes belonging to methanogens were also detected. The results show that in addition to the bacterial sulfur and hydrogen oxidation, mainly archaeal ammonia oxidation may play a decisive role in the studied thermal karst system.

  19. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20

  20. Chemical mixtures in untreated water from public-supply wells in the U.S. - Occurrence, composition, and potential toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Toccalino, Patricia L., E-mail: ptocca@usgs.gov [U.S. Geological Survey (USGS), 6000 J Street, Placer Hall, Sacramento, California 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [USGS, 2130 SW 5th Avenue, Portland, Oregon 97201 (United States); Scott, Jonathon C., E-mail: jon@usgs.gov [USGS, 202 NW 66th Street, Oklahoma City, Oklahoma 73116 (United States)

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: Black-Right-Pointing-Pointer We assessed mixtures in untreated groundwater samples from public

  1. Evaluation of trends for iron and manganese concentrations in wells, reservoirs, and water distribution networks, Qom city, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2015-06-01

    Full Text Available Background: This study aimed to evaluated trends for iron and manganese concentrations in wells, reservoirs, and water distribution networks in Qom city during the summer of 2012. Methods: This was a cross-sectional study. The studied scopes consisted of groundwater (60 wells, reservoirs (10 tanks, and water distribution network (33 points. One sample was taken from each source monthly. Statistical tests used included post hoc tests (Tukey HSD. Finally, the results were compared with drinking water standards. Results: The average concentrations of iron in groundwater, reservoirs, and distribution networks were 0.09, 0.07, and 0.07 mg/l, respectively. The average concentrations of manganese in groundwater, reservoirs, and distribution networks were 0.15, 0.09, and 0.1 mg/l, respectively. The turbidity averages in groundwater, reservoirs, and distribution networks were 0.58, 0.6, and 0.52 NTU, respectively. The average concentrations of free chlorine residual in water reservoirs and distribution networks were 1.74 and 1.06 mg/l, respectively. The pH averages in groundwater, reservoirs, and distribution networks were 7.4, 7.7, and 7.5, respectively. The amounts of iron, manganese, turbidity, free chlorine residual, and pH in the investigated resources had no significant differences (P > 0.05. Conclusion: The amounts of iron, manganese, turbidity, free chlorine residual and pH in groundwater, reservoirs, and water distribution networks of Qom are within permissible limits of national standards and EPA guidelines. Only the amount of manganese was higher than the Environmental Protection Agency (EPA permissible limit.

  2. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  3. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    Science.gov (United States)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well

  4. Records of wells and chemical analyses of water from wells for the period June 13, 1984 to December 4, 1986 at the Maxey Flats Radioactive Waste Disposal Site, Kentucky

    Science.gov (United States)

    Lyverse, M.A.

    1987-01-01

    Lithologic data are presented for 113 wells drilled at the Maxey Flats Radioactive Waste Disposal Site for the period June 13, 1984 to December 4, 1986. Water levels, tritium concentrations, and specific conductance are also presented for wells yielding sufficient water for measuring and sampling. At least one sample was collected from most wells for the determination of gross alpha and beta activity. These activities and the results for gamma emitting radionuclides (Cobalt 60 and Cesium 137) are also presented. (USGS)

  5. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  6. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    Directory of Open Access Journals (Sweden)

    Heather Hatzenbuhler

    2012-12-01

    Full Text Available Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing concern over negative environmental impacts from horizontal drilling in shale formations. The potential for water contamination, land destruction, air pollution, and geologic disruption has raised concerns about the merits of production activities used during extraction. This paper looks at the impacts of horizontal drilling using hydraulic fracturing on water supplies and takes a comprehensive look at legislative and regulatory approaches to mitigate environmental risks in the Marcellus shale region. The overview identifies shortcomings associated with regulatory controls by local and state governments and offers two policy suggestions to better protect waters of the region.

  7. How Should Disaster Base Hospitals Prepare for Dialysis Therapy after Earthquakes? Introduction of Double Water Piping Circuits Provided by Well Water System.

    Science.gov (United States)

    Ikegaya, Naoki; Seki, George; Ohta, Nobutaka

    2016-01-01

    After earthquakes, continuing dialysis for patients with ESRD and patients suffering from crush syndrome is the serious problem. In this paper, we analyzed the failure of the provision of dialysis services observed in recent disasters and discussed how to prepare for disasters to continue dialysis therapy. Japan has frequently experienced devastating earthquakes. A lot of dialysis centers could not continue dialysis treatment owing to damage caused by these earthquakes. The survey by Japanese Society for Dialysis Treatment (JSDT) after the Great East Japan Earthquake in 2011 showed that failure of lifelines such as electric power and water supply was the leading cause of the malfunction of dialysis treatment. Our hospital is located in Shizuoka Prefecture, where one of the biggest earthquakes is predicted to occur in the near future. In addition to reconstructing earthquake-resistant buildings and facilities, we therefore have adopted double electric and water lifelines by introducing emergency generators and well water supply systems. It is very important to inform politicians, bureaucrats, and local water departments that dialysis treatment, a life sustaining therapy for patients with end stage renal diseases, requires a large amount of water. We cannot prevent an earthquake but can curb the extent of a disaster by preparing for earthquakes.

  8. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  9. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  10. An Experiment on Heat Recovery Performance Improvements in Well-Water Heat-Pump Systems for a Traditional Japanese House

    Directory of Open Access Journals (Sweden)

    Chiemi Iba

    2018-04-01

    Full Text Available Concerns about resource depletion have prompted several countries to promote the usage of renewable energy, such as underground heat. In Japan, underground heat-pump technology has begun to be utilized in large-scale office buildings; however, several economic problems are observed to still exist, such as high initial costs that include drilling requirements. Further, most of the traditional dwellings “Kyo-machiya” in Kyoto, Japan have a shallow well. This study intends to propose an effective ground-source heat-pump system using the well water from a “Kyo-machiya” home that does not contain any drilling works. In previous research, it was depicted that the well-water temperature decreases as the heat pump (HP is operated and that the heat extraction efficiency steadily becomes lower. In this study, an experiment is conducted to improve efficiency using a drainage pump. Based on the experimental results, the effect of efficiency improvement and the increase in the electric power consumption of the drainage pump are examined. It is indicated that short-time drainage could help to improve efficiency without consuming excessive energy. Thus, continuous use of the heat pump becomes possible.

  11. Water cut measurement of oil–water flow in vertical well by combining total flow rate and the response of a conductance probe

    International Nuclear Information System (INIS)

    Chen, Jianjun; Xu, Lijun; Cao, Zhang; Zhang, Wen; Liu, Xingbin; Hu, Jinhai

    2015-01-01

    In this paper, a conductance probe-based well logging instrument was developed and the total flow rate is combined with the response of the conductance probe to estimate the water cut of the oil–water flow in a vertical well. The conductance probe records the time-varying electrical characteristics of the oil–water flow. Linear least squares regression (LSR) and nonlinear support vector regression (SVR) were used to establish models to map the total flow rate and features extracted from the probe response onto the water cut, respectively. Principal component analysis (PCA) and partial least squares analysis (PLSA) techniques were employed to reduce data redundancy within the extracted features. An experiment was carried out in a vertical pipe with an inner diameter of 125 mm and a height of 24 m in an experimental multi-phase flow setup, Daqing Oilfield, China. In the experiment, oil–water flow was used and the total flow rate varied from 10 to 200 m 3 per day and the water cut varied from 0% to 100%. As a direct comparison, the cases were also studied when the total flow rate was not used as an independent input to the models. The results obtained demonstrate that: (1) the addition of the total flow rate as an input to the regression models can greatly improve the accuracy of water cut prediction, (2) the nonlinear SVR model performs much better than the linear LSR model, and (3) for the SVR model with the total flow rate as an input, the adoption of PCA or PLSA not only decreases the dimensions of inputs, but also increases prediction accuracy. The SVR model with five PCA-treated features plus the total flow rate achieves the best performance in water cut prediction, with a coefficient of determination (R 2 ) as high as 0.9970. The corresponding root mean squared error (RMSE) and mean quoted error (MQE) are 0.0312% and 1.99%, respectively. (paper)

  12. Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3.

    Science.gov (United States)

    Boini, Krishna M; Bhandaru, Madhuri; Mack, Andreas; Lang, Florian

    2008-09-01

    Insulin and insulin-like growth factor (IGF1) participate in the regulation of renal electrolyte excretion. Insulin- and IGF1-dependent signaling includes phosphatidylinositide-3 (PI3)-kinase, phosphoinositide-dependent kinase PDK1 as well as protein kinase B (PKB) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit glycogen synthase kinase GSK3alpha,beta. Replacement of the serines in the PKB/SGK consensus sequences by alanine (gsk3 ( KI )) confers resistance of GSK3 to PKB/SGK. To explore the role of PKB/SGK-dependent inhibition of GSK3 in the regulation of water/electrolyte metabolism, mice carrying the PKB/SGK resistant mutant (gsk3 ( KI )) were compared to their wild-type littermates (gsk3 ( WT ) ). Body weight was similar in gsk3 ( KI ) and gsk3 ( WT ) mice. Plasma aldosterone at 10 A.M: . and corticosterone concentrations at 5 P.M: . were significantly lower, but 24-h urinary aldosterone was significantly higher, and corticosterone excretion tended to be higher in gsk3 ( KI ) than in gsk3 ( WT ) mice. Food and water intake, fecal excretion, glomerular filtration rate, urinary flow rate, urine osmolarity, as well as urinary Na+, K+, urea excretion were significantly larger, and plasma Na+, urea, but not K+ concentration, were significantly lower in gsk3 ( KI ) than in gsk3 ( WT ) mice. Body temperature was significantly higher in gsk3 ( KI ) than in gsk3 ( WT ) mice. When allowed to choose between tap water and saline, gsk3 ( WT ) mice drank more saline, whereas gsk3 ( KI ) mice drank similar large volumes of tap water and saline. During high-salt diet, urinary vasopressin excretion increased to significantly higher levels in gsk3 ( KI ) than in gsk3 ( WT ) mice. After water deprivation, body weight decreased faster in gsk3 ( KI ) than in gsk3 ( WT ) mice. Blood pressure, however, was significantly higher in gsk3 ( KI ) than in gsk3 ( WT ) mice. The observations disclose a role of PKB/SGK-dependent GSK3

  13. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates

    International Nuclear Information System (INIS)

    Ajayi, O. S.; Achuka, J.

    2009-01-01

    Activity concentrations of 40 K, 226 Ra, 228 Ac and 235 U were measured in 11 dug and 9 drilled well water samples from 3 large cities in Ogun state, Southwestern Nigeria, consumed by the population living in the cities. The measurement was done using co-axial type high-purity germanium (HPGe) detector (Canberra Industries Inc.). The measured activity concentrations in the water samples ranged from 1.74 ± 1.83 to 4.69 ± 0.17 Bq l -1 ; 2.89 ± 0.62 to 7.79 ± 7.22 Bq l -1 ; 0.35 ± 0.07 to 1.17 ± 0.40 Bq l -1 and 0.18 ± 0.05 to 4.77 ± 0.34 Bq l -1 for 40 K, 226 Ra, 228 Ac and 235 U, respectively. Total annual effective dose rates from the ingestion of these radionuclides in the untreated wells were estimated using measured activity concentrations in the radionuclides and their ingested dose conversion factors. Estimated annual effective dose rates ranged from 0.04 to 6.82; 0.01 to 1.36 and 0.01 to 1.49 mSv y -1 for age groups -4 to 8.9 x 10 -2 Sv. The calculated annual effective dose values due to the ingestion of 226 Ra in the Awujale, Ake, Saboab, Alagbon, Alapora and Totoro samples exceeded International Commission on Radiological Protection limit of 1.0 mSv y -1 for individual public exposure. These wells are recommended for treatment that would remove radium from their waters. (authors)

  14. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates.

    Science.gov (United States)

    Ajayi, O S; Achuka, J

    2009-07-01

    Activity concentrations of (40)K, (226)Ra, (228)Ac and (235)U were measured in 11 dug and 9 drilled well water samples from 3 large cities in Ogun state, Southwestern Nigeria, consumed by the population living in the cities. The measurement was done using co-axial type high-purity germanium (HPGe) detector (Canberra Industries Inc.). The measured activity concentrations in the water samples ranged from 1.74 +/- 1.83 to 4.69 +/- 0.17 Bq l(-1); 2.89 +/- 0.62 to 7.79 +/- 7.22 Bq l(-1); 0.35 +/- 0.07 to 1.17 +/- 0.40 Bq l(-1) and 0.18 +/- 0.05 to 4.77 +/- 0.34 Bq l(-1) for (40)K, (226)Ra, (228)Ac and (235)U, respectively. Total annual effective dose rates from the ingestion of these radionuclides in the untreated wells were estimated using measured activity concentrations in the radionuclides and their ingested dose conversion factors. Estimated annual effective dose rates ranged from 0.04 to 6.82; 0.01 to 1.36 and 0.01 to 1.49 mSv y(-1) for age groups or =17 y, respectively. Committed dose for age group > or =17 y ranged from 8.8 x 10(-4) to 8.9 x 10(-2) Sv. The calculated annual effective dose values due to the ingestion of (226)Ra in the Awujale, Ake, Saboab, Alagbon, Alapora and Totoro samples exceeded International Commission on Radiological Protection limit of 1.0 mSv y(-1) for individual public exposure. These wells are recommended for treatment that would remove radium from their waters.

  15. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions.

    Science.gov (United States)

    Hatami, Mehrnaz

    2017-08-01

    The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL -1 ) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Design and Implementation of Control and Monitoring Systems Based on HMI-PLC for Potable Water Well

    Directory of Open Access Journals (Sweden)

    Quezada-Quezada José Carlos

    2014-01-01

    Full Text Available This project reports on the design and implementation in a workbench of a control and monitoring system of the discharge of water of a well. Graphic User's Interfaces (GUI are designed for interaction with the operator. The Human Machine Interface (HMI was implement in proprietor software and it contemplates the rules for control and monitoring of the conditions of the system for the operator, the HMI is also interconnected a Programmable Logic Controller (PLC where the rules of protection of the process are implemented in Ladder Diagram (LD.

  17. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    Science.gov (United States)

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  18. Quality of well water at Toluca and Lerma, State of Mexico; Calidad del agua de pozos de Toluca y Lerma, Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.C.; Segovia, N.; Iturbe, J.L.; Lopez, B. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Martinez, V. [CIRA, Toluca (Mexico); Armienta, M.A. [Ciudad Universitaria, IGFUNAM, Mexico D.F. (Mexico); Seidel, J.L. [Universite de Montpellier, CNRS, Lab. de Geochemie (France)

    1999-07-01

    With the purpose to determine the characteristics and quality of the well water located in Toluca City and Lerma which are related with the net of potable water, it is determined physicochemical parameters, bacteriological characteristics as well as the radionuclide concentration and trace elements in water samples. Those studies can get information about possible pollutants of anthropogenic origin. In this work also were determined the isotopes {sup 222} Rn and {sup 226} Ra in the water samples. (Author)

  19. Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas.

    Science.gov (United States)

    McMahon, Peter B; Barlow, Jeannie R B; Engle, Mark A; Belitz, Kenneth; Ging, Patricia B; Hunt, Andrew G; Jurgens, Bryant C; Kharaka, Yousif K; Tollett, Roland W; Kresse, Timothy M

    2017-06-20

    Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO 2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.

  20. Geothermal heat for Erding. 2. Energy and wellness, geothermal heating station and hot-water indoor swimming pool; Geowaerme fuer Erding 2. Energie und Wellness, Geothermieheizwerk und Thermalbad

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H. (comp.); Bussmann, W.

    1999-07-01

    This 17:20 minute VHS-PAL video film describes the project 'Geothermal heat for Erding 2', i.e. the construction of the geothermal heating station and a modern hot-water indoor swimming pool. [German] Der vorliegende VHS-PAL-Videofilm beschreibt innerhalb von 17:20 Min. Lauflaenge das Projekt 'Geowaerme fuer Erding 2'. Gezeigt werden die Entstehungsphasen dieses Projektes bestehend aus einem Geothermieheizwerk und einem modernen Thermalbad. (AKF)

  1. Well-logging method using well-logging tools run through a drill stem test string for determining in-situ change in formation water saturation values

    International Nuclear Information System (INIS)

    Fertl, W.H.

    1975-01-01

    A logging tool (pulsed neutron or neutron-gamma ray) whose response indicates formation water saturation value, is run through an opening extending through a portion of a drill stem test string. A sample portion of the formation fluid in the zone of interest is removed and another logging run is made. The differences between the plots of the two logging runs indicate the formation potential productivity in the zone of interest

  2. Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Cortecci, G.; Dinelli, E.; Boschetti, T. [University of Bologna (Italy). Dept. of Earth and Geological Environmental Sciences; Bolognesi, L. [International Institute for Geothermal Research, Pisa (Italy); Ferrara, G. [University of Pisa (Italy). Dept. of Earth Sciences

    2001-02-01

    Twenty-two cold and thermal waters from shallow wells sampled in June 1995 in the Vulcano Porto area, Vulcano Island, were analyzed for major and minor chemical constituents, oxygen and hydrogen isotopes and tritium contents, and sulfur isotopes in the dissolved sulfate. The sulfur isotopic composition of the dissolved sulfate ranges between + 0.6 and + 6.5 per mille (mean + 3.7{+-}1.7 per mille), and is interpreted as deriving mainly from fumarolic SO{sub 2} undergoing oxidation in deep and shallow aquifers, with possible minor contributions from oxidation of H{sub 2}S. Dissolution of secondary anhydrite may have been a minor source of the isotopically heavy aqueous sulfate in the cold groundwaters. The chemical and isotopic features of the waters support previous interpretative hydrologic models of Vulcano Porto, which comprise a number of aquifers fed basically by two major end-members, i.e. meteoric water and crater-type fumarolic inputs, the latter in the form of absorbed emissions or condensate. These data, along with the sulfur isotopes of aqueous sulfate, exclude involvement of seawater in the recharge of the groundwater system of the island. (author)

  3. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  4. Hazard Evaluation for the Salt Well Chempump and a Salt Well Centrifugal Pump Design using Service Water for Lubrication and Cooling

    International Nuclear Information System (INIS)

    GRAMS, W.H.

    2000-01-01

    This report documents results of a preliminary hazard analysis (PHA) covering the existing Crane Chempump and the new salt well pumping design. Three hazardous conditions were identified for the Chempump and ten hazardous conditions were identified for the new salt well pump design. This report also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition for operation were assigned to one hazardous condition with the new design

  5. Well-Integrity Survey (Phase II) of Abandoned Homestead Water Wells in the High Plains Aquifer, Former Pantex Ordnance Plant and Texas Tech Research Farm Near Amarillo, Texas, 1995

    National Research Council Canada - National Science Library

    Rivers, Glenn A

    1995-01-01

    This report describes the methods used and the results obtained during a field search for abandoned homestead sites and water wells at the former Pantex Ordnance Plant and Texas Tech Research Farm (Pantex site...

  6. Water quality assessment of an unusual ritual well in Bangladesh and impact of mass bathing on this quality.

    Science.gov (United States)

    Zabed, H; Suely, A; Faruq, G; Sahu, J N

    2014-02-15

    A sacred ritual well with continuously discharging of methane gas through its water body was studied for physicochemical and microbiological quality in three seasons and during ritual mass bathing. Most of the physicochemical parameters showed significant seasonal variations (Pbiochemical oxygen demand (BOD) (r=-0.58, Pindicators were studied and found that all of them increased unusually during mass bathing comparing with their respective seasonal values. Total coliforms (TC) were found positively correlated with fecal coliforms (FC) (r=0.971), FC with Escherichia coli (EC) (r=0.952), EC with intestinal enterococci (IE) (r=0.921), fecal streptococci (FS) with IE (r=0.953) and Staphylococcus aureus (SA) with Pseudomonas aeruginosa (PA) (r=0.946), which were significant at P<0.001. Some regression models showed significant linear relationship at P<0.001 with r(2) value of 0.943 for FC vs. TC, 0.907 for EC vs. FC, 0.869 for FS vs. FC, 0.848 for IE vs. EC and 0.909 for IE vs. FS. The overall results found in this study revealed that well water is suitable for bathing purpose but the religious activity considerably worsen its quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Frank Selker

    2018-03-01

    Full Text Available There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m localized areas (0.5 m. Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

  8. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing.

    Science.gov (United States)

    Selker, Frank; Selker, John S

    2018-03-29

    There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

  9. Geophysical logs and water-quality data collected for boreholes Kimama-1A and -1B, and a Kimama water supply well near Kimama, southern Idaho

    Science.gov (United States)

    Twining, Brian V.; Bartholomay, Roy C.

    2011-01-01

    In September 2010, a research consortium led by scientists from Utah State University began drilling the first of three continuously cored boreholes on the Snake River Plain in southern Idaho. The goals of this effort, the Snake River Scientific Drilling Project, are to study the interaction between the Earth's crust and mantle, to identify potential geothermal energy sources, and to track the evolution of the Yellowstone hotspot on the Snake River Plain. The first borehole, located near Kimama, Idaho, is about 50 miles southwest of the U.S. Department of Energy's Idaho National Laboratory. Because geohydrologic data are scarce for that area of the central Snake River Plain, the Kimama borehole, completed in January 2011, provided a unique opportunity to collect geophysical and water-chemistry data from the eastern Snake River Plain aquifer system, downgradient of the laboratory. Therefore, in conjunction with the Snake River Scientific Drilling Project, scientists from the U.S. Geological Survey's Idaho National Laboratory Project Office conducted geophysical logging and collected water samples at the Kimama site. Wireline geophysical logs were collected for the diverging borehole, Kimama-1A and -1B, from land surface to 976 and 2,498 feet below land surface (BLS), respectively. Water samples were collected from Kimama-1A at depths near 460 and 830 feet BLS, and from the Kimama Water Supply (KWS) well located about 75 feet away. Geophysical log data included a composite of natural gamma, neutron, gamma-gamma dual density, and gyroscopic analysis for boreholes Kimama-1A and -1B. Geophysical logs depicted eight sediment layers (excluding surficial sediment) ranging from 4 to 60 feet in thickness. About 155 individual basalt flows were identified, ranging from less than 3 feet to more than 175 feet in thickness (averaging 15 feet) for borehole Kimama-1B (0 to 2,498 feet BLS). Sediment and basalt contacts were selected based on geophysical traces and were confirmed

  10. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  11. Wells measured for water-levels, unconfined and confined aquifers, Wood River Valley aquifer system, south-central Idaho, October 2006 and October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  12. Simplified mathematical models for interpreting the results of tests carried out by labelling the whole piezometric column in water wells

    International Nuclear Information System (INIS)

    Munera, H.A.

    1974-01-01

    Approximate methods used to interpret the results of tests based on radioactive tracer dilution in a single water well by labelling the whole piezometric column are described; these simple mathematical models have been used to obtain semi-quantitative data on the apparent velocity (horizontal) in non-homogeneous aquifers with flow rates of metres daily. Measurements have also been made in a homogeneous aquifer with velocities of centimetres daily. Interpretation is based on determination of the average concentration for the various well zones; this involves recognition of a mean velocity for each region. All the tracer dilution effects that are not due to horizontal or vertical flow between two zones, i.e. convection, artificial mixing, diffusion and so on, are grouped together as a single term, which is taken arbitrarily to be proportional to the difference in concentration between the regions under consideration; its value is obtained from the experimental dilution curve. The model was applied to the solution of the three cases encountered most frequently during our measurements in Colombia: (a) when the well penetrates a permeable zone and adjacent impermeable zone; (b) when the well penetrates a permeable zone contained between impermeable regions; and (c) when the well traverses an aquifer with two adjacent zones of different permeability contained between impermeable zones. The shape of the dilution curve (logarithm of concentration versus time, usually with two or more slopes) is predicted by the model, the approximate nature of which is consistent with the fact that the method of labelling the whole piezometric column is semi-quantitative. The results obtained for measurements made when there are considerable vertical flows are apparently correct, but there is no other experimental measurement available to confirm them. (author) [es

  13. Infectious diarrheal disease caused by contaminated well water in Chinese schools: A systematic review and meta-analysis.

    Science.gov (United States)

    Ding, Zheyuan; Zhai, Yujia; Wu, Chen; Wu, Haocheng; Lu, Qinbao; Lin, Junfen; He, Fan

    2017-06-01

    In China, waterborne outbreaks of infectious diarrheal disease mainly occur in schools, and contaminated well water is a common source of pathogens. The objective of this review was to present the attack rates, durations of outbreak, pathogens of infectious diarrheal disease, and sanitary conditions of wells in primary and secondary schools in China, and to analyze risk factors and susceptibility of school children. Relevant articles and reports were identified by searching PubMed, Web of Science, China National Knowledge Infrastructure, China Information System for Disease Control and Prevention, and the Chinese Field Epidemiology Training Program. Essential information, including urban/rural areas, school types, attack rates, pathogens, durations of outbreak, report intervals, and interventions were extracted from the eligible articles. Wilcoxon signed-rank test, Kruskal-Wallis H test, and Spearman correlation test were conducted in statistical analyses. Sex- and age-specific attack rate ratios were calculated as pooled effect sizes. We screened 2188 articles and retrieved data of 85 outbreaks from 1987 to 2014. Attack rates of outbreaks in rural areas (median, 12.63 cases/100 persons) and in primary schools (median, 14.54 cases/100 persons) were higher than those in urban areas (median, 5.62 cases/100 persons) and in secondary schools (median, 8.74 cases/100 persons) (P = 0.004 and P = 0.013, respectively). Shigella, pathogenic Escherichia coli, and norovirus were the most common pathogens. Boys tended toward higher attack rates than girls (sex-specific attack rate ratio, 1.13; 95% CI, 1.00-1.29, P = 0.05). Unsanitary conditions of water wells were reported frequently, and unhealthy behavior habits were common in students. School children were susceptible to waterborne disease in China. Chinese government should make efforts to improve access to safe water in schools. Health education promotion and conscientiousness of school leaders and teachers should be

  14. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, R.E.

    1994-07-01

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  15. Transpiration efficiency and its relationship with carbon isotope discrimination under well-watered and water-stressed conditions in Stylosanthes scabra

    International Nuclear Information System (INIS)

    Thumma, B.R.; Naidu, B.P.; Cameron, D. F.; Bahnisch, L. M.

    1998-01-01

    Stylosanthes scabra cv. Seca is a widely sown tropical pasture legume in northern Australia and has a high degree of drought resistance. Identification of traits contributing to the drought resistance of Seca may be valuable for use in breeding programs. Transpiration efficiency (TE) has been suggested as one such trait contributing to drought resistance. Carbon isotope discrimination (Δ) has been proposed for estimating TE indirectly in C 3 plants. A glasshouse experiment was conducted using 8 accessions of S. scabra to identify whether Seca differs in TE from other accessions of S. scabra and to determine the relationship between TE and Δ) under both well-watered and water-stressed treatments. Seca maintained the highest TE (lowest Δ) under both control and stress treatments, and leaf Δ was significantly and negatively correlated with TE under both control and stress conditions. A significant and negative relationship was found between Δ and dry matter production under stress treatment. The interaction between accession and watering treatment was not significant for either TE or Δ. We also found a significant agreement between the performance in the field and in the laboratory for these 8 accessions. These results indicate that TE could be one of the significant factors contributing to drought resistance of Seca. Furthermore, Δ and/or specific leaf area may be useful as selection criteria in breeding programs to identify the lines with high TE. Copyright (1998) CSIRO Australia

  16. Water and clay based drilling fluids for oil wells; Fluidos hidroargilosos para perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.C.A. de; Amorim, L.V.; Santana, L.N. de L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)], e-mail: nalealves@hotmail.com

    2008-07-01

    In the onshore drilling of wells are commonly used aqueous fluids containing bentonite clays. However, to perform their functions generally there is the necessity of additives to drilling fluids, like viscositying, filtered reducer and lubricant. Thus, this work aims to develop water and clay base drilling fluids with low solid text, and with polymeric and lubricants additives. Were studied a sample of industrialized sodium bentonite clays, three polymeric compounds in the ternary form and a sample of lubricant, in different concentrations. Were determined the flow curves, the apparent and plastic viscosities, the yield limit and gel force in Fann 35A viscometer, the filtered volume in API filter-press and the lubricity coefficient in Ofite lubricimeter. The results showed that the fluid had pseudoplastic behavior, the polymeric additives adjusts their rheological properties and filtration and the addition of 1% of lubricant is sufficient to improve the lubricity of fluids. (author)

  17. Summary of oceanographic and water-quality measurements in Rachel Carson National Wildlife Refuge, Wells, Maine, in 2013

    Science.gov (United States)

    Montgomery, Ellyn T.; Ganju, Neil K.; Dickhudt, Patrick J.; Borden, Jonathan; Martini, Marinna A.; Brosnahan, Sandra M.

    2015-01-01

    Suspended-sediment transport is a critical element controlling the geomorphology of tidal wetland complexes. Wetlands rely on organic material and inorganic sediment deposition to maintain their elevation relative to sea level. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration and water flow rates in the tidal channels of the wetlands in the Rachel Carson National Wildlife Refuge in Wells, Maine. The objective was to characterize the sediment-transport mechanisms that contribute to the net sediment budget of the wetland complex. We deployed a meteorological tower, optical turbidity sensors, and acoustic velocity meters at sites on Stephens Brook and the Ogunquit River between March 27 and December 9, 2013. This report presents the time-series oceanographic and atmospheric data collected during those field studies. The oceanographic parameters include water velocity, depth, turbidity, salinity, temperature, and pH. The atmospheric parameters include wind direction, speed, and gust; air temperature; air pressure; relative humidity; short wave radiation; and photosynthetically active radiation.

  18. Micro-extraction procedures for the determination of Ra-226 in well waters by SF-ICP-MS

    International Nuclear Information System (INIS)

    Lariviere, D.; Epov, V.N.; Reiber, K.M.; Cornett, R.J.; Evans, R.D.

    2005-01-01

    The radium-226 (t 1/2 = 1622 years) content of highly alkaline well water collected from the United Arab Emirates (UAE) was measured by double focusing sector-field inductively coupled plasma-mass spectrometry (SF-ICP-MS) after separation of the radium from other alkaline earth elements using a newly developed procedure. The results were comparable with those obtained by α-spectrometry for samples with concentrations ranging from 6.75 to 459 pg/L (0.25 to 17 Bq/L). Instrumental sensitivity on matrix-free samples was compared for two sample introduction systems, i.e. an Apex-Q high sensitivity system and a concentric nebulizer. A 12-fold improvement in sensitivity (instrumental detection limit = 1.5 pg/L or 55 mBq/L) was found when the Apex-Q system was used. Two chromatographic methods were tested for the sequential separation of the alkaline earth elements contained in the well water samples in order to reduce matrix and polyatomic interference effects. Optimal elution parameters were determined and used for the separation and pre-concentration of Ra-226 in those samples. A method detection limit of 0.189 pg/L (7 mBq/L), which corresponds to a mass of 0.38 fg of Ra-226 in the sample, was achieved. Only 2 mL of sample is necessary when a combination of 50 W-X8 and Sr*Spec resin, which are reusable, are utilized for the separation. This new analytical protocol significantly reduces sample preparation time resulting in a throughput rate of approximately 20 samples in only 8 h; faster than the other published extraction procedures

  19. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    Science.gov (United States)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically analysis indicates some fraction of returning fracturing fluids is likely present in produced water from wells that have been hydraulically fractured. Chemical measurements of recovered fluids show that some samples can contain high levels of some contaminants, including total carbohydrates (indicating the presence of guar, a component of fracturing fluid), total dissolved solids (TDS), trace elements and naturally occurring radioactive material (NORM). Data on produced water chemistry are more limited. In California, produced water is typically managed via pipelines and disposed or reused in many ways. A majority of produced water from hydraulically fractured wells in California is disposed in percolation pits, many of which may lie in areas with good groundwater quality. Some of the remaining produced water is injected into Class II wells; although a few of the wells are under review or have been shut down since they were injecting into aquifers. Other methods of

  20. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  1. Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake

    Science.gov (United States)

    He, Anhua; Fan, Xuefang; Zhao, Gang; Liu, Yang; Singh, Ramesh P.; Hu, Yuliang

    2017-09-01

    Changes in co-seismic water levels associated with the Gorkha Nepal earthquake (25 April 2015, Mw 7.8) were recorded in the Jingle well in Shanxi Province China (longitude E112.03°, latitude N38.35°, about 2769 km from epicenter). Based on the observed water levels, we clearly identified signals relating to P, S and surface waves. However, the water temperature recorded at a depth of 350 m shows no co-seismic changes. A spectrum analysis of co-seismic variations of water level shows that the oscillation frequency and amplitude of water level in the borehole are determined by the natural frequency of the borehole, which is not associated with the propagation of seismic waves. The borehole-aquifer system shows a large amplification associated with ground vibrations generated by earthquakes. Considering the local hydro-geological map and the temperature gradient of the Jingle well, a large volume ;groundwater reservoir; model can be used to explain these processes. Due to seismic wave propagation, the volume of a well-confined aquifer expands and contracts forming fractures that change the water flow. In the well-confined aquifer, water levels oscillate simultaneously with high amplitude ground shaking during earthquakes. However, the water in the center of the ;underground reservoir; remains relatively stationary, without any changes in the water temperature. In addition, a possible precursor wave is recorded in the water level at the Jingle well prior to the Gorkha earthquake.

  2. Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells Turbine.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Willits, Steven M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fontaine, Arnold A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This Technical Report presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequency-domain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, the sizing of the power electronics, and number of turbines. Also included in this Technical Report are further details on how rotor thrust and torque are estimated, along with further details on the type of variable frequency drive selected.

  3. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  4. Radon in the water from drilled wells. Results from an investigation in Oerebro; Radon i vatten fraan bergborrade brunnar. Resultat fraan en undersoekning i oerebro kommun

    Energy Technology Data Exchange (ETDEWEB)

    Liden, E.; Andersson, Lennart [Regionsjukhuset, Oerebro (Sweden). Yrkes- och miljoemedicinska kliniken; Linden, A. [Svensk Geofysik AB, Falun (Sweden); Aakerblom, G. [Statens Straalskyddsinstitut, Stockholm (Sweden); Aakesson, T. [Miljoe- och haelsoskyddsfoervaltningen, Oerebro (Sweden)

    1995-09-01

    In 1991 a drilled well containing water with a radon count of about 20,000 Bq/l was found in the city of Oerebro in southern Sweden. A study was started to develop measures to decrease the radon content of water, investigate public health risks and determine the prevalence of high-radon waters in Sweden. 1991-94 various techniques were tested to reduce the concentration of radon in water. The efficiency of aerating high-radon drinking water was studied under field conditions using two modified aerators in a well, in a pressure tank, and in a column of pellets. The efficiency varied from 20 to 99%. A survey of radon in water from 269 drilled wells was conducted in the Municipality of Oerebro. In water from 78 wells, the mean concentration of radon was 1336 Bq/l. The emanation of radon during normal household activities was studied in a home supplied with water from a drilled well whose radon count was approx 20,000 Bq/l. A geological investigation revealed the presence of thin Uranium-loaded fissures in the bedrock (granite) surrounding the well. 130 refs, 16 figs, 14 tabs.

  5. How well has biophysical research served the needs of water resource management? Lessons from the Sabie-Sand catchment

    CSIR Research Space (South Africa)

    Van Wyk, E

    2001-09-01

    Full Text Available frameworks proposed for integrated water resource management. The fundamental changes in the approach to water resource management warrant a critical evaluation of the information generated by past research and of the relevance of this activity and associated...

  6. Deep bore well water level fluctuations in the Koyna region, India: the presence of a low order dynamical system in a seismically active environment

    Directory of Open Access Journals (Sweden)

    D. V. Ramana

    2009-05-01

    Full Text Available Water level fluctuations in deep bore wells in the vicinity of seismically active Koyna region in western India provides an opportunity to understand the causative mechanism underlying reservoir-triggered earthquakes. As the crustal porous rocks behave nonlinearly, their characteristics can be obtained by analysing water level fluctuations, which reflect an integrated response of the medium. A Fractal dimension is one such measure of nonlinear characteristics of porous rock as observed in water level data from the Koyna region. It is inferred in our study that a low nonlinear dynamical system with three variables can predict the water level fluctuations in bore wells.

  7. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  8. Water-quality characteristics and trends for selected wells possibly influenced by wastewater disposal at the Idaho National Laboratory, Idaho, 1981-2012

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Fisher, Jason C.; Maimer, Neil V.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, analyzed water-quality data collected from 64 aquifer wells and 35 perched groundwater wells at the Idaho National Laboratory (INL) from 1981 through 2012. The wells selected for the study were wells that possibly were affected by wastewater disposal at the INL. The data analyzed included tritium, strontium-90, major cations, anions, nutrients, trace elements, total organic carbon, and volatile organic compounds. The analyses were performed to examine water-quality trends that might influence future management decisions about the number of wells to sample at the INL and the type of constituents to monitor.

  9. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  10. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  11. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    Science.gov (United States)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  12. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  13. Otolith microchemistry of modern versus well-dated ancient naked carp Gymnocypris przewalskii: Implication for water evolution of Lake Qinghai

    Science.gov (United States)

    Zhou, Ling; Jin, Zhangdong; Wang, Chia-Hui; Li, Fuchun; Wang, Yujiao; Wang, Xulong; Zhang, Fei; Chen, Liumei; Du, Jinhua

    2015-06-01

    There is ongoing debate over how the water level and composition of the water in Lake Qinghai changed in the past and might change in future. This study of the microchemistry of otoliths from ancient naked carp explores the chemistry of a relict lake isolated from Lake Qinghai during the Little Ice Age (LIA). A close correlation between the ages measured on fish bone and otoliths by AMS-14C, and by optically stimulated luminescence on overlying sediments, confirms a high water level in Lake Qinghai before 680-300 years ago. The contrasting compositions of the ancient otoliths relative to modern otoliths and waters indicate that the relict lake became enriched in 18O, Mg, Li, B and to a lesser extent Ba, but depleted in 13C, owing to strong evaporation, authigenic carbonates precipitation, (micro-)organism activity, and less fresh water input after it was isolated. If there were long-term fresh water input, however, a reverse trend might occur. The most important observation is that, because the waters have been supersaturated with respect to carbonates, authigenic carbonate precipitation would result in low but consistent Sr/Ca ratios in the lakes, as recorded by both the ancient and modern otoliths. The geochemical records of ancient versus modern biogenic carbonates provide insights into the long-term hydroclimatic evolution processes of an inland water body.

  14. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  15. Determination of 222Rn in water samples from wells and springs in Tokyo by a modified integral counting method

    International Nuclear Information System (INIS)

    Homma, Y.; Murase, Y.; Handa, K.; Murakami, I.

    1997-01-01

    222 Rn in 2L-water samples was extracted with 30 mL toluene, and 21 mL of the toluene solution was transferred into a liquid scintillation vial, in which PPO - 2,5-diphenyloxazole was placed in advance. The total activity of 222 Rn in the water sample was calculated based on the Ostwald's coefficient of solubilities of 222 Rn in toluene and water at the temperature of the sample water and the volume of water and toluene. About 40% of 222 Rn dissolved in 2L-water sample can be collected. After allowing to stand for 3.5 h, the equilibrium mixture of 222 Rn and its daughters was measured with an Aloka liquid scintillation spectrometer using a modified integral counting method which extrapolates the integral counting curve not to the zero pulse-height, but to the zero detection threshold, an average energy required to produce a measurable pulse, of the liquid scintillation spectrometer. The general method which agitates water sample (usually about 10 mL) with a liquid scintillation cocktail is practical when the activity of 222 Rn is high. By adding 10 mL of water sample, however, it is possible also to add variable amounts of quencher. In some cases water sample is preserved with nitric acid. The slope of the integral counting rate curve increases as quench level of the sample increases. Therefore, it is clear that the modified integral counting method gives more accurate 222 Rn concentrations for water samples of strong quench than the conventional integral counting method. 222 Rn sample of 0.2 Bq/L can be determined within an overall uncertainty of 3.1%

  16. Measurement of activity concentration of 222Rn in ground waters drawn from two wells drilled in the Amparo Complex metamorphic rocks, municipio de Amparo, SP

    International Nuclear Information System (INIS)

    Oliveira, Igor Jose Chaves de

    2008-01-01

    A sampling system was assembled for field 222 Rn activity concentration measurements in ground waters. The system consists of a sampling flask that prevents the contact between the water sample and the atmosphere and a closed line for radon extraction from water. The system, its operation and calibration, are described in full detail, as well as, the conversion of the measured alpha counting rates in activity concentrations. The assembled system was used in 222 Rn activity concentrations measurements in ground waters drawn from two wells drilled in the Amparo Complex metamorphic rocks. The wells are located at the urban area of the city of Amparo and are exploited for public use water. One well, named Vale Verde, is 56 meters deep and crosses 18 meters of soil, 26 meters of quartz rich gneiss and 12 meters of biotite-gneiss. The other well, named Seabra, is 117 meters deep, crosses 28 meters of soil and weathered rocks and ends in granite-gneiss. The mean activity concentrations for the year long observation were (377 +- 25) Bq/dm 3 , for Seabra well, and (1282 +- 57) Bq/dm3, for the Vale Verde well. The 222 Rn activity concentrations fall in the activity concentration range reported in the literature for similar geology areas and are larger than the concentrations found neighboring areas of the same metamorphic Complex. The seasonal activity concentration variations seem to correlate with rain fall variations in the study area. (author)

  17. How well are the climate indices related to the GRACE-observed total water storage changes in China?

    Science.gov (United States)

    Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.

    2017-12-01

    The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.

  18. Environmental Isotope Study of the Well Field of the Sana'a Water Supply and Sanitation Local Corporation (SWSSLC) In Sana'a Basin-Yemen

    International Nuclear Information System (INIS)

    Shamsan, A. M.

    2004-01-01

    Environmental Isotope Study Of The Well Field of The Sana'a Water Supply and Sanitation Local Corporation (SWSSLC) In Sana'a Basin-Yemen. The water in the deep aquifers of the Sana'a Basin has been investigated using chemical and environmental isotope techniques. To identify the Chemical and the Isotopic characteristics for the well fields of the Sana'a Water Supply And Sanitation Local Corporation (SWSSLC) which withdrawal the water from deep aquifers (Tawilah Sandstone and Volcanics).The Tawilah Sandstone and Volcanic Aquifers represent the main Aquifers in the Sana'a Basin.The chemical and environmental isotope study in Sana'a basin comes out with the following results: 1. The Hydrochemical characteristic in the Sana'a Basin differ from aquifer to another, according to the rock type or formation, It was found that the type of water in the Tawilah sandstone is dominated by Ca- Na- HCO 3 , while the water type Na-Ca- HCO 3 found demonstrated in Volcanic Aquifer. Generally the Hydrochemical composition of groundwater from two aquifers are represent of mixture water. 2. The Groundwater of the deep aquifers for (Tawilah sandstone and Volcanics), indicates that its isotopic constitutes for a 18 O is depleted and tend to be close from the slope 8 of global meteoric water line, which means that this water does not exposed to any evaporation processes, and infiltrated to the aquifers in a cold and humid climatic condition. It is also indicates that the recharge to the deep aquifers comes from the same source and same altitudes, and also there is a hydraulic contact between aquifers. 3. The δ 18 O and δ 2 H values of the groundwater samples from deep aquifers are reflect hydrological regime with limited present day recharge and storage of large volume of fossil ground water .the very low or non-existent Tritium 3 H concentration observed in groundwater also support this conclusion and indicate that the groundwater contains no water recharged in the last four decades

  19. Water and rock geochemistry, geologic cross sections, geochemical modeling, and groundwater flow modeling for identifying the source of groundwater to Montezuma Well, a natural spring in central Arizona

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Arnold, L. Rick; Horton, John D.

    2011-01-01

    The National Park Service (NPS) seeks additional information to better understand the source(s) of groundwater and associated groundwater flow paths to Montezuma Well in Montezuma Castle National Monument, central Arizona. The source of water to Montezuma Well, a flowing sinkhole in a desert setting, is poorly understood. Water emerges from the middle limestone facies of the lacustrine Verde Formation, but the precise origin of the water and its travel path are largely unknown. Some have proposed artesian flow to Montezuma Well through the Supai Formation, which is exposed along the eastern margin of the Verde Valley and underlies the Verde Formation. The groundwater recharge zone likely lies above the floor of the Verde Valley somewhere to the north or east of Montezuma Well, where precipitation is more abundant. Additional data from groundwater, surface water, and bedrock geology are required for Montezuma Well and the surrounding region to test the current conceptual ideas, to provide new details on the groundwater flow in the area, and to assist in future management decisions. The results of this research will provide information for long-term water resource management and the protection of water rights.

  20. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    Science.gov (United States)

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  1. Concentrations of Mercury, Lead, Chromium, Cadmium, Arsenic and Aluminum in Irrigation Water Wells and Wastewaters Used for Agriculture in Mashhad, Northeastern Iran

    Directory of Open Access Journals (Sweden)

    SR Mousavi

    2013-04-01

    Full Text Available Background: Contamination of water by toxic chemicals has become commonly recognized as an environmental concern. Based on our clinical observation in Mashhad, northeastern Iran, many people might be at risk of exposure to high concentrations of toxic heavy metals in water. Because wastewater effluents as well as water wells have been commonly used for irrigation over the past decades, there has been some concern on the toxic metal exposure of crops and vegetables irrigated with the contaminated water. Objective: To measure the concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Methods: 36 samples were taken from irrigation water wells and a wastewater refinery in North of Mashhad at four times—May 2008, March 2009, and June and July 2010. Atomic absorption spectrometry was used to measure the concentration of toxic metals. Graphite furnace was used for the measurement of lead, chromium, cadmium and aluminum. Mercury and arsenic concentrations were measured by mercury/hydride system. Results: Chromium, cadmium, lead and arsenic concentrations in the samples were within the standard range. The mean±SD concentration of mercury in irrigation wells (1.02±0.40 μg/L exceeded the FAO maximum permissible levels. The aluminum concentration in irrigation water varied significantly from month to month (p=0.03. All wastewater samples contained high mercury concentrations (6.64±2.53 μg/L. Conclusion: For high mercury and aluminum concentrations, the water sources studied should not be used for agricultural use. Regular monitoring of the level of heavy metals in water and employing the necessary environmental interventions in this area are strongly recommended.

  2. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    Science.gov (United States)

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  3. Naturally occurring radioactive elements, arsenic and other metals in drinking water from private wells; Naturligt radioaktiva aemnen, arsenik och andra metaller i dricksvatten fraan enskilda brunnar

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Britt-Marie; Thunholm, Bo (Geological Survey of Sweden (SGU), Uppsala (SE)); Oestergren, Inger; Falk, Rolf; Mjoenes, Lars (Swedish Radiation Protection Authority, Stockholm (Sweden))

    2008-04-15

    Approximately 50% of all drinking water is extracted from groundwater. For private supply of drinking water almost 100% emanates from groundwater. For approximately 1.2 of the 9 million Swedish citizens, private wells are the primary water source where 700 000 get their water from wells drilled in the bedrock. Radioactive elements and metals that occur naturally in the bedrock can be found in the well water. The radioactive elements include radon-222 (222Rn), uranium (U), radium-226 (226Ra) as well as polonium-210 (210Po) and lead-210 (210Pb), which are long-lived progeny of radon. In 2001 SGU and SSI initiated a collaboration to investigate the occurrence of radioactive elements and metals in water from private wells. Data sampling and analysis was completed in 2006. The aim of the project was to map the occurrence of radioactive elements in drinking water from private wells and to estimate their respective dose contribution. Another aim was to map metals and other elements in the water, to study temporal variations and possible co-variations between analysed elements. Sampling was conducted in a random fashion throughout the country. However, in regions where bedrock and soils are known to show enhanced concentrations of radioactive elements and arsenic the sampling density was increased. The analyses comprises: total beta activity, total alpha activity, radium-226, radon-222, uranium, aluminium, chloride, calcium, vanadium, chromium, iron, manganese, cobalt, nickel, copper, zink, arsenic, strontium, molybdenum, cadmium, barium, lead, thorium, boron, sodium, manganese, potassium, silica, alkalinity, sulfate, fluoride, phosphate, nitrate, pH and electric conductivity. In a few cases chemistry analyses of polonium-210 and lead-210 have been done. It was observed that the south-western part of Sweden, with exception for granite areas in the county of Bohuslaen, has relatively low concentrations of natural radioactive elements in the drinking water. The occurrence of

  4. Determining treatment requirements for turbid river water to avoid clogging of aquifer storage and recovery wells in siliceous alluvium.

    Science.gov (United States)

    Page, Declan; Vanderzalm, Joanne; Miotliński, Konrad; Barry, Karen; Dillon, Peter; Lawrie, Ken; Brodie, Ross S

    2014-12-01

    The success of Aquifer Storage and Recovery (ASR) schemes relies on defining appropriate design and operational parameters in order to maintain high rates of recharge over the long term. The main contribution of this study was to define the water quality criteria and hence minimum pre-treatment requirements to allow sustained recharge at an acceptable rate in a medium-coarse sand aquifer. The source water was turbid, natural water from the River Darling, Australia. Three treatments were evaluated: bank filtration; coagulation and chlorine disinfection; and coagulation plus granular activated carbon and chlorine disinfection (GAC). Raw source water and the three treated waters were used in laboratory columns packed with aquifer material in replicate experiments in saturated conditions at constant temperature (19 °C) with light excluded for 37 days. Declines in hydraulic conductivity from a mean of 2.17 m/d occurred over the 37 days of the experiment. The GAC-treated water gave an 8% decline in hydraulic conductivity over the 16 cm length of columns, which was significantly different from the other three source waters, which had mean declines of 26-29%. Within the first 3 cm of column length, where most clogging occurred in each column, the mean hydraulic conductivity declined by 10% for GAC-treated water compared with 40-50% for the other source waters. There was very little difference between the columns until day 21, despite high turbidity (78 NTU) in the source water. Reducing turbidity by treatment was not sufficient to offset the reductions in hydraulic conductivity. Biological clogging was found to be most important as revealed by the accumulation of polysaccharides and bacterial numbers in columns when they were dissected and analysed at the end of the experiment. Further chemical clogging through precipitation of minerals was found not to occur within the laboratory columns, and dispersion of clay was also found to be negligible. Due to the low

  5. At the crossroads: Hazard assessment and reduction of health risks from arsenic in private well waters of the northeastern United States and Atlantic Canada

    Science.gov (United States)

    Zheng, Yan; Ayotte, Joseph

    2015-01-01

    This special issue contains 12 papers that report on new understanding of arsenic (As) hydrogeochemistry, performance of household well water treatment systems, and testing and treatment behaviors of well users in several states of the northeastern region of the United States and Nova Scotia, Canada. The responsibility to ensure water safety of private wells falls on well owners. In the U.S., 43 million Americans, mostly from rural areas, use private wells. In order to reduce As exposure in rural populations that rely on private wells for drinking water, risk assessment, which includes estimation of population at risk of exposure to As above the EPA Maximum Contaminant Level, is helpful but insufficient because it does not identify individual households at risk. Persistent optimistic bias among well owners against testing and barriers such as cost of treatment mean that a large percentage of the population will not act to reduce their exposure to harmful substances such as As. If households are in areas with known As occurrence, a potentially large percentage of well owners will remain unaware of their exposure. To ensure that everyone, including vulnerable populations such as low income families with children and pregnant women, is not exposed to arsenic in their drinking water, alternative action will be required and warrants further research.

  6. Infestation of Broad Bean (Vicia faba) by the Green Stink Bug (Nezara viridula) Decreases Shoot Abscisic Acid Contents under Well-Watered and Drought Conditions.

    Science.gov (United States)

    Ederli, Luisa; Brunetti, Cecilia; Centritto, Mauro; Colazza, Stefano; Frati, Francesca; Loreto, Francesco; Marino, Giovanni; Salerno, Gianandrea; Pasqualini, Stefania

    2017-01-01

    The response of broad bean ( Vicia faba ) plants to water stress alone and in combination with green stink bug ( Nezara viridula ) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H 2 O 2 ) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host-plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis ( A ) and stomatal conductance ( g s ), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H 2 O 2 . However, infestation of N. viridula greatly increased both SA and H 2 O 2 contents in leaves and roots, which suggests that endogenous SA and H 2 O 2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired.

  7. Evaluation of U.S. Geological Survey Monitoring-well network and potential effects of changes in water use, Newlands Project, Churchill County, Nevada

    Science.gov (United States)

    Maurer, Douglas K.; Seiler, Ralph L.; Watkins, Sharon A.

    2004-01-01

    Domestic wells tapping shallow ground water are an important source of potable water for rural residents of Lahontan Valley. For this reason, the public has expressed concern over the acquisition of water rights directed by Public Law 101-618. The acquisition has resulted in removal of land from irrigation, which could cause shallow domestic wells to go dry and adversely affect shallow ground-water quality. Periodic water-level measurements and water-quality sampling at a monitoring-well network developed by the U.S. Geological Survey (USGS) provided data to evaluate the potential effects of changes in water use. The USGS, in cooperation with Churchill County, analyzed these data and the monitoring-well network to determine if the network provides an adequate means to measure the response of the shallow aquifer to changes in water use, and to determine if measurable changes have taken place. To evaluate the USGS monitoring-well network, wells were characterized by their distance from active canals or ditches, and from currently (2003) or formerly irrigated land. An analysis of historical data showed that about 9,800 acres of land have been removed from irrigation, generally from the late 1990's to 2003. Twenty-five wells in the network are within about 1 mile of fields removed from irrigation. Of the 25 wells, 13 are within 300 feet of canals or ditches where seepage maintains stable water levels. The 13 wells likely are not useful for detecting changes caused by reductions in irrigation. The remaining 12 wells range from about 400 to 3,800 feet from the nearest canal and are useful for detecting continued changes from current reductions in irrigation. The evaluation showed that of the 75 wells in the network, only 8 wells are likely to be useful for detecting the effects of future (after 2003) reductions in irrigation. Water levels at most of the monitoring wells near irrigated land have declined from 1998 to 2003 because of drought conditions and below normal

  8. Comparison of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Drinking Well Water and Pit Latrine Wastewater in a Rural Area of China

    Directory of Open Access Journals (Sweden)

    Hongna Zhang

    2016-01-01

    Full Text Available The present study was conducted to gain insights into the occurrence and characteristics of extended-spectrum beta-lactamase- (ESBL- producing Escherichia coli (E. coli from drinking well water in the rural area of Laiwu, China, and to explore the role of the nearby pit latrine as a contamination source. ESBL-producing E. coli from wells were compared with isolates from pit latrines in the vicinity. The results showed that ESBL-producing E. coli isolates, with the same antibiotic resistance profiles, ESBL genes, phylogenetic group, plasmid replicon types, and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR fingerprints, were isolated from well water and the nearby pit latrine in the same courtyard. Therefore, ESBL-producing E. coli in the pit latrine may be a likely contributor to the presence of ESBL-producing E. coli in rural well water.

  9. Behavioral Determinants of Switching to Arsenic-Safe Water Wells: An Analysis of a Randomized Controlled Trial of Health Education Interventions Coupled With Water Arsenic Testing

    Science.gov (United States)

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-01-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational…

  10. Nitrate and drinking water from private wells: will there be an epidemic of cancers of the digestive tract, urinary bladder and thyroid?

    Science.gov (United States)

    Njeze, G E; Dilibe, U; Ilo, C

    2014-01-01

    To estimate the nitrate levels in private wells located in different parts of Enugu and discuss the future health implications following chronic ingestion of well water. The map of Enugu was used to divide the city into many 25 units, using grid lines 1 cm apart. Cluster sampling method was used to collect samples. These samples were sent to two laboratories for estimation of nitrate levels. The people drawing water from the different wells were interviewed to determine what they used the water for. The subjects who were interviewed said they ingested the water. The nitrate levels found in these wells (median value of 31 mg/L) were significantly higher than the internationally accepted levels of nitrate in water for ingestion, (P nitrate levels drinking water is dangerous to health and can cause methemoglobinemia in children. It may also increase cancer risk in adults because nitrate is endogenously reduced to nitrite and subsequent nitrosation reactions give rise to N-nitroso compounds (NOCs), which are highly carcinogenic and can act systemically.

  11. Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area

    Energy Technology Data Exchange (ETDEWEB)

    Newcomer, Darrell R.

    2014-07-01

    During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

  12. A Multitracer Approach to Detecting Wastewater Plumes from Municipal Injection Wells in Nearshore Marine Waters at Kihei and Lahaina, Maui, Hawaii

    Science.gov (United States)

    Hunt, Charles D.; Rosa, Sarah N.

    2009-01-01

    Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be

  13. Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Jiménez Nápoles, H; Priest, N D

    2009-04-01

    New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel'kem 1 and Tel'kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that (241)Am, (239,240)Pu and (238)U concentrations in well waters within the study area are in the range 0.04-87mBq dm(-3), 0.7-99mBq dm(-3), and 74-213mBq dm(-3), respectively, and for (241)Am and (239,240)Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01mBq dm(-3), 0.08mBq dm(-3) and 0.32mBq dm(-3) for (241)Am, (239,240)Pu and (238)U, respectively. The (235)U/(238)U isotopic ratio in almost all well and stream waters is slightly elevated above the 'best estimate' value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53-85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11-42microSv (mean 21microSv). Presently, the ground water feeding these wells would not appear to be contaminated with