WorldWideScience

Sample records for water walls

  1. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  2. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  3. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  4. Green Walls as an Approach in Grey Water Treatment

    Science.gov (United States)

    Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana

    2017-10-01

    Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.

  5. CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING

    Science.gov (United States)

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...

  6. Root Growth and Water distribution in living walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars

    of functional living walls and this thesis is a first step of understanding the essential but hidden part inside the growing medium, i.e. the roots. Ensuring successful performance of the plants in a living wall is complex and the choice of growing medium, plant species and planting position are important....... for root growth. This thesis investigates the correlations between the growing media and root and shoots growth, and studies root growth patterns of different plant species and effects of planting position and root interactions of plants growing in living walls. There are a number of challenges with living...... walls; the vertical orientation of the growing medium, plants are growing vertically above or below each other in a limited rooting volume; there is an increased exposure to weather and the plants can react differently to water conditions and competition from other plants. Plant growth is the core...

  7. Shock wave convergence in water with parabolic wall boundaries

    International Nuclear Information System (INIS)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-01-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger

  8. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  9. Effect of water film trickling down diffuser walls on the diffuser properties

    International Nuclear Information System (INIS)

    Hibs, M.

    1990-01-01

    The effect of the water film flowing along one of the horizontal walls of a 2D diffuser was studied, the system being regarded as a model of the annular diffuser at the outlet of a steam turbine flown through by wet steam. The aerodynamic properties of the channel examined were found dependent on whether the water film continues to adhere to the wall or loses stability and sprays into the channel space. The increase in losses in the channel so flown through is quite substantial - the losses can multiply exceed those on flown-by walls free from a water film. (author). 7 figs., 1 tab., 2 refs

  10. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Science.gov (United States)

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  12. Hydrogen embrittlement corrosion failure of water wall tubes in large power station boilers

    International Nuclear Information System (INIS)

    Mathur, P.K.

    1981-01-01

    In the present paper, causes and mechanism of hydrogen embrittlement failure of water wall tubes in high pressure boilers have been discussed. A low pH boiler water environment, produced as a result of condenser leakage or some other type of system contamination and presence of internal metal oxide deposits, which permit boiler water solids to concentrate during the process of steam generation, have been ascribed to accelerate the formation of local corrosion cells conducive for acid attack resulting in hydrogen damage failure of water wall tubes. (author)

  13. Digitaalne veesein = Digital Water-wall / Andres Sevtshuk, Kily K. Song

    Index Scriptorium Estoniae

    Sevtshuk, Andres, 1981-

    2008-01-01

    Veesein on Massachusettsi Tehnoloogiainstituudi (MIT) meedialaboratooriumis professor William J. Mitchelli juhtimisel loodud töö, mille esitlus on kavandatud 2008. a. juunis Zaragoza maailmanäitusel Hispaanias. Water-wall'i tehnoloogiat kasutades luuakse ümber Digital Water paviljoni vedel fassaad

  14. Bacterial repopulation of drinking water pipe walls after chlorination.

    Science.gov (United States)

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  15. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  16. Single-Walled Carbon Nano tubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    International Nuclear Information System (INIS)

    Upadhyayula, V.K.K

    2008-01-01

    The possibility of using single-walled carbon nanotubes (SWCNTs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k) for S.aureus and E.coli determined from batch adsorption study was found to be 9 x108 and 2 x108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  17. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  18. Water-Dispersible Multi-Walled Carbon Nanotubes and Novel Hybrid Nanostructures

    NARCIS (Netherlands)

    Pham, Tuan Anh; Son, Se Mo; Jeong, Yeon Tae

    2010-01-01

    Water-dispersible multi-walled carbon nanotubes (MWNTs) were successfully prepared by the chemical grafting of acylated MWNTs with adenosine. The MWNTs were first purified and oxidized in order to obtain carboxylic acid funcionalized MWNTs, which was further acylated with thionyl chloride to give

  19. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NARCIS (Netherlands)

    Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.

    2011-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using

  20. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NARCIS (Netherlands)

    Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid–structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using

  1. Water hammer with fluid-structure interaction in thick-walled pipes

    NARCIS (Netherlands)

    Tijsseling, A.S.

    2007-01-01

    A one-dimensional mathematical model is presented which describes the acoustic behaviour of thick-walled liquid-filled pipes. The model is based on conventional water-hammer and beam theories. Fluid–structure interaction (FSI) is taken into account. The equations governing straight pipes are derived

  2. Application of water flowing PVC pipe and EPS foam bead as insulation for wall panel

    Science.gov (United States)

    Ali, Umi Nadiah; Nor, Norazman Mohamad; Yusuf, Mohammed Alias; Othman, Maidiana; Yahya, Muhamad Azani

    2018-02-01

    Malaysia located in tropical climate which have a typical temperature range between 21 °C to 36 °C. Due to this, air-conditioning system for buildings become a necessity to provide comfort to occupants. In order to reduce the energy consumption of the air-conditioning system, the transmission of heat from outdoor to indoor space should be kept as minimum as possible. This article discuss about a technology to resist heat transfer through concrete wall panel using a hybrid method. In this research, PVC pipe was embedded at the center of concrete wall panel while the EPS foam beads were added about 1% of the cement content in the concrete mix forming the outer layer of the wall panel. Water is regulated in the PVC pipe from the rainwater harvesting system. The aim of this study is to minimize heat transfer from the external environment into the building. Internal building temperature which indicated in BS EN ISO 7730 or ASHRAE Standard 55 where the comfort indoor thermal is below 25°C during the daytime. Study observed that the internal surface temperature of heat resistance wall panel is up to 3°C lower than control wall panel. Therefore, we can conclude that application of heat resistance wall panel can lead to lower interior building temperature.

  3. Countermeasures to corrosion on water walls. Part 2; Aatgaerder mot eldstadskorrosion paa panntuber. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Elger, Ragna; Nordling, Magnus; Viklund, Peter

    2011-01-15

    Background: The problems with water wall corrosion have been accelerating over the last years. There are a number of reasons for this. Originally mild steels were successfully used in power plant water walls. The magnetite layer that forms at the fire side of the tubes when the boiler is taken into operation protected from corrosion attack. The fuels at that time (oil, coal, gas) were not able to break down the magnetite by corrosion. In addition, there were no restrictions for pollutions and for the combustion itself that could contribute to corrosion attack. The usage of fossil fuels has decreased substantially over the last 25 years, not least by environmental reasons. As a replacement a number of different kinds of bio mass fuels are used. These are typically more or less corrosive and the magnetite layers are attacked. The corrosion is often supported by reducing conditions as a result of the restrictions of the NO{sub x}-pollution. Also the waste fuelled boilers have huge corrosion problems. This has been the case for the last 25 years but nowadays the number of such plants is so much higher and the service data have been turned up. Corrosion protection of the water wall tubes started to be successful in the beginning of the seventies by the introduction of the composite tube. Such tubes are fabricated by mild steel or a low alloy core and corrosion resistant austenite steel or nickel base as an about 2 mm thick corrosion protective coating. Weld cladding of the water wall tubes was introduced in the 1980's as a significantly cheaper alternative to the composite tubes. Thermal spraying and refractory protection are other methods. These corrosion protection methods have not always been effective. For example, depending on incorrect materials selection, incorrect performance and incorrect method selection for the current corrosion or erosion attack. Therefore, there is a need for increased knowledge of which protection method and material that will work

  4. Functionalized single walled carbon nanotubes as template for water storage device

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjib; Taraphder, Srabani, E-mail: srabani@chem.iitkgp.ernet.in

    2016-11-10

    Single walled carbon nanotubes, endohedrally functionalized with a protonated/unprotonated carboxylic acid group, are examined as potential templates for water storage using classical molecular dynamics simulation studies. Following a spontaneous entry of water molecules into the core of model functionalized carbon nanotubes (FCNTs), a large fraction of water molecules are found to be trapped inside FCNTs of lengths 50 and 100 Å. Only water molecules near the two open ends of the nanotube are exchanged with the bulk solvent. The residence times of water molecules inside FCNTs are investigated by varying the length of the tube, the length of suspended functional group and the protonation state of the carboxylic acid group. Favorable energetic interactions between the functional group and water, assisted by a substantial gain in rotational entropy, are found to compensate for the entropy loss resulting from restricted translational diffusion of trapped water molecules.

  5. Development of EEM based silicon–water and silica–water wall potentials for non-reactive molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.

  6. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  7. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  8. Reliability of double-wall-tube steam generator for FBR considering water leak accident frequency

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki; Kinoshita, Izumi; Nishi, Yoshihisa

    2000-01-01

    For early realization, a fast breeder reactor (FBR) is required to reduce construction cost. A reactor concept in which the intermediate heat transport system is eliminated by introducing a double-wall-tube steam generator is one convincing approach. The reliability of the double-wall-tube SG in a water leak accident (sodium-water reaction accident) due to tube failure is strongly related to the mitigating system design. The safety design of the double-wall-tube SG approach is investigated to limit the accident occurrence below 10 -7 (1/ry. A tube-to-tube weld is excluded from the reference design, because the welding process is too difficult and complicated to effectively prevent adhesion of the double-wall-tube. The reliability of the tube-to-tube plate was evaluated at 10 -10 (l/hr) for an inner tube and 10 -9 (l/hr) for an outer with reference to the failure experience of previous SGs. The failure must be detected within 30 to 60 minutes. (author)

  9. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  10. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  11. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  12. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  13. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  14. Optimization of the first wall for the DEMO water cooled lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Julien, E-mail: julien.aubert@cea.fr [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Aiello, Giacomo [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Bachmann, Christian [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Di Maio, Pietro Alessandro [Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, Rosario [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Li Puma, Antonella; Morin, Alexandre [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Tincani, Amelia [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2015-10-15

    Highlights: • This paper presents the optimization of the first wall of the water cooled lithium lead DEMO blanket with pressurized water reactor condition and circular channels in order to find the best geometry that can allow the maximum heat flux considering design criteria since an estimate of the engineering limit of the first wall heat load capacity is an essential input for the decision to implement limiters in DEMO. • An optimization study was carried out for the flat first wall design of the DEMO Water-Cooled Lithium Lead considering thermal and mechanical constraint functions, assuming T{sub inlet}/T{sub outlet} equal to 285 °C/325 °C, based on geometric design parameters. • It became clear that through the optimization the advantages of a waved First Wall are diminished. • The analysis shows that the maximum heat load could achieve 2.53 MW m{sup −2}, but considering assumptions such as a coolant velocity ≤8 m/s, pipe diameter ≥5 mm and a total first wall thickness ≤22 mm, heat flux is limited to 1.57 MW m{sup −2}. - Abstract: The maximum heat load capacity of a DEMO First Wall (FW) of reasonable cost may impact the decision of the implementation of limiters in DEMO. An estimate of the engineering limit of the FW heat load capacity is an essential input for this decision. This paper describes the work performed to optimize the FW of the Water Cooled Lithium-Lead (WCLL) blanket concept for DEMO fusion reactor in order to increase its maximum heat load capacity. The optimization is based on the use of water at typical Pressurised Water Reactors conditions as coolant. The present WCLL FW with a waved plasma-faced surface and with circular channels was studied and the heat load limit has been predicted with FEM analysis equal to 1.0 MW m{sup −2} with respect to the Eurofer temperature limit. An optimization study was then carried out for a flat FW design considering thermal and mechanical constraints assuming inlet and outlet

  15. Countermeasures to corrosion on water walls; Aatgaerder mot eldstadskorrosion paa panntuber

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Sund, Goeran; Pettersson, Rachel; Nordling, Magnus; Hoegberg, Jan

    2007-12-15

    Corrosion of water walls is becoming a problem for an increasing number of boilers. Wider use of biomass and waste for fuel, as well as requirements of reduced NO{sub x} emissions, makes it much more difficult to avoid combustion in a reducing atmosphere adjacent to the water walls. This has increased the need for corrosion protection in many existing boilers. In addition, biomass and waste fuelled plants currently being planned or built require well-functioning water wall protection from the start. The traditional water wall materials - ferritic low alloyed steels - are not easy to replace because of their outstanding heat transfer properties, ability to form a protective oxide layer on the inside of the tubes and low thermal expansion. For this reason, corrosion protection generally involves the use of some kind of coating on the tubes. In this report, the state-of-the-art regarding water wall corrosion protection is described in a literature survey. Methods covered are the use of refractories, overlay weld cladding, composite tubes and thermal spraying. The interest for overlay welding has increased recently since it can offer similar corrosion protection to composite tubes at a significantly reduced cost. Test panels have been exposed and monitored in different boilers. Six weld overlay materials were tested: the well-proven Alloy 625, a modified Alloy 625 in which niobium has been replaced by tungsten, Alloy 59, Alloy 22, a cheaper nickel base alloy 650 which contains some iron and a 310 grade stainless steel. A total of six panels were exposed in the most vulnerable positions in three different boilers. These included waste and biomass combustion as well as different steam data, sizes and types of boilers. Two further facilities, in which the test materials Alloy 625 and Sanicro 28 had already been installed, were also included in the investigation. The duration of service exposure was one operating season. The weld cladding was measured with a thickness

  16. Place Atrium to Water Seal (PAWS): Assessing Wall Suction Versus No Suction for Chest Tubes After Open Heart Surgery.

    Science.gov (United States)

    Kruse, Tamara; Wahl, Sharon; Guthrie, Patricia Finch; Sendelbach, Sue

    2017-08-01

    Traditionally chest tubes are set to -20 cm H 2 O wall suctioning until removal to facilitate drainage of blood, fluid, and air from the pleural or mediastinal space in patients after open heart surgery. However, no clear evidence supports using wall suction in these patients. Some studies in patients after pulmonary surgery indicate that using chest tubes with a water seal is safer, because this practice decreases duration of chest tube placement and eliminates air leaks. To show that changing chest tubes to a water seal after 12 hours of wall suction (intervention) is a safe alternative to using chest tubes with wall suction until removal of the tubes (usual care) in patients after open heart surgery. A before-and-after quality improvement design was used to evaluate the differences between the 2 chest tube management approaches in chest tube complications, output, and duration of placement. A total of 48 patients received the intervention; 52 received usual care. The 2 groups (intervention vs usual care) did not differ significantly in complications (0 vs 2 events; P = .23), chest tube output (H 1 = 0.001, P = .97), or duration of placement (median, 47 hours for both groups). Changing chest tubes from wall suction to water seal after 12 hours of wall suction is a safe alternative to using wall suctioning until removal of the tubes. ©2017 American Association of Critical-Care Nurses.

  17. Desalting of sea water by a wall-less evaporation process

    International Nuclear Information System (INIS)

    Kassel, C.; Sachine, P.; Vuillemey, R.

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m 3 , and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m 3 . It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m 3 . (authors) [fr

  18. Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hun; Hwang, Kyeongmo [KEPCO E and C, Gimcheon (Korea, Republic of); Moon, Seung-Jae [Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

  19. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    Science.gov (United States)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  20. Research and Development of Heavy Wall DNV485FDU Pipeline Plate for 3500M Deep Water Pipe Applications at Shougang

    Science.gov (United States)

    Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai

    In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.

  1. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  2. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity

    International Nuclear Information System (INIS)

    Harrach, Michael F.; Drossel, Barbara

    2014-01-01

    We perform molecular dynamics simulations to observe the structure and dynamics of water using different water models (TIP3P, TIP4P, TIP5P) at ambient conditions, constrained by planar walls, which are either modeled by smooth potentials or regular atomic lattices, imitating the honeycomb-structure of graphene. We implement walls of different hydroaffinity, different lattice constant, and different types of interaction with the water molecules. We find that in the hydrophobic regime the smooth wall generally represents a good abstraction of the atomically rough walls, while in the hydrophilic regime there are noticeable differences in structure and dynamics between all stages of wall roughness. For a small lattice constant however the smooth and the atomically rough wall still share a number of structural and dynamical similarities. Out of the three water models, TIP5P water shows the largest degree of tetrahedral ordering and is often the one that is least perturbed by the presence of the wall

  3. Removal of copper ions from water using chemical modified multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y.J.; Yang, J.

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were modified by oxidation with sodium hypochlorite (NaClO) solutions and were employed as adsorbents to study the adsorption characteristics of copper ions from water. The results show that adsorption capacity of CNTs treated by NaClO solution can be greatly enhanced. The adsorption capacity of Cu2+ on as received and modified CNTs increased with the increase of pH and CNTs mass, but it decreased with the temperature. Experimental data also indicated that the adsorption process could achieve equilibrium within 40 min. Both Langmuir and Freundlich isotherm models fitted the experimental data very well. According to the Langmuir model the maximum copper ions adsorption uptake onto modified CNTs was determined as 40.00 mg/g. Our results suggest that CNTs have profound potential application in environmental protection. (author)

  4. An outbreak of Legionnaires disease associated with a decorative water wall fountain in a hospital.

    Science.gov (United States)

    Haupt, Thomas E; Heffernan, Richard T; Kazmierczak, James J; Nehls-Lowe, Henry; Rheineck, Bruce; Powell, Christine; Leonhardt, Kathryn K; Chitnis, Amit S; Davis, Jeffrey P

    2012-02-01

    To detect an outbreak-related source of Legionella, control the outbreak, and prevent additional Legionella infections from occurring. Epidemiologic investigation of an acute outbreak of hospital-associated Legionnaires disease among outpatients and visitors to a Wisconsin hospital. Patients with laboratory-confirmed Legionnaires disease who resided in southeastern Wisconsin and had illness onsets during February and March 2010. Patients with Legionnaires disease were interviewed using a hypothesis-generating questionnaire. On-site investigation included sampling of water and other potential environmental sources for Legionella testing. Case-finding measures included extensive notification of individuals potentially exposed at the hospital and alerts to area healthcare and laboratory personnel. Laboratory-confirmed Legionnaires disease was diagnosed in 8 patients, all of whom were present at the same hospital during the 10 days prior to their illness onsets. Six patients had known exposure to a water wall-type decorative fountain near the main hospital entrance. Although the decorative fountain underwent routine cleaning and maintenance, high counts of Legionella pneumophila serogroup 1 were isolated from cultures of a foam material found above the fountain trough. This outbreak of Legionnaires disease was associated with exposure to a decorative fountain located in a hospital public area. Routine cleaning and maintenance of fountains does not eliminate the risk of bacterial contamination. Our findings highlight the need to evaluate the safety of water fountains installed in any area of a healthcare facility.

  5. Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor

    International Nuclear Information System (INIS)

    Bermejo, M.D.; Cocero, M.J.

    2006-01-01

    The supercritical water oxidation (SCWO) is a technology that takes advantage of the special properties of water in the surroundings of critical point of water to completely oxidize wastes in residence times lower than 1 min. The problems caused by the harsh operational conditions of the SCWO process are being solved by new reactor designs, such as the transpiring wall reactor (TWR). In this work, the operational parameters of a TWR have been studied for the treatment of an industrial wastewater. As a result, the process has been optimized for a feed flow of 16 kg/h with feed inlet temperatures higher than 300 deg. C and transpiring flow relation (R) between 0.2 and 0.6 working with an 8% (w/w) isopropanol (IPA) as a fuel. The experimental data and a mathematical model have been applied for the destruction of an industrial waste containing acetic acid and crotonaldehyde as main compounds. As the model predicted, removal efficiencies higher than 99.9% were obtained, resulting in effluents with 2 ppm total organic carbon (TOC) at feed flow of 16 kg/h, 320 deg. C of feed temperature and R = 0.32. An effluent TOC of 35 ppm under conditions feed flow of 18 kg/h, feed inlet temperatures of 290 deg. C, reaction temperatures of 570 deg. C and R = 0.6

  6. On the importance of valve modelling, reflected pressures, and wall friction, in CATHENA water hammer simulations

    International Nuclear Information System (INIS)

    Beuthe, T.G.

    1998-01-01

    The results of code and modelling developments outlined in this paper show that CATHENA can be used to accurately model the behaviour of valve slam generated water hammer if sufficient care and detail are used to model the characteristics of the valve. It also shows that CATHENA can accurately predict the reflection and transmission of travelling water pressure waves at expansions, contractions, and dead ends. Finally, although CATHENA is capable of accurately predicting the critical phenomena observed in water hammer, the inter-peak timing of the pressure excursions is not well predicted when significant bulk flows occur. The use of an unsteady wall friction factor to correct for this discrepancy has been examined, but the implementation of relationships suggested in the literature provided too much damping. A good match between experimental and simulation data can be achieved, but it is suggested that the default implementation of such a relationship take place only after an investigation of further potential loss terms can be completed. (author)

  7. Fluctuations of local electric field and dipole moments in water between metal walls.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2015-10-21

    We examine the thermal fluctuations of the local electric field Ek (loc) and the dipole moment μk in liquid water at T = 298 K between metal walls in electric field applied in the perpendicular direction. We use analytic theory and molecular dynamics simulation. In this situation, there is a global electrostatic coupling between the surface charges on the walls and the polarization in the bulk. Then, the correlation function of the polarization density pz(r) along the applied field contains a homogeneous part inversely proportional to the cell volume V. Accounting for the long-range dipolar interaction, we derive the Kirkwood-Fröhlich formula for the polarization fluctuations when the specimen volume v is much smaller than V. However, for not small v/V, the homogeneous part comes into play in dielectric relations. We also calculate the distribution of Ek (loc) in applied field. As a unique feature of water, its magnitude |Ek (loc)| obeys a Gaussian distribution with a large mean value E0 ≅ 17 V/nm, which arises mainly from the surrounding hydrogen-bonded molecules. Since |μk|E0 ∼ 30kBT, μk becomes mostly parallel to Ek (loc). As a result, the orientation distributions of these two vectors nearly coincide, assuming the classical exponential form. In dynamics, the component of μk(t) parallel to Ek (loc)(t) changes on the time scale of the hydrogen bonds ∼5 ps, while its smaller perpendicular component undergoes librational motions on time scales of 0.01 ps.

  8. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  9. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  10. Compositional analysis of Chinese water chestnut (Eleocharis dulcis) cell-wall material from parenchyma, epidermis, and subepidermal tissues.

    Science.gov (United States)

    Grassby, Terri; Jay, Andrew J; Merali, Zara; Parker, Mary L; Parr, Adrian J; Faulds, Craig B; Waldron, Keith W

    2013-10-09

    Chinese water chestnut (Eleocharis dulcis (Burman f.) Trin ex Henschel) is a corm consumed globally in Oriental-style cuisine. The corm consists of three main tissues, the epidermis, subepidermis, and parenchyma; the cell walls of which were analyzed for sugar, phenolic, and lignin content. Sugar content, measured by gas chromatography, was higher in the parenchyma cell walls (931 μg/mg) than in the subepidermis (775 μg/mg) or epidermis (685 μg/mg). The alkali-extractable phenolic content, measured by high-performance liquid chromatography, was greater in the epidermal (32.4 μg/mg) and subepidermal cell walls (21.7 μg/mg) than in the cell walls of the parenchyma (12.3 μg/mg). The proportion of diferulic acids was higher in the parenchyma. The Klason lignin content of epidermal and subepidermal cell walls was ~15%. Methylation analysis of Chinese water chestnut cell-wall polysaccharides identified xyloglucan as the predominant hemicellulose in the parenchyma for the first time, and also a significant pectin component, similar to other nongraminaceous monocots.

  11. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  12. The role of the persistent fruit wall in seed water regulation in Raphanus raphanistrum (Brassicaceae).

    Science.gov (United States)

    Cousens, Roger D; Young, Kenneth R; Tadayyon, Ali

    2010-01-01

    Dry fruits remain around the seeds at dispersal in a number of species, especially the Brassicaceae. Explanations for this vary, but usually involve mechanisms of innate dormancy. We speculate that, instead, a persistent fruit may give additional protection through control of dehydration, to species growing in arid or Mediterranean environments where water is sporadic. X-rays and weight measurements were used to determine the extent to which Raphanus raphanistrum seeds within mature fruits imbibe water, and germination tests determined the roles of the fruit and seed coat in seed dormancy. Rates of water uptake and desiccation, and seedling emergence were compared with and without the fruit. Finally, germinability of seeds extracted from fruits was determined after various periods of moist conditions followed by a range of dry conditions. Most seeds rapidly take up water within the fruit, but they do not fully imbibe when compared with naked seeds. The seed coat is more important than the dry fruit wall in maintaining seed dormancy. The presence of a dry fruit slows emergence from the soil by up to 6-8 weeks. The fruit slows the rate of desiccation of the seed to a limited extent. The presence of the fruit for a few days during imbibition somehow primes more seeds to germinate than if the fruit is absent; longer moist periods within the pod appear to induce dormancy. The fruit certainly modifies the seed environment as external conditions change between wet and dry, but not to a great extent. The major role seems to be: (a) the physical restriction of imbibition and germination; and (b) the release and then re-imposition of dormancy within the seed. The ecological significance of the results requires more research under field conditions.

  13. Water experiment of high-speed, free-surface, plane jet along concave wall

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Ida, Mizuho; Kato, Yoshio; Maekawa, Hiroshi; Itoh, Kazuhiro; Kukita, Yutaka

    1997-01-01

    In the International Fusion Materials Irradiation Facility (IFMIF), an intense 14 MeV neutron beam will be generated in the high-speed liquid lithium (Li) plane jet target flowing along concave wall in vacuum. As part of the conceptual design activity (CDA) of the IFMIF, the stability of the plane liquid jet flow was studied experimentally with water in a well-defined channel geometry for non-heating condition. A two-dimensional double-reducer nozzle being newly proposed for the IFMIF target successfully provided a high-speed (≤ 17 m/s) stable water jet with uniform velocity distribution at the nozzle exit without flow separation in the nozzle. The free surface of the jet was covered by two-dimensional and/or three-dimensional waves, the size of which did not change much over the tested jet length of ∼130 mm. The jet velocity profile changed around the nozzle exit from uniform to that of free-vortex flow where the product of the radius of stream line and local velocity is constant in the jet thickness. The jet thickness increased immediately after exiting the nozzle because of the velocity profile change. The predicted jet thickness by a modified one-dimensional momentum model agreed with the data well. (author)

  14. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  15. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  16. Heat Conductivity Resistance of Concrete Wall Panel by Water Flowing in Different Orientations of Internal PVC pipe

    Science.gov (United States)

    Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.

    2018-04-01

    Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.

  17. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  18. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    Science.gov (United States)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  19. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.

  20. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    Science.gov (United States)

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  2. Effects of torus wall flexibility on forces in the Mark I Boiling Water Reactor Pressure Suppression System. Part I

    International Nuclear Information System (INIS)

    Martin, R.W.; McCauley, E.W.

    1977-09-01

    The authors investigated the effects of torus wall flexibility in the pressure suppression system of a Mark I boiling water reactor (BWR) when the torus wall is subjected to hydrodynamic loadings. Using hypothetical models, they examined these flexibility effects under two hydrodynamic loading conditions: (1) a steam relief valve (SRV) discharge pulse, and (2) a loss-of-coolant accident (LOCA) chugging pulse. In the analyses of these events they used a recently developed two-dimensional finite element computer code. Taking the basic geometry and dimensions of the Monticello Mark I BWR nuclear power plant (in Monticello, Minnesota, U.S.A.), they assessed the effects of flexibility in the torus wall by changing values of the inside-diameter-to-wall-thickness ratio. Varying the torus wall thickness (t) with respect to the inside diameter (D) of the torus, they assigned values to the ratio D/t ranging from 0 (infinitely rigid) to 600 (highly flexible). In the case of a modeled steam relief valve (SRV) discharge pulse, they found the peak vertical reaction force on the torus was reduced from that of a rigid wall response by a factor of 3 for the most highly flexible, plant-simulated wall (D/t = 600). The reduction factor for a modeled loss-of-coolant accident (LOCA) chugging pulse was shown to be 1.5. The two-dimensional analyses employed overestimate these reduction factors but have provided, as intended, definition of the effect of torus boundary stiffness. In the work planned for FY79, improved modeling of the structure and of the source is expected to result in factors more directly applicable to actual pressure suppression systems

  3. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  4. Evaporation and condensation heat transfer in a suppression chamber of the water wall type passive containment cooling system

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio

    1996-01-01

    To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)

  5. Hot isostatically pressed (HIPed) thick-walled component for a pressurised water reactor (PWR) application

    International Nuclear Information System (INIS)

    Hookham, I.; Burdett, B.; Bridger, K.; Sulley, J.L.

    2009-01-01

    This paper presents the work conducted to justify and provide a quality assured HIPed thick-walled component for a PWR application; the component being designed and manufactured by Rolls-Royce. Rolls-Royce has previously published (ICAPP 08) its overall, staged approach to the introduction of powder HIPed components; starting with thin-walled, leak limited pressure boundaries, and culminating in the use of the powder HIPed process for thick walled components. This paper presents details specific to a thick walled pressure vessel component. Results are presented of non-destructive and destructive examinations of one of a batch of components. Mechanical testing and metallurgical examination results of sample material taken from different sections of the component are presented. A full range of test results is provided covering, as examples: tensile, Charpy impact and sensitization susceptibility. Differences in weldability between the HIPed and the previous forged form are also documented. (author)

  6. Interactions between wall rocks around magma and hot water. Magma shuhen no hekigan/nessui sogo sayo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.

    1992-12-01

    This paper describes interactions between wall rocks around magma and hot water. The paper discusses effects of hydrothermal environments on dynamic properties of rock minerals with respect to hydrolytic weakening (decrease in dynamic strength of a mineral under presence of water) and reaction enhanced deformation (deformation accelerated by chemical change occurring in a mineral itself). It also explains chemical reactivity of minerals under hydrothermal enviroments with respect to four types of chemical changes in minerals, factors governing mineral dissolution rates, and importance of equilibrium and non-equilibrium in main components in reactions between minerals and waters. These statements quote mainly results of indoor experiments. The paper indicates the following matters as problems to be discussed on interactions between wall rocks around intrusive rocks and hot waters: Deviation from chemical equilibrium in reactions between rocks and waters; change in permeability as a result of reactions between rocks and waters; and possibilities of hydrolytic weakening in rocks around intrusive rock bodies. 52 refs., 6 figs.

  7. The effect of water jet lancing on furnace wall tubes of high slagged deposit fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V V; Kovalevitch, I A; Maidanik, M N [All-Union Heat Engineering Institute, Siberian Branch, Krasnoyarsk (USSR)

    1990-01-01

    In this paper the results of investigating the effectiveness of water jet lancing on furnace wall tubes of slagged deposits fuels fired boilers type E-500, P-64, P-67 are given. The boilers of these types are designed to burn Jugoslavian lignites are Beresovo lignites of the Kansk-Achinsk deposits. Recommendations for usage of low retractable, long retractable and long-range water blowers, depending on the design, produced in the USSR, the furnace dimension and stability of deposits are given as well.

  8. Normal Reflection Characteristics of One-Dimensional Unsteady Flow Shock Waves on Rigid Walls from Pulse Discharge in Water

    Directory of Open Access Journals (Sweden)

    Dong Yan

    2017-01-01

    Full Text Available Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.

  9. Probabilistic methods for evaluation of erosion-corrosion wall thinning in french pressurized water reactors

    International Nuclear Information System (INIS)

    Ardillon, E.; Bouchacourt, M.

    1994-04-01

    This paper describes the application of the probabilistic approach to a selected study section having known characteristics. The method is based on the physico-chemical model of erosion-corrosion, the variables of which are probabilized. The three main aspects of the model, namely the thermohydraulic flow conditions, the chemistry of the fluid, and the geometry of the installation, are described. The study ultimately makes it possible determine: - the evolution of wall thinning distribution, using the power station's measurements; - the main parameters of influence on the kinetics of wall thinning; - the evolution of the fracture probabilistic of the pipe in question. (authors). 10 figs., 7 refs

  10. Development of a porous wall reactor for Oxidation in Supercritical Water. Hydrodynamic Modelling and application to salty wastes

    International Nuclear Information System (INIS)

    Fauvel, E.

    2002-01-01

    This report deals with a transpiring wall reactor for supercritical water oxidation of organic effluents. The singularity of the reactor lies on the inner porous tube made of alumina to minimise both limiting problems, corrosion and salt precipitation. The presence of the inner tube implies a rather complex hydrodynamics. Thus, an hydrodynamic study was performed, in an original way, in a supercritical fluid using the method of the residence time distribution. It enabled to determine the hydrodynamic model of the reactor. Moreover, an inspecting device of the resistance of the inner tube to thermal gradients was developed. Lastly, the performances of the transpiring wall reactor were tested on model compounds such as sodium sulphate and the mixture of dodecane/tributylphosphate. (author) [fr

  11. Distribution of Wave Loads for Design of Crown Walls in Deep and Shallow Water

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    2014-01-01

    This paper puts forward a new method to determine horizontal wave loads on rubble mound breakwater crown walls with specific exceedance probabilities based on the formulae by Nørgaard et al. (2013) as well as presents a new modified version of the wave run-up formula by Van der Meer & Stam (1992)...

  12. Quenching of hot wall of vertical-narrow-annular passages by water falling down counter-currently

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Arai, Manabu; Okabayashi, Yoshiaki; Nagae, Takashi; Okano, Yukimitsu

    2004-01-01

    quenching of a thin-gap annular flow passage by gravitational liquid penetration was examined by using water. The outer wall of the test flow channel was made of stainless steel. The inner wall was made of glass or stainless steel. The annular gap spacings tested were 10, 5.0, 2.0, 1.0 and 0.5 mm. No inner wall case; the gap width = ∞, was also tested. The stainless steel walls(s) was (were) heated electrically. When the glass wall was used for the inner wall, a fiber scope was inserted inside to observe a flow state. The quenching was observed for the gap spacing over 1.0 mm. When the spacing was less than 1.0 mm, the wall was gradually and monotonously cooled down without any quenching. As the gap spacing became narrow, the counter-current flow limiting; flooding, severely occurred. The peak heat flux during the quenching process became lower than that in pool boiling as the gap spacing became narrower. The quenching propagated from the bottom when the gap spacing was larger than 5 mm. When the gap clearance was less than 2.0 mm, the quenching proceeded from the top in the bottom closed case. It was visually observed that liquid accumulated in the lower portion of the flow passage in the 5 mm gap case and the rewetting front propagated upward from the bottom. In the 1.0 mm gap case, the moving-down of the rewetting front was observed. The quenching velocity became slow as the gap spacing became narrow. Quenching simulation was performed by solving a transient heat conduction equation. The simulation indicated that the quenching velocity becomes fast as the peak heat flux becomes low with the gap spacing, which was opposite to the experimental results. It was also suggested that precursory cooling is one of key factors to control the rewetting velocity; as the precursory cooling becomes weak, the rewetting velocity becomes slow. (author)

  13. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  14. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    International Nuclear Information System (INIS)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl; Im, Ki Hak

    2016-01-01

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds

  15. The role of the substrate surface morphology and water in growth of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Pint, Cary; Pheasant, Sean; Nicholas, Nolan; Horton, Charles; Hauge, Robert

    2008-11-01

    Growth of high quality, vertically aligned single-walled carbon nanotubes (carpets) is achieved using a rapid insertion hot filament chemical vapor deposition (HF-CVD) technique. The effect of the substrate morphology on growth is explored by comparing carpets grown on epitaxially polished MgO substrates to those grown on "as-cut", macroscopically rough MgO substrates. Depending on the substrate morphology, we observe differences in both the overall carpet morphology as well as the diameter distribution of nanotubes grown in the carpet based on optical measurements. In addition, we explore the role of water in the growth of carpets on MgO and the conventional Al2O3 coated Si substrates. We find that the addition of a small amount of water is beneficial to the growth rates of the SWNT carpets, enhancing the growth rates by up to eight times.

  16. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  17. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    International Nuclear Information System (INIS)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage

  18. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    OpenAIRE

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Huehnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has...

  19. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Choi, Chi-Jin [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2017-02-15

    Recently, high precision and high accuracy analysis on multi-dimensional thermal hydraulic phenomena in a nuclear power plant has been considered as state-of-the-art issues. System analysis code, MARS, also adopted a multi-dimensional module to simulate them more accurately. Even though it was applied to represent the multi-dimensional phenomena, but implemented models and correlations in that are one-dimensional empirical ones based on one-dimensional pipe experimental results. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models for a two-phase flow need to be carefully validated, such as the wall friction model. Especially, in a Direct Vessel Injection (DVI) system, the injected emergency core coolant (ECC) on the upper part of the downcomer interacts with the lateral steam flow during the reflood phase in the Large-Break Loss-Of-Coolant-Accident (LBLOCA). The interaction between the falling film and lateral steam flow induces a multi-dimensional two-phase flow. The prediction of ECC flow behavior plays a key role in determining the amount of coolant that can be used as core cooling. Therefore, the wall friction model which is implemented to simulate the multi-dimensional phenomena should be assessed by multidimensional experimental results. In this paper, the air–water cross film flow experiments simulating the multi-dimensional phenomenon in upper part of downcomer as a conceptual problem will be introduced. The two-dimensional local liquid film velocity and thickness data were used as benchmark data for code assessment. And then the previous wall friction model of the MARS-MultiD in the annular flow regime was modified. As a result, the modified MARS-MultiD produced improved calculation result than previous one.

  20. Effects of water chemistry and fluid dynamics on wall thinning behavior. Part 1. Development of FAC model focused on water chemistry and composition of material

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Domae, Masafumi; Ohta, Joji; Yoneda, Kimitoshi; Inada, Fumio

    2009-01-01

    Flow Accelerated Corrosion (FAC), which is one of the important subjects at fossil and nuclear power plans, is caused by the accelerated dissolution of protective oxide film due to the turbulent flow. The influence factors on FAC such as water chemistry, material, and fluid dynamics are closely related to the oxide property so that the risk of FAC can be reduced by the suitable control of water chemistry. There are some FAC models and evaluation codes of FAC rate. Some of them are used in wall thinning management of nuclear power plant in some country. Nevertheless, these FAC codes include many empirical parameters so that some uncertainty to evaluate the synergistic effectiveness of factors are the controversial point for the application of FAC code to wall thinning management in Japanese nuclear power plant. In this study, a FAC model that can evaluate the effect of temperature, NH3 concentration, chromium content, and dissolved oxygen concentration on FAC rate was developed by considering the diffusion of dissolved species. The critical dissolved oxygen concentration, which can inhibit FAC, was also calculated by this model. (author)

  1. Sensation of Cold during the Ice Water Test Corresponds to the Perception of Pain during Botulinum Toxin Bladder Wall Injections.

    Science.gov (United States)

    Reitz, André; Hüsch, Tanja; Doggweiler, Regula; Buse, Stephan; Haferkamp, Axel

    2018-01-01

    To investigate the association of bladder cold sensation (BCS) during the ice water test (IWT) and pain perception when botulinum toxin injections (BTI) are administered into the bladder wall. In 86 patients with idiopathic overactive bladder, the BCS during the IWT was investigated. Patients were divided into 2 groups: with and without BCS. During subsequent administration of BTI, the number of perceived and painful injections as well as the pain levels on a 0-100 pain scale were compared in both groups using Student t test. Thirty-five patients reported a BCS, while 51 did not. After 10 BTI, the mean number of perceived injections was 7.9 in patients with and 2.4 in patients without BCS (p sensation (p perceptions of cold and pain in the urinary bladder may use similar receptors and neuronal pathways. © 2018 S. Karger AG, Basel.

  2. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  3. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  4. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    Directory of Open Access Journals (Sweden)

    Veerle A I Huvenne

    Full Text Available Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  5. Effects of cellular structure and cell wall components on water holding capacity of mushrooms

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, Remko M.; Haaren, van Els; Siccama, Joanne; Sman, van der Ruud G.M.

    2016-01-01

    In a sequel of papers we have investigated effects of different physical contributions to the water holding capacity of foods by considering the common white button mushroom (Agaricus bisporus). In the current paper of our sequel, we consider individual contributions of the cellular phase to

  6. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness.

    Directory of Open Access Journals (Sweden)

    Ana Carvalho

    Full Text Available The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

  7. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness.

    Science.gov (United States)

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

  8. Flow enhancement of water flow through silica slit pores with graphene-coated walls

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Wagemann, Enrique; Oyarzua, Elton

    features a unparalleled combination of high specific surface area, chemical stability, mechanical strength and flexibility. Recently, the wettability of water droplets on multilayer graphene sheets deposited on a silica substrate has been investigated. In this study, we investigate the role of graphene......Nanofluidic devices such as Lab-On-a-Chip often are designed to transport water solutions through hydrophilic nano-conduits. In these systems with narrow confinement, the viscous forces dominate the flow and as a result, the hydrodynamic friction drag is very high. Moreover, the drag and the amount...... of energy required for pumping a fluid are directly related. Therefore, it is desirable to explore drag reduction strategies in nanoconfined flows. Liquids are known to slip past non-wetting surfaces. Graphene is a single-atom-thick sheet of carbon atoms arranged in a hexagonal honeycomb lattice, which...

  9. Modeling and simulation of water flow on containment walls with inhomogeneous contact angle distribution

    International Nuclear Information System (INIS)

    Amend, Katharina; Klein, Markus

    2017-01-01

    The paper presents a three-dimensional numerical simulation for water running down inclined surfaces using OpenFOAM. This research project aims at developing a CFD model to describe the run down behavior of liquids and the resulting wash down of fission products on surfaces in the reactor containment. An empirical contact angle model with wetted history is introduced as well as a filtered randomized initial contact angle field. Simulation results are in good agreement with the experiments. Experimental Investigation on Passive.

  10. Modeling and simulation of water flow on containment walls with inhomogeneous contact angle distribution

    Energy Technology Data Exchange (ETDEWEB)

    Amend, Katharina; Klein, Markus [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. for Numerical Methods in Aerospace Engineering

    2017-07-15

    The paper presents a three-dimensional numerical simulation for water running down inclined surfaces using OpenFOAM. This research project aims at developing a CFD model to describe the run down behavior of liquids and the resulting wash down of fission products on surfaces in the reactor containment. An empirical contact angle model with wetted history is introduced as well as a filtered randomized initial contact angle field. Simulation results are in good agreement with the experiments. Experimental Investigation on Passive.

  11. Free and Cell Wall-Bound Polyamines under Long-Term Water Stress Applied at Different Growth Stages of ×Triticosecale Wittm.

    Directory of Open Access Journals (Sweden)

    Tomasz Hura

    Full Text Available Long-stemmed and semi-dwarf cultivars of triticale were exposed to water stress at tillering, heading and anthesis stage. Quantitative determination of free and cell wall-bound polyamines, i.e. agmatine, cadaverine, putrescine, spermidine and spermine, was supplemented with an analysis of quantitative relationships between free and cell wall-bound polyamines.The content of free and cell wall-bound polyamines varied depending on the development stage, both under optimal and water stress conditions. Drought-induced increase in free agmatine content was observed at all developmental stages in long-stemmed cultivar. A depletion of spermidine and putrescine was also reported in this cultivar, and spermidine was less abundant in semi-dwarf cultivar exposed to drought stress at the three analyzed developmental stages. Changes in the content of the other free polyamines did not follow a steady pattern reflecting the developmental stages. On the contrary, the content of cell wall-bound polyamines gradually increased from tillering, through heading and until anthesis period.Water stress seemed to induce a progressive decrease in the content of free polyamines and an accumulation of cell wall-bound polyamines.

  12. Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures

    International Nuclear Information System (INIS)

    Drake, Henrik; Tullborg, Eva-Lena; Annersten, Hans

    2008-01-01

    Red-staining and alteration of wall rock is common around water conducting fractures in the Laxemar-Simpevarp area (SE Sweden), which is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in common with many other places. Red-staining is often interpreted as a clear sign of oxidation but relevant analyses are seldom performed. The area is dominated by Palaeoproterozoic crystalline rocks ranging in composition from quartz monzodiorite to granite. In this study wall rock samples have been compared with reference samples from within 0.1 to 1 m of the red-stained rock, in order to describe mineralogical and geochemical changes but also changes in redox conditions. A methodology for tracing changes in mineralogy, mineral and whole rock chemistry and Fe 3+ /Fe tot ratio in silicates and oxides in the red-stained wall rock and the reference rock is reported. The results show that the red-stained rock adjacent to the fractures displays major changes in mineralogy; biotite, plagioclase and magnetite have been altered and chlorite, K-feldspar, albite, sericite, prehnite, epidote and hematite have been formed. The changes in chemistry are however moderate; K-enrichment, Ca-depletion and constant Fe tot are documented. The Fe 3+ /Fe tot ratio in the oxide phase is higher in the red-stained samples whereas the Fe 3+ /Fe tot ratio in the silicate phase is largely similar in the wall rock and the reference samples. Because most of the Fe is hosted in the silicate phase the decrease in reducing capacity (Fe 2+ ), if any, in the red-stained wall rock is very small and not as high as macroscopic observations might suggest. Instead, the mineralogical changes in combination with the modest oxidation and formation of minute hematite grains in porous secondary minerals in pseudomorphs after plagioclase have produced the red-staining. Increased porosity is also characteristic for the red-stained rock. Moderate alteration in the macroscopically fresh

  13. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    Science.gov (United States)

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  14. Functional single-wall carbon nanotube nanohybrids--associating SWNTs with water-soluble enzyme model systems.

    Science.gov (United States)

    Guldi, Dirk M; Rahman, G M Aminur; Jux, Norbert; Balbinot, Domenico; Hartnagel, Uwe; Tagmatarchis, Nikos; Prato, Maurizio

    2005-07-13

    We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene(-)), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP(8+)) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8+) were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8)(+) is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP(8)(+). Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP(8)(+) and CoP(8)(+) in donor-acceptor nanohybrids.

  15. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  16. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions.

    Science.gov (United States)

    Hatami, Mehrnaz

    2017-08-01

    The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL -1 ) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS: ACOUSTIC PIPE WALL ASSESSMENT, INTERNAL INSPECTION, AND EXTERNAL INSPECTIONVOLUME 1: TECHNICAL REPORT AND VOLUME 2: APPENDICES

    Science.gov (United States)

    Nine pipe wall integrity assessment technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condi...

  18. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  19. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  20. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    Science.gov (United States)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which

  1. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  2. Rapid determination of nitrophenol isomers in polluted water based on multi-walled carbon nanotubes modified screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Essy Kouadio Fodjo

    2014-07-01

    Full Text Available A sensitive screen-printed electrode modified with multi-walled carbon nanotubes (MWCNTs/SPE was applied to determine simultaneously m-nitrophenol, o-nitrophenol and p-nitrophenol. The electrochemical response showed that o-nitrophenol, m-nitrophenol and p-nitrophenol were entirely separated at the MWCNTs/SPE interface. Under the optimized conditions, it was found that the detection limits were 8.1×10-8 , 5.5×10-7 and 2.0×10-7 M and the linear calibration ranges were 1.0×10-6 ~1.9×10-5 M, 2.5×10-6 ~2.1×10-5 M and 2.0×10-6 ~2.0×10-5 M for m-nitrophenol, o-nitrophenol and p-nitrophenol respectively, proving that the electrode presented here could be easily used to determine nitrophenol isomers simultaneously with high sensitivity within pH range from 4.8 to 8.0. The applications in water samples showed that no interferences appeared with deviations below 5% to the determination of nitrophenol isomers with 1000 fold excess, indicating a good response of this method for nitrophenol isomers detection. This disposable modified SPE combining with a portable electrochemical device were performed for wastewater samples on-field rapid determination.

  3. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-11-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m{sup 2} fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  4. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-01-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m"2 fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  5. Melting and evaporation analysis of the first wall in a water-cooled breeding blanket module under vertical displacement event by using the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2017-05-15

    Highlights: • Material phase change of first wall was simulated for vertical displacement event. • An in-house first wall module was developed to simulate melting and evaporation. • Effective heat capacity method and evaporation model were proposed. • MARS code was proposed to predict two-phase phenomena in coolant channel. • Phase change simulation was performed by coupling MARS and in-house module. - Abstract: Plasma facing components of tokamak reactors such as ITER or the Korean fusion demonstration reactor (K-DEMO) can be subjected to damage by plasma instabilities. Plasma disruptions like vertical displacement event (VDE) with high heat flux, can cause melting and vaporization of plasma facing materials and burnout of coolant channels. In this study, to simulate melting and vaporization of the first wall in a water-cooled breeding blanket under VDE, one-dimensional heat equations were solved numerically by using an in-house first wall module, including phase change models, effective heat capacity method, and evaporation model. For thermal-hydraulics, the in-house first wall analysis module was coupled with the nuclear reactor safety analysis code, MARS, to take advantage of its prediction capability for two-phase flow and critical heat flux (CHF) occurrence. The first wall was proposed for simulation according to the conceptual design of the K-DEMO, and the heat flux of plasma disruption with a value of 600 MW/m{sup 2} for 0.1 s was applied. The phase change simulation results were analyzed in terms of the melting and evaporation thicknesses and the occurrence of CHF. The thermal integrity of the blanket first wall is discussed to confirm whether the structural material melts for the given conditions.

  6. Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes.

    Science.gov (United States)

    Luo, Yan-Bo; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-02-15

    In this work, magnetic carbon nanotubes (CNTs) were prepared by mixing the magnetic particles and multi-walled carbon nanotubes dispersed solutions. Due to their excellent adsorption capability towards hydrophobic compounds, the magnetic CNTs were used as adsorbent of magnetic solid-phase extraction (MSPE) to extract phthalate acid esters (PAEs), which are widely used in many consumable products with potential carcinogenic properties. By coupling MSPE with gas chromatography/mass spectrometry (GC/MS), a rapid, sensitive and cost-effective method for the analysis of PAEs was established. Our results showed that the limits of detection (LODs) of 16 PAEs ranged from 4.9 to 38 ng L(-1), which are much lower compared to the previously reported methods. And good linearities of the detection method were obtained with correlation coefficients (R(2)) between 0.9821 and 0.9993. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 11.7% and 14.6%, respectively. Finally, the established MSPE-GC/MS method was successfully applied to the determination of PAEs from bottled beverages, tap water and perfume samples. The recoveries of the 16 PAEs from the real samples ranged from 64.6% to 125.6% with the RSDs less than 16.5%. Taken together, the MSPE-GC/MS method developed in current study provides a new option for the detection of PAEs from real samples with complex matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    International Nuclear Information System (INIS)

    Meng Jie; Yang Man; Jia Fumin; Kong Hua; Zhang Weiqi; Xu Haiyan; Wang Chaoying; Xie Sishen; Xing Jianmin

    2010-01-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  8. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Science.gov (United States)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  9. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Meng; Man, Yang; Fumin, Jia; Hua, Kong; Weiqi, Zhang; Haiyan, Xu [Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Chaoying, Wang; Sishen, Xie [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 8 Nan San Jie, Zhongguancun, Beijing100080 (China); Xing Jianmin, E-mail: xuhy@pumc.edu.cn [Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029 (China)

    2010-04-09

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  10. Single-incision video-assisted thoracoscopic evaluation and emergent surgery for severe lung and chest wall injury after thoracic trauma in a water park.

    Science.gov (United States)

    Sesma, Julio; Alvarez, Melodie; Lirio, Francisco; Galvez, Carlos; Galiana, Maria; Baschwitz, Benno; Fornes, Francisca; Bolufer, Sergio

    2017-08-01

    Thoracic trauma is a challenging situation with potential severe chest wall and intrathoracic organ injuries. We present a case of emergent surgery in a 23-year-old man with hemorrhagic shock due to massive lung and chest wall injury after thoracic trauma in a water slide. We performed a SI-VATS approach in order to define intrathoracic and chest wall injuries, and once checked the extension of the chest wall injury, we added a middle size thoracotomy just over the affected area in order to stabilize rib fractures with Judet plates, that had caused massive laceration in left lower lobe (LLL) and injured the pericardium causing myocardical tear. After checking bronchial and vascular viability of LLL we suggested a lung parenchyma preserving technique with PTFE protected pulmonary primary suture in order to avoid a lobectomy. Chest tubes were removed on 3 rd postoperative day and patient was discharged on 14 th postoperative day. He has already recovered his normal activity 6 months after surgery.

  11. Unilateral NMR: a Noninvasive Tool for Monitoring In Situ the Effectiveness of Intervention to Reduce the Capillary Raise of Water in an Ancient Deteriorated Wall Painting

    Directory of Open Access Journals (Sweden)

    Valeria Di Tullio

    2012-01-01

    Full Text Available Portable unilateral NMR was used to quantitatively map in a fully noninvasive way the moisture distribution in an ancient deteriorated wall painting before and after an intervention to reduce the capillary raise of water through the wall. Maps obtained at a depth of 0.5 cm clearly showed the path of the capillary raise and indicated that, after the intervention, the moisture level was reduced. Maps obtained by measuring the first layers of the wall painting were affected by the critical environmental conditions of the second hypogeous level of St. Clement Basilica, Rome, and by the presence of salts efflorescence and encrustations on the surface of the wall painting. The morphology and the elemental composition of salts investigated by SEM-EDS indicated that efflorescences and encrustations were mostly constituted of gypsum and calcite. The presence of these salts is explained with the presence of high concentration of carbon dioxide and sulphur-rich particles due to pollution which, along with the high-moisture level and the extremely feeble air circulation, cause recarbonation and sulphation processes on the plaster surface.

  12. Evaluation of endcap welds in thin walled fuel elements of pressurised heavy water reactor by ultrasonic testing

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Kalyansundaram, P.; Bhattacharya, D.K.; Raj, Baldev

    1992-01-01

    In the pressurised heavy water reactor systems of India, the fuel is encapsulated in thin-walled tubes (0.342 mm) closed with endcaps by resistance welding. The integrity of these fuel elements should be such that no fission gas leakage takes place during reactor operation. The quality control of the endcap welds needed to satisfy this requirement includes helium leak test and destructive metallographic test (on sample basis). This paper discusses the feasibility study that has been carried out in the author's laboratory to develop an immersion ultrasonic test method for evaluating the integrity of the endcap weld region. Through holes of various sizes (0.15mm, 0.2mm, 0.4mm diameter and 0.185mm and 0.342mm deep) were machined by spark erosion machining at the weld joints to simulate defects of various sizes. Line focussed probe of 10 MHz frequency was used for the testing. It was possible to detect clearly all the machined holes. Based on the above standardised procedure, further testing was done on endcap welds which were rejected during fabrication on account of showing leak rate of 3 x 10 -6 std. c.c/sec. or more during helium leak test. Though it was possible to get echoes from the natural defects in the rejected tubes with echo amplitude of 70%, the signal was accompanied by the geometrical reflection (noise) giving an amplitude of 20% from the weld region, giving rise to the problem of resolving the defect indication from the geometric indications. Therefore, signal analysis approach was adopted. The signal obtained from the weld zone were subjected to various analysis procedures like a) autopower spectrum, b) total energy content and c) demodulated auto correlation function. It was possible by all the three methods to differentiate the defect signal from those due to weld geometry or due to noise. Subsequently, metallography was carried out to characterise the type of defects observed during the ultrasonic testing. (author). 4 figs

  13. Gastrointestinal tract wall visualization and distention during abdominal and pelvic multidetector CT with a neutral barium sulphate suspension: comparison with positive barium sulphate suspension and with water.

    Science.gov (United States)

    Oliva, M R; Erturk, S M; Ichikawa, T; Rocha, T; Ros, P R; Silverman, S G; Mortele, K J

    2012-01-01

    When examining patients with contrast-enhanced multidetector-row CT, we determined if the stomach and small bowel were visualized and distended better with a neutral barium sulphate suspension than with positive barium sulphate suspension or water. After obtaining approval from our institutional review board, 156 patients (women: 84; mean age: 54 yrs) with no history of gastrointestinal tract disease were randomized prospectively to receive orally either 900 ml of neutral (0.1% w/v) barium sulphate suspension (n = 53), 900 ml of positive (2.1% w/v) barium sulphate suspension (n = 53), or 900 ml of water (n = 50), prior to undergoing contrast-enhanced abdominal and pelvic multidetector-row CT. Two independent radiologists evaluated the stomach, and small bowel, for luminal distension and wall visualization, using a five point scale. Results were compared using Kruskal-Wallis and Mann-Whitney U tests. The walls of the stomach, and small bowel were visualized better in patients who were administered neutral barium sulphate suspension than those who were administered either positive barium sulphate suspension (p barium sulphate suspension, the stomach and small bowel were distended better compared to patients administered water (p barium sulphate suspension (p contrast-enhanced abdominal and pelvic multidetector-row CT, orally administered neutral barium sulphate suspension allows the gastrointestinal tract to be visualized and distended better than either positive barium sulphate suspension, or water.

  14. The preparation of highly water-soluble multi-walled carbon nanotubes by irreversible noncovalent functionalization with a pyrene-carrying polymer

    International Nuclear Information System (INIS)

    Xue Chaohua; Zhou Renjia; Shi Minmin; Gao Yan; Wu Gang; Chen Hongzheng; Wang Mang; Zhang Xiaobin

    2008-01-01

    Multi-walled carbon nanotubes (MWNTs) have been solubilized in water via a noncovalent method of exfoliation and centrifugation cycles with the assistance of hydrolyzed poly(styrene-co-maleic anhydride) carrying pyrene (HPSMAP). After the obtained solution was micro-filtered and dried, a water-soluble complex of HPSMAP-MWNTs was obtained. The solubility of HPSMAP-MWNTs was measured to be 46.2 mg ml -1 with a net MWNT concentration of 7.4 mg ml -1 in water. Thermal gravimetric analyses showed that there was a large amount of polymer remaining on the surface of MWNTs irreversibly after thoroughly removing the free polymer. Other characterizations using transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence spectra, and fluorescence decay were conducted

  15. Separation based adsorption of ethanol-water mixture in azeotropic solution by single-walled carbon, boron-nitride and silicon-carbide nanotubes.

    Science.gov (United States)

    Taheri, Siavash; Lakmehsari, Muhammad Shadman; Soltanabadi, Azim

    2017-08-01

    The separation of the azeotropic ethanol-water mixture (95.57wt% ethanol) over a wide range of pressures (100-100000kPa) was studied on armchair SWCNTs, SWSiCNTs and SWBNNTs with different diameters at 351.30K using GCMC simulations. The GCMC results demonstrated that ethanol and water molecules form a monolayer single-file, chain together in the center of (6,6) SWCNT, while a spiral ring of ethanol and water is formed in the center of (8,8), (10,10) and (12,12) SWCNTs. It was found that in SWCNTs, the adsorption of ethanol reduces the function of pressure, while water adsorption increases its function. Water selectivity rises as a function of pressure. Also, in SWBNNTs, the adsorption of water increases as a function of pressure, while ethanol adsorption is almost constant. However, in the case of SWSiCNTs, ethanol and water adsorptions are very similar to those of SWBNNTs, whereas the adsorptivities of SWSiCNTs are more than those of SWBNNTs. Our findings regarding adsorption and slope of adsorption indicate that higher pressures are favorable for separating water and ethanol by SWCNTs, while SWBNNTs and SWSiCNTs are demonstrate higher ethanol adsorptivities in lower pressures. Also, MD simulations have been performed to study the microscopic structure and diffusion of binary mixtures of water and ethanol within SWCNTs, SWSiCNTs and SWBNNTs. The MD simulations imply that the oxygen atoms are highly well-organized around themselves. Also, the MD results illustrate a similar tendency for oxygen of water (OW) and oxygen of ethanol (OE) to the wall of the nanotubes in all the pressures. In addition, from the MD results, self-diffusion of water and ethanol in all nanotubes were calculated and discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  17. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  18. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  19. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  20. Experimental Study of Pressure Drop and Wall Shear Stress Characteristics of γ /Al2O3-Water Nanofluid in a Circular pipe under Turbulent flow induced vibration.

    Directory of Open Access Journals (Sweden)

    Adil Abbas AL-Moosawy

    2016-09-01

    Full Text Available Experimental study of γ /Al2O3 with mean diameter of less than 50 nm was dispersed in the distilled water that flows through a pipe consist of five sections as work station ,four sections made of carbon steel metal and one sections made of Pyrex glass pipe, with five nanoparticles volume concentrations of 0%,0.1%,0.2%,0.3%,and 0.4% with seven different volume flow rates 100, 200 , 300, 400, 500, 600 ,and 700ℓ/min were investigated to calculated pressure distribution for the cases without rubber ,with 3mm rubber and with 6mm rubber used to support the pipe. Reynolds number was between 20000 and 130000. Frequency value through pipe was measured for all stations of pipe for all cases. The results show that the pressure drop and wall shear stress of the nanofluid increase by increasing the nanoparticles volume concentrations or Reynolds number, the values of frequency through the pipe increase continuously when wall shear stress increases and the ratio of increment increases as nanofluid concentrations increase. Increasing of vibration frequency lead to increasing the friction factor between the pipe and the wall and thus increasing in pressure drop. Several equations between the wall shear stress and frequency for all volume concentration and for three cases without rubber, with rubber has 3mm thickness ,and with rubber has 6mm thickness. Finally, the results led to that γ /Al2O3 could function as a good and alternative conventional working fluid in heat transfer applications. A good agreement is seen between the experimental and those available in the literature

  1. Conduction and convection heat transfer characteristics of water-based au nanofluids in a square cavity with differentially heated side walls subjected to constant temperatures

    Directory of Open Access Journals (Sweden)

    Ternik Primož

    2014-01-01

    Full Text Available The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles’ volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid’s (i.e. water Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.

  2. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  3. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  4. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  5. Flow and heat transfer of MHD graphene oxide-water nanofluid between two non-parallel walls

    Directory of Open Access Journals (Sweden)

    Azimi Mohammadreza

    2017-01-01

    Full Text Available The steady 2-D heat transfer and flow between two non-parallel walls of a graphene oxide nanofluid in presence of uniform magnetic field are investigated in this paper. The analytical solution of the non-linear problem is obtained by Galerkin optimal homotopy asymptotic method. At first a similarity transformation is used to reduce the partial differential equations modeling the flow and heat transfer to ordinary non-linear differential equation systems containing the semi angle between the plate’s parameter, Reynolds number, the magnetic field strength, nanoparticle volume fraction, Eckert and Prandtl numbers. Finally, the obtained analytical results have been compared with results achieved from previous works in some cases.

  6. 'Thin walled' concept and a new top lid applied to the Scandinavian PCRV for a boiling water reactor

    International Nuclear Information System (INIS)

    Scotto, F.L.

    1975-01-01

    This research is carried out in the frame of an agreement between AB ATOMENERGI of Sweden and ENEL (Ente Nazionale per l'Energia Elettrica) of Italy, for an exchange of information in the field of PCPV for BWR, and takes as a reference the Scandinavian solution as far as the thermal insulation system and the geometry are concerned, proposing new solutions for the prestressed concrete structure (namely the Author's concept of thin walls and a new concept of top lid). The proposed top lid sealing system solution is in line with the one adopted for the conventional steel pressure vessel enclosures; furthermore the prestressed concrete lid is restricted to the prestressed concrete structure to form a continuous contrete structure, in line with th PCPV conventional solutions for gas reactors. The paper describes in detail the selected design philosophy that is slightly different from the one defined by the Scandinavian project. In fact, as far as the design limits are concerned, it refers mainly to steel pressure vessel philosophy and, as to the concrete behaviour, to the design philosophy proposed by the author for the PCPV 'thin walled' structures for gas-cooled power reactors. Rheological, mathematical and physical models had been suitably devised in order to check the reliability of the proposed assumption. This paper therefore, will also give a brief description of said tools and the main results acquired at the time of the conference, and technical and economical considerations made to support the interest of the research, showing the relevant cut down of the costs. The comparative reference steel pressure vessel belongs to Mark III ENEL VI and VIII BW plant to which design and construction the author gives his contribution

  7. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  8. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    Science.gov (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  9. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, Goran; Marinkovic, Aleksandar [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Obradovic, Maja [Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Radmilovic, Velimir [National Centre for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Colic, Miodrag [Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002 Belgrade (Serbia); Aleksic, Radoslav [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Uskokovic, Petar S., E-mail: puskokovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia)

    2009-06-30

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 {mu}g ml{sup -1}, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 {mu}g ml{sup -1} reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  10. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    Science.gov (United States)

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Vukovic, Goran; Marinkovic, Aleksandar; Obradovic, Maja; Radmilovic, Velimir; Colic, Miodrag; Aleksic, Radoslav; Uskokovic, Petar S.

    2009-01-01

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml -1 , were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml -1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  12. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    Science.gov (United States)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (Paligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  13. Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions

    Directory of Open Access Journals (Sweden)

    De Rosa Matteo

    2017-03-01

    Full Text Available In our previous research we have observed that the fluorescence emission from water solutions of Single-Walled Carbon Nano-Tubes (SWCNT, excited by a laser with a wavelength of 830nm, diminishes with the time. We have already proved that such a fading is a function of the storage time and the storage temperature. In order to study the emission of the SWCNT as a function of these two parameters we have designed and realized a special measurement compartment with a cuvette holder where the SWCNT solutions can be measured and stored at a fixed constant temperature for periods of time as long as several weeks. To maintain the measurement setup under a constant temperature we have designed special experimental setup based on two Peltier cells with electronic temperature control.

  14. Monitoring the accumulated water soluble airborne compounds deposited on surfaces of showcases and walls in museums, archives and historical buildings

    DEFF Research Database (Denmark)

    Skytte, Lilian; Rasmussen, Kaare Lund; Svensmark, Bo

    2017-01-01

    and main findings: The flushed water were analysed with IC (Ion Chromatography) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and included ions of Al, As, Ba, Ca, CH3COOH, Cl, Co, (COOH)2, Cr, Cu, F, Fe, K, Mg, Mn, Na, NH4, Ni, Pb, S, Sb, Si, Sn, Sr, Ti and Zn, and the ions NO3 -, PO4 3...

  15. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  16. Field Demonstration of Innovative Leak Detection/Location in Conjunction with Pipe Wall Thickness Testing for Water Mains

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Se...

  17. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples.

    Science.gov (United States)

    Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin

    2011-09-16

    In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    Science.gov (United States)

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  19. Experimental evaluation of ability of Relap5, Drako, Flowmaster2TM and program using unsteady wall friction model to calculate water hammer loadings on pipelines

    International Nuclear Information System (INIS)

    Marcinkiewicz, Jerzy; Adamowski, Adam; Lewandowski, Mariusz

    2008-01-01

    Mechanical loadings on pipe systems caused by water hammer (hydraulic transients) belong to the most important and most difficult to calculate design loadings in nuclear power plants. The most common procedure in Sweden is to calculate the water hammer loadings on pipe segments, according to the classical one-dimensional (1D) theory of liquid transient flow in a pipeline, and then transfer the results to strength analyses of pipeline structure. This procedure assumes that there is quasi-steady respond of the pipeline structure to pressure surges-no dynamic interaction between the fluid and the pipeline construction. The hydraulic loadings are calculated with 1D so-called 'network' programs. Commonly used in Sweden are Relap5, Drako and Flowmaster2-all using quasi-steady wall friction model. As a third party accredited inspection body Inspecta Nuclear AB reviews calculations of water hammer loadings. The presented work shall be seen as an attempt to illustrate ability of Relap5, Flowmaster2 and Drako programs to calculate the water hammer loadings. A special attention was paid to using of Relap5 for calculation of water hammer pressure surges and forces (including some aspects of influence of Courant number on the calculation results) and also the importance of considering the dynamic (or unsteady) friction models. The calculations are compared with experimental results. The experiments have been conducted at a test rig designed and constructed at the Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk, Poland. The analyses show quite small differences between pressures and forces calculated with Relap5, Flowmaster2 and Drako (the differences regard mainly damping of pressure waves). The comparison of calculated and measured pressures and also a force acting on a pre-defined pipe segment shows significant differences. It is shown that the differences can be reduced by using unsteady friction models in calculations

  20. Mending the imaginary wall between Indonesia and Malaysia The case of maritime delimitation in the waters off Tanjung Berakit

    Directory of Open Access Journals (Sweden)

    I Made Andi Arsana

    2011-04-01

    Full Text Available Due to its geographical location, Indonesia shares border areas with at least ten neighbouring countries with which maritime boundaries must be settled. As of March 2011, Indonesia is yet to finalize its maritime boundaries with various States including Malaysia with which four maritime boundaries need to be settled: the Malacca Strait, the South China Sea, the Sulawesi Sea, and the Singapore Strait (off Tanjung Berakit. It is evident that pending maritime boundaries can spark problems between Indonesia and Malaysia. The dispute over the Ambalat Block in 2005 and 2009 and an incident in the waters off Tanjung Berakit on 13 August 2010 are two significant examples. This paper discusses the incident in the waters off Tanjung Berakit, but will be preceded by a description of the principles of coastal States’ maritime entitlement pursuant to international law of the sea. Following the discussion, this paper provides suggestions for settling maritime boundaries in the area from technical/geospatial and legal perspectives.

  1. Device indicating start of steam or water reaction with sodium and damage of steam generator heat exchange tube wall

    International Nuclear Information System (INIS)

    Jung, J.; Sobotka, J.

    1984-01-01

    Eddy currents induced by the alternating current of an exciting coil in the vicinity of steam or water leakage are used for indication. The coil is supplied from a power amplifier whose input is connected to an exciting generator by two measuring coils connected across each other. Their voltage is applied to a differential amplifier with an indicator. The equipment may be used for steam generators of nuclear power plants with sodium cooled reactors. (E.F.)

  2. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  3. The use of a heat transfer coefficient for describing the radiative exchange between water vapour and the bounding walls

    International Nuclear Information System (INIS)

    Eifler, W.; Shepherd, I.M.

    1983-01-01

    During the ''severe-fuel-damage'' experiments of the SUPER SARA test program radiation heat transfer will play an important part. For the analysis of these experiments it should be modelled therefore in a particularly appropriate manner. Based on the same engineering type principles which are used in the radiation model of the TRAC code version for boiling water reactors a new model has been developed. This model is less computer time consuming than the TRAC model and particularly appropriate for the use in the subchannel - type bundle computer code which is planned to be developed for the analysis of the ''severe-fuel-damage'' experiments. Sample calculations for the ''severe-fuel-damage'' test array show that the difference between the results obtained with the new model and those obtained with the TRAC model is in general not significant

  4. Water structuring and hydroxide ion binding at the interface between water and hydrophobic walls of varying rigidity and van der waals interactions

    Czech Academy of Sciences Publication Activity Database

    Vácha, Robert; Zangi, R.; Engberts, J. B. F. N.; Jungwirth, Pavel

    2008-01-01

    Roč. 112, č. 20 (2008), s. 7689-7692 ISSN 1932-7447 R&D Projects: GA MŠk LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * hydroxide * water interfaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  5. Development of high-strength heavy-wall sour-service seamless line pipe for deep water by applying inline heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)

    2004-07-01

    This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.

  6. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    International Nuclear Information System (INIS)

    Jiang, Kecheng; Ma, Xuebin; Cheng, Xiaoman; Liu, Songlin

    2016-01-01

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m"2 as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  7. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230037 (China); Ma, Xuebin; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-03-15

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m{sup 2} as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  8. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  9. Double-walled control valves for the transport of liquids presenting a water pollution hazard; Doppelwandige Stellventile fuer den Transport wassergefaehrdender Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Daume, A.; Weissberg, S. [Daume Regelarmaturen GmbH, Isernhagen (Germany)

    2004-09-01

    Under German law valves, vessels and connecting pipework containing and/or transporting hazardous substances must be fitted with watertight drip pans or moniterable double walls. This article describes double-walled control valves which are very well suited to meet plant operators' safety requirements and environmental protection requirements. In addition to environmental protection, the valves provide opportunities for cost savings. (orig.)

  10. Desalting of sea water by a wall-less evaporation process; Dessalement de l'eau de mer par un procede d'evaporation sans paroi

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, C; Sachine, P; Vuillemey, R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m{sup 3}, and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m{sup 3}. It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m{sup 3}. (authors) [French] Le probleme de l 'approvisionnement en eau de nombreuses regions du globe a mis a 1'ordre du jour le dessalement de l'eau de mer. Des recherches sur cette question ont ete faites dans de multiples directions. Si dans un avenir plus ou moins proche les procedes par congelation peuvent se developper, actuellement seules les methodes d'evaporation ont des applications industrielles. Parmi les nombreuses techniques qui visent a mettre en oeuvre ce principe, les installations a multiples effets et transfert de chaleur sans paroi semblent les mieux placees du point de vue technique et economique. A partir des divers

  11. Desalting of sea water by a wall-less evaporation process; Dessalement de l'eau de mer par un procede d'evaporation sans paroi

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, C.; Sachine, P.; Vuillemey, R. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m{sup 3}, and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m{sup 3}. It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m{sup 3}. (authors) [French] Le probleme de l 'approvisionnement en eau de nombreuses regions du globe a mis a 1'ordre du jour le dessalement de l'eau de mer. Des recherches sur cette question ont ete faites dans de multiples directions. Si dans un avenir plus ou moins proche les procedes par congelation peuvent se developper, actuellement seules les methodes d'evaporation ont des applications industrielles. Parmi les nombreuses techniques qui visent a mettre en oeuvre ce principe, les installations a multiples effets et transfert de chaleur sans paroi semblent les mieux placees du point de vue technique et economique. A

  12. Photocatalysis-assisted water filtration: Using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7

    International Nuclear Information System (INIS)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-01-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO 2 ) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO 2 /MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope–energy dispersive analysis of X-ray (SEM–EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO 2 /MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P < 0.05) as compared to TiO 2 /MWCNT coated ceramic. The photocatalytic killing rate constant for TiO 2 -ceramic and MWCNT/TiO 2 -ceramic under fluorescent light was found be 1.45 × 10 −2 min −1 and 2.23 × 10 −2 min −1 respectively. Further, when I–V characteristics were performed for TiO 2 /MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. - Highlights: • Coating of vertically aligned MWCNT on ceramic candle filter • Surface orchestration of TiO 2 on MWCNT arrays • I–V characteristic studies are performed under dark and illumination. • Photocatalytic efficiency of TiO 2 /MWCNT arrays is determined using E. coli O157:H7. • Proposed a mechanism of bacterial killing due to free radical formation

  13. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  14. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  15. Grafting 3-mercaptopropyl trimethoxysilane on multi-walled carbon nanotubes surface for improving on-line cadmium(II) preconcentration from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, Marcela Zanetti; Somera, Bruna Fabrin; Segatelli, Mariana Gava [Departamento de Quimica, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil); Tarley, Cesar Ricardo Teixeira, E-mail: tarley@uel.br [Departamento de Quimica, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (UNICAMP), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino, Vaz, s/n, CEP 13083-970, Campinas-SP (Brazil)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer 3-Mercaptopropyl trimethoxysilane grafted on MWCNT surface was prepared. Black-Right-Pointing-Pointer The material promoted an increase on performance of MWCNT for Cd{sup 2+} adsorption. Black-Right-Pointing-Pointer The life time of adsorbent was very high. Black-Right-Pointing-Pointer An improvement of 84% on the sensitivity was achieved. - Abstract: In the present study, the performance of multi-walled carbon nanotubes (MWCNTs) grafted with 3-mercaptopropyltrimethoxysilane (3-MPTMS), used as a solid phase extractor for Cd{sup 2+} preconcentration in a flow injection system coupled to flame atomic absorption spectrometry (FAAS), was evaluated. The procedure involved the preconcentration of 20.0 mL of Cd{sup 2+} solution at pH 7.5 (0.1 mol L{sup -1} buffer phosphate) through 70 mg of 3-MPTMS-grafted MWCNTs packed into a minicolumn at 6.0 mL min{sup -1}. The elution step was carried out with 1.0 mol L{sup -1} HCl. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to estimate the extent of the MWCNT chemical modification. The 3-MPTMS-grafted MWCNTs provided a 1.68 times improvement in the sensitivity of the Cd{sup 2+} FAAS determination compared to the unsilanized oxidized MWCNTs. The following parameters were obtained: preconcentration factor of 31.5, consumptive index of 0.635 mL, sample throughput of 14 h{sup -1}, and concentration efficiency of 9.46 min{sup -1}. The analytical curve was constructed in the range of 1.0-60.0 {mu}g L{sup -1} (r = 0.9988), and the detection and quantification limits were found to be 0.15 {mu}g L{sup -1} and 0.62 {mu}g L{sup -1}, respectively. Different types of water samples and cigarette sample were successfully analyzed, and the results were compared using electrothermal atomic absorption spectrometry (ETAAS) as reference technique. In addition, the accuracy of proposed method was also checked by analysis of

  16. Implementing Green Walls in Schools.

    Science.gov (United States)

    McCullough, Michael B; Martin, Michael D; Sajady, Mollika A

    2018-01-01

    Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  17. Chapter 3 Cell Wall Chemistry

    Science.gov (United States)

    Roger M. Rowell; Roger Pettersen; Mandla A. Tshabalala

    2012-01-01

    Wood is best defined as a three-dimensional biopolymer composite composed of an interconnected network of cellulose, hemicelluloses and lignin with minor amounts of extractives, and inorganics. The major chemical component of a living tree is water, but on a dry weight basis, all wood cell walls consist mainly of sugar-based polymers (carbohydrates, 65-75%) that are...

  18. Immersion Refractometry of Isolated Bacterial Cell Walls

    Science.gov (United States)

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  19. Implementing Green Walls in Schools

    Directory of Open Access Journals (Sweden)

    Michael B. McCullough

    2018-06-01

    Full Text Available Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls—a “vertical garden,” or “living wall” interior wall that typically includes greenery, a growing medium (soil or substrate and a water delivery system—provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to “outdoor nature” within the indoor environment. Hands-on “project-based” learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  20. Development of wall ranging radiation inspection robot

    International Nuclear Information System (INIS)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S.

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall

  1. Development of wall ranging radiation inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall.

  2. Optical measurement of water over-heating in contact with a wall submitted to a quick temperature rise under atmospheric pressure

    International Nuclear Information System (INIS)

    Ebrardt, Jacques

    1981-01-01

    As a technique is necessary for the instantaneous measurement of a liquid temperature at the immediate vicinity of a wall submitted to a quick unsteady heating, this research thesis reports the development of such a technique, and its use for the determination of the temperature reached by the liquid before boiling in unsteady regime. After a report of a literature survey on the unsteady heating of liquid (by thermal shock or progressive heating), and on various theoretical aspects, the author reports the use of a measurement installation which is based on the use of optical interferometry, and on the exploitation of raw experimental data. Results of overheating at boiling initiation are interpreted [fr

  3. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  4. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... is the most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...

  5. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  6. The influence of walls and upper tie plate slots on the flooding mechanism in fuel elements with and without heat transfer between steam and water

    International Nuclear Information System (INIS)

    Spatz, R.; Mewes, D.

    1989-01-01

    The counter-current flow of steam and water was experimentally investigated for the upper part of a PWR fuel element. The actual geometrical shape of the nuclear equipment was simulated by various types of plates, in which bore holes and slots were arranged in different positions. The experiments were performed with and without an installed, unheated rod bundle below the plates. The water was injected at saturated and subcooled temperatures in order to observe the effects of heat transfer on counter-current flow. With increasing steam velocity the flooding occurs initially in the tie-plate area. If the rod bundle is installed in the flow duct, a part of the downwards flowing water is transported upwards from the region of the upper grid spacer to the plate. Heat transfer between the phases can cause in the counter-current flow region an instable transition from downward to near complete upward directed liquid flow. In comparison to experiments with saturated water injection, flooding occurs at larger steam velocities. Different flooding correlations, which are known from the literature, were compared with the experimental data to appraise their applicability to counter-current flow in the core of PWRs. (orig.)

  7. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet

    Directory of Open Access Journals (Sweden)

    A. Aftab

    2017-06-01

    Full Text Available Five different drilling mud systems namely potassium chloride (KCl as a basic mud, KCl/partial hydrolytic polyacrylamide (PHPA, KCl/graphene nanoplatelet (GNP, KCl/nanosilica and KCl/multi-walled carbon nano tube (MWCNT were prepared and investigated for enhancement of rheological properties and shale inhibition. Nanoparticles were characterized in drilling mud using transmission electron microscope (TEM analysis. Mineralogical analysis of shale was examined by X-ray diffraction (XRD. Five shale plugs were prepared using compactor cell for the determination of shale swelling. Shale swelling was determined using the linear swell meter (LSM for 20 hours. Results revealed that basic mud and KCl/polymer mud systems shows 30% and 24% change in shale volume. MWCNT, nanosilica and GNP were added separately in the KCl mud system. 0.1 ppb of each MWCNT and nanosilica showed 32% and 33% change in shale volume. However, when the shale was interacted with WBM containing 0.1 ppb of GNP, it was found that only 10% change in shale volume occurred. The results showed that the addition of nanoparticles in the KCl mud system improved the shale inhibition. API, HPHT filtrate loss volume, plastic viscosity (PV and yield point (YP were improved using GNP. It is learned from the experimental work that small concentration of KCl with GNP can mitigate shale swelling compared to the mud contains higher concentration of KCl and PHPA in WBM. Thus, GNP can be a better choice for enhancement of WBM performance.

  8. Wall Finishes; Carpentry: 901895.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  9. Wall Construction; Carpentry: 901892.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in floor and wall layout, and in the diverse methods and construction of walls. Upon completion of this course the students should have acquired a knowledge of construction plans and structural foundations in addition to a basic knowledge of mathematics. The course consists of…

  10. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, Lineke

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  11. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  12. Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran.

    Science.gov (United States)

    Petersson, Karin; Nordlund, Emilia; Tornberg, Eva; Eliasson, Ann-Charlotte; Buchert, Johanna

    2013-03-15

    Rye and wheat bran were treated with several xylanases and endoglucanases, and the effects on physicochemical properties such as solubility, viscosity, water-holding capacity and particle size as well as the chemical composition of the soluble and insoluble fractions of the bran were studied. A large number of enzymes with well-defined activities were used. This enabled a comparison between enzymes of different origins and with different activities as well as a comparison between the effects of the enzymes on rye and wheat bran. The xylanases derived from Bacillus subtilis were the most effective in solubilising dietary fibre from wheat and rye bran. There was a tendency for a higher degree of degradation of the soluble or solubilised dietary fibre in rye bran than in wheat bran when treated with most of the enzymes. None of the enzymes increased the water-holding capacity of the bran or the viscosity of the aqueous phase. The content of insoluble material decreased as the dietary fibre was solubilised by the enzymes. The amount of material that may form a network to retain water in the system was thereby decreased. © 2012 Society of Chemical Industry.

  13. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  14. Corrosion of steel in concrete in cooling water walls. Report part 1 - Literature survey; Korrosion paa staal i betong i kylvattenvaegar. Delrapport 1 - Litteraturgranskning

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Sture; Sederholm, Bror

    2010-09-15

    The aim of the present literature study has been to collect knowledge about reported concentrations of chloride concentrations in concrete exposed to brackish water and also to get an overview of whether a critical threshold chloride concentration for chloride induced corrosion on steel embedded in concrete has been reported and/or accepted. Only five known reports present chloride concentrations in concrete that has been exposed to brackish water. All three refer to the Baltic sea or the Gulf of Bothnia. Reported chloride concentrations in the concrete is considerably higher (more than a factor of ten) than what would have been expected if the chloride had been present in the concrete only as sea water in the pore system. One reason why high chloride concentrations occur in certain zones of the concrete may be that in these zones, evaporation and capillary suction of salt water may occur alternately. Another reason is that chloride ions are physically and/or chemically bound to the cement paste structure. Chloride binding is reported to be dependent on pH value in the pore solution. In line with this, another report suggests that the pH value of the outer chloride solution (the exposure solution) may be affected by the test sample when tests are carried out in small beakers, like in the laboratory. The author of that report says this might be a reason why critical chloride concentrations with respect to steel corrosion measured in the laboratory and in the field will deviate. As for reported threshold levels, many different values have been reported, differing by more than a factor 100, irrespective of the way of reporting (chloride by cement weight, chloride to hydroxide ratio, chloride to pore solution volume, etc). Some authors claim that in fact no one, single critical chloride concentration exists, but that it will depend on several other factors such as humidity, oxygen availability, pH etc. Furthermore, there are different opinions on whether bound

  15. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite

    International Nuclear Information System (INIS)

    Xu Jun; Yao Pei; Li Xuan; He Fei

    2008-01-01

    Water-soluble and conducting sulfonated polyaniline (SPAN)/phenylamine groups contained MWNTs (p-MWNTs) nano-composite were synthesized by in situ oxidation polymerization followed by sulfonation and hydrolysis. TEM, Raman spectroscopy, FTIR, XPS, TGA and standard four-probe methods were employed to characterize morphology, chemical structure and performance of the nano-composite. The results show that phenylamine groups are grafted on the surface of p-MWNTs via amide bond and oxidized phenylamine groups initiate polyaniline polymerized on the surface of p-MWNTs. SPAN chains covalently attached to p-MWNTs render p-MWNTs compatibility with SPAN matrix and lead to SPAN/p-MWNTs nano-composite highly soluble and stable in water. Improved thermal stability illuminate existence of a new phase in the nano-composite where there is chemical interaction between p-MWNTs and SPAN coatings. Owing to incorporation of p-MWNTs conductivity of the nano-composite at room temperature is increased by about two orders of magnitude over neat SPAN

  16. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  17. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Behrisch, Rainer

    1978-01-01

    The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed

  18. Preparation of magnetic graphene/mesoporous silica composites with phenyl-functionalized pore-walls as the restricted access matrix solid phase extraction adsorbent for the rapid extraction of parabens from water-based skin toners.

    Science.gov (United States)

    Feng, Jianan; He, Xinying; Liu, Xiaodan; Sun, Xueni; Li, Yan

    2016-09-23

    In this work, phenyl-functionalized magnetic graphene/mesoporous silica composites (MG-mSiO2-Ph) were prepared and applied as restricted access matrix solid phase extraction (RAM-SPE) adsorbents to determine the parabens in commercially available retail cosmetics. MG-mSiO2-Ph composites were synthesized by a surfactant-mediated co-condensation reaction in which mesoporous silica with phenyl-functionalized pore-walls was coated on a magnetic graphene sheet. The obtained nano-composites were proven to be of sufficient quality for an ideal RAM-SPE adsorbent with a large specific surface area of 369m(2)g(-1), uniform mesopores of 2.8nm, and special phenyl-functionalized pore-walls. Parabens, such as methyl paraben, ethyl paraben and propyl paraben, were extracted from water-based skin toners using one step of the RAM-SPE and were then analysed by a HPLC-DAD system. The SPE conditions were optimized by studying the parameters, such as the adsorbent amount, elution solvent type, adsorption time and desorption time, that influence the extraction efficiency. For each analyte, there were good linearities of approximately 0.10-120μgmL(-1) with determination coefficients (R(2))>0.995. The sensitivity was as low as 0.01-0.025μgmL(-1) for the LOD, and the percent recoveries were 98.37-105.84%. The intra-day and inter-day RSDs were 1.44-6.11% (n=6) and 3.12-11.70% (n=6), respectively. The results indicated that this method with novel RAM-SPE adsorbents is sensitive and convenient. The results also offered an attractive alternative for the extraction and determination of paraben preservatives in a complex matrix, such as cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK 23H SIMULANT IN REMOVING RESIDUES ON TANK 48H WALLS

    International Nuclear Information System (INIS)

    Fondeur, F; Thomas02 White, T; Lawrence Oji, L; Chris Martino, C; Bill Wilmarth, B

    2006-01-01

    Solid residues on two sets of thermowell pipe samples from the D2 riser in SRS Tank 48H were characterized. The residue thickness was determined using the ASTM standard D 3483-05 and was found to be three order of magnitudes below the 1mm thickness estimated from an earlier video of the tank cooling coil inspection. The actual estimated thickness ranged from 4 to 20.4 microns. The mass per unit area ranged from 1 to 5.3 milligrams per square inch. The residues appear to consist primarily of potassium tetraphenylborate (39.8 wt% KTPB) and dried salt solution (33.5 wt% total of nitrates, nitrites and oxalate salts), although ∼30% of the solid mass was not accounted for in the mass balance. No evidence of residue buildup was found inside the pipe, as expected. The residue leaching characteristics were measured by placing one pipe in inhibited water and one pipe in DWPF Recycle simulant. After soaking for less than 4 weeks, the inhibited water was 95.4% effective at removing the residue and the DWPF Recycle simulant was 93.5% effective. The surface appearance of the pipes after leaching tests appeared close to the clean shiny appearance of a new pipe. Total gamma counts of leachates averaged 48.1 dpm/ml, or an equivalent of 2.35E-11 Ci/gm Cs-137 (dry solids basis), which is much lower than the 1.4 E-03 Ci/gm expected for Tank 48 dry slurry solids

  20. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  1. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  2. Fusion: first wall problems

    International Nuclear Information System (INIS)

    Behrisch, R.

    1976-01-01

    Some of the relevant elementary atomic processes which are expected to be of significance to the first wall of a fusion reactor are reviewed. Up to the present, most investigations have been performed at relatively high ion energies, typically E greater than 5 keV, and even in this range the available data are very poor. If the plasma wall interaction takes place at energies of E greater than 1 keV the impurity introduction and first wall erosion which will take place predominantly by sputtering, will be large and may severely limit the burning time of the plasma. The wall bombardment and surface erosion will presumably not decrease substantially by introducing a divertor. The erosion can only be kept low if the energy of the bombarding ions and neutrals can be kept below the threshold for sputtering of 1 to 10 eV. 93 refs

  3. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  4. Dynamic wall demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsui, L.; Mayhew, W.

    1990-12-01

    The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.

  5. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water

    Science.gov (United States)

    Yang, Weijie; Jiao, Feipeng; Zhou, Lei; Chen, Xiaoqing; Jiang, Xinyu

    2013-11-01

    A new and facile method was presented to graft molecularly imprinted polymers (MIPs) on carbon nanotubes (CNTs) for 2,4-dichlorophenoxyacetic acid (2,4-D) analysis. In brief, CNTs were firstly coated with a layer of vinyl group modified silica, followed by a common precipitation polymerization with 2,4-D as the template, ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The imprinted effects obtained by using different monomers were investigated, and the results showed that acrylamide (AM) and styrene as mixed monomers was the best choice. This functionalized material was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG), which demonstrated a successful polymerization reaction on CNTs with MIPs grafting ratio of about 80%. The results of static adsorption experiments indicated the imprinted material possessed fast kinetics and good selectivity for 2,4-D molecules. A corresponding analytical method was developed and demonstrated to be applicable for the determination of 2,4-D in environmental water. The recoveries were in the range from 74.6% to 81.2% with relative standard deviation below 7.0%. To be emphasized, the method for MIPs coating proposed herein also provides a significant reference for other radical polymerization reactions based on CNTs.

  6. Application of actuator-driven pulsed water jet in aneurysmal subarachnoid hemorrhage surgery: its effectiveness for dissection around ruptured aneurysmal walls and subarachnoid clot removal.

    Science.gov (United States)

    Endo, Hidenori; Endo, Toshiki; Nakagawa, Atsuhiro; Fujimura, Miki; Tominaga, Teiji

    2017-07-01

    In clipping surgery for aneurysmal subarachnoid hemorrhage (aSAH), critical steps include clot removal and dissection of aneurysms without premature rupture or brain injuries. To pursue this goal, a piezo actuator-driven pulsed water jet (ADPJ) system was introduced in this study. This study included 42 patients, who suffered aSAH and underwent clipping surgery. Eleven patients underwent surgery with the assistance of the ADPJ system (ADPJ group). In the other 31 patients, surgery was performed without the ADPJ system (Control group). The ADPJ system was used for clot removal and aneurysmal dissection. The clinical impact of the ADPJ system was judged by comparing the rate of premature rupture, degree of clot removal, and clinical outcomes. Intraoperatively, a premature rupture was encountered in 18.2 and 25.8% of cases in the ADPJ and control groups, respectively. Although the differences were not statistically significant, intraoperative observation suggested that the ADPJ system was effective in clot removal and dissection of aneurysms in a safe manner. Computed tomography scans indicated the achievement of higher degrees of clot removal, especially when the ADPJ system was used for cases with preoperative clot volumes of more than 25 ml (p = 0.047, Mann-Whitney U test). Clinical outcomes, including incidence of postoperative brain injury or symptomatic vasospasm, were similar in both groups. We described our preliminary surgical results using the ADPJ system for aSAH. Although further study is needed, the ADPJ system was considered a safe and effective tool for clot removal and dissection of aneurysms.

  7. Water

    Science.gov (United States)

    ... drink and water in food (like fruits and vegetables). 6. Of all the earth’s water, how much is ocean or seas? 97 percent of the earth’s water is ocean or seas. 7. How much of the world’s water is frozen? Of all the water on earth, about 2 percent is frozen. 8. How much ...

  8. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Daniel J. Cosgrove

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  9. KETERASINGAN DALAM FILM WALL-E

    Directory of Open Access Journals (Sweden)

    Rahmadya Putra Nugraha

    2017-05-01

    Full Text Available Modern society nowadays technological advances at first create efficiency in human life. Further development of the technology thus drown human in a routine and automation of work created. The State is to be one of the causes of man separated from fellow or the outside world and eventually experiencing alienation. The movie as a mass media function to obtain the movie and entertainment can be informative or educative function is contained, even persuasive. The purpose of this research was conducted to find out the alienation in the movie Wall E. The concepts used to analyze the movie Wall E this is communication, movie, and alienation. The concept of alienation of human alienation from covering its own products of human alienation from its activities, the human alienation from nature of his humanity and human alienation from each other. Paradigm used is a critical paradigm with type a descriptive research with qualitative approach. The method used is the analysis of semiotics Roland Barthes to interpretation the scope of social alienation and fellow humans in the movie.This writing research results found that alienation of humans with other humans influenced the development of the technology and how the human it self represented of technology, not from our fellow human beings. Masyarakat modern saat ini kemajuan teknologi pada awalnya membuat efisiensi dalam kehidupan manusia. Perkembangan selanjutnya teknologi justru menenggelamkan manusia dalam suatu rutinitas dan otomatisasi kerja yang diciptakan. Keadaan itulah yang menjadi salah satu penyebab manusia terpisah dari sesama atau dunia luar dan akhirnya mengalami keterasingan. Film sebagai media massa berfungsi untuk memperoleh hiburan dan dalam film dapat terkandung fungsi informatif maupun edukatif, bahkan persuasif. Tujuan Penelitian ini dilakukan untuk mengetahui Keterasingan dalam film Wall E. Konsep-konsep yang digunakan untuk menganalisis film Wall E ini adalah komunikasi, film, dan

  10. Moisture movements in render on brick wall

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Munch, Thomas Astrup; Thorsen, Peter Schjørmann

    2003-01-01

    A three-layer render on brick wall used for building facades is studied in the laboratory. The vertical render surface is held in contact with water for 24 hours simulating driving rain while it is measured with non-destructive X-ray equipment every hour in order to follow the moisture front...

  11. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  12. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  13. Kinetic wall from Israel

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1985-05-01

    An unusual solar mass wall is described. At the turn of a handle it can change from a solar energy collector to a heat-blocker. An appropriate name for it might be the rotating prism wall. An example of the moving wall is at work in an adobe test home in Sede Boqer. Behind a large south-facing window stand four large adobe columns that are triangular in plan. One face of each of them is painted black to absorb sunlight, a second is covered with panels of polystyrene insulation, and a third is painted to match the room decor. These columns can rotate. On winter nights, the insulated side faces the glass, keeping heat losses down. The same scheme works in summer to keep heat out of the house. Small windows provide ventilation.

  14. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  15. Investigation of microclimate between wall and furniture with CFD

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Woloszyn, Monika; Rode, Carsten

    2005-01-01

    velocities and diffusion transport in constructions is presented. It is a CFD model where the air is modelled as a mixture of dry air and water vapour and walls fluids modelled with ordinary wall characteristics as material properties. This enables easy modelling of moisture transfer within the walls....... This investigation has special focus on the coupling of the moisture transfers in the wall and the moisture content of the air. The microclimate in a room is studied for different geometrical configurations, meaning that the moisture and temperature conditions are analysed and discussed using different distances...

  16. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  17. eWALL

    DEFF Research Database (Denmark)

    Kyriazakos, Sofoklis; Mihaylov, Mihail; Anggorojati, Bayu

    2016-01-01

    challenge with impact in multiple sectors. In this paper we present an innovative ICT solution, named eWALL, that aims to address these challenges by means of an advanced ICT infrastructure and home sensing environment; thus differentiating from existing eHealth and eCare solutions. The system of e...

  18. Abdominal wall surgery

    Science.gov (United States)

    ... as liposuction , which is another way to remove fat. But, abdominal wall surgery is sometimes combined with liposuction. ... from the middle and lower sections of your abdomen to make it firmer ... removes excess fat and skin (love handles) from the sides of ...

  19. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...

  20. Endometriosis Abdominal wall

    International Nuclear Information System (INIS)

    Alvarez, M.; Carriquiry, L.

    2003-01-01

    Endometriosis of abdominal wall is a rare entity wi ch frequently appears after gynecological surgery. Case history includes three cases of parietal endometriosis wi ch were treated in Maciel Hospital of Montevideo. The report refers to etiological diagnostic aspects and highlights the importance of total resection in order to achieve definitive healing

  1. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  2. Chronic Abdominal Wall Pain.

    Science.gov (United States)

    Koop, Herbert; Koprdova, Simona; Schürmann, Christine

    2016-01-29

    Chronic abdominal wall pain is a poorly recognized clinical problem despite being an important element in the differential diagnosis of abdominal pain. This review is based on pertinent articles that were retrieved by a selective search in PubMed and EMBASE employing the terms "abdominal wall pain" and "cutaneous nerve entrapment syndrome," as well as on the authors' clinical experience. In 2% to 3% of patients with chronic abdominal pain, the pain arises from the abdominal wall; in patients with previously diagnosed chronic abdominal pain who have no demonstrable pathological abnormality, this likelihood can rise as high as 30% . There have only been a small number of clinical trials of treatment for this condition. The diagnosis is made on clinical grounds, with the aid of Carnett's test. The characteristic clinical feature is strictly localized pain in the anterior abdominal wall, which is often mischaracterized as a "functional" complaint. In one study, injection of local anesthesia combined with steroids into the painful area was found to relieve pain for 4 weeks in 95% of patients. The injection of lidocaine alone brought about improvement in 83-91% of patients. Long-term pain relief ensued after a single lidocaine injection in 20-30% of patients, after repeated injections in 40-50% , and after combined lidocaine and steroid injections in up to 80% . Pain that persists despite these treatments can be treated with surgery (neurectomy). Chronic abdominal wall pain is easily diagnosed on physical examination and can often be rapidly treated. Any physician treating patients with abdominal pain should be aware of this condition. Further comparative treatment trials will be needed before a validated treatment algorithm can be established.

  3. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    Sager, P.H.; Fuller, G.; Cramer, B.; Davisson, J.; Haines, J.; Kirchner, J.

    1981-01-01

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  4. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    Science.gov (United States)

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  5. Initial phase wall conditioning in KSTAR

    International Nuclear Information System (INIS)

    Hong, Suk-Ho; Kim, Kwang-Pyo; Kim, Sungwoo; Lee, Dong-Su; Kim, Kyung-Min; Lee, Kun-Su; Kim, Jong-Su; Park, Jae-Min; Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Sun, Jong-Ho; Woo, Hyun-Jong; Lee, Sang-Yong; Lee, Sang-Hwa; Park, Eun-Kyung; Park, Sang-Joon; Kim, Sun-Ho; Wang, Sun-Jung

    2011-01-01

    The initial phase wall conditioning in KSTAR is depicted. The KSTAR wall conditioning procedure consists of vessel baking, glow discharge cleaning (GDC), ICRH wall conditioning (ICWC) and boronization (Bz). Vessel baking is performed for the initial vacuum conditioning in order to remove various kinds of impurities including H 2 O, carbon and oxygen and for the plasma operation. The total outgassing rates after vessel baking in three successive KSTAR campaigns are compared. GDC is regularly performed as a standard wall cleaning procedure. Another cleaning technique is ICWC, which is useful for inter-shot wall conditioning under a strong magnetic field. In order to optimize the operation time and removal efficiency of ICWC, a parameter scan is performed. Bz is a standard technique to remove oxygen impurity from a vacuum vessel. KSTAR has used carborane powder which is a non-toxic boron-containing material. The KSTAR Bz has been successfully performed through two campaigns: water and oxygen levels in the vacuum vessel are reduced significantly. As a result, KSTAR has achieved its first L-H mode transition, although the input power was marginal for the L-H transition threshold. The characteristics of boron-containing thin films deposited for boronization are investigated.

  6. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  7. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  8. Photocatalysis-assisted water filtration: Using TiO{sub 2}-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi [N.S. N. Research Centre for Nanotechnology and Bionanotechnology, Jambhul Phata, Kalyan-Badlapur Road, Ambernath (W) 421505, Maharashtra (India); Jagadale, Pravin [DISAT — Department of Applied Science and Technology, Carbon group, Politecnico di Torino (Italy); Sharon, Maheshwar [N.S. N. Research Centre for Nanotechnology and Bionanotechnology, Jambhul Phata, Kalyan-Badlapur Road, Ambernath (W) 421505, Maharashtra (India); Sharon, Madhuri, E-mail: sharonmadhuri@gmail.com [N.S. N. Research Centre for Nanotechnology and Bionanotechnology, Jambhul Phata, Kalyan-Badlapur Road, Ambernath (W) 421505, Maharashtra (India)

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO{sub 2}) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO{sub 2}/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope–energy dispersive analysis of X-ray (SEM–EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO{sub 2}/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P < 0.05) as compared to TiO{sub 2}/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO{sub 2}-ceramic and MWCNT/TiO{sub 2}-ceramic under fluorescent light was found be 1.45 × 10{sup −2} min{sup −1} and 2.23 × 10{sup −2} min{sup −1} respectively. Further, when I–V characteristics were performed for TiO{sub 2}/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. - Highlights: • Coating of vertically aligned MWCNT on ceramic candle filter • Surface orchestration of TiO{sub 2} on MWCNT arrays • I–V characteristic studies are performed under dark and illumination. • Photocatalytic efficiency of TiO{sub 2}/MWCNT arrays is determined using E. coli O157:H7. • Proposed a mechanism of bacterial killing due to free radical formation.

  9. Wind tunnels with adapted walls for reducing wall interference

    Science.gov (United States)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  10. Rising damp in building walls: the wall base ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)

    2012-12-15

    This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)

  11. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  12. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  13. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  14. Shadows on the wall

    International Nuclear Information System (INIS)

    Swift, Diana.

    1984-01-01

    Canadian antinuclear groups, because of their shifting stances and fluid overlapping membership, are compared with shadows on a wall. They can be roughly classified as environmental, pacifist, concerned with energy, religious, or dedicated to nuclear responsibility. The author considers that such groups, despite their arguably unrealistic attitudes, have raised public awareness of the ethical, practical and financial aspects of power development in Canada and the world

  15. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  16. Light shining through walls

    International Nuclear Information System (INIS)

    Redondo, Javier; Ringwald, Andreas

    2010-11-01

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  17. Light shining through walls

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  18. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  19. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  20. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  1. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  2. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  3. Build an Interactive Word Wall

    Science.gov (United States)

    Jackson, Julie

    2018-01-01

    Word walls visually display important vocabulary covered during class. Although teachers have often been encouraged to post word walls in their classrooms, little information is available to guide them. This article describes steps science teachers can follow to transform traditional word walls into interactive teaching tools. It also describes a…

  4. Meeting the challenge of constructing a uniquely difficult barrier wall

    International Nuclear Information System (INIS)

    Stamnes, R.L.; Orlean, H.M.; Thompson, N.E.

    1997-01-01

    A soil-bentonite vertical barrier wall with intersecting and round corners was constructed in complex geology and steep terrain to enclose and dewater a 1.4 hectare (3.5 acre) area once used for hazardous waste lagoons and landfills at the Queen City Farms (QCF) Superfund site in Maple Valley, Washington. The barrier system, including cap and barrier wall, was designed to contain light non-aqueous phase liquid (LNAPL), in addition to subsurface soil and ground water contaminated with chromium, polychlorinated biphenyls, polyaromatic hydrocarbons, trichloroethylene, dichloroethylene and vinyl chloride in the dissolved-phase. These contaminants threaten a drinking water aquifer beneath the site. Constructing the vertical barrier was a challenge due to steep slopes of 20 percent along the alignment (19.2 meter elevation change in the top of the wall), a 22.5 meter (75 foot) design wall depth, heavily consolidated clays and silts, open works gravels (gravel without finer soils), and geologic discontinuity. The barrier wall is keyed into either a glacial till or thin clayey-silt aquitard. Extensive earth moving, stepped walls and many construction techniques were used to enable construction of this barrier wall. Commonly accepted constructability criteria would have discouraged the construction of this wall

  5. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  6. Flow rates through earthen, geomembrane ampersand composite cut-off walls

    International Nuclear Information System (INIS)

    Tachavises, C.; Benson, C.H.

    1997-01-01

    Flow rates through soil-bentonite (SIB), geomembrane (GM), and composite geomembrane-soil (CGS) cut-off walls were determined using a numerical model of ground water flow. Various geological and wall conditions were simulated. Results of the simulations show that flow rates past all wall types are affected by hydraulic conductivities of the aquifer and underlying confining layer. Flow rates past GM walls with perfect joints are very low, provided the confining layer has low hydraulic conductivity. However, if a small fraction of the joints are defective, GM walls can be ineffective in blocking flow. CGS walls with a low hydraulic conductivity shell are less sensitive to joint defects. CGS walls with good shells typically have lower flow rates than SB and GM walls, even if the CGS wall contains defective joints

  7. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  8. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  9. Effects of Liquid Transpiration Cooling on Heat Transfer to the Diverging Region of a Porous-Walled Nozzle

    National Research Council Canada - National Science Library

    Schieb, Daniel

    1997-01-01

    This research effort investigated the effects of evaporation of water on the heat transferred to the wall of the diverging portion of a porous walled nozzle The AFIT High Pressure Shock Tube was used...

  10. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  11. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  12. Modular first wall concept for steady state operation

    International Nuclear Information System (INIS)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruption or neutral beams until excessive erosion or damage of the armour takes place

  13. Enhanced wall pumping in JET

    International Nuclear Information System (INIS)

    Ehrenberg, J.; Harbour, P.J.

    1991-01-01

    The enhanced wall pumping phenomenon in JET is observed for hydrogen or deuterium plasmas which are moved from the outer (larger major radius) limiter position either to the inner wall or to the top/bottom wall of the vacuum vessel. This phenomenon is analysed by employing a particle recycling model which combines plasma particle transport with particle re-emission from and retention within material surfaces. The model calculates the important experimentally observable quantities, such as particle fluxes, global particle confinement time, plasma density and density profile. Good qualitative agreement is found and, within the uncertainties, the agreement is quantitative if the wall pumping is assumed to be caused by two simultaneously occurring effects: (1) Neutral particle screening at the inner wall and the top/bottom wall is larger than that at the outer limiter because of different magnetic topologies at different poloidal positions; and (2) although most of the particles (≥ 90%) impacting on the wall can be promptly re-emitted, a small fraction (≤ 10%) of them must be retained in the wall for a period of time which is similar to or larger than the global plasma particle confinement time. However, the wall particle retention time need not be different from that of the outer limiter, i.e. pumping can occur when there is no difference between the material properties of the limiter and those of the wall. (author). 45 refs, 18 figs

  14. Characteristics of wall pressure over wall with permeable coating

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Shin, Seungyeol; Lee, Seungbae [Inha Univ., Incheon (Korea, Republic of)

    2012-11-15

    Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open cell, urethane type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low frequency wall pressure spectral levels compared to a smooth wall.

  15. Conceptual design of the INTOR first-wall system

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described

  16. Analysis, design, and constrution of a sacrificial shield wall

    International Nuclear Information System (INIS)

    Fialkow; Shah, S.B.

    1978-01-01

    The sacrificial shield wall, a cylindrical enclosure around the reactor pressure vessel (RPV), is a major component of nuclear power plants of the Boiling Water Reactor (BWR) type. A method developed for the analysis and design of such walls is described which eliminates shortcomings in methods used in current practice. The method treats the wall as a space frame of ring beams and columns and includes the skin plates as finite elements. Design loadings, load combinations, and acceptance criteria are presented. Results by this method are furnished and compared with results by an alternate method. Significant design features are described and a narrative of construction procedures is included. (Author)

  17. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Schumacher, C. [Building Science Corporation, Somerville, MA (United States); Lukachko, A. [Building Science Corporation, Somerville, MA (United States)

    2013-11-01

    This report explains the moisture-related concerns for high R-value wall assemblies and discusses past Building America research work that informs this study. In this project, hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones. The modeling program assessed the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage; the report presents results of the study.

  18. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Børglum, Jens; Gögenür, Ismail; Bendtsen, Thomas F

    2016-01-01

    been introduced with success. Future research should also investigate the effect of specific abdominal wall blocks on neuroendocrine and inflammatory stress response after surgery.  Summary USG abdominal wall blocks in adults are commonplace techniques today. Most abdominal wall blocks are assigned......Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.......  Recent findings Ultrasound guidance is now considered the golden standard for abdominal wall blocks in adults, even though some landmark-based blocks are still being investigated. The efficiency of USG transversus abdominis plane blocks in relation to many surgical procedures involving the abdominal wall...

  19. Investigating Wind-Driven Rain Intrusion in Walls with the CARWASh

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2013-01-01

    Wind-driven rain provides the primary external moisture load for exterior walls.Water absorption by the cladding, runoff, and penetration through the cladding or at details determine how a wall system performs. In this paper we describe a new laboratory facility that can create controlled outdoor and indoor conditions and use it to investigate the water...

  20. Radiation shielding wall structure

    International Nuclear Information System (INIS)

    Nishimura, Yoshitaka; Oka, Shinji; Kan, Toshihiko; Misato, Takeshi.

    1990-01-01

    A space between a pair of vertical steel plates laterally disposed in parallel at an optional distance has a structure of a plurality of vertically extending tranks partitioned laterally by vertically placed steel plates. Then, cements are grouted to the tranks. Strip-like steel plates each having a thickness greater than the gap between the each of the vertically placed steel plates and the cement are bonded each at the surface for each of the vertically placed steel plates opposing to the cements. A protrusion of a strip width having radiation shielding performance substantially identical with that by the thickness of the cement is disposed in the strip-like steel plates. With such a constitution, a safety radiation shielding wall structure with no worry of radiation intrusion to gaps, if formed, between the steel plates and the grouted cements due to shrinkage of the cements. (I.N.)

  1. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  2. Domain wall networks on solitons

    International Nuclear Information System (INIS)

    Sutcliffe, Paul

    2003-01-01

    Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks

  3. Location and optimization analysis of capillary tube network embedded in active tuning building wall

    International Nuclear Information System (INIS)

    Niu, Fuxin; Yu, Yuebin

    2016-01-01

    In this study, a building wall with a thermal tuning function is further investigated. This design turns the building wall from a passive thermal system to an active system. A capillary tube network is installed inside the wall to manipulate the thermodynamics and realize more flexibility and potentials of the wall. This novel building wall structure performs efficiently in terms of building load reduction and supplementary heating and cooling, and the structure is convenient for applying low grade or natural energy with a wider temperature range. The capillary tube network's location inside the wall greatly impacts the thermal and energy performance of the building wall. The effects of three locations including external, middle and internal side are analyzed. The results indicate that the internal wall surface temperature can be neutralized from the ambient environment when the embedded tubes are fed with thermal water. The wall can work with a wide range of water temperature and the optimal location of the tube network is relatively constant in different modes. Power benefit with the wall changes from 2 W to 39 W when the outdoor air temperature changes, higher in summer than in winter. - Highlights: • A building wall with a tuning function is proposed using a capillary pipe network. • Low-grade thermal water can be used to actively manipulate the thermal mass. • Location of the capillary network is investigated to maximize the performance. • The innovation can potentially lower down the grade of energy use in buildings.

  4. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of lowMach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using theWiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  5. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of low Mach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  6. The "Brick Wall" Graphic Organizer

    Science.gov (United States)

    Matteson, Shirley M.

    2016-01-01

    A brick wall provides a fitting description of what happens when teachers try to teach a concept for which students are unprepared. When students are unsuccessful academically, their foundational knowledge may be missing, incomplete, or incorrect. As a result, students "hit a brick wall," and their academic progress stops because they do…

  7. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  8. Topological domain walls in helimagnets

    Science.gov (United States)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  9. Gas from the wall socket

    International Nuclear Information System (INIS)

    Vermeer, B.

    1997-01-01

    A Dutch public utility (Obragas) introduces a new way to supply gas for their household clients in Helmond, Netherlands: the gas wall socket. The use of gas wall sockets must prevent the decrease of the market share for natural gas compared to the market share of electricity for households

  10. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  11. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  12. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  13. The effect of thermal conductance of vertical walls on natural convection in a rectangular enclosure

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Yoshino, A.; Taii, K.

    2004-01-01

    This paper deals with the experimental results of natural convective heat transfer in a rectangular water layer bounded by vertical walls of different thermal conductance. The vertical walls were made of copper or stainless steel. A minimum was observed in the horizontal distribution of temperature near the heating wall since a secondary reverse flow occurred outside the boundary layer. For copper case the experimental results of Nusselt number agreed well with calculations under an isothermal wall condition. For stainless steel case, however, the measured values were lower than the calculations since a three-dimensional effect appeared in convection due to non-uniformity in wall temperature. (author)

  14. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  15. Ultrasonography of chest wall lesion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H. [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  16. Ultrasonography of chest wall lesion

    International Nuclear Information System (INIS)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H.

    1989-01-01

    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  17. Dry wall Kras 2011

    Directory of Open Access Journals (Sweden)

    Domen Zupančič

    2012-01-01

    Full Text Available Despite the modesty of hiska, they show a simple understanding of corbelling technique. One could say they are all examples of human landscape cultivation. Although there is no evident common line when comparing all types of hiska, the cunning eye may observe one shared feature: the positioning of the entrance. More or less all the documented shelters have south or south-western facing entrances. The burja is a cold northerly wind; from the south (Adriatic Sea the winds are warmer. When resting, the setting sun is taken as a sign of the ending of the working day and a reward for the whole day’s efforts. Entrances are the only openings to these structures, and they should serve as well as possible - to watch over the crops, to wait when hunting, to enjoy the calm of evening light, to breathe the sea wind.The syntax of the architectural language of layering stone and shaping the pattern of the landscape remain an inventive realisation of spatial ideas from the past until today. Not only ideas of shaping space - these ideas are basic interventions in the natural habitat which contribute to survival. Culture and an awareness of its values are the origins of local development and reasonable heritage preservation. The next step are tutorial days with workshops on how to build dry stone structures, walls and other stone architecture, as the DSWA organisation in the UK is doing.

  18. Plasma-Wall Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Chen, J L [Institute of Plasma Physics, Chinese Academy of Sciences (China); Guo, H Y [Tri Alpha Energy (United States); Institute of Plasma Physics, Chinese Academy of Sciences (China); McCracken, G M [Culham Science Centre, UKAEA, Abingdon (United Kingdom)

    2012-09-15

    The problem of impurities in fusion plasmas has been recognized since the beginning of the fusion programme. Early experiments in glass vacuum vessels released gas from the wall to such an extent that the radiation from the impurities prevented the plasma from being heated above about 50 eV. The radiative power loss is principally due to line radiation from partially stripped ions, which is particularly a problem during the plasma startup phase. Another problem is fuel dilution, which arises because impurity atoms produce many electrons and, for a given plasma pressure, these electrons take the place of fuel particles. Impurities can also lead to disruptions, as a result of edge cooling and consequent current profile modification. The fractional impurity level which radiates 10% of the total thermonuclear power for a 10 keV plasma is 50% for helium, 7% for carbon, and less than 0.1% for molybdenum. Clearly, impurities of low atomic number are a much less serious problem than those of high atomic number. (author)

  19. A comparison of the radioactivity levels in the coastal waters between the great wall and Zhongshan stations in Antarctica and the Pohai, Huanghai, east China and south China seas of China

    International Nuclear Information System (INIS)

    Chen Jinxing

    1992-01-01

    A comparison of radioactivity levels in the coastal sediments and plants between the Great Wall and Zhongshan Stations in Antarctica and the four seas (i.e. the Pohai Sea, Huanghai Sea, East China Sea and South China Sea) in China shows that in general the radioactivity levels in the coastal sediments and plants in Antarctica are lower than those in the four seas in China. The contents of the total β in the sediments decrease from higher to lower in amount in the order of East China Sea, South China Sea, Pohai Sea, Huanghai Sea and the Great Wall Bay in Antarctica successively, but the contents of 238 U, 232 Th, 226 Ra, 40 K and the total β in marine plants decrease from higher to lower in amount in the order of Daya Bay in the South China Sea, Hanzhou Bay in the East China Sea and the Great Wall Bay in Antarctica successively. The results show that the contamination levels of radioactivity, especially the artificial radioactive contamination in the Antarctic coastal area are far lower than those in China Coastal area, with the remarkable exception of 137 Cs

  20. Water-immersion type ship reactor

    International Nuclear Information System (INIS)

    Okada, Hiroki; Yamamura, Toshio.

    1996-01-01

    In a water immersion-type ship reactor in which a water-tight wall is formed around a pressure vessel by way of an air permeable heat insulation layer and immersing the wall under water in a reactor container, a pressure equalizing means equipped with a back flow check valve and introducing a gas in a gas phase portion above the water level of the container into a water tight wall and a relief valve for releasing the gas in the water tight wall to the reactor container are disposed on the water tight wall. When the pressure in the water tight wall exceeds the pressure in the container, the gas in the water tight wall is released from the relief valve to the reactor container. On the contrary, when the pressure in the container exceeds the pressure in the water tight wall, the gas in the gas phase portion is flown from the pressure equalizing means equipped with a back flow check valve to the inside of the water tight wall. Thus, a differential pressure between both of them is kept around 0kg/cm 2 . A large differential pressure is not exerted on the water tight wall thereby capable of preventing rupture of them to improve reliability, as well as the thickness of the plate can be decreased thereby enabling to moderate the design for the pressure resistance and reduce the weight. (N.H.)

  1. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  2. Fail-safe first wall for preclusion of little leakage

    International Nuclear Information System (INIS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    Leakages although excluded by design measures would occur most probably in highly stressed areas, weldments and locations without possibility to classify the state by in-service inspection. In a water-cooled first wall, allowable leak rate of water is generally very small, and therefore, locating of the leak portion under highly activated environment will be very difficult and be time-consuming. The double-wall concept is promising for the ITER first wall, because it can be made fail-safe by the application of the leak-before-break and the multiple load path concepts, and because it has a potential capability to solve the little leak problem. When the fail safe strength is well defined, subcritical crack growth in the damaged wall can be permitted. This will enable to detect stable leakage of coolant without deteriorating plasma operation. The paper deals with the little leak problem and presents method for evaluating small leak rate of a liquid coolant from crack-like defects. The fail-safe first wall with the double-wall concept is also proposed for preclusion of little leakage and its fail-safety is discussed. (author)

  3. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna

    2017-01-05

    Flame quenching by heat loss to a surface continues to be an active area of combustion research. Close wall temperature measurements in an isothermal wall-stabilized flame are reported in this work. Conventional N-vibrational Coherent Anti-Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K). Methane/air and ethylene/air stoichiometric flames for various global strain rates based on exit bulk velocities are plotted and compared. CH* chemiluminescence is employed to determine the flame location relative to the wall. Flame locations are shown to move closer to the wall with increasing strain rates in addition to higher near-wall temperatures. Peak temperatures for ethylene are considerably higher (~250-300K) than peak temperatures for methane. Preheat zone profiles are similar for different strain rates across fuels. This work demonstrates close wall precise temperature measurments using CARS.

  4. Using NJOY99 and MCNP4B2 to Estimate the Radiation Damage Displacements per Atom per Second in Steel Within the Boiling Water Reactor Core Shroud and Vessel Wall from Reactor-Grade Mixed-Oxide/Uranium Oxide Fuel for the Nuclear Power Plant at Laguna Verde, Veracruz, Mexico

    International Nuclear Information System (INIS)

    Vickers, Lisa

    2003-01-01

    The government of Mexico has expressed interest in utilizing the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18 to 30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons.There is concern that a core with a fraction of MOX fuel (i.e., increased 239 Pu wt%) would increase the radiation damage displacements per atom per second (dpa-s -1 ) in steel within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation damage within the core shroud and vessel wall is a concern because of the potentially adverse affect to personnel and public safety, environment, and operating life of the reactor.The primary uniqueness of this paper is the computation of radiation damage (dpa-s -1 ) using NJOY99-processed cross sections for steel within the core shroud and vessel wall. Specifically, the unique radiation damage results are several orders of magnitude greater than results of previous works. In addition, the conclusion of this paper was that the addition of the maximum fraction of one-third MOX fuel to the LV1 BWR core did significantly increase the radiation damage in steel within the core shroud and vessel wall such that without mitigation of radiation damage by periodic thermal annealing or reduction in operating parameters such as neutron fluence, core temperature, and pressure, it posed a potentially adverse affect to the personnel and public safety, environment, and operating life of the reactor

  5. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  6. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  7. Sea water pipeline for nuclear power plant

    International Nuclear Information System (INIS)

    Ueno, Ken-ichi.

    1992-01-01

    Heating coils, for example, are wound around sea water pipelines as a heater. The outer wall surface of the sea water pipelines is heated by the heating coils. The inner wall surfaces of the sea water pipelines can be warmed to higher than a predetermined temperature by heating the outer wall surfaces to die out marine organisms deposited at the inner surfaces. Further, thermocouples for the external wall and the internal wall are disposed so that the temperature at the inner wall surface of the sea water pipelines can be controlled. Further, a temperature keeping material is disposed at the external surface of the sea water system pipelines. With such a constitution, the marine organisms deposited on the internal wall surface of the sea water system pipelines are died out to suppress the deposition amount of the marine organisms. Accordingly, the maintenance and the operation reliability is improved after maintenance. (I.N.)

  8. Economics of abdominal wall reconstruction.

    Science.gov (United States)

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  10. Electrical resisitivity of mechancially stablized earth wall backfill

    Science.gov (United States)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  11. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    , alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  12. Plant cell walls to ethanol.

    Science.gov (United States)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  13. Restrained shrinkage of masonry walls

    NARCIS (Netherlands)

    Zijl, G.P.A.G. van; Rots, J.G.

    1998-01-01

    State of the art computational rnechanics, in combination with experimental programmes have a lot to offer in providing insight, characterization of total behaviour and predictive ability of structural masonry. Here numerical research towards rationalizing masonry wall movement joint positioning and

  14. Gravity and domain wall problem

    International Nuclear Information System (INIS)

    Rai, B.; Senjanovic, G.

    1992-11-01

    It is well known that the spontaneous breaking of discrete symmetries may lead to conflict with big-bang cosmology. This is due to formation of domain walls which give unacceptable contribution to the energy density of the universe. On the other hand, it is expected that gravity breaks global symmetries explicitly. In this work we propose that this could provide a natural solution to the domain-wall problem. (author). 17 refs

  15. Duct having oscillatory side wall

    Science.gov (United States)

    Sprouse, Kenneth M.

    2018-04-03

    A pump system includes a particulate consolidator pump that has a pump outlet. A duct is coupled to the pump outlet. The duct has a wall that is coupled with an oscillator. The oscillator is operable to oscillate the wall at a controlled frequency. The controlled frequency is selected with respect to breaking static bridging of particulate in the duct due, at least in part, to consolidation of the particulate from a downstream check valve.

  16. Dressed Domain Walls and holography

    International Nuclear Information System (INIS)

    Grisa, Luca; Pujolas, Oriol

    2008-01-01

    The cutoff version of the AdS/CFT correspondence states that the Randall Sundrum scenario is dual to a Conformal Field Theory (CFT) coupled to gravity in four dimensions. The gravitational field produced by relativistic Domain Walls can be exactly solved in both sides of the correspondence, and thus provides one further check of it. We show in the two sides that for the most symmetric case, the wall motion does not lead to particle production of the CFT fields. Still, there are nontrivial effects. Due to the trace anomaly, the CFT effectively renormalizes the Domain Wall tension. On the five dimensional side, the wall is a codimension 2 brane localized on the Randall-Sundrum brane, which pulls the wall in a uniform acceleration. This is perceived from the brane as a Domain Wall with a tension slightly larger than its bare value. In both cases, the deviation from General Relativity appears at nonlinear level in the source, and the leading corrections match to the numerical factors.

  17. Process and device for controling lateral wall of fuel assembly storage cell

    International Nuclear Information System (INIS)

    Moreau, B.

    1989-01-01

    The inspection procedure involves moving a detection system along the length of the wall of a cell in the fuel storage rack immersed in water. The detection system has at least one probe for determining the wall thickness. The probe signal is received above the pond and compared against a reference signal. This process allows to verify the presence of neutron absorbing material in the side walls of the cell [fr

  18. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    -Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K

  19. Downstream fish passage guide walls: A hydraulic scale model analysis

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as

  20. Assessing forest resources in Denmark using wall-to-wall remote sensing data

    DEFF Research Database (Denmark)

    Schumacher, Johannes

    then be applied to estimate resources on both small and large scales. Numerous studies have investigated the possibilities of using remote sensing data for forest monitoring at plot or single tree levels. However, experience of estimating these properties for larger areas, for example regional or country...... assessments, is lacking. In this thesis wall-to-wall remote sensing data (from aerial images, airborne LiDAR, and space-borne SAR) were combined with ground reference data (from NFI plots and tree species experiments) to build and evaluate models estimating properties such as basal area, timber volume......, the thesis extends the application of remote sensing methods to estimate important variables with relevance to water catchment management....

  1. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  3. Bursting bodies of water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls.......A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls....

  4. Dynamics of strings between walls

    International Nuclear Information System (INIS)

    Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke

    2009-01-01

    Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.

  5. Isolation of the Cell Wall.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  6. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  7. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  8. Abdominal wall hernia and pregnancy

    DEFF Research Database (Denmark)

    Jensen, K K; Henriksen, N A; Jorgensen, L N

    2015-01-01

    PURPOSE: There is no consensus as to the treatment strategy for abdominal wall hernias in fertile women. This study was undertaken to review the current literature on treatment of abdominal wall hernias in fertile women before or during pregnancy. METHODS: A literature search was undertaken in Pub......Med and Embase in combination with a cross-reference search of eligible papers. RESULTS: We included 31 papers of which 23 were case reports. In fertile women undergoing sutured or mesh repair, pain was described in a few patients during the last trimester of a subsequent pregnancy. Emergency surgery...... of incarcerated hernias in pregnant women, as well as combined hernia repair and cesarean section appears as safe procedures. No major complications were reported following hernia repair before or during pregnancy. The combined procedure of elective cesarean section and abdominal wall hernia repair was reported...

  9. Recovery after abdominal wall reconstruction

    DEFF Research Database (Denmark)

    Jensen, Kristian Kiim

    2017-01-01

    Incisional hernia is a common long-term complication to abdominal surgery, occurring in more than 20% of all patients. Some of these hernias become giant and affect patients in several ways. This patient group often experiences pain, decreased perceived body image, and loss of physical function......, which results in a need for surgical repair of the giant hernia, known as abdominal wall reconstruction. In the current thesis, patients with a giant hernia were examined to achieve a better understanding of their physical and psychological function before and after abdominal wall reconstruction. Study...... was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery...

  10. Chest Wall tumor: combined management

    International Nuclear Information System (INIS)

    Rao Bhaskar, N.

    1997-01-01

    Cancer is relatively rare disease among children and adolescents. The incidence of solid tumors other than CNS is less than 2/100,000. Tumors of the chest wall can arise either from the somatic tissue or ribs. These are rare, so either institutional reviews or multi institutional studies should determine optimal therapeutic management. Of the bony chest wall, Ewing's sarcoma or the family of tumor (peripheral neuro epithelioma, Askin tumor), are the most common. These lesions are lytic and have associated large extra pleural component. This large extra pleural component often necessitates major chest wall resection (3 or more ribs), and when lower ribs are involved, this entails resection of portion of diaphragm. Despite this resection, survival in the early 1970 was 10-20%. Since 1970 multi agent chemotherapy has increased survival rates. of importance, however, is these regimens have caused significant reduction of these extra pleural components so that major chest wall resections have become a rarity. With improved survival and decreased morbidity preoperative chemotherapy followed by surgery is now the accepted modality of treatment. Another major advantage of this regimen is that potential radiation therapy may be obviated. The most common chest wall lesion is rhabdomyosarcoma. In the IRS study of 1620 RMS patients, in 141 (9%) the primary lesion was in the chest wall. these are primarily alveolar histology. when lesions were superficial, wide local excision with supplemental radiation therapy was associated with low morbidity and good overall survival. however, a majority have significant intra- thoracic components. in these circumstances the resectability rate is less than 30% and the survival poor. Other lesions include non rhabdomyosarcomas, eosinophilic granuloma, chondrosarcoma, and osteomyelitis. The management of these lesions varies according to extent, histology, and patient characteristics

  11. First wall fusion blanket temperature variation - slab geometry

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)

  12. Shielding walls against ionizing radiation

    International Nuclear Information System (INIS)

    1993-05-01

    Hot-cell shielding walls consist of building blocks made of lead according to DIN 25407 part 1, and of special elements according to DIN 25407 part 2. Alpha-gamma cells can be built using elements for protective contamination boxes according to DIN 25480 part 1. This standards document intends to provide planning engineers, manufacturers, future users and the competent authorities and experts with a basis for the design of hot cells with lead shielding walls and the design of hot-cell equipment. (orig./HP) [de

  13. Model and experimental vizualisation of a bubble interacting with an inclined wall

    Science.gov (United States)

    Podvin, Berengere; Khoja, Suleman; Attinger, Daniel; Moraga, Francisco

    2006-11-01

    We describe the motion of an air bubble rising through water as it interacts with a wall of variable inclination. The bubble diameter varies about O(1) mm. We use lubrication theory to determine the modification of the bubble interface and compute the hydrodynamic force exerted by the wall. The present work is an extension of Moraga et al's model [Computers and Fluids 2006], which was devised for a horizontal wall. The predictions of the model are checked against experimental visualizations. The influence of the Weber number, Reynolds number and wall inclination is examined

  14. In service experience feed back of the tore supra actively cooled inner first wall

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Chatelier, M.; Cordier, J.J.; Deschamps, P.; Garampon, L.; Guilhem, D.; Lipa, M.; Mitteau, R.

    1994-01-01

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs

  15. In service experience feed back of the tore supra actively cooled inner first wall

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J; Chappuis, P; Chatelier, M; Cordier, J J; Deschamps, P; Garampon, L; Guilhem, D; Lipa, M; Mitteau, R

    1994-12-31

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs.

  16. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars

    1996-01-01

    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results of the mea...

  17. Wave Forces on Crown Walls

    DEFF Research Database (Denmark)

    Pedersen, Jan; Burcharth, H. F.

    1993-01-01

    This paper presents some of the results from a large parametric laboratory study including more than 200 long-duration model tests. The study addresses both the wave forces imposed on the breakwater crown wall as well as the performance of the structure in reducing the wave overtopping. The testing...

  18. Fandom and the fourth wall

    Directory of Open Access Journals (Sweden)

    Jenna Kathryn Ballinger

    2014-09-01

    Full Text Available I use the Teen Wolf fandom as an example to examine the ways social media has created a more complicated, nuanced relationship with fans. The collapse of the fourth wall between fans and The Powers That Be can have both positive and negative impacts, depending on the willingness of participants to maintain mutual respect and engage in meaningful dialogue.

  19. Wary Eyes Monitoring Wall Street

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  20. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  1. Imaging of chest wall infections

    International Nuclear Information System (INIS)

    Chelli Bouaziz, Mouna; Jelassi, Helmi; Chaabane, Skander; Ladeb, Mohamed Fethi; Ben Miled-Mrad, Khaoula

    2009-01-01

    A wide variety of infections can affect the chest wall including pyogenic, tuberculous, fungal, and some other unusual infections. These potentially life-threatening disorders are frequent especially among immunocompromised patients but often misdiagnosed by physical examination and radiographs. The purpose of this article is to describe the clinical and imaging features of these different chest wall infections according to the different imaging modalities with emphasis on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). The outcome of chest wall infection depends on early diagnosis, severity of the immunosuppression, offending organism, and extent of infection. Because clinical findings and laboratory tests may be not contributive in immunocompromised patients, imaging plays an important role in the early detection and precise assessment of the disease. US, CT, and MRI are all useful: bone destruction is more accurately detected with CT whereas soft tissue involvement are better visualized with US and MRI. CT and US are also used to guide percutaneous biopsy and drainage procedures. MR images are helpful in pre-operative planning of extensive chest wall infections. (orig.)

  2. Designing a Sound Reducing Wall

    Science.gov (United States)

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna

    2015-01-01

    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  3. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  4. Neutron-transparent first wall for module testing

    International Nuclear Information System (INIS)

    Fuller, G.M.; Cramer, B.A.; Haines, J.R.; Kirchner, J.; Engholm, B.A.; Seki, M.

    1983-01-01

    Major design goals for FED-R are the achievement of: (1) a high level of neutron exposure of the test modules and (2) a capability for rapid changeout of test modules. A major factor in rapid changeout is perceived to be the location of the vacuum boundary. In FED-R this boundary was set at the first wall so that module changeout did not require the plasma chamber to be brought up to atmosphere. Efforts to realize these goals in the design resulted in a neutronically thin outboard wall for the vacuum vessel constructed of 316 stainless steel (SS) with helium as a coolant. A normalized 14-MeV neutron transmission of 0.82 is expected, with an inlet pressure of 2 MPa and a pumping power requirement of 8.7 MW. Other options considered in the study were aluminum as a wall material and water and sodium potassium (NaK) as coolants

  5. Material options for a commercial fusion reactor first wall

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-05-01

    A study has been conducted to evaluate the potential of various materials for use as first walls in high-power-density commercial fusion reactors. Operating limits for each material were obtained based on a number of criteria, including maximum allowable structural temperatures, critical heat flux, ultimate tensile strength, and design-allowable stress. The results with water as a coolant indicate that a modified alloy similar to HT-9 may be a suitable candidate for low- and medium-power-density reactor first walls with neutron loads of up to 6 MW/m 2 . A vanadium or copper alloy must be used for high-power-density reactors. The neutron wall load limit for vanadium alloys is about 14 MW 2 , provided a suitable coating material is chosen. The extremely limited data base for radiation effects hinders any quantitative assessment of the limits for copper alloys

  6. Optimal Design of Sheet Pile Wall Embedded in Clay

    Science.gov (United States)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  7. Granular packings with moving side walls

    International Nuclear Information System (INIS)

    Landry, James W.; Grest, Gary Stephen

    2004-01-01

    The effects of movement of the side walls of a confined granular packing are studied by discrete element, molecular dynamics simulations. The dynamical evolution of the stress is studied as a function of wall movement both in the direction of gravity as well as opposite to it. For all wall velocities explored, the stress in the final state of the system after wall movement is fundamentally different from the original state obtained by pouring particles into the container and letting them settle under the influence of gravity. The original packing possesses a hydrostaticlike region at the top of the container which crosses over to a depth-independent stress. As the walls are moved in the direction opposite to gravity, the saturation stress first reaches a minimum value independent of the wall velocity, then increases to a steady-state value dependent on the wall velocity. After wall movement ceases and the packing reaches equilibrium, the stress profile fits the classic Janssen form for high wall velocities, while some deviations remain for low wall velocities. The wall movement greatly increases the number of particle-wall and particle-particle forces at the Coulomb criterion. Varying the wall velocity has only small effects on the particle structure of the final packing so long as the walls travel a similar distance.

  8. Flow over convergent and divergent wall riblets

    Energy Technology Data Exchange (ETDEWEB)

    Koeltzsch, K.; Dinkelacker, A.; Grundmann, R. [Institut fuer Luft- und Raumfahrttechnik, Technische Universitaet Dresden, 36460 Merkers (Germany)

    2002-08-01

    Fast swimming sharks have small riblets on their skin, which are assumed to improve the swimming performance of the fish. Fluid dynamic experiments in water as well as in air confirm this assumption. With riblet surfaces as compared to smooth surfaces, drag reductions up to about 10% were measured. The overall riblet pattern on sharks shows parallel riblets directed from head to tail, but besides this overall pattern fast swimming sharks have also small areas with converging riblets and others with diverging riblets. In the present study the velocity field over convergent and divergent riblet patterns is investigated by hot-wire measurements in turbulent pipe flow. Significant changes in the near wall velocity field were found. (orig.)

  9. Modeling of Two-Phase Flow in Rough-Walled Fracture Using Level Set Method

    Directory of Open Access Journals (Sweden)

    Yunfeng Dai

    2017-01-01

    Full Text Available To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.

  10. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    Science.gov (United States)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  11. Slurry walls and slurry trenches - construction quality control

    International Nuclear Information System (INIS)

    Poletto, R.J.; Good, D.R.

    1997-01-01

    Slurry (panel) walls and slurry trenches have become conventional methods for construction of deep underground structures, interceptor trenches and hydraulic (cutoff) barriers. More recently polymers mixed with water are used to stabilize the excavation instead of bentonite slurry. Slurry walls are typically excavated in short panel segments, 2 to 7 m (7 to 23 ft) long, and backfilled with structural materials; whereas slurry trenches are fairly continuous excavations with concurrent backfilling of blended soils, or cement-bentonite mixtures. Slurry trench techniques have also been used to construct interceptor trenches. Currently no national standards exist for the design and/or construction of slurry walls/trenches. Government agencies, private consultants, contractors and trade groups have published specifications for construction of slurry walls/trenches. These specifications vary in complexity and quality of standards. Some place excessive emphasis on the preparation and control of bentonite or polymer slurry used for excavation, with insufficient emphasis placed on quality control of bottom cleaning, tremie concrete, backfill placement or requirements for the finished product. This has led to numerous quality problems, particularly with regard to identification of key depths, bottom sediments and proper backfill placement. This paper will discuss the inspection of slurry wall/trench construction process, identifying those areas which require special scrutiny. New approaches to inspection of slurry stabilized excavations are discussed

  12. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  13. Brick walls on the brane

    International Nuclear Information System (INIS)

    Medved, A J M

    2002-01-01

    The so-called 'brick-wall model' is a semiclassical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior study invoked a simplifying assumption (which we avoid) that cannot be adequately justified

  14. Domain walls at finite temperature

    International Nuclear Information System (INIS)

    Carvalho, C.A. de; Marques, G.C.; Silva, A.J. da; Ventura, I.

    1983-08-01

    It is suggested that the phase transition of lambda phi 4 theory as a function of temperature coincides with the spontaneous appearance of domain walls. Based on one-loop calculations, T sub(c) = 4M/√ lambda is estimated as the temperature for these domains to because energetically favored, to be compared with T sub(c) = 4.9M/√ lambda from effective potential calculations (which are performed directly in the broken phase). Domain walls, as well as other Types of fluctuations, disorder the system above T sub(c), leading to =0. The critical exponent for the specific heat above T sub(c) is computed; and α=2/3 + 0 (√ lambda) is obtained. (Author) [pt

  15. Fast wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kitamura, Kazunori.

    1990-01-01

    A protruding molten metal reservoir is disposed to a sealing vessel embedded in the armour tile of fast walls, and molten metal of low melting point such as tin, lead or alloy thereof is filled in the sealing vessel. The volume of the molten metal reservoir is determined such that the surface level of the molten metal is kept within the molten metal reservoir even when the sealed low melting point metal is solidified at room temperature. When the temperature is lowered during plasma interruption period and the sealed low melting molten metal is solidified to reduce the volume, most of the molten metal reservoir regioin constitutes a vacuum gap. However, the inner wall of the sealing vessel other than the molten metal reservior region can be kept into contact with the sealed metal. Accordingly, the temperature and the sublimation loss of the armour tile can be kept low even upon plasma heat application. (I.N.)

  16. Thin walls in regions with vacuum energy

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D [Florida Univ., Gainesville, FL (USA). Dept. of Physics; Vuille, C [Embry-Riddle Aeronautical Univ., Prescott, AZ (USA). Dept. of Math/Physical Science

    1989-12-01

    The motion of a thin wall is treated in the case where the regions on either side of the wall have vacuum energy. This treatment generalises previous results involving domain walls in vacuum and also previous results involving the properties of false vacuum bubbles. The equation of state for a domain wall is{tau} = {sigma} where {tau} is the tension in the wall and {sigma} is the energy density. We consider the motion of a more general class of walls having equation of state {tau}{Gamma}{sigma} with 0{le}{Gamma}{le}1. Spherically symmetric and planar symmetric walls are examined. We also find the global structure of the wall spacetime. (author).

  17. The DEMO wall load challenge

    Czech Academy of Sciences Publication Activity Database

    Wenninger, R.; Albanese, R.; Ambrosino, R.; Arbeiter, F.; Aubert, J.; Bachmann, C.; Barbato, L.; Barrett, T.; Beckers, M.; Biel, W.; Boccaccini, L.; Carralero, D.; Coster, D.; Eich, T.; Fasoli, A.; Federici, G.; Firdaouss, M.; Graves, J.; Horáček, Jan; Kovari, M.; Lanthaler, S.; Loschiavo, V.; Lowry, C.; Lux, H.; Maddaluno, G.; Maviglia, F.; Mitteau, R.; Neu, R.; Pfefferle, D.; Schmid, K.; Siccinio, M.; Sieglin, B.; Silva, C.; Snicker, A.; Subba, F.; Varje, J.; Zohm, H.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046002. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : DEMO * power loads * first wall Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa4fb4

  18. Gas target with thin wall

    International Nuclear Information System (INIS)

    Korenchenko, A.S.; Korenchenko, S.M.; Kravchuk, N.P.; Filippov, A.I.; Fursov, A.P.

    1992-01-01

    The technology of targets manufacture with thin wall diameter 100 mm and lengthwise 700 mm from composition kevlar + epoxy resin is described. The test's results on pressure and vacuum are reported. The created targets are supposed to be used on the installation ARES for an investigation of muons and pions interactions with light nuclei and rare pions decay 'on flying'. 5 refs.; 2 figs.; 2 tabs

  19. Physics of resistive wall modes

    International Nuclear Information System (INIS)

    Igochine, V.

    2012-01-01

    The advanced tokamak regime is a promising candidate for steady-state tokamak operation which is desirable for a fusion reactor. This regime is characterized by a high bootstrap current fraction and a flat or reversed safety factor profile, which leads to operation close to the pressure limit. At this limit, an external kink mode becomes unstable. This external kink is converted into the slowly growing resistive wall mode (RWM) by the presence of a conducting wall. Reduction of the growth rate allows one to act on the mode and to stabilize it. There are two main factors which determine the stability of the RWM. The first factor comes from external magnetic perturbations (error fields, resistive wall, feedback coils, etc). This part of RWM physics is the same for tokamaks and reversed field pinch configurations. The physics of this interaction is relatively well understood and based on classical electrodynamics. The second ingredient of RWM physics is the interaction of the mode with plasma flow and fast particles. These interactions are particularly important for tokamaks, which have higher plasma flow and stronger trapped particle effects. The influence of the fast particles will also be increasingly more important in ITER and DEMO which will have a large fraction of fusion born alpha particles. These interactions have kinetic origins which make the computations challenging since not only particles influence the mode, but also the mode acts on the particles. Correct prediction of the ‘plasma–RWM’ interaction is an important ingredient which has to be combined with external field's influence (resistive wall, error fields and feedback) to make reliable predictions for RWM behaviour in tokamaks. All these issues are reviewed in this paper. (special topic)

  20. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  1. Alternative to domain wall fermions

    International Nuclear Information System (INIS)

    Neuberger, H.

    2002-01-01

    An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions

  2. Method of constructing shielding wall

    International Nuclear Information System (INIS)

    Nagao, Tetsuya.

    1990-01-01

    For instance, surfaces of lead particles each formed into a sphere of about 0.5 to 0.3 mm grain size are coated with a coating material of a synthetic resin comprising a polymeric material such as teflon. Subsequently, the floated lead particle are kneaded with concrete materials and then poured into a molding die by way of a hose. After coagulation, the molding die is removed to complete shielding walls in which lead particles are scattered substantially at an equal distance. In this way, since the lead particles are mixed into the shielding walls, shielding effects can be improved by so much as the lead particles are mixed, thereby enabling to reduce the thickness of the shielding walls. Further, since the lead particles are coated with the coating material, the lead particles are insulated from the concrete materials, thereby enabling to prevent the corrosion of the lead particles. Furthermore, since the lead particles and the concrete materials can be transported with ease, operation labors can be reduced. (T.M.)

  3. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  4. Gas Enrichment at Liquid-Wall Interfaces

    NARCIS (Netherlands)

    Dammer, S.M.; Lohse, Detlef

    2006-01-01

    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls, which for hydrophobic walls can exceed more than 2 orders of magnitude when compared to the gas density in the bulk liquid,

  5. Theory of topological edges and domain walls

    NARCIS (Netherlands)

    Bais, F.A.; Slingerland, J.K.; Haaker, S.M.

    2009-01-01

    We investigate domain walls between topologically ordered phases in two spatial dimensions. We present a method which allows for the determination of the superselection sectors of excitations of such walls and which leads to a unified description of the kinematics of a wall and the two phases to

  6. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  7. To detect anomalies in diaphragm walls

    NARCIS (Netherlands)

    Spruit, R.

    2015-01-01

    Diaphragm walls are potentially ideal retaining walls for deep excavations in densely built-up areas, as they cause no vibrations during their construction and provide structural elements with high strength and stiffness. In the recent past, however, several projects using diaphragm walls as soil

  8. Making Your Music Word Wall Work

    Science.gov (United States)

    Leonhardt, Angela

    2011-01-01

    This article looks at what a word wall is and its use in the music classroom. The author outlines steps for creation of a word wall within the music classroom as well as the importance of such a resource. The author encourages the creation and consistent use of the word wall as leading to the development of stronger musicians and also independent,…

  9. Current Status on the Development of a Double Wall Tube Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Choi, Byoung Hae; Kim, Jong Man; Kim, Byung Ho

    2007-12-15

    A fast reactor, which uses sodium as a coolant, has a lot of merits as a next generation nuclear reactor. However, the possibility of a sodium-water reaction occurrence hinders the commercialization of this reactor. As one way to improve the reliability of a steam generator, a double-wall tube steam generator is being developed in GEN-4 program. In this report, the current state of the technical developments for a double-wall tube steam generator are reviewed and a future plan for the development of a double-wall tube steam generator is established. The current focuses of this research are an improvement of the heat transfer capability for a double-wall tube and the development of a proper leak detection method for the failure of a double-wall tube during a reactor operation. The ideal goal is an on-line leak detection of a double wall tube to prevent the sodium-water reaction. However, such a method is not developed as yet. An alternative method is being used to improve the reliability of a steam generator by performing a non-destructive test of a double wall tube during the refueling period of a reactor. In this method a straight double wall tube is employed to perform this test easily, but has a difficulty regarding an absorption of a thermal expansion of the used materials. If an on-line leak detection method is developed, the demerits of a straight double-wall tube are avoided by using a helical type double-wall tube, and the probability of a sodium-water reaction can be reduced to a level less than the design-based accident.

  10. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  11. Near-wall serpentine cooled turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  12. The origin of 'Great Walls'

    International Nuclear Information System (INIS)

    Shandarin, Sergei F.

    2009-01-01

    A new semi-analytical model that explains the formation and sizes of the 'great walls' - the largest structures observed in the universe is suggested. Although the basis of the model is the Zel'dovich approximation it has been used in a new way very different from the previous studies. Instead of traditional approach that evaluates the nonlinear density field it has been utilized for identification of the regions in Lagrangian space that after the mapping to real or redshift space (depending on the kind of structure is studied) end up in the regions where shell-crossing occurs. The set of these regions in Lagrangian space form the progenitor of the structure and after the mapping it determines the pattern of the structure in real or redshift space. The particle trajectories have crossed in such regions and the mapping is no longer unique there. The progenitor after mapping makes only one stream in the multi-stream flow regions therefore it does not comprise all the mass. Nevertheless, it approximately retains the shape of the structure. The progenitor of the structure in real space is determined by the linear density field along with two non-Gaussian fields derived from the initial potential. Its shape in Eulerian space is also affected by the displacement field. The progenitor of the structure in redshift space also depends on these fields but in addition it is strongly affected by two anisotropic fields that determine the pattern of great walls as well as their huge sizes. All the fields used in the mappings are derived from the linear potential smoothed at the current scale of nonlinearity which is R nl = 2.7 h −1 Mpc for the adopted parameters of the ΛCDM universe normalized to σ 8 = 0.8. The model predicts the existence of walls with sizes significantly greater than 500 h −1 Mpc that may be found in sufficiently large redshift surveys

  13. First Wall and Operational Diagnostics

    International Nuclear Information System (INIS)

    Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

    2006-01-01

    In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER

  14. Moving walls and geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)

    2016-09-15

    We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.

  15. Another Concrete In the Wall

    OpenAIRE

    Meric, Asli Duru

    2015-01-01

    concrete has a memory. It stores the construction sequences. It shows what it is made of and how it is made. The texture of the formwork, the color difference of the pours, and the shadows of the metal ties combine to layer the beauty of concrete. The aim of this study is to explore the instruments of a concrete surface in order to enhance this multi-sensory experience. This study began with the design of a concrete wall and evolved into the design of a single-family home. MARCH

  16. Methodology for first wall design

    International Nuclear Information System (INIS)

    Galambos, J.D.; Conner, D.L.; Goranson, P.L.; Lousteau, D.C.; Williamson, D.E.; Nelson, B.E.; Davis, F.C.

    1993-01-01

    An analytic parametric scoping tool has been developed for application to first wall (FW) design problems. Both thermal and disruption force effects are considered. For the high heat flux and high disruption load conditions expected in the International Thermonuclear Experimental Reactor (ITER) device, Vanadium alloy and dispersion-strengthened copper offer the best stress margins using a somewhat flattened plasma-facing configuration. Ferritic steels also appear to have an acceptable stress margin, whereas the conventional stainless steel 316 does not appear feasible. If a full semicircle shape FW is required, only the Vanadium and ferritic steel alloy have acceptable solutions

  17. Reflections on a flat wall

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Huhtinen, M.

    1995-01-01

    This paper describes an investigation into whether estimates of attenuation in the flat sidewalls of the tunnel for the MC main ring can be based on a simple point-source/line-of-sight model. Having seen the limitations of such a model, an alternative is proposed where the main radiation source is not the initial object struck by the beam but the plane source provided by the first interactions of secondaries from the target in the shield-wall. This is shown to have a closer relation to reality than the point-source/line-of-sight model. (author)

  18. The Wall On Gladstone Avenue

    Directory of Open Access Journals (Sweden)

    Pina MARCHESE

    2012-12-01

    Full Text Available "Since the house is on fire, Let us warm ourselves..." (Calabrian Proverb It all began in the village. We would wake up with the sun, we would rest our laboured bodies underneath the moon. Gli vecchi (old folks often told us: "In the end, all that will remain is our story. Nothing else really matters." This article "The Wall On Gladstone Avenue" will take you into a life of duality and how immigrants "press-on" to acquire knowledge and manifest meaning in a new land Canada.

  19. A full-scale porous reactive wall for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Benner, S.G.; Blowes, D.W.; Ptacek, C.J.

    1997-01-01

    The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years

  20. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  1. Resistance to fire of walls constituted by hollow blocks: Experiments and thermal modeling

    International Nuclear Information System (INIS)

    Al Nahhas, F.; Ami Saada, R.; Bonnet, G.; Delmotte, P.

    2007-01-01

    The thermo-mechanical behavior of masonry walls is investigated from both experimental and theoretical points of view. Fire tests have been performed in order to evaluate the thermo-mechanical resistance of masonry wall submitted to a vertical load (13 ton/m) and exposed to temperatures ranging from 20 to 1200 o C. As a result we measure the temperature evolution inside the wall and evaluate the vertical and lateral displacements of this wall during heating for a period of 6 h. These results are affected significantly by phase-change phenomena which appeared as a plateau around o C in temperature-time curves. A theoretical model was then developed to describe the experimental results taking in to account convection, conduction and radiation phenomena inside the wall. In addition, liquid water migration using an enthalpic method is considered

  2. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  3. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  4. Reactor wall in thermonuclear device

    International Nuclear Information System (INIS)

    Shibui, Masanao.

    1988-01-01

    Purpose: To always monitor the life of armours in reactor walls and automatically shutdown the reactor if it should be operated in excess of the limit of use. Constitution: Monitoring material of lower melting point than armours (for example beryllium pellets) as one of the reactor wall constituents of a thermonuclear device are embedded in a region leaving the thickness corresponding to the allowable abrasion of the armour. In this structure, if the armours are abrased due to particle loads of a plasma and the abrasion exceeds a predetermined allowable level, the monitoring material is exposed to the plasma and melted and evaporated. Since this can be detected by impurity monitors disposed in the reactor, it is possible to recognize the limit for the working life of the armours. If the thermonuclear reactor should be operated accidentally exceeding the life of the armours, since a great amount of the monitoring materials have been evaporated, they flow into the plasma to increase the plasma radiation loss thereby automatically eliminate the plasma. (K.M.)

  5. Near Wall measurement in Turbulent Flow over Rough Wall using microscopic HPIV

    Science.gov (United States)

    Talapatra, Siddharth; Hong, Jiarong; Katz, Joseph

    2009-11-01

    Using holographic PIV, 3D velocity measurements are being performed in a turbulent rough wall channel flow. Our objective is to examine the contribution of coherent structures to the flow dynamics, momentum and energy fluxes in the roughness sublayer. The 0.45mm high, pyramid-shaped roughness is uniformly distributed on the top and bottom surfaces of a 5X20cm rectangular channel flow, where the Reτ is 3400. To facilitate recording of holograms through a rough plate, the working fluid is a concentrated solution of NaI in water, whose optical refractive index is matched with that of the acrylic rough plates. The test section is illuminated by a collimated laser beam from the top, and the sample volume extends from the bottom wall up to 7 roughness heights. After passing through the sample volume, the in-line hologram is magnified and recorded on a 4864X3248 pixels camera at a resolution of 0.74μm/pixel. The flow is locally seeded with 2μm particles. Reconstruction, spatial filtering and particle tracking provide the 3D velocity field. This approach has been successfully implemented recently, as preliminary data demonstrate.

  6. Improved design of guide wall of bank spillway at Yutang Hydropower Station

    Directory of Open Access Journals (Sweden)

    Ji-bao Wang

    2010-03-01

    Full Text Available Ensuring that water flows smoothly into spillways is the main challenge in spillway design. In order to help avoid the formation of vortices and separation of flow along the guide wall in front of the gates during overflow through the spillway, an experiment with a physical model of the Yutang Dam bank spillway was carried out. The profile of the guide wall was redesigned to eliminate the formation of vortices and separation of flow. This involves opening up holes in the middle part of the guide wall. The test results show that the design is effective in improving the flow conditions of the inlet, and in ensuring the desired values of water head along the guide wall and discharge capacities of the spillway.

  7. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    Science.gov (United States)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  8. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    Science.gov (United States)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  9. Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation

    Institute of Scientific and Technical Information of China (English)

    R.B. Kaligatla; Manisha; T. Sahoo

    2017-01-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  10. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  11. SprayWall, Cured-In-Placed Method for Manhole Rehabilitation

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Manholes and other underground structures commonly account for 25-30 % of infiltration and up to 70% of inflow in sanitary sewer collection systems. These will cause sewer overflow and endanger the nearby environment. SprayWall is a spray-applied, cured-in-place method of construction and is primarily used in manholes. It uses urethane material that provides excellent corrosion resistance. SprayWall is structural and can withstand ground water loads on a long-term basis.

  12. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  13. Hydrodynamics of ultra-relativistic bubble walls

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2016-04-15

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  14. Sideways wall force produced during tokamak disruptions

    Science.gov (United States)

    Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.

    2013-07-01

    A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.

  15. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  16. Virtual gap dielectric wall accelerator

    Science.gov (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  17. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Miki, Nobuharu.

    1992-01-01

    In a first wall of a thermonuclear device, armour tiles are metallurgically bonded to a support substrate only for the narrow area of the central portion thereof, while bonded by metallurgical bonding with cooling tubes of low mechanical toughness, separated from each other in other regions. Since the bonding area with the support substrate of great mechanical rigidity is limited to the narrow region at the central portion of the armour tiles, cracking are scarcely caused at the end portion of the bonding surface. In other regions, since cooling tubes of low mechanical rigidity are bonded metallurgically, they can be sufficiently withstand to high thermal load. That is, even if the armour tiles are deformed while undergoing thermal load from plasmas, since the cooling tubes absorb it, there is no worry of damaging the metallurgically bonded face. Since the cooling tubes are bonded directly to the armour tiles, they absorb the heat of the armour tiles efficiently. (N.H.)

  18. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  19. Development of an ECT technique for discriminating between a through-wall/non through-wall crack in a steam generator tube

    International Nuclear Information System (INIS)

    Lee, D.H.; Choi, M.S.; Hur, D.H.; Han, J.H.; Lee, U.C.

    2004-01-01

    In a lot of pressurized water reactors, PWSCC (primary water stress corrosion cracking) has been observed in the expansion or u-bend transitions of the alloy 600 steam generator tubes. Particularly, the development of a through-wall crack may cause leakage of the primary coolant during operation and the resultant forced outage, and the in-situ pressure test has often been used to evaluate the integrity and the leakage of the cracked tube during an in-service inspection. However, this process requires additional equipment and hours, and the tested tubes are plugged due to the plastic deformation induced by the internal pressurization. This paper describes a new evaluation technique of the Eddy current test, by which it can be determined whether the crack is through-wall or non through-wall. The technique is based upon the analysis of the characteristics in the Eddy current signals from the crack and also includes the method of measuring exact through-wall length of the crack. The proof and applicability of the technique is discussed with the results of the destructive tests on cracked tubes extracted from a commercial power plant. Also, the effect of crack opening, which reflects the driving force for a crack propagation of non through-wall crack and the leak rate of a through-wall crack, upon the characteristics of the Eddy current signals from the coils of the motorized rotating probe is investigated and discussed using steam generator tube samples with manufactured axial cracks of a through-wall and non through-wall. (orig.)

  20. Movement of the lacrimal canalicular wall under intracanalicular pressure changes observed with dacryoendoscopy.

    Science.gov (United States)

    Kakizaki, Hirohiko; Takahashi, Yasuhiro; Mito, Hidenori; Nakamura, Yasuhisa

    2015-01-01

    Movement of the lacrimal canalicular wall has been speculated to occur during blinking. Movement of the common internal ostium has been observed under nasal endoscopy, and pressure changes in the lacrimal canalicular cavity have been observed with a pressure sensor; however, lacrimal canalicular wall movement under pressure changes has not been observed. To examine movement of the lacrimal canalicular wall under intracanalicular pressure changes using dacryoendoscopy. The authors examined 20 obstruction-free lacrimal canaliculi in 10 patients. A dacryoendoscope was inserted, and water was poured into the intracanalicular cavity via the dacryoendoscope's water channel. The water was then poured or suctioned to cause positive or negative pressure changes in the intracanalicular cavity, and movement of the lacrimal canalicular wall was examined. The lacrimal canalicular wall moved flexibly with pressure changes. Under positive pressure, the intracanalicular cavity was dilated; however, it narrowed under negative pressure. The extent of movement was more dramatic in the common canalicular portion than the proximal canalicular portion. Intracanalicular pressure changes cause movement of the lacrimal canalicular wall. There was a consistent relationship between intracanalicular cavity changes and pressure changes, possibly contributing to lacrimal drainage of the canaliculus.

  1. Plasma wall particle balance in Tore Supra

    International Nuclear Information System (INIS)

    Grisolia, C.; Ghendrih, P.; Pegourie, B.; Grosman, A.

    1992-01-01

    A comprehensive study of the particle balance between the carbon wall and the plasma is presented. One finds that the effective particle content of the wall which governs the plasma equilibrium density departs from the deposited number of particles. This effect is dominant for the fully desaturated wall. A scaling law of the plasma density in terms of the wall effective particle content has been obtained. Moreover, the experimental data allows to estimate the plasma particle confinement time. Values ranging from 0.2 s to 0.5 s are found depending on the density. An analytical functional dependence of the particle confinement time is obtained

  2. Hyphal walls of isolated lichen fungi

    International Nuclear Information System (INIS)

    Galun, M.; Braun, A.; Frensdorff, A.; Galun, E.

    1976-01-01

    The hyphal walls of three mycobionts, isolated from the lichens Xanthoria parietina, Tornabenia intricata and Sarcogyne sp. were investigated by two techniques: microaudiography of fungal colonies exposed to radioactive carbohydrate precursors; and binding, in vivo, of fluorescein conjugated lectins to hyphal walls of such colonies. N-( 3 H) acetylglucosamine was readily incorporated into tips, young hyphal walls and septa of the three mycobionts and the free-living fungus Trichoderma viride, but not into Phytophthora citrophthora, indicating that chitin is a major component of the mycobionts' hyphal walls. All three mycobionts, but neither of the free-living fungi, incorporated ( 3 H) mannose and ( 3 H) mannitol into their hyphal walls. Fluorescein-conjugated wheat germ agglutinin was bound to the hyphal walls of the three mycobionts and T. viride, but not to the walls of P. citrophthora; the binding pattern was similar to the grain pattern obtained in audiographs after short N-( 3 H) acetylglucosamine labelling. As wheat germ agglutinin binds specifically to chitin oligomers, the lectin binding tests further confirmed that chitin is a mycobiont hyphal wall component. Binding characteristics of several fluorescein-conjugated lectins to the three mycobionts indicated that this technique can yield useful information concerning the chemical composition of hyphal wall surfaces. (orig./AJ) [de

  3. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  4. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  5. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  6. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  7. Results obtained during wall breaching research

    CSIR Research Space (South Africa)

    Hattingh, S

    2008-11-01

    Full Text Available To understand the physics of what is happening inside the wall directly after the detonation and the application of this knowledge in the improvement of the charge Measure the shock/stress waves in the masonry material and then in the wall as a whole... to maximise the effect of the charges on the walls and to broaden the knowledge of the physics of shock and stress waves. The thickness and characteristics of walls are not usually known in an operation. The effect of the charges on real buildings is still...

  8. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  9. Reinforcement mechanism of multi-anchor wall with double wall facing

    Science.gov (United States)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  10. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    Science.gov (United States)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  11. Scour around vertical wall abutment in cohesionless sediment bed

    Science.gov (United States)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  12. Pressure and wall shear stress in blood hammer - Analytical theory.

    Science.gov (United States)

    Mei, Chiang C; Jing, Haixiao

    2016-10-01

    We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. Copyright © 2016. Published by Elsevier Inc.

  13. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji, E-mail: inagaki@mosk.tytlabs.co.jp [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan); Japan Science and Technology Agency (JST)/ACT-C, Nagakute, Aichi, 480-1192 (Japan); Ohsuna, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  14. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2014-11-01

    Full Text Available We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  15. Safety Aspects for Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.; Christiani, E.

    1996-01-01

    In this appendix some safety aspects in relation to vertical wall breakwaters are discussed. Breakwater structures such as vertical wall breakwaters are used under quite different conditions. The expected lifetime can be from 5 years (interim structure) to 100 years (permanent structure) and the ...

  16. Ballistic Limit Equation for Single Wall Titanium

    Science.gov (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  17. THz reflectometric imaging of medieval wall paintings

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2013-01-01

    Terahertz time-domain reflectometry has been applied to the investigation of a medieval Danish wall painting. The technique has been able to detect the presence of carbonblack layer on the surface of the wall painting and a buried insertion characterized by high reflectivity values has been found...

  18. Detection of Anomalies in Diaphragm Walls

    NARCIS (Netherlands)

    Spruit, R.; Van Tol, F.; Broere, W.

    2015-01-01

    If a calamity with a retaining wall occurs, the impact on surrounding buildings and infrastructure is at least an order of magnitude more severe than without the calamity. In 2005 and 2006 major leaks in the retaining walls of underground stations in Amsterdam and Rotterdam occurred. After these

  19. Post caesarean section anterior abdominal wall endometriosis ...

    African Journals Online (AJOL)

    Abdominal wall endometriosis is a likely sequelae of caesarean section as viable endometrial tissue are deposited in the peritoneal cavity or anterior abdominal wall. One such case to sensitize clinicians of this rare presentation of the disease is presented. The patient was a 48 year old woman who presented with a lesion ...

  20. Full size testing of sheet pile walls

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Linden, M.L.R. van der; Katsma, H.; Stolle, P.

    1996-01-01

    Azobé (Lophira alata) is widely used in timber sheet pile walls in the Netherlands. The boards in these walls are coupled and therefore load-sharing can be expected. A simulation model based on the finite element method DIANA (DIANA, 1992) was developed and load-sharing could be calculated. To check

  1. Limb body wall complex: A rare anomaly

    Directory of Open Access Journals (Sweden)

    Panduranga Chikkannaiah

    2013-01-01

    Full Text Available We present autopsy findings of a case of limb body wall complex (LBWC. The fetus had encephalocele, genitourinary agenesis, skeletal anomalies and body wall defects. The rare finding in our case is the occurrence of both cranial and urogenital anomalies. The presence of complex anomalies in this fetus, supports embryonal dysplasia theory of pathogenesis for LBWC.

  2. Mechanics of the Toxoplasma gondii oocyst wall

    Science.gov (United States)

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  3. Synovial sarcoma of the abdominal wall

    International Nuclear Information System (INIS)

    Matushita, J.P.K.; Matushita, J.S.

    1989-01-01

    A case report of synovial sarcoma arising in the abdominal wall is presented. A brief review of the clinical and radiological features of synovial sarcoma is made. Pre-operative diagnosis of an abdominal wall synovial sarcoma is virtually impossible, but should be considered when a soft tissue swelling is found to show amorphous stippled calcification X-ray. (author) [pt

  4. Domain wall engineering through exchange bias

    International Nuclear Information System (INIS)

    Albisetti, E.; Petti, D.

    2016-01-01

    The control of the structure and position of magnetic domain walls is at the basis of the development of different magnetic devices and architectures. Several nanofabrication techniques have been proposed to geometrically confine and shape domain wall structures; however, a fine tuning of the position and micromagnetic configuration is hardly achieved, especially in continuous films. This work shows that, by controlling the unidirectional anisotropy of a continuous ferromagnetic film through exchange bias, domain walls whose spin arrangement is generally not favored by dipolar and exchange interactions can be created. Micromagnetic simulations reveal that the domain wall width, position and profile can be tuned by establishing an abrupt change in the direction and magnitude of the exchange bias field set in the system. - Highlights: • Micromagnetic simulations study domain walls in exchange biased thin films. • Novel domain wall configurations can be stabilized via exchange bias. • Domain walls nucleate at the boundary of regions with different exchange bias. • Domain wall width and spin profile are controlled by tuning the exchange bias.

  5. Cartan frames for heart wall fiber motion

    NARCIS (Netherlands)

    Samari, Babak; Aumentado-Armstrong, Tristan; Strijkers, Gustav J.; Froeling, Martijn; Siddiqi, Kaleem

    2017-01-01

    Current understanding of heart wall fiber geometry is based on ex vivo static data obtained through diffusion imaging or histology. Thus, little is known about the manner in which fibers rotate as the heart beats. Yet, the geometric organization of moving fibers in the heart wall is key to its

  6. Transcriptional regulatory network controlling secondary cell wall ...

    African Journals Online (AJOL)

    Secondary wall is an abundant component of plant biomass and has a potential to be a renewable resource of bioenergy and biomaterials. It is important to unravel the molecular mechanism underlying secondary wall formation and how it contributes to plant biomass production. In this review, we summarized the potential ...

  7. Wall roughness induces asymptotic ultimate turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verschoof, Ruben Adriaan; Bakhuis, Dennis; Huisman, Sander Gerard; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-01-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by

  8. Seismic Performance of Precast Polystyrene RC Walls

    Directory of Open Access Journals (Sweden)

    Wibowo Ari

    2017-01-01

    Full Text Available Precast concrete structure such as precast wall is a concept that is growing rapidly these days. However, the earthquake resistance is believed to be one of its drawbacks. Additionally, the large weight of solid elements also increase the building weight significantly which consequently increase the earthquake base shear force as well. Therefore, investigation on the seismic performance of precast concrete wall has been carried out. Three RC wall specimens using wire mesh reinforcement and EPS (Extended Polystyrene System panel have been tested. This wall was designed as a structural wall that was capable in sustaining lateral loads (in-plane yet were lightweight to reduce the total weight of the building. Parameter observed was the ratio of height to width (aspect ratio of wall of 1.0, 1.5 and 2.0 respectively with the aim to study the behaviour of brittle to ductile transition of the wall. Incremental static load tests were conducted until reaching peak load and then followed by displacement control until failure. Several data were measured at every stage of loading comprising lateral load-displacement behaviour, ultimate strength and collapse mechanism. The outcomes showed that precast concrete walls with a steel wire and EPS panel filler provided considerably good resistance against lateral load.

  9. Spalling of concrete walls under blast load

    International Nuclear Information System (INIS)

    Kot, C.A.

    1977-01-01

    A common effect of the detonation of explosives in close proximity of concrete shield walls is the spalling (scabbing) of the back face of the wall. Spalling is caused by the free surface reflection of the shock wave induced in the wall by high pressure air blast and occurs whenever the dynamic tensile rupture strength is exceeded. While a complex process, reasonable analytical spall estimates can be obtained for brittle materials with low tensile strengths, such as concrete, by assuming elastic material behavior and instantaneous spall formation. Specifically, the spall thicknesses and velocities for both normal and oblique incidence of the shock wave on the back face of the wall are calculated. The complex exponential decay wave forms of the air blast are locally approximated by simple power law expressions. Variations of blast wave strength with distance to the wall, charge weight and angle of incidence are taken into consideration. The shock wave decay in the wall is also accounted for by assuming elastic wave propagation. For explosions close-in to the wall, where the reflected blast wave pressures are sufficiently high, multiple spall layers are formed. Successive spall layers are of increasing thickness, at the same time the spall velocities decrease. The spall predictions based on elastic theory are in overall agreement with experimntal results and provide a rapid means of estimating spalling trends of concrete walls subjected to air blast. (Auth.)

  10. Building Walls Instead of Building Friendships

    DEFF Research Database (Denmark)

    Pedersen, Else Marie Wiberg

    2008-01-01

    An editorial about the perspectives and proportions in the Palestinian-Israeli conflict and the Israeli claim that a wall prevents "evil".......An editorial about the perspectives and proportions in the Palestinian-Israeli conflict and the Israeli claim that a wall prevents "evil"....

  11. Bifurcating Particle Swarms in Smooth-Walled Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Sun, H.

    2010-12-01

    Particle swarms can occur naturally or from industrial processes where small liquid drops containing thousands to millions of micron-size to colloidal-size particles are released over time from seepage or leaks into fractured rock. The behavior of these particle swarms as they fall under gravity are affected by particle interactions as well as interactions with the walls of the fractures. In this paper, we present experimental results on the effect of fractures on the cohesiveness of the swarm and the formation of bifurcation structures as they fall under gravity and interact with the fracture walls. A transparent cubic sample (100 mm x 100 mm x 100 mm) containing a synthetic fracture with uniform aperture distributions was optically imaged to quantify the effect of confinement within fractures on particle swarm formation, swarm velocity, and swarm geometry. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass). The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. Experiments were performed using swarms that ranged in size from 5 µl to 60 µl. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. As a swarm falls in an open-tank of water, it forms a torroidal shape that is stable as long as no ambient or background currents exist in the water tank. When a swarm is released into a fracture with an aperture less than 5 mm, the swarm forms the torroidal shape but it is distorted because of the presence of the walls. The

  12. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    Science.gov (United States)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  13. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  14. From Soft Walls to Infrared Branes

    CERN Document Server

    von Gersdorff, Gero

    2010-01-01

    Five dimensional warped spaces with soft walls are generalizations of the standard Randall-Sundrum compactifications, where instead of an infrared brane one has a curvature singularity (with vanishing warp factor) at finite proper distance in the bulk. We project the physics near the singularity onto a hypersurface located a small distance away from it in the bulk. This results in a completely equivalent description of the soft wall in terms of an effective infrared brane, hiding any singular point. We perform explicitly this calculation for two classes of soft wall backgrounds used in the literature. The procedure has several advantages. It separates in a clean way the physics of the soft wall from the physics of the five dimensional bulk, facilitating a more direct comparison with standard two-brane warped compactifications. Moreover, consistent soft walls show a sort of universal behavior near the singularity which is reflected in the effective brane Lagrangian. Thirdly, for many purposes, a good approxima...

  15. Statistical analysis of silo wall pressures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Berntsen, Kasper Nikolaj

    1998-01-01

    Previously published silo wall pressure measurements during plug flow of barley in alarge concrete silo are re-analysed under the hypothesis that the wall pressures are gamma-distributed.The fits of the gamma distribution type to the local pressure data from each measuring cell are satisfactory.......However, the estimated parameters of the gamma distributions turn out to be significantly inhomogeneous overthe silo wall surface. This inhomogeneity is attributed to the geometrical imperfections of the silo wall.Motivated by the engineering importance of the problem a mathematical model for constructing astochastic...... gamma-type continuous pressure field is given. The model obeys the necessary equilibrium conditionsof the wall pressure field and reflects the spatial correlation properties as estimated from simultaneouslymeasured pressures at different locations along a horizontal perimeter....

  16. An NPARC Turbulence Module with Wall Functions

    Science.gov (United States)

    Zhu, J.; Shih, T.-H.

    1997-01-01

    The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.

  17. Aging near the wall in colloidal glasses

    Science.gov (United States)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  18. Diaphragm walling for Sizewell B sets records

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The first phase of construction of the Sizewell-B nuclear reactor has been completed. This was the building of a diaphragm wall around the site. It is one of the largest and deepest diaphragm walls to be installed in Europe. The site can be pumped dry of groundwater and the foundations constructed in the dry. The specifications of the wall and its construction, using two Hydrofraise excavation rigs, are described. The excavated material is brought up as a slurry and the (bentonite) slurry is cleaned and desanded. Most of the wall has been formed using a plastic concrete but reinforced concrete has been used for some stretches. The diaphragm wall, which is 1258m long and 55m deep on average, was built in 19 weeks. (U.K.)

  19. Numerical analysis of heat transfer in the first wall of CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Deng, Weiping; Ge, Zhihao; Li, Yuanjie

    2016-04-15

    Highlights: • Detailed numerical analysis of heat transfer in a water-cooling first wall was carried out based on the conceptual design of CFETR WCSB blanket. • Investigation of the influences of buoyancy effect and surface roughness on heat transfer in the water-cooling first wall was presented. • Analysis of the effect of the front wall thickness on temperature was carried out for the water-cooling first wall design. • Simulation results of two 1D CFD methods were evaluated by the 3D CFD data. - Abstract: China Fusion Engineering Test Reactor (CFETR), the first fusion reactor experiment project planned in China, is now being investigated in detail. Recently, a conceptual structural design of the Water-Cooled-Solid-Breeder (WCSB) blanket was proposed as one of the breeding blanket candidates for CFETR. In this research, based on the present design of the CFETR WCSB blanket, the heat transfer performance in the first wall (FW) under the pressurized water cooling condition was analyzed. The 3D computational fluid dynamics (CFD) results show that the maximal temperature of the FW will not exceed the limited temperature under normal or even higher heat flux condition. In addition, the effect of buoyancy on heat transfer is negligible under both conditions. The influence of roughness becomes increasingly important when the roughness height lies in the fully turbulent regime. The maximal temperature increases approximately linearly as the thickness of the front wall increases. It is also found that the heat flux and the local heat transfer coefficient are extremely non-uniform in the circumferential direction. Two 1D CFD methods are also evaluated by 3D CFD data, with the conclusion that both 1D results have some differences with the 3D data. The improved 1D method is more accurate than the former one. However, we ascertain that 1D methods should be used with caution for the water-cooling FW design.

  20. Falling liquid film flow along cascade-typed first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a 'cascade-typed' first wall with a falling liquid film flow is proposed as the 'liquid wall' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the STREAM code and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ρu 2 δ/σ: ρ is density, u is velocity, δ is film thickness, σ is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant water-head located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same structure and the same height as the reactor design

  1. Structure of thermonuclear reactor wall

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro.

    1991-01-01

    In a thermonuclear reactor wall, there has been a worry that the brazing material is melted by high temperature heat and particle load, to peel off the joined portion and the protecting material is destroyed by temperature elevation, to expose the heat sink material. Then, in the reactor core structures of a thermonuclear reactor, such as a divertor plate comprising a protecting material made of carbon material and the heat sink material joined by brazing, a plate material made of a so-called refractory metal having a high atomic number such as tungsten, molybdenum or the alloy thereof is embedded or attached to an accurate position of the protecting material. This can prevent the brazing portion from destruction by escaping electrons generated upon occurrence of abnormality in the thermonuclear reactor, and peeling or destroy of the protecting material and the heat sink material. Sufficient characteristics of plasmas can always be maintained by disposing a material having a small atomic number, for example, carbon material, to the position facing to the plasmas. (N.H.)

  2. Mirror, mirror on the wall

    CERN Multimedia

    2005-01-01

    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  3. First wall for thermonuclear device

    International Nuclear Information System (INIS)

    Shibuya, Yoji.

    1988-01-01

    Purpose: To reduce the thermal stresses resulted to tiles and suppress the temperature rise for mounting jigs in first walls for a thermonuclear device. Constitution: A support mounting rod as a tile mounting and fixing jig and a fixing support connected therewith are disposed to the inside of an armour tile composed of high melting material and, further, a spring is disposed between the lower portion of the tile and the base plate. The armour tile can easily be fixed to the base plate by means of the resilient member by rotating the support member and abutting the support member against the support member abutting portion of the base plate. Further, since the contact and fixing surface of the armour tile and the fixing jig is situated below the tile inside the cooled base plate, the temperature rise can be suppressed as compared with the usual case. Since screw or like other clamping portion is not used for fixing the tile, heat resistant ceramics can be used with no restriction only to metal members, to thereby moderate the restriction in view of the temperature. (Kamimura, M.)

  4. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    Science.gov (United States)

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  5. Nonsingular walls in plane cholesteric layers

    International Nuclear Information System (INIS)

    Belyakov, V A; Osipov, M A; Stewart, I W

    2006-01-01

    The structure of a straight interface (wall) between regions with differing values of the pitch in planar cholesteric layers with finite strength of the surface anchoring is investigated theoretically. It is found that the shape and strength of the anchoring potential influences essentially the structure of the wall and a motionless wall between thermodynamically stable regions without a singularity in the director distribution in the layer can exist for sufficiently weak anchoring only. More specifically, for the existence of such a wall the dimensionless parameter S d = K 22 /Wd (where W is the depth of the anchoring potential, K 22 is the elastic twist modulus and d is the layer thickness) should exceed its critical value, which is dependent on the shape of the anchoring potential. General equations describing the director distribution in the wall are presented. Detailed analysis of these equations is carried out for the case of infinitely strong anchoring at one surface and finite anchoring strength at the second layer surface. It is shown that the wall width L is directly dependent upon the shape and strength of the anchoring potential and that its estimate ranges from d to (dL p ) 1/2 (where L p = K 22 /W is the penetration length), corresponding to different anchoring strengths and shape potentials. The dependence of the director distribution in the wall upon all three Frank elastic moduli is analytically found for some specific limiting cases of the model anchoring potentials. Motion of the wall is briefly investigated and the corresponding calculations performed under the assumption that the shape of a moving wall is the same as a motionless one. It is noted that experimental investigation of the walls in planar cholesteric layers can be used for the determination of the actual shape of surface anchoring potentials

  6. Sunspot Light Walls Suppressed by Nearby Brightenings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Hou, Yijun; Li, Xiaohong [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yan, Limei, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2017-07-01

    Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, and 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.

  7. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  8. Estudo das características de adsorção de água e da estabilidade das microcápsulas de óleo essencial de laranja na seleção de material de parede Water adsorption characteristics and stability of orange essential oil microcapsules in the wall material selection

    Directory of Open Access Journals (Sweden)

    D. P. R. ASCHERI

    1999-12-01

    Full Text Available Este trabalho consistiu no estudo e comparação das características de adsorção de água de três amostras de microcápsulas de óleo essencial de laranja, obtidas pela secagem por atomização de três diferentes emulsões preparadas pela adição de óleo essencial de laranja (oel, a uma solução aquosa de material de parede (mp constituída de capsul (5,0, 0,0 e 10,0%, goma arábica (5,0, 10,0 e 0,0% sendo constante para as três emulsões a maltodextrina (36,0%, água (44,0% e óleo essencial (10,0%. A microencapsulação foi realizada a 220 e 110° C de ar de entrada e saída do secador usando um atomizador rotativo a 20.000rpm. Com base à determinação das isotermas de adsorção de água a 30, 40 e 50° C e usando o modelo de GAB para ajustar os pontos experimentais foram avaliadas as características das isotermas, a estabilidade e área superficial de adsorção de água das diferentes amostras de microcápsulas obtidas. Os resultados indicaram ser importante o estudo das características de adsorção de água para estimar a estabilidade das microcápsulas de oel e a comparação destas mostrou que as microcápsulas obtidas pela secagem por atomização da emulsão preparada com 5,0% de capsul e 5,0% de goma arábica apresentaram o melhor resultado.This work consisted of the study and comparison of the water adsorption characteristics of three samples orange essential oil microcapsules obtained by spray drying of three different emulsions prepared by the addition of orange essential oil (oel to an aqueous solution of wall material (mp constituted of capsul (5.0, 0.0 and 10.0%, arabic gum (5.0, 10.0 and 0.0% being constant for the three emulsions the maltodextrin (36.0%, water (44.0% and essential oil (10.0%. The microencapsulation was accomplished to 220 and 110°C of entrance air and exit of the dryer using a wheel atomizer to 20,000rpm. With base to the determination of the water adsorption isotherms to 30, 40 and 50°C and

  9. Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund; Thygesen, Lisbeth Garbrecht; Burgert, Ingo

    2017-01-01

    The first drying of wood cell walls from the native state has sometimes been described as producing irreversible structural changes which reduce the accessibility to water, a phenomenon often referred to as hornification. This study demonstrates that while changes do seem to take place, these are......The first drying of wood cell walls from the native state has sometimes been described as producing irreversible structural changes which reduce the accessibility to water, a phenomenon often referred to as hornification. This study demonstrates that while changes do seem to take place...

  10. Metals attenuation in minerally-enhanced slurry walls

    International Nuclear Information System (INIS)

    Evans, J.C.; Prince, M.J.; Adams, T.L.

    1997-01-01

    In current practice, a soil-bentonite slurry trench cutoff wall is a mixture of water, soil, and bentonite that is designed to serve as a passive barrier to ground water and contaminant transport. This study evaluated the transformation of a passive slurry trench cutoff wall barrier to an active barrier system. Conventional soil-bentonite vertical barriers presently serve as passive barriers to contaminated ground water. An active barrier will not only fulfill the functions of the present passive barrier system, but also retard contaminant transport by adsorptive processes. Attapulgite, Na-chabazite, and Ca-chabazite were added to open-quotes activateclose quotes the conventional soil-bentonite backfill. Batch extraction tests were performed to determine the partitioning coefficients of cadmium and zinc between the liquid and solid phase when in contact with the backfill mixes. Batch extraction and mathematical modeling results demonstrate the ability of an active barrier to retard the transport of cadmium and zinc. The reactivity of the soil-bentonite vertical barrier depends heavily on the inorganic being adsorbed. The reactivity of the barrier also depends on the adsorptive capabilities of the clay minerals added to the conventional soil-bentonite vertical barrier. The results of laboratory studies suggest that passive barrier systems can be transformed to active systems. Further, the data suggests that although conventional soil-bentonite vertical barriers are presently designed as passive barriers, they already have adsorptive capacity associated with active barriers

  11. Platelet-Rich Plasma in Reconstruction of Posterior Meatal Wall after Canal Wall Down Mastoidectomy.

    Science.gov (United States)

    Elbary, Mohammad El-Sayed Abd; Nasr, Wail Fayez; Sorour, Samir Sorour

    2018-04-01

    Introduction  Canal wall down (CWD) mastoidectomy has many drawbacks, including chronic otorrhea not responding to medications, granulations, dizziness on exposure to cold or hot water, and tendency of debris accumulation in the mastoid cavity, demanding periodic cleaning. Many of these problems can be solved by reconstruction of the posterior meatal wall (PMW). Objectives  To assess the results of PMW reconstruction after CWD mastoidectomy for cholesteatoma using titanium mesh and platelet-rich plasma (PRP) mixed with bone pate. Methods  This study was conducted with 20 patients that have atticoantral chronic suppurative otitis media. All cases were subjected to CWD mastoid surgery with complete elimination of the disease and reconstruction of the PMW by titanium mesh and the mixture of PRP with bone pate. All patients were exposed to a full preoperative evaluation and full postoperative assessment of the complications, the appearance of the external auditory canal contour, and the hearing gain expressed by the change of the air bone gap postoperatively. Results  The PMW reconstructed by titanium mesh and the mixture of PRP with bone pate showed a smooth contour. During the follow-up of 12 to 36 months, the postoperative appearance of the external auditory canal contour was found to be smooth without hidden pouches, irregularities or stenosis in all cases. No granulation, foreign body reaction, or extrusion and/or displacement of the titanium mesh were registered. No facial palsy or recurrent cholesteatoma was reported. Conclusion  The surgical reconstruction of the PMW using PRP, bone pate and titanium mesh after CWD mastoidectomy appears to be reliable without considerable complications, giving a smooth appearance to the PMW.

  12. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  13. Relevance of NET first wall concept for DEMO DN

    International Nuclear Information System (INIS)

    Kiltie, J.S.

    1987-01-01

    Design studies for the Next European Torus (NET) have produced a design concept for the first wall. This concept features poloidal water cooling, double contained in a welded steel structure which is protected by radiatively cooled tiles. In this appendix the relevance of this concept to a DEMO is examined with particular emphasis given to the ability of the cooling tube arrangement to remove the heat. A suggested modification to the arrangement of coolant tubes is suggested so that the design can operate at the higher loadings of a DEMO. (author)

  14. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  15. Water intake fish diversion apparatus

    International Nuclear Information System (INIS)

    Taft, E.P. III; Cook, T.C.

    1995-01-01

    A fish diversion apparatus uses a plane screen to divert fish for variety of types of water intakes in order to protect fish from injury and death. The apparatus permits selection of a relatively small screen angle, for example ten degrees, to minimize fish injury. The apparatus permits selection of a high water velocity, for example ten feet per second, to maximize power generation efficiency. The apparatus is especially suitable retrofit to existing water intakes. The apparatus is modular to allow use plural modules in parallel to adjust for water flow conditions. The apparatus has a floor, two opposite side walls, and a roof which define a water flow passage and a plane screen within the passage. The screen is oriented to divert fish into a fish bypass which carries fish to a safe discharge location. The dimensions of the floor, walls, and roof are selected to define the dimensions of the passage and to permit selection of the screen angle. The floor is bi-level with a level upstream of the screen and a level beneath screen selected to provide a uniform flow distribution through the screen. The apparatus may include separation walls to provide a water flow channel between the apparatus and the water intake. Lead walls may be used to adjust water flow conditions into the apparatus. The apparatus features stoplog guides near its upstream and downstream ends to permit the water flow passage to be dewatered. 3 figs

  16. Active compliant wall for skin friction reduction

    International Nuclear Information System (INIS)

    Pätzold, A.; Peltzer, I.; Nitsche, W.; Goldin, N.; King, R.; Haller, D.; Woias, P.

    2013-01-01

    Highlights: • Objective: Delay of laminar-turbulent transition on a wing by active wall actuation. • Natural, convective TS-instabilities are damped by travelling counter waves. • Piezo driven active wall and model predictive controller were developed. • TS amplitudes were damped by 83.6% (equals 15.7 dB within instability band). • Significant effect on skin friction distribution. -- Abstract: In order to reduce skin friction drag, an active laminarisation method is developed. Laminar-turbulent boundary layer transition caused by Tollmien–Schlichting (TS) waves is delayed by attenuation of these convective instabilities. An actively driven compliant wall is integrated as part of a wing’s surface. Different configurations of piezo-based actuators are combined with an array of sensitive surface flow sensors. Wall-normal actuation as well as inclined wall displacement are investigated. Together with a realtime-control strategy, transition onset is shifted downstream by six average TS-wave lengths. Using the example of flow velocity, the influence of variable flow conditions on TS-damping rates was investigated. Besides, the boundary layer flow downstream of the active wall area as well as required wall deflections and the global damping effect on skin friction are presented in this paper

  17. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  18. Regeneration of near-wall turbulence structures

    Science.gov (United States)

    Hamilton, James M.; Kim, John J.; Waleffe, Fabian A.

    1993-01-01

    An examination of the regeneration mechanisms of near-wall turbulence and an attempt to investigate the critical Reynolds number conjecture of Waleffe & Kim is presented. The basis is an extension of the 'minimal channel' approach of Jimenez and Moin which emphasizes the near-wall region and further reduces the complexity of the turbulent flow. Reduction of the flow Reynolds number to the minimum value which will allow turbulence to be sustained has the effect of reducing the ratio of the largest scales to the smallest scales or, equivalently, of causing the near-wall region to fill more of the area between the channel walls. In addition, since each wall may have an active near-wall region, half of the channel is always somewhat redundant. If a plane Couette flow is instead chosen as the base flow, this redundancy is eliminated: the mean shear of a plane Couette flow has a single sign, and at low Reynolds numbers, the two wall regions share a single set of structures. A minimal flow with these modifications possesses, by construction, the strongest constraints which allow sustained turbulence, producing a greatly simplified flow in which the regeneration process can be examined.

  19. 30 years of battling the cell wall.

    Science.gov (United States)

    Latgé, J P

    2017-01-01

    In Aspergillus fumigatus, like in other pathogenic fungi, the cell wall is essential for fungal growth as well as for resisting environmental stresses such as phagocytic killing. Most of the chemical analyses undertaken on the cell wall of A. fumigatus are focused on the mycelial cell wall because it is the vegetative stage of the fungus. However, the cell walls of the mycelium and conidium (which is the infective propagule) are different especially at the level of the surface layer, which plays a significant role in the interaction between A. fumigatus conidia and phagocytic cells of the immune system. In spite of the essential function of the cell wall in fungal life, progresses have been extremely slow in the understanding of biosynthesis as well in the identification of the key host responses against the cell wall components. A major difficulty is the fact that the composition and structural organization of the cell wall is not immutably set and is constantly reshuffled depending on the environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Modelling of film condensation on the reactor containment walls

    International Nuclear Information System (INIS)

    Leduc, Christian

    1995-01-01

    A containment code used in nuclear plant safety analysis must be able to predict evolutions of steam, air and hydrogen concentrations and pressure in the containment of a pressurized water reactor in an accidental situation. Steam condensation on cold walls is an essential factor for these evolutions as it allows the release of an important heat flow, and locally reduces steam concentration. In this research thesis, the author proposes a film condensation model in presence of un-condensable gases. The film flow is supposed to be laminar. Three different approaches are used to model transfers in boundary layers: global correlations in which a hybrid Grashof number is used which expresses the mass and thermal nature of convection, a boundary layer calculation using wall rules for a forced convection regime, and a boundary layer calculation using a k-epsilon model with a low Reynolds number for a natural convection regime. Each approach requires very different mesh fineness at the vicinity of the wall. Models are implemented in the 3-D TRIO-VF thermo-hydraulic code. The obtained theoretical heat transfer coefficients are compared with experimental results [fr

  1. Frost as a first wall for the ICF laboratory microfusion facility

    International Nuclear Information System (INIS)

    Orth, C.D.

    1989-01-01

    The authors introduce the concept of using frost as the first wall of the ICF Laboratory Microfusion Facility being designed to produce 200-1000 MJ of thermonuclear yield. They present one design incorporating 2cm of frost deposited at 0.1 g/cm/sup 3/ on an LN-cooled fiber-reinforced polymer substrate. They calculate that such a frost layer will protect the substrate from ablation by target x rays and debris, and from shock-induced spallation. Postshot washdown with water should permit low-activation operation, and should preserve the original wall properties. The authors expect the impact of the frost on laser optics to be minimal, and expect the preshot lifetime of thermally unprotected cryogenic targets to be extended by operating the wall at 100-150 K. Moreover, they believe that such a frost first wall involves little technical risk, and will be inexpensive to construct and operate

  2. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1978-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer code has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  3. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1977-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  4. Frost as a first wall for the ICF Laboratory Microfusion Facility

    International Nuclear Information System (INIS)

    Orth, C.D.

    1988-01-01

    We introduce the concept of using frost as the first wall of the ICF Laboratory Microfusion Facility being designed to produce 200--1000 MJ of thermonuclear yield. We present one design incorporating 2 cm of frost deposited at 0.1 g/cm 3 on an LN-cooled fiber-reinforced polymer substrate. We calculate that such a frost layer will protect the substrate from ablation by target x rays and debris, and from shock-induced spallation. Postshot washdown with water should permit low-activation operation, and should preserve the original wall properties. We expect the impact of the frost on laser optics to be minimal, and expect the preshot lifetime of thermally unprotected cryogenic targets to be extended by operating the wall at 100-150 K. Moreover, we believe that such a frost first wall will involve little technical risk, and will be inexpensive to construct and operate. 4 refs., 1 fig

  5. Comparative study of wall-force models for the simulation of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Rzehak, Roland, E-mail: r.rzehak@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Krepper, Eckhard, E-mail: E.Krepper@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Lifante, Conxita, E-mail: Conxita.Lifante@ansys.com [ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Comparison of common models for the wall force with an experimental database. Black-Right-Pointing-Pointer Identification of suitable closure for bubbly flow. Black-Right-Pointing-Pointer Enables prediction of location and height of wall peak in void fraction profiles. - Abstract: Accurate numerical prediction of void-fraction profiles in bubbly multiphase-flow relies on suitable closure models for the momentum exchange between liquid and gas phases. We here consider forces acting on the bubbles in the vicinity of a wall. A number of different models for this so-called wall-force have been proposed in the literature and are implemented in widely used CFD-codes. Simulations using a selection of these models are compared with a set of experimental data on bubbly air-water flow in round pipes of different diameter. Based on the results, recommendations on suitable closures are given.

  6. Fluid friction and wall viscosity of the 1D blood flow model.

    Science.gov (United States)

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Wall motion abnormality of myocardial infarction

    International Nuclear Information System (INIS)

    Hayashi, Senji; Tsuda, Takashi; Ojima, Kenji

    1984-01-01

    By use of the gated blood pool scan, we divided the left ventricular LAO 45 image into 8 sections with the center of the volume as the basal point, and devised a method of quantitative evaluation of the regional wall motion from 2 aspects: 1) wall movement and 2) phase abnormality. To evaluate the wall movement, we obtained the following indeces from count curves of each section: 1) EF1=(end-diastolic count-end-systolic count)/ end-diastolic count, 2) EF2=(maximum count-minimum count)/maximum count, and 3) the difference of the two (EF2-EF1). As indeces of the phase abnormality, the mean value of phases of the pixels (phase characteristics) and the standard deviation (variation) of each section were calculated. Furthermore, the phase delay of each section was calculated as the difference from the earliest phase value of the 8 sections. Control values and standard deviation were obtained from 8 healthy controls. By this method, we analyzed 20 patients with old myocardial infarction. And following results were obtained: 1. Applying this method, we could evaluate the regional wall motion of the left ventricle more precisely, and we considered it would be useful clinically. 2. The abnormal regional wall motion of old myocardial infarction were classified into 4 typical forms as follows: 1) the wall movement decreased extremely. 2) the wall movement decreased, but no phase delay recognized. 3) the wall movement did not decrease, but phase delay was recognized. 4) the wall movement decreased, and phase delay was recognized. (author)

  8. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  9. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  10. Connection of thin-walled casings

    Energy Technology Data Exchange (ETDEWEB)

    Druyan, V.M.; Grinev, A.F.; Gruzdev, V.D.; Perchanik, V.V.; Syplenko, V.T.

    1981-08-28

    A connection is suggested for castings which contains a nipple and coupling part with conical triangular threading. in order to improve the strength of the connection of thin-walled casings with ratio D/S>22, where D is the outer diameter of the casing, S is the thickness of the wall of the casing, the end of the pipe on the length from the end to the main plane of the thread is conical with constant thickness of the wall and conicity eqal to the conicity of the thread.

  11. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)

  12. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  13. The effect of partial poloidal wall sections on the wall stabilization of external kink modes

    International Nuclear Information System (INIS)

    Ward, D.J.

    1996-02-01

    An analysis of the effect on the wall stabilization of external kink modes due to toroidally continuous gaps in the resistive wall is performed. The effects with and without toroidal rotation are studied. For a high-β equilibrium, the mode structure is localized on the outboard side. Therefore, outboard gaps greatly increase the growth rate when there is no rotation. For resistive wall stabilization by toroidal rotation, the presence of gaps has the same effect as moving the wall farther away, i.e. destabilizing for the ideal plasma mode, and stabilizing for the resistive wall mode. The region of stability, in terms of wall position, is reduced in size and moved closer to the plasma. However, complete stabilization becomes possible at considerably reduced rotation frequencies. For a high-β, reverse-shear equilibrium both the resistive wall mode and the ideal plasma mode can be stabilized by close fitting discrete passive plates on the outboard side. The necessary toroidal rotation frequency to stabilize the resistive wall mode using these plates is reduced by a factor of three compared to that for a poloidally continuous and complete wall at the same plasma-wall separation. (author) 15 figs., 24 refs

  14. A unified wall function for compressible turbulence modelling

    Science.gov (United States)

    Ong, K. C.; Chan, A.

    2018-05-01

    Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.

  15. Booted domain wall and charged Kaigorodov space

    International Nuclear Information System (INIS)

    Cai Ronggen

    2003-01-01

    The Kaigorodov space is a homogeneous Einstein space and it describes a pp-wave propagating in anti-de Sitter space. It is conjectured in the literature that M-theory or string theory on the Kaigorodov space times a compact manifold is dual to a conformal field theory in an infinitely-boosted frame with constant momentum density. In this Letter we present a charged generalization of the Kaigorodov space by boosting a non-extremal charged domain wall to the ultrarelativity limit where the boost velocity approaches the speed of light. The finite boost of the domain wall solution gives the charged generalization of the Carter-Novotny-Horsky metric. We study the thermodynamics associated with the charged Carter-Novotny-Horsky space and discuss its relation to that of the static black domain walls and its implications in the domain wall/QFT (quantum field theory) correspondence

  16. Turbulent flow velocity distribution at rough walls

    International Nuclear Information System (INIS)

    Baumann, W.

    1978-08-01

    Following extensive measurements of the velocity profile in a plate channel with artificial roughness geometries specific investigations were carried out to verify the results obtained. The wall geometry used was formed by high transverse square ribs having a large pitch. The measuring position relative to the ribs was varied as a parameter thus providing a statement on the local influence of roughness ribs on the values measured. As a fundamental result it was found that the gradient of the logarithmic rough wall velocity profiles, which differs widely from the value 2.5, depends but slightly on the measuring position relative to the ribs. The gradients of the smooth wall velocity profiles deviate from 2.5 near the ribs, only. This fact can be explained by the smooth wall shear stress varying with the pitch of the ribs. (orig.) 891 GL [de

  17. Plant Wall Degradative Compounds and Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...

  18. NEW RSW & Wall Coarse Tet Only Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the RSW Coarse Tet Only grid with the root viscous tunnel wall. This grid is for a node-based unstructured solver. Quad Surface Faces= 0 Tria Surface Faces=...

  19. Cell Wall Diversity in Forage Maize

    NARCIS (Netherlands)

    Torres, A.F.; Noordam-Boot, C.M.M.; Dolstra, Oene; Weijde, van der Tim; Combes, Eliette; Dufour, Philippe; Vlaswinkel, Louis; Visser, R.G.F.; Trindade, L.M.

    2015-01-01

    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage

  20. NEW RSW & Wall Coarse Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Coarse Mixed Element Grid for the RSW with a viscous wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 9728 Tria...

  1. Preliminary Analysis of Reinforced Concrete Waffle Walls

    National Research Council Canada - National Science Library

    Shugar, Theodore

    1997-01-01

    A preliminary analytical method based upon modified plate bending theory is offered for structural analysis of a promising new construction method for walls of small buildings and residential housing...

  2. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  3. Genetics Home Reference: abdominal wall defect

    Science.gov (United States)

    ... are two main types of abdominal wall defects: omphalocele and gastroschisis . Omphalocele is an opening in the center of the ... covering the exposed organs in gastroschisis. Fetuses with omphalocele may grow slowly before birth (intrauterine growth retardation) ...

  4. Green noise wall construction and evaluation.

    Science.gov (United States)

    2011-09-01

    This report details the research performed under Phase I of a research study titled Green Noise Wall Construction and Evaluation that looks into the feasibility of using green noise barriers as a noise mitigation option in Ohio. This phase incl...

  5. Functional duality of the cell wall.

    Science.gov (United States)

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. On thick domain walls in general relativity

    Science.gov (United States)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  7. Inspector's manual for mechanically stabilized earth walls.

    Science.gov (United States)

    2010-06-01

    The scope of the project is to develop a condition rating system, creation of an inspector's manual to reference during : inspection or address any training for inspectors at the district level. The research project will develop a MSE wall : conditio...

  8. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  9. Flavor changing strings and domain walls

    International Nuclear Information System (INIS)

    Dvali, G.; Senjanovic, G.

    1993-04-01

    We consider the cosmological consequences of a spontaneous breaking of non-abelian discrete symmetries, which may appear as a natural remnant of a continuous symmetry, such as a family symmetry. The result may be a stable domain wall across which an electron would turn into a muon (orν e into ν μ ) or a flavor analogue of an Alice string-domain wall structure with the same property. (author). 16 refs

  10. INTOR impurity control and first wall system

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1983-04-01

    The highlights of the recent INTOR effort on examining the key issues of the impurity control/first wall system are summarized. The emphasis of the work was an integrated study of the edge-region physics, plasma-wall interaction, materials, engineering and magnetic considerations associated with the poloidal divertor and pump limiter. The development of limiter and divertor collector plate designs with an acceptable lifetime was a major part of the work

  11. Thermal Bridge Effects in Walls Separating Rowhouses

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....

  12. Lateral resistance of plybamboo wall-panels

    OpenAIRE

    Gonzalez Beltran, G.E.; Herwijnen, van, F.; Janssen, J.J.A.; Moonen, S.P.G.; Gutierrez, J.A.

    2003-01-01

    This paper deals with the experimental and theoretical behavior of plybamboo (kind of plywood made out of bamboo) wall-panels subjected to lateral load. The wall-panels are part of a house design method proposed in the author's PhD thesis for prefabricated social housing in developing countries. Sixteen fullscaled wallpanels with or without window and door openings were tested and their theoretical capacities estimated. Design wind and seismic loads were determined according to the Internatio...

  13. Erosion of the first wall of Tokamaks

    International Nuclear Information System (INIS)

    Guseva, M.I.; Ionova, E.S.; Martynenko, Yu.V.

    1980-01-01

    An estimate of the rate of erosion of the wall due to sputtering and blistering requires knowledge of the fluxes and energies of the particles which go from the plasma to the wall, of the sputtering coefficients S, and of the erosion coefficients S* for blistering. The overall erosion coefficient is equal to the sum of the sputtering coefficient and the erosion coefficient for blistering. Here the T-20 Tokamak is examined as an example of a large-scale Tokamak. 18 refs

  14. Analysis of particle-wall interaction

    International Nuclear Information System (INIS)

    Raszillier, H.; Durst, F.

    1988-01-01

    The vertical motion of a rigid sphere in a quiescent viscous fluid towards a horizontal plane wall is analized by a simplified equation of motion, which takes into account as the only wall correction that to the Stokes drag force. The phase space analysis for this equation is sketched; it has been motivated by measurements performed at the LSTM-Erlangen. A more detailed exposition is given in the Erlangen report LSTM 222/T/87. (orig.)

  15. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used at various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. (author)

  16. Clustering Of Left Ventricular Wall Motion Patterns

    Science.gov (United States)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  17. Abdominal wall hernias: computed tomography findings

    International Nuclear Information System (INIS)

    D'Ippolito, Giuseppe; Rosas, George de Queiroz; Mota, Marcos Alexandre; Akisue, Sandra R. Tsukada; Galvao Filho, Mario de Melo.

    2005-01-01

    Abdominal hernias are a common clinical problem Clinical diagnosis of abdominal hernias can sometimes be challenging, particularly in obese patients or patients with previous abdominal surgery. CT scan of the abdomen allows visualization of hernias and their contents and the differentiation from other masses of the abdominal wall such as tumors, hematomas and abscesses. Moreover, CT may identify complications such as incarceration, bowel obstruction, volvulus and strangulation. This study illustrates the CT scan findings observed in different types of abdominal wall hernias. (author)

  18. Permeable treatment wall design and cost analysis

    International Nuclear Information System (INIS)

    Manz, C.; Quinn, K.

    1997-01-01

    A permeable treatment wall utilizing the funnel and gate technology has been chosen as the final remedial solution for one industrial site, and is being considered at other contaminated sites, such as a closed municipal landfill. Reactive iron gates will be utilized for treatment of chlorinated VOCs identified in the groundwater. Alternatives for the final remedial solution at each site were evaluated to achieve site closure in the most cost effective manner. This paper presents the remedial alternatives and cost analyses for each site. Several options are available at most sites for the design of a permeable treatment wall. Our analysis demonstrates that the major cost factor's for this technology are the design concept, length, thickness, location and construction methods for the reactive wall. Minimizing the amount of iron by placement in the most effective area and construction by the lowest cost method is critical to achieving a low cost alternative. These costs dictate the design of a permeable treatment wall, including selection of a variety of alternatives (e.g., a continuous wall versus a funnel and gate system, fully penetrating gates versus partially penetrating gates, etc.). Selection of the appropriate construction methods and materials for the site can reduce the overall cost of the wall

  19. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  20. The effect of adiabatic and conducting wall boundary conditions on LES of a thermal mixing tee

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Pasutto, Thomas

    2009-01-01

    In this paper preliminary LES simulations are carried out of the FATHERINO mixing T junction experiment. In this experiment 80degC hot water enters a lateral steel pipe which has a diameter of D=0.054m, at a speed of 1.04m/s and meets 5degC cold water which enters a perpendicular steel pipe branch that also has a diameter D=0.054m but this time at a lower speed of 0.26m/s. The modelling of the steel pipe walls is tested by comparing adiabatic and 1D conducting wall boundary conditions. The numerical grid used contains approximately 440,000 hexahedral elements. The near wall refinement is not sufficient to resolve the near wall boundary layer (y + approx. = 32) and a standard logarithmic boundary condition is used. A method known as the synthetic eddy method is used to generate the turbulent flow at the pipe inlets. Three different LES models are used (Smagorinsky, dynamic Smagorinsky and wale) to resolve the subgrid turbulent motion beyond the wall grid. An additional test is carried out where no subgrid model is used with only the wall modelling being applied. The results show that the wale model generates much less resolved turbulence than the other cases and this model shows virtually no difference between the two methods of wall thermal modelling. The dynamic Smagorinsky model shows that, downstream of the mixing T, the lower wall remains at a lower temperature for longer when the adiabatic boundary condition is applied. The Smagorinsky model is found to produce the highest level of resolved temperature fluctuation. For this model the 1D thermal modelling approach increases the unsteadiness of both the velocity and temperature fields at the onset of the mixing and in the middle of the pipe downstream of the T junction. However near the lower wall the 1D thermal modelling approach tends to reduce the unsteadiness. The case with no subgrid modelling shows higher levels of turbulence kinetic energy but lower levels of temperature fluctuation than the cases with

  1. Desalination of Walls and Façades

    Science.gov (United States)

    Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.

    2012-04-01

    For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost

  2. Rotating solitary wave at the wall of a cylindrical container

    KAUST Repository

    Amaouche, Mustapha

    2013-04-30

    This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of the base flow. The present formulation is based on a less restricting condition and consequently corrects the last shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first half of its lifetime and estimating the speed of the observed wave with good accuracy.

  3. Pressure effects on single wall carbon nanotube bundles

    International Nuclear Information System (INIS)

    Teredesai, P.V.; Sharma, S.M.; Karmakar, S.; Sikka, S.K.; Govindaraj, A.; Rao, C.N.R.

    2001-01-01

    We report high pressure Raman studies on single wall carbon nanotube bundles under hydrostatic conditions using two different pressure transmitting media, alcohol mixture and pure water. The radial and tangential modes show a blue shift when SWNT bundle is immersed in the liquids at ambient pressures. The pressure dependence of the radial modes is the same in both liquids. However, the pressure derivatives dω/dP of the tangential modes are slightly higher for the water medium. Raman results are compared with studies under non-hydrostatic conditions and with recent high-pressure X-ray studies. It is seen that the mode frequencies of the recovered sample after pressure cycling from 26 GPa are downshifted by ∝7-10 cm -1 as compared to the starting sample. (orig.)

  4. Diurnal Periodicity in the Supply of Cell Wall Components during Wood Cell Wall Formation

    OpenAIRE

    細尾, 佳宏

    2012-01-01

    This review summarizes recent studies on the diurnal periodicity in wood cell wall formation, with a major focus on those that we have conducted. Differences in the innermost surface of developing secondary walls of differentiating conifer tracheids can be seen from day to night Cellulose microfibrils are clearly evident during the day, and amorphous material containing abundant hemicelluloses is prevalent at night. These findings suggest a diurnal periodicity in the supply of cell wall compo...

  5. Wood–water interactions

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2011-01-01

    Predicting the performance of wood for decades ahead is important when using the material for structural purposes. The performance is closely related to the hierarchical material structure of wood and the dependent interaction with water in the structure. Accurately predicting wood performance...... therefore requires an understanding of material structure from molecular to macroscopic level as well as of the impact of water molecules. The objective of this work is to investigate the performance of wood in terms of mechanical response of the material and effect of water. To understand the latter, one...... must first know in which parts of the wood structure, water is located. If parts of the water in wood are held in capillaries in the wood structure, these water molecules interact with the material differently than those held within wood cell walls. In this study, the occurrence of capillary water...

  6. Fermentation characteristics of polysaccharide fractions extracted from the cell walls of maize endosperm

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.; Schols, H.A.

    2002-01-01

    Cell walls were extracted from maize endosperm and separated into different polysaccharide fractions by sequential extraction with solutions of saturated Ba(OH)2, demineralised water and 1 and 4 M KOH. Solubilised polysaccharides were collected after each extraction. Residues were collected

  7. Fabrication of the full scale separable first wall of ITER shielding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Hatano, Toshihisa; Enoeda, Mikio; Miki, Nobuharu; Akiba, Masato

    2002-10-01

    for SS block, water jet method was demonstrated to be applicable to the complicated slit structure required in the shield block fabrication. Also, the fabrication of full scale FW panel was performed. By the destructive observation of the test pieces of HIP joints, the soundness of the fabrication was clarified. In conclusion, essential fabrication technology for the full scale separable first wall panel has been established by this work. (author)

  8. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    Science.gov (United States)

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  9. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  10. Continuously renewed wall for a thermonuclear reactor

    International Nuclear Information System (INIS)

    Livshits, A.I.; Pustovojt, YU.M.; Samartsev, A.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    The possibility of creating a continuously renewed first wall of a thermonuclear reactor is experimentally investigated. The following variants of the wall are considered: the wall is double, its part turned to plasma is made of comparatively thin material. The external part separated from it by a small gap appears to be protected from interaction with plasma and performs structural functions. The gap contains the mixture of light helium and hydrogen and carbon-containing gas. The light gas transfers heat from internal part of the wall to the external part. Carbon-containing gas provides continuous renewal of carbon coating of the operating surface. The experiment is performed with palladium membrane 20 μm thick. Carbon is introduced into the membrane by benzol pyrolysis on one of the surfaces at the membrane temperature of 900 K. Carbon removal from the operating side of the wall due to its spraying by fast particles is modelled by chemical itching with oxygen given to the operating membrane wall. Observation of the carbon release on the operating surface is performed mass-spectrometrically according to the observation over O 2 transformation into CO and CO 2 . It is shown that in cases of benzol pressure of 5x10 -7 torr, carbon current on the opposite surface is not less than 3x10 12 atoms/sm 2 s and corresponds to the expected wall spraying rate in CF thermonuclear reactors. It is also shown that under definite conditions the formation and maintaining of a through protective carbon coating in the form of a monolayer or volumetric phase is possible

  11. Improvement of C*-integral and Crack Opening Displacement Estimation Equations for Thin-walled Pipes with Circumferential Through-wall Cracks

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Jhung, Myung Jo

    2012-01-01

    Since the LBB(Leak-Before-Break) concept has been widely applied to high energy piping systems in the pressurized water reactors, a number of engineering estimation methods had been developed for J-integral and COD values. However, those estimation methods were mostly reliable for relatively thick-walled pipes about R m /t=5 or 10. As the LBB concept might be considered in the design stage of the SFR (Sodium-cooled Fast Reactor) which has relatively thin-walled pipes due to its low design pressure, the applicability of current estimation methods should be investigated for thin-walled pipes. Along with the J-integral and COD, the estimation method for creep fracture mechanics parameters, C*- integral and COD rate, is required because operating temperature of SFR is high enough to induce creep in the structural materials. In this study, the applicability of the current C*- integral and COD estimation methods to thin-walled pipes is studied for a circumferential through-wall crack using the finite element (FE) method. Based on the FE results, enhancement of the current estimation methods is made

  12. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  13. Plant cell wall sugars: sweeteners for a bio-based economy.

    Science.gov (United States)

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  14. Copper alloy conducting first wall for the FED-A tokamak

    International Nuclear Information System (INIS)

    Wiffen, F.W.

    1984-01-01

    The first wall of the tokamak FED-A device was designed to satisfy two conflicting requirements. They are a low electrical resistance to give a long eddy-current decay time and a high neutron transparency to give a favorable tritium breeding ratio. The tradeoff between these conflicting requirements resulted in a copper alloy first wall that satisfied the specific goals for FED-A, i.e., a minimum eddy-current decay time of 0.5 sec and a tritium breeding ratio of at least 1.2. Aluminum alloys come close to meeting the requirements and would also probably work. Stainless steel will not work in this application because shells thin enough to satisfy temperature and stress limits are not thick enough to give a long eddy-current decay time and to avoid disruption induced melting. The baseline first wall design is a rib-stiffened, double-wall construction. The total wall thickness is 1.5 cm, including a water coolant thickness of 0.5 cm. The first wall is divided into twelve 30-degree sectors. Flange rings at the ends of each sector are bolted together to form the torus. Structural support is provided at the top center of each sector

  15. An electrically conducting first wall for the fusion engineering device-A (FED-A) tokamak

    International Nuclear Information System (INIS)

    Cramer, B.A.; Fuller, G.M.

    1983-01-01

    The first wall of the tokamak FED-A device was designed to satisfy two conflicting requirements. They are a low electrical resistance to give a long eddy-current decay time and a high neutron transparency to give a favorable tritium breeding ratio. The tradeoff between these conflicting requirements resulted in a copper alloy first wall that satisfied the specific goals for FED-A, i.e., a minimum eddy-current decay time of 0.5 sec and a tritium breeding ratio of at least 1.2. Aluminum alloys come close to meeting the requirements and would also probably work. Stainless steel will not work in this application because shells thin enough to satisfy temperature and stress limits are not thick enough to give a long eddy-current decay time and to avoid disruption induced melting. The baseline first wall design is a rib-stiffened, double-wall construction. The total wall thickness is 1.5 cm, including a water coolant thickness of 0.5 cm. The first wall is divided into twelve 30-degree sectors. Flange rings at the ends of each sector are bolted together to form the torus. Structural support is provided at the top center of each sector

  16. Wall-based identification of coherent structures in wall-bounded turbulence

    Science.gov (United States)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  17. Controlled Release of Lysozyme from Double-Walled Poly(Lactide-Co-Glycolide (PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Rezaul H. Ansary

    2017-10-01

    Full Text Available Double-walled microspheres based on poly(lactide-co-glycolide (PLGA are potential delivery systems for reducing a very high initial burst release of encapsulated protein and peptide drugs. In this study, double-walled microspheres made of glucose core, hydroxyl-terminated poly(lactide-co-glycolide (Glu-PLGA, and carboxyl-terminated PLGA were fabricated using a modified water-in-oil-in-oil-in-water (w1/o/o/w2 emulsion solvent evaporation technique for the controlled release of a model protein, lysozyme. Microspheres size, morphology, encapsulation efficiency, lysozyme in vitro release profiles, bioactivity, and structural integrity, were evaluated. Scanning electron microscopy (SEM images revealed that double-walled microspheres comprising of Glu-PLGA and PLGA with a mass ratio of 1:1 have a spherical shape and smooth surfaces. A statistically significant increase in the encapsulation efficiency (82.52% ± 3.28% was achieved when 1% (w/v polyvinyl alcohol (PVA and 2.5% (w/v trehalose were incorporated in the internal and external aqueous phase, respectively, during emulsification. Double-walled microspheres prepared together with excipients (PVA and trehalose showed a better control release of lysozyme. The released lysozyme was fully bioactive, and its structural integrity was slightly affected during microspheres fabrication and in vitro release studies. Therefore, double-walled microspheres made of Glu-PLGA and PLGA together with excipients (PVA and trehalose provide a controlled and sustained release for lysozyme.

  18. Nuclear Power Plants Secondary Circuit Piping Wall-Thinning Management in China

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zheng Hui

    2012-01-01

    Research and field feedbacks showed that nuclear power plants secondary circuit steam and water piping are more sensitive than that of fuel plant to the attack of flow-accelerated corrosion (FAC). FAC, Liquid droplet impingement or cavitation erosion will cause secondary circuit piping local wall-thinning in NPPs. Without effective management, the wall-thinning in those high energy piping will cause leakage or pipe rupture during nuclear power plant operation, more seriously cause unplanned shut down, injured and fatality, or heavy economic losses. This paper briefly introduces the history, development and state of the art of secondary circuit piping wall-thinning management in China NPPs. Then, the effectiveness of inspection grid size selecting was analyzed in detail based on field feedbacks. EPRI recommendatory inspection grid, JSME code recommendatory grid and plant specific inspection grid were compared and the detection probabilities of local wall-thinning were estimated. Then, the development and application of NPPs Secondary Circuit Piping Wall Thickness Management Information System, developed, operated and maintained by our team, was briefly introduced and the statistical analysis results of 11 PWR units were shared. It was conclude that the long term, systemic, effective wall-thinning management strategy of high energy piping was very important to the safety and economic operation of NPPs. Furthermore, take into account the actual situation of China nuclear power plants, some advice and suggestion on developing effective nuclear power plant secondary circuit steam and water piping wall-thinning management system are put forward from code development, design and manufacture, operation management, pipeline and locations selection, inspection method selection and application, thickness measurement result evaluation, residual life predication and decision making, feedbacks usage, personnel training and etc. (author)

  19. Bowel wall visualisation at CT colonography

    International Nuclear Information System (INIS)

    Svensson, M.H.; Hellstroem, M.; Svensson, E.

    2002-01-01

    Purpose: To evaluate the quality of bowel wall visualisation at CT colonography and the impact of examination in the supine and prone positions. Material and Methods: After bowel preparation, 111 patients underwent CT colonography. Air distension, degree of fluid redistribution with change in body position (supine and prone), influence of residual stool on bowel wall assessability, and quality of overall colon visualisation were evaluated using scales. Results: Thirty of 110 patients (27%) had complete overall visualisation of the colon wall and 52 (47%) had subtotal visualisation of a limited part of the colon. The entire colon was more often air-filled in the prone position (46%) than in the supine position (18%). Joint review of supine and prone data showed that for all colon segments, except the sigmoid (86%), 95% of the patients had complete air filling. All patients had residual fluid. In 75% to 99%, depending on segment, fluid did not interfere with the bowel wall visualisation in the combined evaluation of supine and prone data sets. Thirty-one patients had residual stool with potential negative influence on polyp detection. Conclusions: The colon wall was completely, or almost completely, visualised in 75% of the patients, and examination in the supine and prone positions was necessary for complete visualisation

  20. Tank wall thinning -- Process and programs

    International Nuclear Information System (INIS)

    Greer, S.D.; McBrine, W.J.

    1994-01-01

    In-service thinning of tank walls has occurred in the power industry and can pose a significant risk to plant safety and dependability. Appropriate respect for the energy stored in a high-pressure drain tank warrants a careful consideration of this possibility and appropriate action in order to assure the adequate safety margins against leakage or rupture. Although it has not proven to be a widespread problem, several cases of wall thinning and at least one recent tank rupture has highlighted this issue in recent years, particularly in nuclear power plants. However, the problem is not new or unique to the nuclear power industry. Severe wall thinning in deaerator tanks has been frequently identified at fossil-fueled power plants. There are many mechanisms which can contribute to tank wall thinning. Considerations for a specific tank are dictated by the system operating conditions, tank geometry, and construction material. Thinning mechanisms which have been identified include: Erosion/Corrosion Impingement Erosion Cavitation Erosion General Corrosion Galvanic Corrosion Microbial-induced Corrosion of course there are many other possible types of material degradation, many of which are characterized by pitting and cracking. This paper specifically addresses wall thinning induced by Erosion/Corrosion (also called Flow-Accelerated Corrosion) and Impingement Erosion of tanks in a power plant steam cycle. Many of the considerations presented are applicable to other types of vessels, such as moisture separators and heat exchangers

  1. Identification of Novel Cell Wall Components

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  2. Experimental investigation on particle-wall interactions

    International Nuclear Information System (INIS)

    Zeisel, H.; Dorfner, V.

    1988-01-01

    There is still a lack in the knowledge about many physical processes in two-phase flows and therefore their mathematical description for the modelling of two-phase flows by computer simulations still needs some improvement. One required information is the physical procedure of the momentum transfer between the phases themselves, such as particle-particle or particle-fluid interactions, and between the phases and the flow boundaries, such as particle-wall or fluid-wall interactions. The interaction between the two phases can be either a 'long-range' interference or a direct contact between both. For the particle-fluid two-phase flow system the interaction can be devided in particle-fluid, particle-particle and particle-boundary interactions. In this investigation the attention is drawn to the special case of a particle-wall interaction and its 'long-range' interference effect between the wall and a small particle which approaches the wall in normal direction. (orig./GL)

  3. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  4. An integrated study for mapping the moisture distribution in an ancient damaged wall painting.

    Science.gov (United States)

    Capitani, Donatella; Proietti, Noemi; Gobbino, Marco; Soroldoni, Luigi; Casellato, Umberto; Valentini, Massimo; Rosina, Elisabetta

    2009-12-01

    An integrated study of microclimate monitoring, IR thermography (IRT), gravimetric tests and portable unilateral nuclear magnetic resonance (NMR) was applied in the framework of planning emergency intervention on a very deteriorated wall painting in San Rocco church, Cornaredo (Milan, Italy). The IRT investigation supported by gravimetric tests showed that the worst damage, due to water infiltration, was localized on the wall painting of the northern wall. Unilateral NMR, a new non-destructive technique which measures the hydrogen signal of the moisture and that was applied directly to the wall, allowed a detailed map of the distribution of the moisture in the plaster underlying the wall panting to be obtained. With a proper calibration of the integral of the recorded signal with suitable specimens, each area of the map corresponded to an accurate amount of moisture. IRT, gravimetric tests and unilateral NMR applied to investigate the northern wall painting showed the presence of two wet areas separated by a dry area. The moisture found in the lower area was ascribed to the occurrence of rising damp at the bottom of the wall due to the slope of the garden soil towards the northern exterior. The moisture found in the upper area was ascribed to condensation phenomena associated with the presence of a considerable amount of soluble, hygroscopic salts. In the framework of this integrated study, IRT investigation and gravimetric methods validated portable unilateral NMR as a new analytical tool for measuring in situ and without any sampling of the distribution and amount of moisture in wall paintings.

  5. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-12-20

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.

  6. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  7. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  8. Optimization of multiplane ?PIV for wall shear stress and wall topography characterization

    NARCIS (Netherlands)

    Rossi, M.; Lindken, R.; Westerweel, J.

    2009-01-01

    Multiplane ?PIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in

  9. Analysis of a Hydrogen Isotope separation process based on a continuous hydrogen-water exchange on column Transitions of Hydrogen

    International Nuclear Information System (INIS)

    Hodor, I.

    1988-01-01

    The analysed system consists of two plane-parallel walls, a water film flows down a wall, a catalyst layer is disposed on the other, a water vapour-hydrogen mixture moves up between the walls. A mathematical treatment is presented which permits to calculate the overall transfer coefficients and other parameters of practical interest from the local differential equations. (author)

  10. Shielding walls against ionizing radiation. Lead bricks

    International Nuclear Information System (INIS)

    1993-04-01

    The standard contains specifications for the shape and requirements set for lead bricks such that they can be used to construct radiation-shielding walls according to the building kit system. The dimensions of the bricks are selected in such a way as to permit any modification of the length, height and thickness of said shielding walls in units of 50 mm. The narrow side of the lead bricks juxtaposed to one another in a wall construction to shield against radiation have to form prismatic grooves and tongues: in this way, direct penetration by radiation is prevented. Only cuboid bricks (serial nos. 55-60 according to Table 10) do not have prismatic tongues and grooves. (orig.) [de

  11. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  12. Wall thinning of piping in power plants

    International Nuclear Information System (INIS)

    Ohta, Joji; Inada, Fumio; Morita, Ryo; Kawai, Noboru; Yoneda, Kimitoshi

    2005-01-01

    Major mechanisms causing wall thinning of piping in power plants are flow accelerated corrosion (FAC), cavitation erosion and droplet erosion. Their fundamental aspects are reviewed on the basis of literature data. FAC is chemical process and it is affected by hydrodynamic factors, temperature, pH, dissolved oxygen concentration and chemical composition of materials. On the other hand, cavitation erosion and droplet erosion are mechanical process and they are mainly affected by hydrodynamic factors and mechanical properties of materials. Evaluation codes for FAC and mitigation methods of FAC and the erosion are also described. Wall thinning of piping is one of public concerns after an accident of a pipe failure at Mihama Nuclear Power Plant Unit 3, Kansai Electric Power Co., Inc., in August 2004. This paper gives comprehensive understanding of the wall thinning mechanism. (author)

  13. Vibrotactile Vest and The Humming Wall

    DEFF Research Database (Denmark)

    Morrison, Ann; Manresa-Yee, Cristina; Knoche, Hendrik

    2015-01-01

    Vibrotactile information can be used to elicit sensations and encourage particular user body movements. We designed a vibrotactile vest with physiological monitoring that interacts with a vibroacoustic urban environment, The Humming Wall. In this paper, we describe the first field trial with the ......Vibrotactile information can be used to elicit sensations and encourage particular user body movements. We designed a vibrotactile vest with physiological monitoring that interacts with a vibroacoustic urban environment, The Humming Wall. In this paper, we describe the first field trial...... with the system held over a 5-week period in an urban park. We depict the participants’ experience, engagement and impressions while wearing the vibrotactile vest and interacting with the wall. We contribute with positive responses to novel interactions between the responsive environment and the vibrotactile vest...

  14. Postirradiation changes in the pelvic wall

    International Nuclear Information System (INIS)

    Soevik, E.; Lien, H.H.; Tveit, K.M.

    1993-01-01

    MR images of 45 patients who had received radiation therapy for carcinoma of the anus or recurrent carcinoma of the rectum were reviewed with regard to postirradiation changes of the pelvic wall. High signal intensity in bone marrow on T1-weighted images due to fatty replacement was almost always observed. Presacral edema occurred in 7 of 36 patients who were examined 4 to 6 weeks after the end of irradiation and was more frequent at later studies. The pelvic wall muscles showed high signal intensity on T2-weighted images compatible with edema. This finding was most frequent on studies performed more than 6 weeks after the end of irradiation. The changes subsided more than a year after radiation therapy. To avoid an erroneous diagnosis of tumor infiltration into the pelvic wall, it is important to be familiar with the normal postirradiation changes of the presacral space and the muscles. (orig.)

  15. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  16. Computed tomography of chest wall abscess

    International Nuclear Information System (INIS)

    Ikezoe, Junpei; Morimoto, Shizuo; Akira, Masanori

    1986-01-01

    Inflammatory lesions of the chest wall become less common because of the improvement of antibiotics and chemotherapeutic agents. Over a 5-year period, 7 patients with chest wall inflammatory diseases underwent chest computed tomography. These were 2 tuberculous pericostal abscesses, 2 empyema necessitatis, 1 spinal caries, and 2 bacterial chest wall abscesses (unknown organisms). Computed tomography (CT) helped in demonstrating the density, border, site, and extent of the lesions. CT images also demonstrated the accompaning abnormalities which included bone changes, pleural calcification, or old tuberculous changes of the lung. CT was very effective to demonstrate the communicating portions from the inside of the bony thorax to the outside of the bony thorax in 2 empyema necessitatis. (author)

  17. Plasma-wall interactions in RFX

    International Nuclear Information System (INIS)

    Valisa, M.; Bartiromo, R.; Carraro, L.

    1999-01-01

    Plasma wall interactions become a crucial issue in the Reversed Field Pinch RFX at high current (>0.7 MA). Wall-Mode Locking (WML) leads to carbon bloom, enhanced recycling and makes the density control very difficult to achieve. Several wall conditioning techniques have improved the capability of controlling recycling, especially boronization with diborane, but at 1 MA of plasma current removal of the WML becomes mandatory. Encouraging results have been achieved by rotating an externally induced perturbation that can unlock the WML. The strong impurity screening mechanism found at intermediate current does not degrade significantly at 1 MA. Modification of the tiles geometry could further reduce the power density dissipation and mitigate the PWI. (author)

  18. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  19. Plasma-wall interactions in RFX

    International Nuclear Information System (INIS)

    Valisa, M.; Bartiromo, R.; Carraro, L.

    2001-01-01

    Plasma wall interactions become a crucial issue in the Reversed Field Pinch RFX at high current (>0.7 MA). Wall-Mode Locking (WML) leads to carbon bloom, enhanced recycling and makes the density control very difficult to achieve. Several wall conditioning techniques have improved the capability of controlling recycling, especially boronisation with diborane, but at 1 MA of plasma current removal of the WML becomes mandatory. Encouraging results have been achieved by rotating an externally induced perturbation that can unlock the WML. The strong impurity screening mechanism found at intermediate current does not degrade significantly at 1 MA. Modification of the tiles geometry could further reduce the power density dissipation and mitigate the PWI. (author)

  20. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...