WorldWideScience

Sample records for water volume change

  1. Changes in apparent molar water volume and DKP solubility yield insights on the Hofmeister effect.

    Science.gov (United States)

    Payumo, Alexander Y; Huijon, R Michael; Mansfield, Deauna D; Belk, Laurel M; Bui, Annie K; Knight, Anne E; Eggers, Daryl K

    2011-12-15

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water.

  2. Changes in Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect

    Science.gov (United States)

    Payumo, Alexander Y.; Huijon, R. Michael; Mansfield, Deauna D.; Belk, Laurel M.; Bui, Annie K.; Knight, Anne E.; Eggers, Daryl K.

    2011-01-01

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the non-ideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water. PMID:22029390

  3. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    Science.gov (United States)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific oedometer cells were used allowing “flushing” the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96.

  4. Functional changes in CSF volume estimated using measurement of water T2 relaxation

    NARCIS (Netherlands)

    Piechnik, S.K.; Evans, J.; Bary, L.H.; Wise, R.G.; Jezzard, P.

    2009-01-01

    Cerebrospinal fluid (CSF) provides hydraulic suspension for the brain. The general concept of bulk CSF production, circulation, and reabsorption is well established, but the mechanisms of momentary CSF volume variation corresponding to vasoreactive changes are far less understood. Nine individuals

  5. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    Science.gov (United States)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with

  6. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    Science.gov (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  7. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    NARCIS (Netherlands)

    Guo, Ming; Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its

  8. Camera on Vessel: A Camera-Based System to Measure Change in Water Volume in a Drinking Glass

    Directory of Open Access Journals (Sweden)

    Idowu Ayoola

    2015-09-01

    Full Text Available A major problem related to chronic health is patients’ “compliance” with new lifestyle changes, medical prescriptions, recommendations, or restrictions. Heart-failure and hemodialysis patients are usually placed on fluid restrictions due to their hemodynamic status. A holistic approach to managing fluid imbalance will incorporate the monitoring of salt-water intake, body-fluid retention, and fluid excretion in order to provide effective intervention at an early stage. Such an approach creates a need to develop a smart device that can monitor the drinking activities of the patient. This paper employs an empirical approach to infer the real water level in a conically shapped glass and the volume difference due to changes in water level. The method uses a low-resolution miniaturized camera to obtain images using an Arduino microcontroller. The images are processed in MATLAB. Conventional segmentation techniques (such as a Sobel filter to obtain a binary image are applied to extract the level gradient, and an ellipsoidal fitting helps to estimate the size of the cup. The fitting (using least-squares criterion between derived measurements in pixel and the real measurements shows a low covariance between the estimated measurement and the mean. The correlation between the estimated results to ground truth produced a variation of 3% from the mean.

  9. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  10. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.

    Science.gov (United States)

    Cermák, Jan; Kucera, Jiri; Bauerle, William L; Phillips, Nathan; Hinckley, Thomas M

    2007-02-01

    Diurnal and seasonal tree water storage was studied in three large Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) trees at the Wind River Canopy Crane Research site. Changes in water storage were based on measurements of sap flow and changes in stem volume and tissue water content at different heights in the stem and branches. We measured sap flow by two variants of the heat balance method (with internal heating in stems and external heating in branches), stem volume with electronic dendrometers, and tissue water content gravimetrically. Water storage was calculated from the differences in diurnal courses of sap flow at different heights and their integration. Old-growth Douglas-fir trees contained large amounts of free water: stem sapwood was the most important storage site, followed by stem phloem, branch sapwood, branch phloem and needles. There were significant time shifts (minutes to hours) between sap flow measured at different positions within the transport system (i.e., stem base to shoot tip), suggesting a highly elastic transport system. On selected fine days between late July and early October, when daily transpiration ranged from 150 to 300 liters, the quantity of stored water used daily ranged from 25 to 55 liters, i.e., about 20% of daily total sap flow. The greatest amount of this stored water came from the lower stem; however, proportionally more water was removed from the upper parts of the tree relative to their water storage capacity. In addition to lags in sap flow from one point in the hydrolic pathway to another, the withdrawal and replacement of stored water was reflected in changes in stem volume. When point-to-point lags in sap flow (minutes to hours near the top and stem base, respectively) were considered, there was a strong linear relationship between stem volume changes and transpiration. Volume changes of the whole tree were small (equivalent to 14% of the total daily use of stored water) indicating that most stored water came from

  11. Dynamic changes in water ADC, energy metabolism, extracellular space volume and tortuosity in neonatal rat brain during irreversible ischemia

    NARCIS (Netherlands)

    Toorn, van der A.; Syková, E.; Dijkhuizen, R.M.; Voríšek, I.; Vargová, L.; Skobisová, E.; Lookeren Campagne, van M.; Reese, T.; Nicolaij, K.

    1996-01-01

    To obtain a better understanding of the mechanisms underlying early changes in the brain water apparent diffusion coefficient (ADC) observed in cerebral ischemia, dynamic changes in the ADC of water and in the energy status were measured at postnatal day 8 or 9 in neonatal rat brains after cardiac

  12. Revised shallow and deep water-level and storage-volume changes in the Equus Beds Aquifer near Wichita, Kansas, predevelopment to 1993

    Science.gov (United States)

    Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2013-01-01

    credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about

  13. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, F; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... of albumin in arterial and venous blood in seven healthy subjects before and during insulin-induced hypoglycaemia. In both vascular sites blood 51Cr content and the haematocrit increased, plasma volume and intravascular albumin content decreased and the transcapillary escape rate of albumin increased during...

  14. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Frandsen, Henrik Lund; Christensen, N J

    1991-01-01

    -induced hypoglycaemia with total autonomic blockade (alpha-adrenoceptor blockade combined with beta-adrenoceptor blockade and atropine); and insulin-induced hypoglycaemia without any autonomic blockade. In the experiments without autonomic blockade the peripheral venous hematocrit increased, plasma volume decreased......, intravascular albumin content decreased and the transcapillary escape rate of albumin increased. In both experiments with autonomic blockade the increase in venous haematocrit was abolished, yet plasma volume decreased, intravascular albumin content decreased and the transcapillary escape rate of albumin...... increased in these experiments. Thus, the changes in plasma volume and composition in response to hypoglycaemia are due to the combined actions of adrenaline and of insulin....

  15. Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh.

    Science.gov (United States)

    Gernand, Alison D; Christian, Parul; Schulze, Kerry J; Shaikh, Saijuddin; Labrique, Alain B; Shamim, Abu Ahmed; West, Keith P

    2012-06-01

    Plasma volume expansion has been associated with fetal growth. Our objective was to examine the associations between maternal nutritional status in early pregnancy and extracellular water (ECW), total body water (TBW), and percentage plasma volume change across pregnancy. In a subsample of 377 pregnant women participating in a cluster-randomized trial of micronutrient supplementation, hemoglobin, hematocrit, and multi-frequency bioelectrical impedance were measured at ~10, 20, and 32 wk of gestation. In early pregnancy, women were short (mean ± SD, 148.9 ± 5.3 cm) and thin (19.5 ± 2.5 kg/m(2)). In mixed-effects multiple regression models, a 1-unit higher BMI at ~10 wk was associated with higher ECW and TBW (0.27 and 0.66 kg per kg/m(2), respectively; P pregnancy BMI was negatively associated with gains in ECW and TBW (-0.06 and -0.14 kg per kg/m(2), respectively; P pregnancy have lower ECW and TBW in early, mid, and late pregnancy and lower late pregnancy plasma volume expansion, potentially increasing risk of fetal growth restriction.

  16. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  17. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  18. Parallel Changes in Intracellular Water Volume and pH Induced by NH3/NH4+ Exposure in Single Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Víctor M. Blanco

    2013-12-01

    Full Text Available Background: Increased blood levels of ammonia (NH3 and ammonium (NH4+, i.e. hyperammonemia, leads to cellular brain edema in humans with acute liver failure. The pathophysiology of this edema is poorly understood. This is partly due to incomplete understanding of the osmotic effects of the pair NH3/NH4+ at the cellular and molecular levels. Cell exposure to solutions containing NH3/NH4+ elicits changes in intracellular pH (pHi, which can in turn affect cell water volume (CWV by activating transport mechanisms that produce net gain or loss of solutes and water. The occurrence of CWV changes caused by NH3/NH4+ has long been suspected, but the mechanisms, magnitude and kinetics of these changes remain unknown. Methods: Using fluorescence imaging microscopy we measured, in real time, parallel changes in pHi and CWV caused by brief exposure to NH3/NH4+ of single cells (N1E-115 neuroblastoma or NG-108 neuroblastoma X glioma loaded with the fluorescent indicator BCECF. Changes in CWV were measured by exciting BCECF at its intracellular isosbestic wavelength (∼438 nm, and pHi was measured ratiometrically. Results: Brief exposure to isosmotic solutions (i.e. having the same osmolality as that of control solutions containing NH4Cl (0.5- 30 mM resulted in a rapid, dose-dependent swelling, followed by isosmotic regulatory volume decrease (iRVD. NH4Cl solutions in which either extracellular [NH3] or [NH4+] was kept constant while the other was changed by varying the pH of the solution, demonstrated that [NH3]o rather than [NH4+]o is the main determinant of the NH4Cl-induced swelling. The iRVD response was sensitive to the anion channel blocker NPPB, and partly dependent on external Ca2+. Upon removal of NH4Cl, cells shrank and displayed isosmotic regulatory volume increase (iRVI. Regulatory volume responses could not be activated by comparable CWV changes produced by anisosmotic solutions, suggesting that membrane stretch or contraction by themselves are

  19. Camera on vessel : A camera-based system to measure change in water volume in a drinking glass

    NARCIS (Netherlands)

    Ayoola, I.B.I.; Chen, W.; Feijs, L.M.G.

    2015-01-01

    A major problem related to chronic health is patients’ “compliance” with new lifestyle changes, medical prescriptions, recommendations, or restrictions. Heart-failure and hemodialysis patients are usually placed on fluid restrictions due to their hemodynamic status. A holistic approach to managing

  20. Water changed the cities

    DEFF Research Database (Denmark)

    Elle, Morten; Jensen, Marina Bergen

    An improvement in water infrastructure and cleaning up the waters changed many harbour cities in Denmark at the beginning of the 90s. The harbour cities changed from drity, run-down industrial harbours to clean and attractive harbour dwelling creating new city centres and vital city areas...

  1. KCNQ1 channels sense small changes in cell volume

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; MacAulay, Nanna

    2003-01-01

    Many important physiological processes involve changes in cell volume, e.g. the transport of salt and water in epithelial cells and the contraction of cardiomyocytes. In this study, we show that voltage-gated KCNQ1 channels, which are strongly expressed in epithelial cells or cardiomyocytes......, and KCNQ4 channels, expressed in hair cells and the auditory tract, are tightly regulated by small cell volume changes when co-expressed with aquaporin 1 water-channels (AQP1) in Xenopus oocytes. The KCNQ1 and KCNQ4 current amplitudes precisely reflect the volume of the oocytes. By contrast, the related...... KCNQ2 and KCNQ3 channels, which are prominently expressed in neurons, are insensitive to cell volume changes. The sensitivity of the KCNQ1 and KCNQ4 channels to cell volume changes is independent of the presence of the auxiliary KCNE1-3 subunits, although modulated by KCNE1 in the case of KCNQ1...

  2. Western water and climate change

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northernmost West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent.

  3. Changes in Search Path Complexity and Length During Learning of a Virtual Water Maze: Age Differences and Differential Associations with Hippocampal Subfield Volumes.

    Science.gov (United States)

    Daugherty, Ana M; Bender, Andrew R; Yuan, Peng; Raz, Naftali

    2016-06-01

    Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19-75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1-2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1-2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Measurement of cell volume changes by fluorescence self-quenching

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, J.F.; Litman, Thomas

    2002-01-01

    At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination...... concentrations of the fluorophore calcein suitable for measurement of changes in cell water volume by self-quenching. The relationship between calcein fluorescence intensity, when excited at 490 nm (its excitation maximum), and calcein concentration was investigated in vitro and in various cultured cell types...... to a decrease in calcein fluorescence with high signal-to-noise ratio (>15). Similar results were obtained with the fluorophore BCECF when excited at its isosbestic wavelength (436 nm). The present results demonstrate the usefulness of fluorescence self-quenching to measure rapid changes in cell water volume....

  5. Volume changes in unrestrained structural lightweight concrete.

    Science.gov (United States)

    1964-08-01

    In this study a comparator-type measuring system was developed to accurately determine volume change characteristics of one structural lightweight concrete. The specific properties studied were the coefficient of linear thermal expansion and unrestra...

  6. Saturation volume changes and resistivity changes in nickel

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Blewitt, T.H.

    1976-01-01

    Saturation defect concentrations generated by thermal neutron irradiation of 235 U doped nickel at liquid helium temperature were measured by changes in electrical resistivity and volume. The experimental procedure is described

  7. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  8. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  9. Water access, water scarcity, and climate change.

    Science.gov (United States)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  10. Effect of water volume based on water absorption and mixing time on physical properties of tapioca starch – wheat composite bread

    Science.gov (United States)

    Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.

    2018-05-01

    Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.

  11. Relative blood volume changes underestimate total blood volume changes during hemodialysis

    NARCIS (Netherlands)

    Dasselaar, Judith J.; Lub-de Hooge, Marjolijn N.; Pruim, Jan; Nijnuis, Hugo; Wiersum, Anneke; de Jong, Paul E.; Huisman, Roel M.; Franssen, Casper F. M.

    Background: Measurements of relative blood volume changes (ARBV) during hemodialysis (HD) are based on hemoconcentration and assume uniform mixing of erythrocytes and plasma throughout the circulation. However, whole-body hematocrit (Ht) is lower than systemic Ht. During HD, a change in the ratio

  12. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  13. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  14. Clinically significant change in stroke volume in pulmonary hypertension

    NARCIS (Netherlands)

    van Wolferen, S.A.; van de Veerdonk, M.C.; Mauritz, G.J.; Jacobs, W.; Marcus, J.T.; Marques, K.M.J.; Bronzwaer, J.G.F.; Heijmans, M.W.; Boonstra, A.; Postmus, P.E.; Westerhof, N.; Noordegraaf, A.V.

    2011-01-01

    Background: Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory

  15. Study on water boiling noises in a large volume

    International Nuclear Information System (INIS)

    Masagutov, R.F.; Krivtsov, V.A.

    1977-01-01

    Presented are the results of measurement of the noise spectra during boiling of water in a large volume at the pressure of 1 at. Boiling of the distilled water has been accomplished with the use of the heaters made of the Kh18N10T steel, 50 mm in length, 2 mm in the outside diameter, with the wall thickness of 0.1 mm. The degree of water under heating changed during the experiments from 0 to 80 deg C, and the magnitude of the specific heat flux varied from o to 0.7 - 0.9 qsup(x), where qsup(x) was the specific heat flux of the tube burn-out. The noise spectrum of the boiling water was analyzed at frequencies of 0.5 to 200 kHz. The submerge-type pressure-electric transmitters were used for measurements. At underheating boiling during the experiment the standing waves have formed which determine the structure of the measured spectra. During saturated boiling of water no standing waves were revealed. At underheating over 15 - 20 deg C the water boiling process is accompanied by the noises within the ultrasonic frequency range. The maximum upper boundary of the noise in the experiments amounts to 90 - 100 kHz

  16. Contrast media osmolality and plasma volume changes

    International Nuclear Information System (INIS)

    Hine, A.L.; Lui, D.; Dawson, P.; Middlesex Hospital, London

    1985-01-01

    A theoretical and experimental study of the plasma volume expansion consequent on the hyperosmolality of contrast media is presented. In the case of the ratio 1.5 media theory and experiment coincide closely but in the case of the ratio 3 media the observed changes exceed the predicted. It is proposed that this is due partly to the slower diffusion of the ratio 3 media out of the intravascular space and partly due to the fact that the osmotic load presented by these media is greater than would be expected from a study of their commercial solutions in which osmolality is reduced by molecular aggregation. The implications for the relative haemodynamic effects of different contrast media are discussed. The osmotic effects of contrast media also play a part in determining the image quality achievable in intravenous digital subtraction angiography (IV-DSA). It is predicted that ratio 3 contrast media will give better quality images in IV-DSA than ratio 1.5 media. (orig.)

  17. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data

    NARCIS (Netherlands)

    Slobbe, D.C.; Ditmar, P.G.; Lindenbergh, R.C.

    2008-01-01

    The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth’s gravity field

  18. Human choice and climate change. Volume 1: The societal framework

    International Nuclear Information System (INIS)

    Raynor, S.; Malone, E.

    1998-01-01

    This book is Volume 1 of a four-volume set which assesses social science research that is relevant to global climate change from a wide-ranging interdisciplinary perspective. Attention is focused on the societal framework as it relates to climate change. This series is indispensable reading for scientists and engineers wishing to make an effective contribution to the climate change policy debate

  19. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  20. MODEL PERUBAHAN VOLUME KERIPIK BUAH SELAMA PROSES PENGGORENGAN SECARA VAKUM [Model for Volume Changes in Fruit Chips during Vacuum Frying

    Directory of Open Access Journals (Sweden)

    Jamaluddin1*

    2011-06-01

    Full Text Available Expansion and puffing are specific characteristics of fried products critical for consumer preferences. To obtain expanded and puffed dried products that fit well with consumer acceptance criteria, it is necessary to pay attention to the process conditions which change the raw material characteristics during frying. The important changes include volume and density ratio of the products during frying. Hypothetically, these changes are due to water vaporization and the decrease dry matter in the products. The objective of this research is to develop a mathematical model of volume and density ratio changes for jack fruit during vacuum frying as a function of water and starch content reductions. Samples were vacuum fried at 70–100OC and pressure of 80-90 kPa for 15–60 min. The parameters observed were volume and density as well as water and starch contents of samples before and after vacuum frying. The results showed that the developed model can be used to predict changes in volume and density ratio of jack fruit during vacuum frying.

  1. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  2. Efficient low static-volume water heater

    Science.gov (United States)

    Brown, R. L.

    1976-01-01

    Calrod heating element is surrounded by matrix of fused sintered copper or brass balls, and assembly is then installed in piping of water system. As water flows through matrix, sintered balls cause turbulent flow and heating. Applications include laundromats, laboratories, and photographic labs.

  3. Clinically significant change in stroke volume in pulmonary hypertension.

    Science.gov (United States)

    van Wolferen, Serge A; van de Veerdonk, Marielle C; Mauritz, Gert-Jan; Jacobs, Wouter; Marcus, J Tim; Marques, Koen M J; Bronzwaer, Jean G F; Heymans, Martijn W; Boonstra, Anco; Postmus, Pieter E; Westerhof, Nico; Vonk Noordegraaf, Anton

    2011-05-01

    Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory increased heart rate as is the case for cardiac output. For this reason, stroke volume, which can be measured noninvasively, is an important hemodynamic parameter to monitor during treatment. However, the extent of change in stroke volume that constitutes a clinically significant change is unknown. The aim of this study was to determine the minimal important difference (MID) in stroke volume in PH. One hundred eleven patients were evaluated at baseline and after 1 year of follow-up with a 6-min walk test (6MWT) and cardiac MRI. Using the anchor-based method with 6MWT as the anchor, and the distribution-based method, the MID of stroke volume change could be determined. After 1 year of treatment, there was, on average, a significant increase in stroke volume and 6MWT. The change in stroke volume was related to the change in 6MWT. Using the anchor-based method, an MID of 10 mL in stroke volume was calculated. The distribution-based method resulted in an MID of 8 to 12 mL. Both methods showed that a 10-mL change in stroke volume during follow-up should be considered as clinically relevant. This value can be used to interpret changes in stroke volume during clinical follow-up in PH.

  4. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    Science.gov (United States)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  5. Determining volume sensitive waters in Beaufort County, SC tidal creeks

    Science.gov (United States)

    Andrew Tweel; Denise Sanger; Anne Blair; John Leffler

    2016-01-01

    Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.

  6. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  7. Produced water volumes and management practices in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Veil, J. A. (Environmental Science Division)

    2009-09-01

    Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced

  8. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  9. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  10. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man

    Science.gov (United States)

    Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.

    1976-01-01

    A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.

  11. White matter volume changes in people who develop psychosis.

    Science.gov (United States)

    Walterfang, Mark; McGuire, Philip K; Yung, Alison R; Phillips, Lisa J; Velakoulis, Dennis; Wood, Stephen J; Suckling, John; Bullmore, Edward T; Brewer, Warrick; Soulsby, Bridget; Desmond, Patricia; McGorry, Patrick D; Pantelis, Christos

    2008-09-01

    Grey matter changes have been described in individuals who are pre- and peri-psychotic, but it is unclear if these changes are accompanied by changes in white matter structures. To determine whether changes in white matter occur prior to and with the transition to psychosis in individuals who are pre-psychotic who had previously demonstrated grey matter reductions in frontotemporal regions. We used magnetic resonance imaging (MRI) to examine regional white matter volume in 75 people with prodromal symptoms. A subset of the original group (n=21) were rescanned at 12-18 months to determine white matter volume changes. Participants were retrospectively categorised according to whether they had or had not developed psychosis at follow-up. Comparison of the baseline MRI data from these two subgroups revealed that individuals who later developed psychosis had larger volumes of white matter in the frontal lobe, particularly in the left hemisphere. Longitudinal comparison of data in individuals who developed psychosis revealed a reduction in white matter volume in the region of the left fronto-occipital fasciculus. Participants who had not developed psychosis showed no reductions in white matter volume but increases in a region subjacent to the right inferior parietal lobule. The reduction in volume of white matter near the left fronto-occipital fasciculus may reflect a change in this tract in association with the onset of frank psychosis.

  12. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  13. Graded changes in enamel component volumes resulted from a short tooth bleaching procedure.

    Science.gov (United States)

    Ferreira, Artemisa Fernanda Moura; Perez, Flávia Maria de Moraes Ramos; Limeira Júnior, Francisco de Assis; de Moura, Mirella de Fátima Liberato; de Sousa, Frederico Barbosa

    2016-05-01

    To test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure. Extracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3 × 15 min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n=10 points/location), representing conditions before and after bleaching. Tooth shade changes were significant (pbleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R(2)=0.97; p99%). Changes in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss>organic gain>water gain>decrease in permeability) and decreased from the enamel surface inward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Macroscopic investigation of water volume effects on interfacial dynamic behaviors between clathrate hydrate and water.

    Science.gov (United States)

    Cha, Minjun; Couzis, Alexander; Lee, Jae W

    2013-05-14

    This study investigated the effects of the water volume on the interfacial dynamics between cyclopentane (CP) hydrate and water droplet in a CP/n-decane oil mixture. The adhesion force between CP hydrate and various water droplets was determined using the z-directional microbalance. Through repetition of precise measurements over several cycles from contact to detachment, we observed abnormal wetting behaviors in the capillary bridge during the retraction process when the water drop volume is larger than 100 μL. With the increase in water droplet volumes, the contact force between CP hydrate and water also increases up to 300 μL. However, there is a dramatic reduction of increasing rate in the contact forces over 300 μL of water droplet. With the addition of the surfactants of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) to the water droplet, the contact force between CP hydrate and solution droplet exhibits a lower value and a transition volume of the contact force comes with a smaller solution volume of 200 μL. The water volume effects on the liquid wetting of the probe and the size of capillary bridges provide important insight into hydrate growth and aggregation/agglomeration in the presence of free water phase inside gas/oil pipelines.

  15. Change in brain and lesion volumes after CEE therapies

    Science.gov (United States)

    Espeland, Mark A.; Hogan, Patricia E.; Resnick, Susan M.; Bryan, R. Nick; Robinson, Jennifer G.; Goveas, Joseph S.; Davatzikos, Christos; Kuller, Lewis H.; Williamson, Jeff D.; Bushnell, Cheryl D.; Shumaker, Sally A.

    2014-01-01

    Objectives: To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen–based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. Methods: A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Results: Total brain volume decreased an average of 3.22 cm3/y in the active arm and 3.07 cm3/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm3/y (p = 0.88). Conclusions: Conjugated equine estrogen–based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings. PMID:24384646

  16. Change in Seroma Volume During Whole-Breast Radiation Therapy

    International Nuclear Information System (INIS)

    Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar; Thawani, Nitika; Cohen, Hillel W.; Hong, Linda; Garg, Madhur K.; Kalnicki, Shalom

    2009-01-01

    Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) or standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm 3 (SD, 50.5 cm 3 ) and 35.6 cm 3 (SD, 24.8 cm 3 ), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.

  17. Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes?

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume; Pedersen, Morten Foldager

    2012-01-01

    Subitaneous eggs from an euryhaline calanoid copepod Acartia tonsa were challenged by changes in salinity within the range from full strength salinity, down to zero and up to >70 psu. Egg volume changed immediately, increasing from 2.8 × 105 μm3 at full strength salinity (35 psu) to 3.8 × 105 μm3...... at 0 psu and back to its initial volume when gradually being returned to full strength salinity. Egg osmolality followed the molality of the surrounding water when challenged within a salinity range from 2 to 50 psu. Egg respiration was not affected when eggs kept at 35 psu was exposed to low salinity...... (2 psu). These results suggest that eggs are unable to regulate their volume or osmolality when challenged with changes in salinity. Gradual changes in salinity from 35 to 2 psu and back did not harm the eggs (embryos), since the hatching success remained unaffected by such changes in salinity...

  18. Changes of pituitary gland volume in Kennedy disease.

    Science.gov (United States)

    Pieper, C C; Teismann, I K; Konrad, C; Heindel, W L; Schiffbauer, H

    2013-12-01

    Kennedy disease is a rare X-linked neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the androgen-receptor gene. Apart from neurologic signs, this mutation can cause a partial androgen insensitivity syndrome with typical alterations of gonadotropic hormones produced by the pituitary gland. The aim of the present study was therefore to evaluate the impact of Kennedy disease on pituitary gland volume under the hypothesis that endocrinologic changes caused by partial androgen insensitivity may lead to morphologic changes (ie, hypertrophy) of the pituitary gland. Pituitary gland volume was measured in sagittal sections of 3D T1-weighted 3T-MR imaging data of 8 patients with genetically proven Kennedy disease and compared with 16 healthy age-matched control subjects by use of Multitracer by a blinded, experienced radiologist. The results were analyzed by a univariant ANOVA with total brain volume as a covariant. Furthermore, correlation and linear regression analyses were performed for pituitary volume, patient age, disease duration, and CAG repeat expansion length. Intraobserver reliability was evaluated by means of the Pearson correlation coefficient. Pituitary volume was significantly larger in patients with Kennedy disease (636 [±90] mm(3)) than in healthy control subjects (534 [±91] mm(3)) (P = .041). There was no significant difference in total brain volume (P = .379). Control subjects showed a significant decrease in volume with age (r = -0.712, P = .002), whereas there was a trend to increasing gland volume in patients with Kennedy disease (r = 0.443, P = .272). Gland volume correlated with CAG repeat expansion length in patients (r = 0.630, P = .047). The correlation coefficient for intraobserver reliability was 0.94 (P pituitary volume that correlated with the CAG repeat expansion length. This could reflect hypertrophy as the result of elevated gonadotropic hormone secretion caused by the androgen receptor mutation with partial

  19. Environmental law and climate change : Volumes I & II

    NARCIS (Netherlands)

    Verschuuren, Jonathan

    Two volume set that brings together 54 of the most influential and important scientific journal articles in the field of climate law, thematically grouped together as follows: introducing climate law, theories and approaches, climate change mitigation, climate change adaptation, climate justice,

  20. Epidural anesthesia, hypotension, and changes in intravascular volume

    DEFF Research Database (Denmark)

    Holte, Kathrine; Foss, Nicolai B; Svensén, Christer

    2004-01-01

    receiving hydroxyethyl starch. RESULTS: Plasma volume did not change per se after thoracic epidural anesthesia despite a decrease in blood pressure. Plasma volume increased with fluid administration but remained unchanged with vasopressors despite that both treatments had similar hemodynamic effects...... constant was 56 ml/min. CONCLUSIONS: Thoracic epidural anesthesia per se does not lead to changes in blood volumes despite a reduction in blood pressure. When fluid is infused, there is a dilution, and the fluid initially seems to be located centrally. Because administration of hydroxyethyl starch......BACKGROUND: The most common side effect of epidural or spinal anesthesia is hypotension with functional hypovolemia prompting fluid infusions or administration of vasopressors. Short-term studies (20 min) in patients undergoing lumbar epidural anesthesia suggest that plasma volume may increase when...

  1. Pituitary volumes are changed in patients with conversion disorder.

    Science.gov (United States)

    Atmaca, Murad; Baykara, Sema; Mermi, Osman; Yildirim, Hanefi; Akaslan, Unsal

    2016-03-01

    Our study group previously measured pituitary volumes and found a relationship between somatoform disoders and pituitary volumes. Therefore, in conversion disorder, another somatoform disorder, we hypothesized that pituitary gland volumes would be reduced. Twenty female patients and healthy controls were recruited to the present investigation. The volumes of the pituitary gland were determined by using a 1.5 Tesla magnetic resonance scanner. We found that the pituitary gland volumes of the patients with conversion disorder were significantly smaller than those of healthy control subjects. In the patients with conversion disorder but not in the healthy control group, a significant negative correlation between the duration of illness and pituitary gland volume was determined. In summary, in the present study, we suggest that the patients with conversion disorder have smaller pituitary volumes compared to those of healthy control subjects. Further studies should confirm our data and ascertain whether volumetric alterations determined in the patients with conversion disorder can be changed with treatment or if they change over time.

  2. Change of the human taste bud volume over time.

    Science.gov (United States)

    Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino

    2010-08-01

    The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes.

    Science.gov (United States)

    Tejada, Maria A; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells.

  4. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  5. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water

  6. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  7. ICP curve morphology and intracranial flow-volume changes

    DEFF Research Database (Denmark)

    Unnerbäck, Mårten; Ottesen, Johnny T.; Reinstrup, Peter

    2018-01-01

    proposed to shape the ICP curve. This study tested the hypothesis that the ICP curve correlates to intracranial volume changes. METHODS: Cine phase contrast magnetic resonance imaging (MRI) examinations were performed in neuro-intensive care patients with simultaneous ICP monitoring. The MRI was set......BACKGROUND: The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been...

  8. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  9. The effect of water volume and mixing time on physical properties of bread made from modified cassava starch-wheat composite flour

    Science.gov (United States)

    Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.

    2018-03-01

    Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.

  10. Early changes in left atrial volume after acute myocardial infarction

    DEFF Research Database (Denmark)

    Bakkestrom, R.; Andersen, Mads J; Ersboll, M.

    2016-01-01

    . The objective was to assess changes in LA volume early after MI in patients with diastolic dysfunction and the relation to invasive hemodynamics and natriuretic peptides. Methods: 62 patients with left ventricle ejection fraction (LVEF) >= 45%, diastolic E/e' > 8 and LA volume index >34 ml/m(2) within 48 h......Background: Dilatation of left atrium (LA) reflects chronic LA pressure or volume overload that possesses considerable prognostic information. Little is known regarding the interaction between LA remodeling after acute myocardial infarction (MI) and left atrial pressure at rest and during exercise...... of MI were enrolled. After 1 and 4 months blood sampling, echocardiography and right heart catheterization were performed during exercise test. Results: LA remodeling was considered in patients with a change from mild (35-41 ml/m(2)), to severe (>48ml/m(2)) dilatation after 4 months (Found in 22...

  11. Climate changes Dutch water management

    NARCIS (Netherlands)

    Schaik, van H.

    2007-01-01

    This booklet starts out describing how our water management strategy has evolved over the centuries from increasingly defensive measures to an adaptive approach. The second part presents smart, areaspecific examples in planning and zoning of water, land and ecosystems for our coast, rivers, cities

  12. Quantification of Protozoa and Viruses from Small Water Volumes

    Directory of Open Access Journals (Sweden)

    J. Alfredo Bonilla

    2015-06-01

    Full Text Available Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter and viruses capture by charge (bottom filter. Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45% and poliovirus (67% vs. 55% whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%. Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.

  13. Analysis of the high water wave volume for the Sava River near Zagreb

    Science.gov (United States)

    Trninic, Dusan

    2010-05-01

    The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm

  14. Changes in olfactory bulb volume following lateralized olfactory training.

    Science.gov (United States)

    Negoias, S; Pietsch, K; Hummel, T

    2017-08-01

    Repeated exposure to odors modifies olfactory function. Consequently, "olfactory training" plays a significant role in hyposmia treatment. In addition, numerous studies show that the olfactory bulb (OB) volume changes in disorders associated with olfactory dysfunction. Aim of this study was to investigate whether and how olfactory bulb volume changes in relation to lateralized olfactory training in healthy people. Over a period of 4 months, 97 healthy participants (63 females and 34 males, mean age: 23.74 ± 4.16 years, age range: 19-43 years) performed olfactory training by exposing the same nostril twice a day to 4 odors (lemon, rose, eucalyptus and cloves) while closing the other nostril. Before and after olfactory training, magnetic resonance imaging (MRI) scans were performed to measure OB volume. Furthermore, participants underwent lateralized odor threshold and odor identification testing using the "Sniffin' Sticks" test battery.OB volume increased significantly after olfactory training (11.3 % and 13.1 % respectively) for both trained and untrained nostril. No significant effects of sex, duration and frequency of training or age of the subjects were seen. Interestingly, PEA odor thresholds worsened after training, while olfactory identification remained unchanged.These data show for the first time in humans that olfactory training may involve top-down process, which ultimately lead to a bilateral increase in olfactory bulb volume.

  15. Agricultural Water Use under Global Change

    Science.gov (United States)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  16. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  17. Changes in atheroma volume estimated from digitized femoral arteriograms

    International Nuclear Information System (INIS)

    Nilsson, S.; Erikson, U.

    1990-01-01

    To evaluate the effects of treatment in patients with cardiovascular risk factors, valid and reproducible methods for assessing changes in atheroma volume are required. We postulated that these changes could be accurately estimated by repeat measurement of the lumen volume of the artery to be studied. With a computer-based technique, the lumen volume of a 20 cm segment of the femoral artery was measured in arteriograms from 107 patients with hypercholesterolemia. Films were digitized with use of a high-resolution scanner, cross-sectional areas were calculated with a slice thickness of 150 μm and the lumen volume was obtained by their integration. The validity of the method was demonstrated in model experiments. An automatic algorithm to correct for changes due to patient positioning was developed and validated in a model experiment. With repeat measurment 10 min and 11 to 13 months apart the coefficients of variation were 2.9% (N=107) and 6.1% (N=29), respectively. (orig.)

  18. A longitudinal study of brain volume changes in normal aging

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa, E-mail: takaoh-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Hayashi, Naoto [Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2012-10-15

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy.

  19. A longitudinal study of brain volume changes in normal aging

    International Nuclear Information System (INIS)

    Takao, Hidemasa; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy

  20. The Water-Use Implications of a Changing Power Sector

    Science.gov (United States)

    Peer, R.; Sanders, K.

    2016-12-01

    Changing policies, declining natural gas prices due to shale production and, growing pressure for cleaner energy sources are causing significant shifts in the fuels and technologies utilized for US electricity generation. These shifts have already impacted the volumes of water required for cooling thermal power plants, imposing consequences for watersheds that have yet to be quantified. This research investigates how these regulatory, economic, and socially-driven changes in the power sector have impacted cooling water usage across the US, which currently represents nearly half of US water withdrawals. This study uses plant-specific fuel consumption, generation, and cooling water data to assess water usage trends in the power sector from 2008 to 2014 across HUC-8 hydrologic units. Over this period, transitions from steam-cycle coal and nuclear units towards combined-cycle natural gas units and renewables, as well as transitions from once-through cooling towards wet recirculating tower and dry cooling systems resulted in large shifts in water usage. Trends towards non-traditional cooling water sources such as recycled water reduced freshwater consumption in some watersheds. Although US cooling water withdrawals and consumption increased from 2008 to 2014 largely due to electricity demand growth, the average water withdrawn and consumed per unit of electricity generated decreased and remained similar in magnitude, respectively. Changes at the watershed scale were not uniform, with some experiencing significant water use reductions and environmental benefits, especially due to coal-fired power plant retirements. Results highlight the importance of evaluating both water withdrawals and consumption at local spatial scales, as these shifts have varying consequences on water availability and quality for downstream users and ecosystems. This analysis underscores the importance of prioritizing local water security in global climate change adaptation and mitigation efforts.

  1. Adsorption of transuranic elements from large volume sea water

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.

    1976-01-01

    Some years ago a sampler for concentrating radionuclides from large volumes of sea water was developed by Silker et al. of the Battelle Northwest Laboratories. They used pure A1 2 O 3 as the adsorbent. The device has been applied successfully to the determination of 238 Pu and 239 Pu in several sea water samples. Our experience on the application of an identical system for the determination of transuranics in Mediterranean sea water was not quite as satisfactory as we had hoped. The chemistry involved in leaching up to 1 kg Al 2 O 3 . with acid, followed by removal of dissolved aluminium from the transuranic fraction, is rather tedious and time-consuming for routine use. The adsorption efficiency of transuranics, checked by dual-bed adsorption did not give consistent results. However, since the principle of the device is attractive enough for handling large volume water samples, it was felt that it was worthwhile to test other types of adsorbents which are easier to handle than Al 2 O 3 . For this purpose, chitosan and manganese dioxide were chosen and series of experiments were conducted in order to examine the suitability of these materials as an adsorbent in the system

  2. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  3. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  4. Influence of Water Absorption on Volume Resistivity and the Dielectric Properties of Neat Epoxy Material

    KAUST Repository

    Sulaimani, Anwar Ali

    2014-07-15

    Influence of Water Absorption on the Dielectric Properties and Volume Resistivity of Neat Epoxy Material Anwar Ali Sulaimani Epoxy resins are widely used materials in the industry as electrical insulators, adhesives and in aircrafts structural components because of their high mechanical sti ness, strength and high temperature and chemical resistance properties. But still, the in uence of water uptake due to moisture adsorption is not fully understood as it detrimentally modi es the electrical and chemical properties of the material. Here, we investigate the in uence of water moisture uptake on the neat epoxy material by monitoring the change in the volume resistivity and dielectric properties of epoxy material at three di erent thickness con gurations: 0.250 mm, 0.50 mm and 1 mm thicknesses. Gravimetric analysis was done to monitor the mass uptake behaviour, Volume Resistivity was measured to monitor the change in conductivity of the material, and the dielectric properties were mapped to characterise the type of water mechanism available within the material during two ageing processes of sorption and desorption. Two-stage behaviours of di usion and reaction have been identi ed by the mass uptake analysis. Moreover, the plot of volume resistivity versus mass uptake has indi- cated a non-uniform relationship between the two quantities. However, the analysis of the dielectric spectrum at medium range of frequency and time has showed a change 5 in the dipolar activities and also showed the extent to which the water molecules can be segregated between bounding to the resin or existing as free water.

  5. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  6. Changes in Upper Airway Volume Following Orthognathic Surgery.

    Science.gov (United States)

    Marcussen, Lillian; Stokbro, Kasper; Aagaard, Esben; Torkov, Peter; Thygesen, Torben

    2017-01-01

    Reduced volume of the internal skeletal dimensions of the face is 1 of the main causes of obstructive sleep apnea, and attention to patients' airways is necessary when planning orthognathic treatment. This study aims to describe changes in upper airway volume following virtually planned orthognathic surgery.A retrospective pilot study was designed with 30 randomly selected patients (10 men and 20 women, aged 23.1 ± 6.8 years, molar-relations: 15 neutral, 8 distal, and 7 mesial). Cone-beam computed tomography scans were performed before surgery and 1 week following surgery. The authors did total upper airway volume measurements and obtained 1-mm slices at vertical levels in the velo-, oro-, and hypopharynx and at the smallest visible cross-section.Measurements before and after surgery were compared using Student t test.After orthognathic surgery, the minimum cross-sectional area at the vertical level increased from 83 mm ± 33 before surgery to 102 mm ± 36 after surgery (P = 0.019). In patients with neutral and distal occlusions, the minimum cross-sectional slice volume increased in 87% but in only 57% with mesial occlusion.The present findings suggest that orthognathic surgery increases upper airway volume parameters, but a few patients have continued impairment of the airways following orthognathic surgery. Further studies are needed to confirm an individual surgical planning approach that potentially could bring the minimum cross sectional area out of the risk zone.

  7. Mathematical simulation of water distillation column for decreasing volume of tritiated water

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-12-01

    Water distillation is an attractive method for decreasing volume of the tritiated water produced by operation of tritium facilities. The tritiated water is continuously fed to a column and it is separated into two streams. The top stream is discarded to the environment after addition of sufficient amount of uncontaminated water. The bottom stream is further treated for solidification and capsulation. The tridiagonal matrix method proved to provide surprisingly rapid convergences of the calculations. The concentration of deuterium naturally contained in the tritiated water is higher than the tritium concentration, but it was verified that presence of HDO can be ignored in the calculation. (author)

  8. Biotreatment of produced waters for volume reduction and contaminant removal

    Energy Technology Data Exchange (ETDEWEB)

    Negri, M.C.; Hinchman, R.R. [Argonne National Lab., IL (United States); Mollock, J. [Devon Energy Corp., Oklahoma City, OK (United States)

    1997-10-01

    Produced water is wastewater that is brought to the surface from natural gas wells during natural gas production. Its constituents, mostly salt, with traces of hydrocarbons and heavy metals, are a significant disposal problem. Argonne National Laboratory (ANL), in partnership with the Gas Research Institute (GRI), has developed a low-cost, low-tech method, in which green plants are used to reduce the volume of produced water. The authors have designed an engineered bioreactor system, which is modeled after natural saline wetland ecosystems. The plant bioreactor system maximizes plant evapotranspiration to reduce wastewater volume and, concurrently, may function as a biological filter to enhance contaminant degradation and immobilization in the root/rhizosphere zone. Halophyte plant species having high salt tolerance and high transpiration rates were selected after they tested them in greenhouse experiments. Models obtained by using their greenhouse findings reduced the volume of the wastewater (up to 6% salt) by 75% in about 8 days. A field demonstration of the bioreactor, designed on the basis of the results from the greenhouse study, is successfully under way at a natural gas well site in Oklahoma. The process could offer the petroleum industry a low-cost biological alternative to existing expensive options.

  9. Comprehensive Cooling Water Study. Volume 1. Summary of environmental effects, Savannah River Plant. Annual report

    International Nuclear Information System (INIS)

    Gladden, J.B.; Lower, M.W.; Mackey, H.E.; Specht, W.L.; Wilde, E.W.

    1985-07-01

    This volume summarizes the technical content of Volumes II through XI of the annual report. Volume II provides a description of the SRP environment, facilities, and operation, and presents the objectives and design for the CCWS. Volume III presents information on water quality of SRP surface waters. Results of radionuclide and heavy metal transport studies are presented in Volume IV. Volume V contains findings from studies of wetland plant communities. Volume VI presents findings from studies of the lower food chain components of SRP aquatic habitats. The results of fisheries studies are reported in Volume VII. Studies of semi-aquatic vertebrate populations are reported in Volume VIII. Water-fowl utilization of SRP habitats is discussed in Volume IX. The status of endangered species that utilize SRP aquatic habitats is presented in Volume X. The findings from studies of Parr Pond ecosystem are presented in Volume XI

  10. Thirteenth water reactor safety research information meeting: proceedings Volume 1

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1986-02-01

    This six-volume report contains 151 papers out of the 178 that were presented at the Thirteenth Water Reactor Safety Research Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 22-25, 1985. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-one different papers presented by researchers from Japan, Canada and eight European countries. The title of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume presents information on: risk analysis PRA application; severe accident sequence analysis; risk analysis/dependent failure analysis; and industry safety research

  11. Changes in taste bud volume during taste disturbance.

    Science.gov (United States)

    Srur, Ehab; Pau, Hans Wilhelm; Just, Tino

    2011-08-01

    On-line mapping and serial volume measurements of taste buds with confocal laser scanning microscopy provide information on the peripheral gustatory organ over time. We report the volumetric measurements of four selected fungiform papillae over 8 weeks in a 62-year-old man with taste disturbance, which was more apparent on the right than on the left side. In the two papillae on the right side, no taste buds were detected within the fungiform papillae in the sixth and eighth week. During sixth and eighth week, there was no response to the highest presented stimuli in electrogustometry (1 mA) on the right-sided tongue tip nor at the tongue edge. The morphology (shape, diameter) of the fungiform papillae on both sides remained unchanged. Comparison of the time course of the volume changes revealed differences corresponding to gustatory sensitivity. These findings suggest that the time course of volume changes indicated taste disturbance in our patient, rather than morphological changes in the fungiform papillae. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Nuclear powerplant standardization: light water reactors. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1981-06-01

    This volume contains working papers written for OTA to assist in preparation of the report, NUCLEAR POWERPLANT STANDARDIZATION: LIGHT WATER REACTORS. Included in the appendixes are the following: the current state of standardization, an application of the principles of the Naval Reactors Program to commercial reactors; the NRC and standardization, impacts of nuclear powerplant standardization on public health and safety, descriptions of current control room designs and Duke Power's letter, Admiral Rickover's testimony, a history of standardization in the NRC, and details on the impact of standardization on public health and safety

  13. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    2017-01-01

    ) in the elevation change algorithm, to correct for temporal changes in the ratio between surface- and volume-scatter in Cryosat-2 observations. We present elevation and volume changes for the Greenland ice sheet in the period from 2010 until 2014. The waveform parameters considered here are the backscatter...... waveform parameters to be applicable for correcting for changes in volume scattering. The best results in the Synthetic Aperture Radar Interferometric mode area of the GrIS are found when applying only the backscatter correction, whereas the best result in the Low Resolution Mode area is obtained by only......Long-term observations of surface elevation change of the Greenland ice sheet (GrIS) is of utmost importance when assessing the state of the ice sheet. Satellite radar altimetry offers a long time series of data over the GrIS, starting with ERS-1 in 1991. ESA's Cryosat-2 mission, launched in 2010...

  14. Retrieving mesospheric water vapour from observations of volume scattering radiances

    Directory of Open Access Journals (Sweden)

    P. Vergados

    2009-02-01

    Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  15. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  16. Changes in plasma volume and baroreflex function following resistance exercise

    Science.gov (United States)

    Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1993-01-01

    The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.

  17. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    Arnell, N.W.

    1998-01-01

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  18. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes

    DEFF Research Database (Denmark)

    Tejada, Maria A; Hashem, Nadia; Callø, Kirstine

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes....... Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response...... to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents...

  19. Changes in continental Europe water cycle in a changing climate

    Science.gov (United States)

    Rouholahnejad, Elham; Schirmer, Mario; Abbaspour, Karim

    2015-04-01

    Changes in atmospheric water vapor content provide strong evidence that the water cycle is already responding to a warming climate. According to IPCC's last report on Climate Change (AR5), the water cycle is expected to intensify in a warmer climate as the atmosphere can hold more water vapor. This changes the frequency of precipitation extremes, increases evaporation and dry periods, and effects the water redistribution in land. This process is represented by most global climate models (GCMs) by increased summer dryness and winter wetness over large areas of continental mid to high latitudes in the Northern Hemisphere, associated with a reduction in water availability at continental scale. Observing changes in precipitation and evaporation directly and at continental scale is difficult, because most of the exchange of fresh water between the atmosphere and the surface happens the oceans. Long term precipitation records are available only from over the land and there are no measurement of evaporation or redistribution of precipitation over the land area. On the other hand, understanding the extent of climate change effects on various components of the water cycle is of strategic importance for public, private sectors, and policy makers when it comes to fresh water management. In order to better understand the extent of climate change impacts on water resources of continental Europe, we developed a distributed hydrological model of Europe at high spatial and temporal resolution using the Soil and Water Assessment Tool (SWAT). The hydrological model was calibrated for 1970 to 2006 using daily observation of streamflow and nitrate loads from 360 gauging stations across Europe. A vegetation growth routine was added to the model to better simulate evapotranspiration. The model results were calibrated with available agricultural crop yield data from other sources. As of future climate scenarios, we used the ISI-MIP project results which provides bias-corrected climate

  20. Experimental estimation of regional lung water volume by histogram of pulmonary CT numbers

    International Nuclear Information System (INIS)

    Kato, Shiro; Momoki, Shigeru; Asai, Toshihiko; Shimada, Takeshi; Tamano, Masahiro; Nakamoto, Takaaki; Yoshimura, Masaharu

    1989-01-01

    Both in vitro and in vivo experiments were made to assess the ability of pulmonary CT numbers to quantitatively determine regional water volume in cases of pulmonary congestion or edema associated with left heart failure. In vitro experiment revealed a good linear correlation between the volume of injected water and the determined CT number of polyethylene tube packed with sponge. In the subsequent in vivo experiment with 10 adult mongrel dogs, lung water volumes obtained by pulmonary CT numbers were found to be consistent with the actual volumes. Pulmonary CT numbers for water volume proved to become parameters to quantitatively evaluate pulmonary congestion or edema. (Namekawa, K)

  1. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  2. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  3. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    Science.gov (United States)

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  4. An experimental study on the excitation of large volume airguns in a small volume body of water

    International Nuclear Information System (INIS)

    Wang, Baoshan; Yang, Wei; Yuan, Songyong; Ge, Hongkui; Chen, Yong; Guo, Shijun; Xu, Ping

    2010-01-01

    A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25–30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in 3 , the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7–11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ∼50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions

  5. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  6. A Curriculum Activities Guide to Water Pollution and Environmental Studies, Volume II - Appendices.

    Science.gov (United States)

    Hershey, John T., Ed.; And Others

    This publication, Volume II of a two volume set of water pollution studies, contains seven appendices which support the studies. Appendix 1, Water Quality Parameters, consolidates the technical aspects of water quality including chemical, biological, computer program, and equipment information. Appendix 2, Implementation, outlines techniques…

  7. Intrathecal volume changes in lumbar spinal canal stenosis following extension and flexion: An experimental cadaver study.

    Science.gov (United States)

    Teske, Wolfram; Schwert, Martin; Zirke, Sonja; von Schulze Pellengahr, Christoph; Wiese, Matthias; Lahner, Matthias

    2015-01-01

    The spinal canal stenosis is a common disease in elderly. The thecal sac narrowing is considered as the anatomical cause for the disease. There is evidence that the anatomical proportions of the lumbar spinal canal are influenced by postural changes. The liquor volume shift during these postural changes is a valuable parameter to estimate the dynamic qualities of this disease. The aim of this human cadaver study was the determination of intrathecal fluid volume changes during the lumbar flexion and the extension. A special measuring device was designed and built for the study to investigate this issue under controlled conditions. The measuring apparatus fixed the lumbar spine firmly and allowed only flexion and extension. The dural sac was closed water tight. The in vitro changes of the intrathecal volumes during the motion cycle were determined according to the principle of communicating vessels. Thirteen human cadaver spines from the Institute of Anatomy were examined in a test setting with a continuous adjustment of motion. The diagnosis of the lumbar spinal stenosis was confirmed by a positive computer tomography prior testing. The volume changes during flexion and extension cycles were measured stepwise in a 2 degree distance between 18° flexion and 18° extension. Three complete series of measurements were performed for each cadaver. Two specimens were excluded because of fluid leaks from further investigation. The flexion of the lumbar spine resulted in an intrathecal volume increase. The maximum volume effects were seen in the early flexion positions of 2° and 4°. The spine reclination resulted in a volume reduction. The maximum extension effect was seen between 14° and 16°. According to our results, remarkable volume effects were seen in the early movements of the lumbar spine especially for the flexion. The results support the concept of the spinal stenosis as a dynamic disease and allow a better understanding of the pathophysiology of this

  8. Role of cerebral blood volume changes in brain specific-gravity measurements

    International Nuclear Information System (INIS)

    Picozzi, P.; Todd, N.V.; Crockard, A.H.

    1985-01-01

    Cerebral blood volume (CBV) was calculated in gerbils from specific-gravity (SG) changes between normal and saline-perfused brains. Furthermore, changes in CBV were investigated during ischemia using carbon-14-labeled dextran (MW 70,000) as an intravascular marker. Both data were used to evaluate the possible error due to a change in CBV on the measurement of ischemic brain edema by the SG method. The methodological error found was 0.0004 for a 100% CBV change. This error is insignificant, being less than the standard deviation in the SG measured for the gerbil cortex. Thus, CBV changes are not responsible for the SG variations observed during the first phase of ischemia. These variations are better explained as an increase of brain water content during ischemia

  9. Beach Volume Change Using Uav Photogrammetry Songjung Beach, Korea

    Science.gov (United States)

    Yoo, C. I.; Oh, T. S.

    2016-06-01

    Natural beach is controlled by many factors related to wave and tidal forces, wind, sediment, and initial topography. For this reason, if numerous topographic data of beach is accurately collected, coastal erosion/acceleration is able to be assessed and clarified. Generally, however, many studies on coastal erosion have limitation to analyse the whole beach, carried out of partial area as like shoreline (horizontal 2D) and beach profile (vertical 2D) on account of limitation of numerical simulation. This is an important application for prevention of coastal erosion, and UAV photogrammetry is also used to 3D topographic data. This paper analyses the use of unmanned aerial vehicles (UAV) to 3D map and beach volume change. UAV (Quadcopter) equipped with a non-metric camera was used to acquire images in Songjung beach which is located south-east Korea peninsula. The dynamics of beach topography, its geometric properties and estimates of eroded and deposited sand volumes were determined by combining elevation data with quarterly RTK-VRS measurements. To explore the new possibilities for assessment of coastal change we have developed a methodology for 3D analysis of coastal topography evolution based on existing high resolution elevation data combined with low coast, UAV and on-ground RTK-VRS surveys. DSMs were obtained by stereo-matching using Agisoft Photoscan. Using GCPs the vertical accuracy of the DSMs was found to be 10 cm or better. The resulting datasets were integrated in a local coordinates and the method proved to be a very useful fool for the detection of areas where coastal erosion occurs and for the quantification of beach change. The value of such analysis is illustrated by applications to coastal of South Korea sites that face significant management challenges.

  10. BEACH VOLUME CHANGE USING UAV PHOTOGRAMMETRY SONGJUNG BEACH, KOREA

    Directory of Open Access Journals (Sweden)

    C. I. Yoo

    2016-06-01

    Full Text Available Natural beach is controlled by many factors related to wave and tidal forces, wind, sediment, and initial topography. For this reason, if numerous topographic data of beach is accurately collected, coastal erosion/acceleration is able to be assessed and clarified. Generally, however, many studies on coastal erosion have limitation to analyse the whole beach, carried out of partial area as like shoreline (horizontal 2D and beach profile (vertical 2D on account of limitation of numerical simulation. This is an important application for prevention of coastal erosion, and UAV photogrammetry is also used to 3D topographic data. This paper analyses the use of unmanned aerial vehicles (UAV to 3D map and beach volume change. UAV (Quadcopter equipped with a non-metric camera was used to acquire images in Songjung beach which is located south-east Korea peninsula. The dynamics of beach topography, its geometric properties and estimates of eroded and deposited sand volumes were determined by combining elevation data with quarterly RTK-VRS measurements. To explore the new possibilities for assessment of coastal change we have developed a methodology for 3D analysis of coastal topography evolution based on existing high resolution elevation data combined with low coast, UAV and on-ground RTK-VRS surveys. DSMs were obtained by stereo-matching using Agisoft Photoscan. Using GCPs the vertical accuracy of the DSMs was found to be 10 cm or better. The resulting datasets were integrated in a local coordinates and the method proved to be a very useful fool for the detection of areas where coastal erosion occurs and for the quantification of beach change. The value of such analysis is illustrated by applications to coastal of South Korea sites that face significant management challenges.

  11. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  12. Fruit response to water-scarcity and biochemical changes : Water relations and biochemical changes

    NARCIS (Netherlands)

    Rodríguez, P.; Galindo Egea, Alejandro; Collado-González, J.; Medina, S.; Corell, M.; Memmi, H.; Girón, I.F.; Centeno, A.; Martín-Palomo, M.J.; Cruz, Z.N.; Carbonell-Barrachina, A.A.; Hernandez, F.; Torrecillas, A.; Moriana, A.; Pérez-López, D.; Garcia Tejero, Ivan Francisco; Duran Zuazo, Victor Hugo

    2018-01-01

    The aim of this chapter is to give a general idea of the fruit response to water-scarcity conditions, paying special attention to fruit water relations modification and fruit composition changes, which are key for fruit quality. The strengths and weaknesses of fruit water relations measurement

  13. Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule – An experimental study

    International Nuclear Information System (INIS)

    Chandrasekaran, P.; Cheralathan, M.; Velraj, R.

    2015-01-01

    The present study aims to investigate the solidification characteristics of water, as the PCM (phase change material), due to the effect of fill volume of PCM in a spherical capsule. The experiments were conducted with the spherical capsule, filling it with water of 80, 85, 90, 92 and 95 percentage of its full volume and immersing it in a constant temperature bath maintained at various temperatures. It was observed that the increase in fill volume had a significant influence in reducing the degree of supercooling and it was eliminated with 95% fill volume. Further, the increase in fill volume had a considerable effect in advancing the commencement of solidification. Increasing the temperature potential enhanced the heat flux during the solidification of first 50% of PCM mass and its effect was more pronounced at higher fill volumes. The heat flux was increased several fold particularly at 95% fill volume making it highly suitable for applications that demand large cooling load in a short duration. Hence the proper selection of fill volume and temperature driving potential is essential to achieve overall energy efficiency while designing the CTES (cool thermal energy storage) system. - Highlights: • Supercooling was eliminated with 95% fill volume at all surrounding bath temperature. • The effect of higher fill volume is more pronounced with higher temperature potential. • 50% mass is solidified in 10% of solidification duration with 95% fill volume at −12 °C. • Several fold increase in heat flux is achieved with 95% fill volume at −12 °C. • Combination of fill volume and temperature potential is essential for good design.

  14. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  15. Climate change adaptation in regulated water utilities

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Harou, J. J.; Characklis, G. W.; Ricalde, I.

    2017-12-01

    Concern about climate change impacts on water supply systems has grown in recent years. However, there are still few examples of pro-active interventions (e.g. infrastructure investment or policy changes) meant to address plausible future changes. Deep uncertainty associated with climate impacts, future demands, and regulatory constraints might explain why utility planning in a range of contexts doesn't explicitly consider climate change scenarios and potential adaptive responses. Given the importance of water supplies for economic development and the cost and longevity of many water infrastructure investments, large urban water supply systems could suffer from lack of pro-active climate change adaptation. Water utilities need to balance the potential for high regret stranded assets on the one side, with insufficient supplies leading to potentially severe socio-economic, political and environmental failures on the other, and need to deal with a range of interests and constraints. This work presents initial findings from a project looking at how cities in Chile, the US and the UK are developing regulatory frameworks that incorporate utility planning under uncertainty. Considering for example the city of Santiago, Chile, recent studies have shown that although high scarcity cost scenarios are plausible, pre-emptive investment to guard from possible water supply failures is still remote and not accommodated by current planning practice. A first goal of the project is to compare and contrast regulatory approaches to utility risks considering climate change adaptation measures. Subsequently we plan to develop and propose a custom approach for the city of Santiago based on lessons learned from other contexts. The methodological approach combines institutional assessment of water supply regulatory frameworks with simulation-based decision-making under uncertainty approaches. Here we present initial work comparing the regulatory frameworks in Chile, UK and USA evaluating

  16. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Nascimento da Rocha Junior

    2018-04-01

    Full Text Available Abstract Aim Global patterns of temperature and precipitation have significantly changed over the last century and nearly all predictions point to even greater changes by the end of 2100. Long periods of drought in semi-arid regions generally reduce reservoirs and lakes water level, increasing the nutrients concentrations in the water. Our principal hypothesis is that water volume reduction, driven by prolonged droughts, will increase reservoirs susceptibility to eutrophication and accordingly an increase in trophic state. To test this hypothesis, we used a comparative analysis of ecosystems in a space-for-time substitution approach, in a Brazilian semi-arid region, to predict the consequences of reservoirs water volume reduction on key limnological variables. Methods We sampled 16 reservoirs located in two sub-basins with contrasting rainfall regimes, inserted on Piranhas-Açu watershed. The Seridó River basin (SB is dry and the Piancó River basin (SB is humid, with annual mean precipitation of 500 and 700 mm, respectively. Linear regressions analyzes were performed to assess whether the percentage of maximum volume stored (%MVS is a good predictor for total phosphorus (TP, total nitrogen (TN and chlorophyll-a (CHLA. In addition, a two factorial analysis of variance (two-way ANOVA was performed to test for period (dry, very dry and extremely dry, basin (SB and PB and their interactions effects on TP, TN, CHLA, conductivity, turbidity, and Secchi depth. Results The results showed a reduction in the reservoirs %MVS both for PB and SB regions. At the extremely dry period, all reservoirs were classified as eutrophic, but TP concentrations reached much higher values in SB than in PB. The linear regressions analyses showed that the TP and TN were negatively related to %MVS during all periods sampled. The two-way ANOVA showed that there were significant basin and period effects on TP, TN, Secchi depth and turbidity, whereas for CHLA and conductivity

  17. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  18. Baroreflex Responses to Acute Changes in Blood Volume in Humans

    Science.gov (United States)

    Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.

    1990-01-01

    To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro-reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationship, of the cardio-pulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venous Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). The results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.

  19. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    Science.gov (United States)

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  20. Property Changes of Abyssal Waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-04-01

    Flowing northward towards the equator, Antarctic Bottom Water (AABW) encounters the lighter overlying North Atlantic Deep Water (NADW), both water masses creating an abyssal stratification and gradually mixing across their interface. Changes in the associated water mass formation and/or along-path transformation, observable in the evolution of water mass volume and characteristics, might impact the deep oceans uptake of anthropogenic CO2 or its contribution to global sea level rise. We compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view on water mass distribution, pathways, along-path transformation and long-term temperature changes of abyssal waters in the western South and Equatorial Atlantic. We are able to confirm previous results showing that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5 ± 0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin being colder than 0.6 °C throughout the period 1989-2014 and can relate that warming to a thinning of the dense AABW layer. While isopycnal heave is the dominant effect defining the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the transition layer the lower NADW

  1. Change in tidal volume during cardiopulmonary resuscitation in newborn piglets.

    Science.gov (United States)

    Li, Elliott S; Cheung, Po-Yin; O'Reilly, Megan; Schmölzer, Georg M

    2015-11-01

    The purpose of inflations during cardiopulmonary resuscitation (CPR) is to deliver an adequate tidal volume (VT) to facilitate gas exchange. However, no study has examined VT delivery during chest compression (CC) in detail to understand the effect of CC on lung aeration. The aim of the study was to examine VT changes during CC and their effect on lung aeration. Piglets were anaesthetised, instrumented and intubated with zero leak. They were then randomly assigned to CPR using either 3:1 compression:ventilation ratio (C:V) (n=6), continuous CC with asynchronous ventilations (CCaV) (90 CC/min with 30/min asynchronous ventilations) (n=6) or continuous CC superimposed with 30 s sustained inflations (CC+SI) with a CC rate of 120/min (n=5). A respiratory function monitor (NM3, Respironics, Philips, Andover, Massachusetts, USA) was used to continuously measure inspiration tidal volume (VTi) and expirational tidal volume (VTe). ANOVA with Bonferroni post-test were used to compare variables of all three groups. During the inflation in the 3:1 C:V group, the mean (SD) VTi and VTe was 23.5 (5.3) mL/kg and 19.4 (2.7) mL/kg (p=0.16), respectively. During the CC, we observed a significant VT loss in the 3:1 group with VTi and VTe being 4.1 (1.2) mL/kg and 11.1 (3.3) mL/kg (p=0.007), respectively. In the CCaV group, VTe was higher compared with VTi, but this was not significant. In the CC+SI group, a VT gain during each CC with VTi and VTe of 16.3 (3.2) mL/kg and 14 (3) mL/kg (p=0.21), respectively, was observed. VT delivery is improved using CC+SI compared with 3:1 C:V. This improvement in VT delivery may lead to better alveolar oxygen delivery and lung aeration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Longitudinal Changes in Total Brain Volume in Schizophrenia: Relation to Symptom Severity, Cognition and Antipsychotic Medication

    NARCIS (Netherlands)

    Veijola, J.; Guo, J.Y.; Moilanen, J.S.; Jaaskelainen, E.; Miettunen, J.; Kyllonen, M.; Haapea, M.; Huhtaniska, S.; Alaraisanen, A.; Maki, P.; Kiviniemi, V.; Nikkinen, J.; Starck, T.; Remes, J.J.; Tanskanen, P.; Tervonen, O.; Wink, A.M.; Kehagia, A.; Suckling, J.; Kobayashi, H.; Barnett, J.H.; Barnes, A.; Koponen, H.J.; Jones, P.B.; Isohanni, M.; Murray, G.K.

    2014-01-01

    Studies show evidence of longitudinal brain volume decreases in schizophrenia. We studied brain volume changes and their relation to symptom severity, level of function, cognition, and antipsychotic medication in participants with schizophrenia and control participants from a general population

  3. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  4. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, Matthew C.; Hirsch, R.M.

    2010-01-01

    in the first half of the 20th century. Decreased summer runoff affects water supply for agriculture, domestic water supply, cooling needs for thermoelectric power generation, and ecosystem needs. In addition to the reduced volume of streamflow during warm summer months, less water results in elevated stream temperature, which also has significant effects on cooling of power generating facilities and on aquatic ecosystem needs. We are now required to include fish and other aquatic species in negotiation over how much water to leave in the river, rather than, as in the past, how much water we could remove from a river. Additionally, we must pay attention to the quality of that water, including its temperature. This is driven in the US by the Endangered Species Act and the Clean Water Act. Furthermore, we must now better understand and manage the whole hydrograph and the influence of hydrologic variability on aquatic ecosystems. Man has trimmed the tails off the probability distribution of flows. We need to understand how to put the tails back on but can’t do that without improved understanding of aquatic ecosystems. Sea level rise presents challenges for fresh water extraction from coastal aquifers as they are compromised by increased saline intrusion. A related problem faces users of ‘run-of-the-river’ water-supply intakes that are threatened by a salt front that migrates further upstream because of higher sea level. We face significant challenges with water infrastructure. The U.S. has among the highest quality drinking water in the world piped to our homes. However, our water and sewage treatment plants and water and sewer pipelines have not had adequate maintenance or investment for decades. The US Environmental Protection Agency estimates that there are up to 3.5M illnesses per year from recreational contact with sewage from sanitary sewage overflows. Infrastructure investment needs have been put at 5 trillion nationally. Global change and water resources c

  5. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Truijen, J; Kim, Y S; Krediet, C T P

    2012-01-01

    posture, volume accumulation in small blood vessels contributes significantly to the total fluid volume accumulated in the legs. Considering that near-infrared spectroscopy (NIRS) tracks postural blood volume changes within the small blood vessels of the lower leg, we evaluated the NIRS-determined changes......-linear accumulation of blood volume in the small vessels of the leg, with an initial fast phase followed by a more gradual increase at least partly contributing to the relocation of fluid during orthostatic stress....

  6. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  7. A Decade in Climate Changes and Marine Fisheries: Assessing the Catchment Volume in Peninsular Malaysia

    Science.gov (United States)

    Kamal, A. H. M.

    2016-12-01

    Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.

  8. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    Science.gov (United States)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  9. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    Science.gov (United States)

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables

  10. Global Changes of the Water Cycle Intensity

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the

  11. Factors influencing liver and spleen volume changes after donor hepatectomy for living donor liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ji Hee; Ryeom, Hunku; Song, Jung Hup [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2013-11-15

    To define the changes in liver and spleen volumes in the early postoperative period after partial liver donation for living-donor liver transplantation (LDLT) and to determine factors that influence liver and spleen volume changes. 27 donors who underwent partial hepatectomy for LDLT were included in this study. The rates of liver and spleen volume change, measured with CT volumetry, were correlated with several factors. The analyzed factors included the indocyanine green (ICG) retention rate at 15 minutes after ICG administration, preoperative platelet count, preoperative liver and splenic volumes, resected liver volume, resected-to-whole liver volume ratio (LV{sub R}/LV{sub W}), resected liver volume to the sum of whole liver and spleen volume ratio [LV{sub R}/(LV{sub W} + SV{sub 0})], and pre and post hepatectomy portal venous pressures. In all hepatectomy donors, the volumes of the remnant liver and spleen were increased (increased rates, 59.5 ± 50.5%, 47.9 ± 22.6%). The increment rate of the remnant liver volume revealed a positive correlation with LV{sub R}/LV{sub W} (r = 0.759, p < 0.01). The other analyzed factors showed no correlation with changes in liver and spleen volumes. The spleen and remnant liver volumes were increased at CT volumetry performed 2 weeks after partial liver donation. Among the various analyzed factors, LV{sub R}/LV{sub W} influences the increment rate of the remnant liver volume.

  12. Insignificant change in Antarctic snowmelt volume since 1979

    NARCIS (Netherlands)

    Kuipers Munneke, P.; Picard, G.; van den Broeke, M.R.; Lenaerts, J.T.M.; van Meijgaard, E.

    2012-01-01

    Surface snowmelt is widespread in coastal Antarctica. Satellite-based microwave sensors have been observing melt area and duration for over three decades. However, these observations do not reveal the total volume of meltwater produced on the ice sheet. Here we present an Antarctic melt volume

  13. Experimental equivalent cluster-size distributions in nano-metric volumes of liquid water

    International Nuclear Information System (INIS)

    Grosswendt, B.; De Nardo, L.; Colautti, P.; Pszona, S.; Conte, V.; Tornielli, G.

    2004-01-01

    Ionisation cluster-size distributions in nano-metric volumes of liquid water were determined for alpha particles at 4.6 and 5.4 MeV by measuring cluster-size frequencies in small gaseous volumes of nitrogen or propane at low gas pressure as well as by applying a suitable scaling procedure. This scaling procedure was based on the mean free ionisation lengths of alpha particles in water and in the gases measured. For validation, the measurements of cluster sizes in gaseous volumes and the cluster-size formation in volumes of liquid water of equivalent size were simulated by Monte Carlo methods. The experimental water-equivalent cluster-size distributions in nitrogen and propane are compared with those in liquid water and show that cluster-size formation by alpha particles in nitrogen or propane can directly be related to those in liquid water. (authors)

  14. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  15. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  16. Human choice and climate change. Volume 4: What have we learned?

    International Nuclear Information System (INIS)

    Raynor, S.; Malone, E.

    1998-01-01

    This book is Volume 4 of a four-volume set which assesses social science research that is relevant to global climate change from a wide-ranging interdisciplinary perspective. Attention is focused on lessons learned as related to climate change. This series is indispensable reading for scientists and engineers wishing to make an effective contribution to the climate change policy debate

  17. Investigation results on water quality and volume of flowing-in water to the Yotsugi slag heap site. 2

    International Nuclear Information System (INIS)

    Naganuma, Masaki; Taki, Tomihiro; Takimoto, Sadao; Makita, A.

    2000-05-01

    Mining water flowing into the Yotsugi slag heap site at the Ningyo-toge Environment Technical Center is exhausted to a common river after carrying out the treatment of uranium and radium in the mining water at the previously settled mining water treatment facility and confirming it to be less than management target value on the river water within the site boundary regulated by the agreement on environmental conservation with Okayama prefecture and Kami-saihara mura. In order to elucidate some required treatment on every water system flowing-in the heap site as a part of reduction of flowing volume on taking action of the heap site, an investigation on its water quality and volume was carried out. As a result, it was confirmed on water quality that uranium values of every river were all less than their target values but radium values of them were all over their target values which necessitated conventional water treatment. And, on water volume, it was confirmed that flowing water volume from the exposed excavation site was reduced about 40% in comparison with same rain-fall before removing from rain water. (G.K.)

  18. [Crystallographic evaluation of structural changes in water].

    Science.gov (United States)

    Farashchuk, N F; Rakhmanin, Yu A; Savostikova, O N; Telenkova, O G

    2014-01-01

    The study of the structural state of tap water that has been stored for two days in the packaging materials of various type and in different conditions, was performed with the use of crystallographic method for the investigation of liquids based on a special approach for dehydration of the drop, which is a fixed thin "slice" of the examines liquid. Most organized crystallographic pattern was shown to observe in a drop of water after treatment Bioptron lamp (content of liquid-crystal associates (LCA)--6.90 ± 0.23), and stored in a silver vessel (content LCA--6.28 ± 0.17), and the least organized, almost amorphous precipitate is formed in a drop of water stored in plastic containers (content LCA--2.92 ± 0.15%). Basing on the obtained results, it can be concluded that the crystallographic method can be used for the identification of qualitative changes occurring in liquid water under the influence of various physical factors, for the identification of the rationality of the use of hereafter sophisticated quantitative techniques.

  19. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2014-01-01

    Graphical abstract: The standard molar volume of tetrahydrofuran (THF) in water, V THF ∘ (■), is a close-to-linear function of temperature and becomes increasingly appreciable with rising of the latter. Herewith the molar volume of pure THF, V THF (□), is retained to be larger, as compared to V THF ∘ , over all the temperature range studied. - Highlights: • Densities of aqueous THF at nine temperatures from (278.15 to 318.15) K were measured. • Temperature-dependent standard molar volumes of THF in water were calculated. • The analysis of excess standard molar volumes in the (water + THF) system was made. • The use of Redlich–Kister equation to obtain standard molar volumes is discussed. - Abstract: This report presents a comparative analysis of temperature-dependent data on density of both dilute aqueous solutions of tetrahydrofuran (THF) and dilute solutions of water in THF, as well as standard molar volumes of water or THF as a solute. For this purpose, new results on studying the volume-related properties of THF in a water-rich region at temperatures from (278.15 to 318.15) K, with a step of 5 K, and at the ambient pressure have been derived densimetrically. In discussion, some comments on previously published investigations, being related to temperature-dependent changes in the solution density and standard molar volumes of components of the system (water + THF), have been made

  20. Global water resources affected by human interventionss and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.F.; Hanasaki, N.; Konzmann, M.; Ludwig, F.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  1. Global water resources affected by human interventions and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; Stacke, T.; Tessler, Z.; Wada, Y.|info:eu-repo/dai/nl/341387819; Wisser, D.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  2. Climate-driven changes in water level

    DEFF Research Database (Denmark)

    Hansen, Rikke Bjerring; Olsen, Jesper; Jeppesen, Erik

    2013-01-01

    level rose. Moreover, Nymphaeaceae trichosclereids were abundant during the period of algal enrichment. Cladoceran taxa associated with floating leaved plants or benthic habitats responded in a complex way to changes in water level, but the cladoceran assemblages generally reflected deep lake conditions...... hydrology driven by precipitation. The isotopic, sedimentary and plant macrofossil records suggested that the lake level started to decrease around 8400 cal. yr BP, the decrease accelerating during 8350-8260 before an abrupt increase during 8260-8210. This pattern shows that the climate anomaly started...... rates of cladoceran subfossils and algal pigments, possibly due to increased turbidity and reduced nutrient input during this drier period. Pigment analysis also showed added importance of diatoms and cryptophytes during this climate anomaly, while cyanobacteria became more important when the water...

  3. Bridge deck concrete volume change : final contract report.

    Science.gov (United States)

    2010-02-01

    Concrete structures such as bridge decks, with large surface area relative to volume, shrink and crack, thus reducing service life performance and increasing operation costs. The project evaluated the early, first 24 hours, and long-term, 180 days, s...

  4. Note: Nonpolar solute partial molar volume response to attractive interactions with water.

    Science.gov (United States)

    Williams, Steven M; Ashbaugh, Henry S

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  5. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Steven M.; Ashbaugh, Henry S., E-mail: hanka@tulane.edu [Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118 (United States)

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  6. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    International Nuclear Information System (INIS)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W; Lu Wei; Low, Daniel

    2009-01-01

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 ± 0.005, p 2 = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 ± 0.092, R 2 = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 ± 0.44 and 0.82 ± 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  7. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lu Wei; Low, Daniel [Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63110 (United States)], E-mail: ligeorge@mail.nih.gov

    2009-04-07

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 {+-} 0.005, p < 0.0001) as well as a linear relationship (slope = 1.027 {+-} 0.061, R{sup 2} = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 {+-} 0.092, R{sup 2} = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 {+-} 0.44 and 0.82 {+-} 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  8. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    Directory of Open Access Journals (Sweden)

    Q. Zhou

    2018-01-01

    Full Text Available As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China. Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID, driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP 8.5. The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems scenarios suggests that local adaptation is more effective than climate change mitigation in reducing

  9. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    Science.gov (United States)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has

  10. The effect of γ radiation on a change in the volume of Protozoa cells

    International Nuclear Information System (INIS)

    Kalinowska, A.

    1977-01-01

    An investigation was carried out on the effect of various doses of γ radiation on changes in the volume of Spirostomum ambiguum and on the time of return of the volume of this protozoan to the initial state. It was found that γ rays brought about a decrease in the volume of the animal, depending in a linear relation on the dose, while the return of the volume to the initial state is negatively correlated with the received dose. (author)

  11. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    Science.gov (United States)

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  12. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  13. Early age volume changes in concrete due to chemical shrinkage of cement paste

    Directory of Open Access Journals (Sweden)

    Ebensperger, L.

    1991-12-01

    Full Text Available Unrestrained early age volume changes due to chemical shrinkage in cement pastes, mortars and concretes have been determined. The measurements were performed on sealed and unsealed samples which were stored under water. The chemical shrinkage of unsealed specimens represents the amount of absorbed water due to the chemical reaction of the cement It depends only on the cement content of the sample and does not lead to changes of the external dimensions. However the chemical shrinkage of sealed specimens is connected with a real volume change due to self-desiccation and the effect of internal pressures. The shrinkage depends in this case on the restraining effect of coarse aggregates as well as the cement content. The chemical shrinkage measured on sealed concretes was much higher than the one expected to ocurr on concretes, because normally an equalization of pressure takes place to some extent in the interior of the concrete. The use of expansive additives showed that they may compensate the chemical shrinkage, but its dosage is very sensitive and should be defined exactly for each case particularly.

    Se han determinado los cambios volumétricos que ocurren en pastas de cemento, morteros y hormigones a edad temprana debido al efecto de la retracción química. Las mediciones se realizaron en probetas selladas y no selladas sumergidas bajo agua. La retracción química en probetas no selladas representa la cantidad de agua absorbida debido a la reacción química del cemento. Depende solamente del contenido de cemento de la probeta y no produce ningún cambio en las dimensiones de la probeta. Por el contrario, la retracción química en probetas selladas está relacionada con un cambio volumétrico real debido al efecto de la autodesecación y presiones internas. La retracción en este caso depende tanto de la restricción que imponen los áridos, como del contenido de cemento. La retracción química medida en hormigones sellados

  14. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2012-03-01

    Full Text Available Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1 shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  15. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    Science.gov (United States)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2012-03-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  16. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...... that today high water stress exists in one-fifth of European river basin area. Under a scenario projection, increases in water use throughout Eastern Europe are accompanied by decreases in water availability in most of Southern Europe--combining these trends leads to a marked increase in water stress...

  17. Enhancing Resilience to Water-Related Impacts of Climate Change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing Resilience to Water-Related Impacts of Climate Change in Uganda's ... technologies (ICTs) can be used to help communities address water stress. ... This work will support the Uganda Ministry of Water and Environment's efforts to ...

  18. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    OpenAIRE

    A. Gnanadesikan; J. P. Dunne; J. John

    2012-01-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., su...

  19. Symptom dimensions are associated with progressive brain volume changes in schizophrenia

    NARCIS (Netherlands)

    Collin, G.; Derks, E. M.; van Haren, N. E. M.; Schnack, H. G.; Hulshoff Pol, H. E.; Kahn, R. S.; Cahn, W.

    2012-01-01

    Background: There is considerable variation in progressive brain volume changes in schizophrenia. Whether this is related to the clinical heterogeneity that characterizes the illness remains to be determined. This study examines the relationship between change in brain volume over time and

  20. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  1. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    exploration and development makes lakes in this region an increasingly valuable resource and knowledge of their storage essential. Estimating regional and lake-by-lake water volume will facilitate better management of expanding development activities and serve as a baseline by which to evaluate future responses to ongoing climate change in the Arctic.

  2. Partial Molar Volume of Methanol in Water: Effect of Polarizability

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2009-01-01

    Roč. 74, č. 4 (2009), s. 559-563 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : water–methanol mixtures * partial molar volume * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009

  3. Apparent molal volumes of symmetrical and asymmetrical isomers of tetrabutylammonium bromide in water at several temperatures

    International Nuclear Information System (INIS)

    Moreno, Nicolás; Malagón, Andrés; Buchner, Richard; Vargas, Edgar F.

    2014-01-01

    Highlights: • Apparent molal volumes of five isomers of Bu 4 NBr in water have been measured. • The structural effect of branched and linear chains is discussed. • The structural contributions to the ionic volume were calculated. -- Abstract: Apparent molal volumes of a series of differently substituted quaternary ammonium bromides, namely tetra-iso-butyl-, tetra-sec-butyl-, tetra-n-butyl-, di-n-butyl-di-sec-butyl- and di-n-butyl-di-iso-butylammonium bromide have been determined as a function of molal concentration at (298.15, 303.15 and 308.15) K. Partial molar volumes at infinite dilution and ionic molar volumes of these quaternary ammonium cations were determined. Structural volume contributions to the ionic molar volume were also calculated. The symmetric and asymmetric quaternary ammonium cations are “structure making” ions. The contribution of the branched butyl chains predominates over the linear butyl chains in the asymmetric cations

  4. Factors influencing liver and spleen volume changes after donor hepatectomy for living donor liver transplantation

    International Nuclear Information System (INIS)

    Bae, Ji Hee; Ryeom, Hunku; Song, Jung Hup

    2013-01-01

    To define the changes in liver and spleen volumes in the early postoperative period after partial liver donation for living-donor liver transplantation (LDLT) and to determine factors that influence liver and spleen volume changes. 27 donors who underwent partial hepatectomy for LDLT were included in this study. The rates of liver and spleen volume change, measured with CT volumetry, were correlated with several factors. The analyzed factors included the indocyanine green (ICG) retention rate at 15 minutes after ICG administration, preoperative platelet count, preoperative liver and splenic volumes, resected liver volume, resected-to-whole liver volume ratio (LV R /LV W ), resected liver volume to the sum of whole liver and spleen volume ratio [LV R /(LV W + SV 0 )], and pre and post hepatectomy portal venous pressures. In all hepatectomy donors, the volumes of the remnant liver and spleen were increased (increased rates, 59.5 ± 50.5%, 47.9 ± 22.6%). The increment rate of the remnant liver volume revealed a positive correlation with LV R /LV W (r = 0.759, p R /LV W influences the increment rate of the remnant liver volume.

  5. Monitoring Water Quality in the Future, Volume 3: Biomonitoring

    NARCIS (Netherlands)

    Zwart D de; ECO

    1995-01-01

    In general terms the problems with the existing water quality monitoring approach concern effective and efficient monitoring strategies. In 1993 the project "Monitoring water quality in the future" started in order to address these problems which will only increase in the future. In the framework of

  6. Water, climate change and society in Bangladesh

    Science.gov (United States)

    Thiele-Eich, I.; Simmer, C.

    2017-12-01

    Dhaka, the capital of Bangladesh with a population of over 17 million people, is among the top five coastal cities most vulnerable to climate change, with over 30 % of the population living in slums. Effective disaster mitigation and adaptation requires an understanding how hazards such as flooding impact the population. The impacts of climate change on flooding and thus livelihoods in the complex delta of the Ganges-Brahmaputra-Meghna rivers can not be treated isolated from other anthropogenic impacts due to e.g. the construction of dams as well as a growing population. We illustrate this by setting up a conceptual socio-hydrological causal network using the enhanced Driving force - Pressure - State - Impact - Response framework. The constructed socio-hydrological framework includes both natural and anthropogenic processes and their two-way feedbacks, allowing policy makers to know where available resources can be used effectively to increase resilience and reduce vulnerability. We conclude that climate change takes place over long stretches of time and thus enable the population of Bangladesh to adapt slowly. Resources such as social capital, which is one of the main tools for slum dwellers to be able to cope with flooding can be altered over time, and as such the system can be considered overall stable and resilient. However, transboundary water sharing issues during the dry season and other implications resulting from dam structures such as Farakka Barrage complicate a prognosis on how the rapidly growing population will be affected in the 21st century. This is particularly important in connection with previous findings, which suggest that the Greater Dhaka population already experience a significant increase in mortality during droughts. Climate change can thus be seen as an anthropogenic amplification of the socio-hydrological challenges already faced by Bangladesh today.

  7. Plasma volume changes during hypoglycaemia: the effect of arterial blood sampling

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, F; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... hypoglycaemia. The magnitude of the changes in arterial and venous blood were not significantly different. These results indicate that the above changes in blood volume and composition are whole-body phenomena: furthermore, the major part of the changes are likely to occur in tissues other than upper extremity...

  8. Increase in hippocampal water diffusion and volume during experimental pneumococcal meningitis is aggravated by bacteremia

    DEFF Research Database (Denmark)

    Holler, Jon G; Brandt, Christian T; Leib, Stephen L

    2014-01-01

    BACKGROUND: The hippocampus undergoes apoptosis in experimental pneumococcal meningitis leading to neurofunctional deficits in learning and memory function. The aim of the present study was 1) to investigate hippocampal apparent diffusion coefficient (ADC) and volume with MRI during the course...... and the volume and size of brain ventricles were positively correlated (Spearman Rank, p volume and the extent of apoptosis (p > 0.05). CONCLUSIONS: In experimental meningitis increase in volume and water diffusion of the hippocampus are significantly...... of experimental pneumococcal meningitis, 2) to explore the influence of accompanying bacteremia on hippocampal water distribution and volume, 3) and to correlate these findings to the extent of apoptosis in the hippocampus. METHODS: Experimental meningitis in rats was induced by intracisternal injection of live...

  9. Tritium volume activity in natural waters of NPP Temelin region

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, M; Wilhelmova, L [Academy of Sciences of the Czech Rep., Prague (Czech Republic). Nuclear Physics Inst., Dept. of Radiation Dosimetry

    1996-12-31

    This paper presents the results of tritium measurement in selected rivers of NPP Temelin before its operation obtained during the period 1991-1994. Particular attention is paid to Vltava river into which liquid effluents will be discharged and which is also utilized as a drinking water supply for the capital Prague. Samples from the Vltava river were collected near the mouth of NPP waste canal (point Hladna)and in front of the intake into Prague water works (point Podoli). Tritium content was analysed also in surface waters of Paleckuv, Temelinsky and Strouha streams which can be affected by gaseous effluents due to atmospheric removal processes. Tritium activity was measured with Tric-Carb 1050 TR/LL liquid scintillation counter. The mean annual tritium activities of investigated river waters varied within 1.9-3.0 Bq/l during the period 1991-1994 and that their trend has been slowly decreasing. This fact, as well as seasonal variability, suggests, that tritium level in the surface waters of studied region is largely governed by this radionuclide global atmospheric fallout. The results of this work indicate the trend of background tritium in examined natural waters and make possible the evaluation of their potential future contamination. (J.K.) 1 tab., 2 figs., 4 refs.

  10. Direct and indirect methods for the quantification of leg volume: Comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement

    NARCIS (Netherlands)

    D.M.K.S. Kaulesar Sukul (D. M K S); P.Th. den Hoed (Pieter); T. Johannes (Tanja); R. van Dolder (R.); E. Benda (Eric)

    1993-01-01

    textabstractVolume changes can be measured either directly by water-displacement volumetry or by various indirect methods in which calculation of the volume is based on circumference measurements. The aim of the present study was to determine the most appropriate indirect method for lower leg volume

  11. Industry water use : innovations, changes and challenges

    International Nuclear Information System (INIS)

    Braun, B.

    2004-01-01

    This paper presents work conducted by Canadian Natural Resources Ltd. (CNRL) in developing the McMurray Formation as an alternate water source in the Cold Lake Beaver River (CLBR) basin. Industry relies on both fresh water and brackish water to produce oil from thermal oil sands projects. A long-term sustainable supply of water is critical to the development of such projects. Although historically water has been considered as a renewable resource, it is currently viewed in a wider context. Technical advancements have made it possible to use recycled water for thermal recovery. Many heavy thermal oil expansions use brackish water. Capital costs are higher but heating costs are lower because brackish water is already warm. The use of brackish water allows companies to survive within their licenses while increasing production. Other possibilities include the use of depleted reservoir sections to store water to increase the use of recycled water. It was noted that brackish water resources need to be mapped and understood in greater detail. The objective is to use brackish water at a cost equal to, or less than fresh water. tabs., figs

  12. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    International Nuclear Information System (INIS)

    Harris, Emma J.; Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-01-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested

  13. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, M. C.; Hirsch, R. M.

    2010-03-01

    in the first half of the 20th century. Decreased summer runoff affects water supply for agriculture, domestic water supply, cooling needs for thermoelectric power generation, and ecosystem needs. In addition to the reduced volume of streamflow during warm summer months, less water results in elevated stream temperature, which also has significant effects on cooling of power generating facilities and on aquatic ecosystem needs. We are now required to include fish and other aquatic species in negotiation over how much water to leave in the river, rather than, as in the past, how much water we could remove from a river. Additionally, we must pay attention to the quality of that water, including its temperature. This is driven in the US by the Endangered Species Act and the Clean Water Act. Furthermore, we must now better understand and manage the whole hydrograph and the influence of hydrologic variability on aquatic ecosystems. Man has trimmed the tails off the probability distribution of flows. We need to understand how to put the tails back on but can’t do that without improved understanding of aquatic ecosystems. Sea level rise presents challenges for fresh water extraction from coastal aquifers as they are compromised by increased saline intrusion. A related problem faces users of ‘run-of-the-river’ water-supply intakes that are threatened by a salt front that migrates further upstream because of higher sea level. We face significant challenges with water infrastructure. The U.S. has among the highest quality drinking water in the world piped to our homes. However, our water and sewage treatment plants and water and sewer pipelines have not had adequate maintenance or investment for decades. The US Environmental Protection Agency estimates that there are up to 3.5M illnesses per year from recreational contact with sewage from sanitary sewage overflows. Infrastructure investment needs have been put at 5 trillion nationally. Global change and water resources

  14. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  15. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  16. Research Award: Climate Change and Water

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    include improving integrated water resource management, supporting water and sanitation in per‐ ... program (the remaining 50% of the time) through a variety of tasks which may include ... Strong verbal and written communication skills; and.

  17. Partial Molar Volumes of 15-Crown-5 Ether in Mixtures of N,N-Dimethylformamide with Water.

    Science.gov (United States)

    Tyczyńska, Magdalena; Jóźwiak, Małgorzata

    2014-01-01

    The density of 15-crown-5 ether (15C5) solutions in the mixtures of N,N -dimethylformamide (DMF) and water (H 2 O) was measured within the temperature range 293.15-308.15 K using an Anton Paar oscillatory U-tube densimeter. The results were used to calculate the apparent molar volumes ( V Φ ) of 15C5 in the mixtures of DMF + H 2 O over the whole concentration range. Using the apparent molar volumes and Redlich and Mayer equation, the standard partial molar volumes of 15-crown-5 were calculated at infinite dilution ([Formula: see text]). The limiting apparent molar expansibilities ( α ) were also calculated. The data are discussed from the point of view of the effect of concentration changes on interactions in solution.

  18. Supercritical water oxidation data acquisition testing. Final report, Volume I

    International Nuclear Information System (INIS)

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included

  19. Adapting to climate variability and change in Ontario : volume 4 of the Canada country study : climate impacts and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Lavender, B. [Smith and Lavender Envrironmental Consultants, ON (Canada); Auld, H.; Broadhurst, D.; Bullock, T. [Environment Canada, Ottawa, ON (Canada). Ontario Region

    1998-03-01

    An assessment of how climate change will affect Ontario over the next century, including its social, biological and economic environment, is presented. The most significant impacts are expected to result from changes in precipitation patterns, in soil moisture, and in greater intensity and frequency of extreme weather events. Some of the major impacts of changing climate discussed in this volume include: (1) more pollution episodes, (2) increased heat stress, (3) lowering of average water levels of the Great Lakes, (4) changes in the hydrologic cycle which could result in variability of water supply for hydroelectric power production, (5) warming waters of the Great Lakes which could cause fish species to shift northward, (6) cool temperate, moderate temperate and grassland regions could expand northwards as the boreal forest retreats, (7) longer crop growing seasons, (8) decreased snow loads, and (9) reduced ice on the Great Lakes which would increase the length of the shipping season. The general conclusion is that adapting to changing climate will require a knowledge of how climate changes occur and how the changes are likely to affect the environment, society and economy. Changes in other key variables such as technology, personal preferences and social values will also influence the rate of climate change and Ontario`s ability to adapt to it. refs., tabs., figs.

  20. Changes in superior mesenteric artery Doppler waveform during reduction of cardiac stroke volume and hypotension

    DEFF Research Database (Denmark)

    Perko, M J; Perko, Grazyna; Just, S

    1996-01-01

    the hypovolemia. Alterations in pV and pulsatility indices were closely related to changes in stroke volume, and a negative correlation was found between diastolic velocities and stroke volume. regression analysis showed no significant relation between variations in velocity parameters and blood pressure. Results...

  1. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions...

  2. Changes in down dead wood volume across a chronosequence of silvicultural openings in southern Indiana forests

    Science.gov (United States)

    Michael A. Jenkins; George R. Parker

    1997-01-01

    The volume and decay stages of down dead wood were evaluated across a chronosequence of 46 silvicultural openings and 10 uncut control stands to determine how down dead wood volume changes with stand development. Openings ranged in age from 8 to 26 years and were divided into three age groups: (1) 16 years. Individual logs...

  3. Volume-change-free GeTeN films for high-performance phase-change memory

    International Nuclear Information System (INIS)

    Yin, You; Hosaka, Sumio; Zhang, Hui; Liu, Yang; Yu, Qi

    2013-01-01

    N-doping into GeTe is investigated with the aim of reducing the volume change upon crystallization, which usually induces a huge internal stress in phase-change memory devices. It is demonstrated that the thickness change upon crystallization of a N-doped GeTe (GeTeN) film is almost zero when N is doped in an appropriate amount. Cracks resulting from the stress caused by volume change disappear and the mean crystal size decreases by more than 50% upon N-doping into GeTe. It is thought that the volume-change-free behaviour is due to the formation of low-density nitride and grain refinement. (paper)

  4. Study of the seroma volume changes in the patients who underwent Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Son, Sang Jun; Mun, Jun Ki; Seo, Seok Jin; Lee, Je Hee [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-06-15

    By analyzing seroma volume changes in the patients who underwent Partial breast radiation therapy after breast conserving surgery, we try to contribute to the improvement of radiotherapy effect. Enrolled 20 patients who underwent partial breast radiation therapy by ViewRay MRIdian System were subject. After seeking for the size of the removed sample in the patients during surgery and obtained seroma volume changes on a weekly basis. On the Basis of acquired volume, it was compared with age, term from start of the first treatment after surgery, BMI (body mass index) and the extracted sample size during surgery. And using the ViewRay MRIdian RTP System, the figure was analyzed by PTV(=seroma volume + margin) to obtain a specific volume of the Partial breast radiation therapy. The changes of seroma volume from MR simulation to the first treatment (a week) is 0~5% in 8, 5~10% in 3, 10 to 15% in 2, and 20% or more in 5 people. Two patients(A, B patient) among subjects showed the biggest change. The A patient's 100% of the prescribed dose volume is 213.08 cc, PTV is 181.93 cc, seroma volume is 15.3 cc in initial plan. However, while seroma volume decreased 65.36% to 5.3 cc, 100% of the prescribed dose volume was reduced to 3.4% to 102.43 cc and PTV also did 43.6% to 102.54 cc. In the case of the B patient, seroma volume decreased 42.57% from 20.2 cc to 11.6 cc. Because of that, 100% of the prescribed dose volume decreased 8.1% and PTV also did to 40%. As the period between the first therapy and surgery is shorter, the patient is elder and the size of sample is smaller than 100 cc, the change grow bigger. It is desirable to establish an adaptive plan according to each patient's changes of seroma volume through continuous observation. Because partial breast patients is more sensitive than WBRT patients about dose conformity in accordance with the volume change.

  5. Study of the seroma volume changes in the patients who underwent Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Son, Sang Jun; Mun, Jun Ki; Seo, Seok Jin; Lee, Je Hee

    2016-01-01

    By analyzing seroma volume changes in the patients who underwent Partial breast radiation therapy after breast conserving surgery, we try to contribute to the improvement of radiotherapy effect. Enrolled 20 patients who underwent partial breast radiation therapy by ViewRay MRIdian System were subject. After seeking for the size of the removed sample in the patients during surgery and obtained seroma volume changes on a weekly basis. On the Basis of acquired volume, it was compared with age, term from start of the first treatment after surgery, BMI (body mass index) and the extracted sample size during surgery. And using the ViewRay MRIdian RTP System, the figure was analyzed by PTV(=seroma volume + margin) to obtain a specific volume of the Partial breast radiation therapy. The changes of seroma volume from MR simulation to the first treatment (a week) is 0~5% in 8, 5~10% in 3, 10 to 15% in 2, and 20% or more in 5 people. Two patients(A, B patient) among subjects showed the biggest change. The A patient's 100% of the prescribed dose volume is 213.08 cc, PTV is 181.93 cc, seroma volume is 15.3 cc in initial plan. However, while seroma volume decreased 65.36% to 5.3 cc, 100% of the prescribed dose volume was reduced to 3.4% to 102.43 cc and PTV also did 43.6% to 102.54 cc. In the case of the B patient, seroma volume decreased 42.57% from 20.2 cc to 11.6 cc. Because of that, 100% of the prescribed dose volume decreased 8.1% and PTV also did to 40%. As the period between the first therapy and surgery is shorter, the patient is elder and the size of sample is smaller than 100 cc, the change grow bigger. It is desirable to establish an adaptive plan according to each patient's changes of seroma volume through continuous observation. Because partial breast patients is more sensitive than WBRT patients about dose conformity in accordance with the volume change

  6. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  7. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  8. Water Remedial Investigation Report, Version 3.3. Volume 2

    Science.gov (United States)

    1989-07-01

    the Third Quarter FY 1987 water table contour map, S(Page 9 of 13) Water Level "KaU._ID LiaMAUan 26143 5175.9 26145 -999,9 27002 5095.3 27003 5098.0...26125 5146.9 26127 5164.6 26133 5147.0 26143 5175.9 4 26145 5140.9 ID 27001 5093.2 27002 5094.8 27003 51.08 -1 27004 B-105 20,43.7 27005 5094.2 27006...ML Po 1IM A- T .0 cO16 Folcm Iscale ’ 𔃾 IV*- C. [LA \\S Y4 6 It. ISO . 4:- 4~ 1A . 6 IAT sti ~~~~~ If*1 l H 44 - . C-99 0 S S 0 040 0 s HtHLm.01 0O

  9. Supercritical water oxidation data acquisition testing. Final report, Volume II

    International Nuclear Information System (INIS)

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone ampersand Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology

  10. Plasma volume changes during hypoglycaemia: the effect of arterial blood sampling

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, Flemming; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... hypoglycaemia. The magnitude of the changes in arterial and venous blood were not significantly different. These results indicate that the above changes in blood volume and composition are whole-body phenomena: furthermore, the major part of the changes are likely to occur in tissues other than upper extremity...... of albumin in arterial and venous blood in seven healthy subjects before and during insulin-induced hypoglycaemia. In both vascular sites blood 51Cr content and the haematocrit increased, plasma volume and intravascular albumin content decreased and the transcapillary escape rate of albumin increased during...

  11. Adjusting water resources management to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Riebsame, W E

    1988-01-01

    The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisis-response and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in US water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.

  12. Climate Change Adaptation, Water, and Food Security in Pakistan ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change Adaptation, Water, and Food Security in Pakistan ... those living in the Indus floodplains or on the edges of its deserts - received little attention. ... farmers' decision-making in water stressed regions, and the wider political and ...

  13. Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout.

    Science.gov (United States)

    Altinok, Ilhan; Capkin, Erol; Boran, Halis

    2011-06-01

    Effects of water volume and water column height on toxicity of cypermethrin, carbaryl, dichlorvos, tetradifon, maneb, captan, carbosulfan endosulfan and HgCl₂ to juvenile rainbow trout (Oncorhynchus mykiss, 3.2 ± 0.7 g) were evaluated in different glass aquaria under static conditions. When fish were exposed to the chemical compounds in 23 cm water column height (25 L), their mortality ranged between 0% and 58%. At the same water volume, but lower water column height (9 cm), mortality of fish increased significantly and was in a range from 60% to 95%. At the same water column height, toxic effects of chemicals were significantly higher in 25 L water volume than that of 8.5 L, water except maneb which has lowest (-0.45) octanol-water partition coefficient value. Mortality rates ratio of 9 and 23 cm water column height ranged between 1.12 and 90 while mortality rates ratio of 9 and 25 L water volume ranged between 1.20 and 4.0. Because actual exposure concentrations were not affected by either water volume or water column height, we propose that increased pesticides' toxicity was related to an increase in bioassay volume, since more pesticide molecules were able to interact with or accumulate the fish. However, there seem to be no relationship between the effects of water volume, water column height and Kow value of chemicals with regard to toxicity in juvenile rainbow trout.

  14. Prediction of acute cardiac rejection by changes in left ventricular volumes

    International Nuclear Information System (INIS)

    Novitzky, D.; Cooper, D.K.; Boniaszczuk, J.

    1988-01-01

    Sixteen patients underwent heart transplantation (11 orthotopic, five heterotopic). Monitoring for acute rejection was by both endomyocardial biopsy (EMB) and multigated equilibrium blood pool scanning with technetium 99m-labelled red blood cells. From the scans information was obtained on left ventricular volumes (stroke, end-diastolic, and end-systolic), ejection fraction, and heart rate. Studies (208) were made in the 16 patients. There was a highly significant correlation between the reduction in stroke volume and end-diastolic volume (and a less significant correlation in end-systolic volume) and increasing acute rejection seen on EMB. Heart rate and ejection fraction did not correlate with the development of acute rejection. Correlation of a combination of changes in stroke volume and end-diastolic volume with EMB showed a sensitivity of 85% and a specificity of 96%. Radionuclide scanning is therefore a useful noninvasive tool for monitoring acute rejection

  15. Changes in cardiac output and incidence of volume overload in cirrhotics receiving 20% albumin infusion.

    Science.gov (United States)

    Shasthry, Saggere M; Kumar, Manoj; Khumuckham, Jelen S; Sarin, Shiv Kumar

    2017-08-01

    Patients with cirrhosis are prone to develop volume over load, have increased capillary permeability and latent or overt cardiomyopathy. Whether albumin infusion causes volume overload in cirrhotics has not been adequately studied. Ninety nine consecutive cirrhotic patients receiving 1gm per kg albumin infusion were evaluated for development of volume overload. Clinical, echocardiographic and haemodynamic changes were closely monitored during and after albumin infusion. Thirty (30.30%) patients developed volume overload. Patients with higher BMI (P=.003), lower CTP (P=.01) and MELD (P=.034) were more often associated with the development of volume overload. Though baseline diastolic dysfunction was present in 82.8% of the patients, it did not influence the development of volume overload or changes in the cardiac output. The cardiac output increased significantly after albumin infusion (4.9±1.554 L/min to 5.86±1.85 L/min, Palbumin infusion develop volume overload, specially, those with higher BMI and lower severity of liver disease. Cardiac output increases after albumin infusion, and, baseline diastolic dysfunction has little effect on the development of volume overload or changes in cardiac output. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Dosimetric impact of prostate volume change between CT-based HDR brachytherapy fractions

    International Nuclear Information System (INIS)

    Kim, Yongbok; Hsu, I-C.; Lessard, Etienne; Vujic, Jasmina; Pouliot, Jean

    2004-01-01

    Purpose: The objective is to evaluate the prostate volume change and its dosimetric consequences after the insertion of catheters for high-dose-rate brachytherapy. Methods and Materials: For 13 consecutive patients, a spiral CT scan was acquired before each of the 2 fractions, separated on average by 20 hours. The coordinates of the catheters were obtained on 3 axial CT slices corresponding to apex, mid portion, and base portion of the prostate. A mathematical expansion model was used to evaluate the change of prostate volumes between the 2 fractions. It is based on the difference in the cube of the average distance between the centroid and catheter positions. The variation of implant dose-volume histograms between fractions was computed for plans produced by either inverse planning based on simulated annealing or geometric optimization. Results: The average magnitude of either increase or reduction in prostate volume was 7.8% (range, 2-17%). This volume change corresponds to an average prostate radius change of only 2.5% (range, 0.7-5.4%). For 5 patients, the prostate volume increased on average by 9% (range, 2-17%), whereas a reduction was observed for 8 patients by an average of 7% (range, 2-13%). More variation was observed at the prostate base than at mid or apex gland. The comparison of implant dose-volume histograms showed a small reduction of V100 receiving the prescription dose, with an average of 3.5% (range, 0.5-12%) and 2.2% (range, 1-6%) for inverse planning based on our simulated annealing and geometric optimization plans, respectively. Conclusion: Small volume change was observed between treatment fractions. This translates into small changes in dose delivered to the prostate volume

  17. Residual volume on land and when immersed in water: effect on percent body fat.

    Science.gov (United States)

    Demura, Shinichi; Yamaji, Shunsuke; Kitabayashi, Tamotsu

    2006-08-01

    There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.

  18. Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska

    Directory of Open Access Journals (Sweden)

    M. J. Beedle

    2008-04-01

    Full Text Available The Global Land Ice Measurements from Space (GLIMS project has developed tools and methods that can be employed by analysts to create accurate glacier outlines. To illustrate the importance of accurate glacier outlines and the effectiveness of GLIMS standards we conducted a case study on Bering Glacier System (BGS, Alaska. BGS is a complex glacier system aggregated from multiple drainage basins, numerous tributaries, and many accumulation areas. Published measurements of BGS surface area vary from 1740 to 6200 km2, depending on how the boundaries of this system have been defined. Utilizing GLIMS tools and standards we have completed a new outline (3630 km2 and analysis of the area-altitude distribution (hypsometry of BGS using Landsat images from 2000 and 2001 and a US Geological Survey 15-min digital elevation model. We compared this new hypsometry with three different hypsometries to illustrate the errors that result from the widely varying estimates of BGS extent. The use of different BGS hypsometries results in highly variable measures of volume change and net balance (bn. Applying a simple hypsometry-dependent mass-balance model to different hypsometries results in a bn rate range of −1.0 to −3.1 m a−1 water equivalent (W.E., a volume change range of −3.8 to −6.7 km3 a−1 W.E., and a near doubling in contributions to sea level equivalent, 0.011 mm a−1 to 0.019 mm a−1. Current inaccuracies in glacier outlines hinder our ability to correctly quantify glacier change. Understanding of glacier extents can become comprehensive and accurate. Such accuracy is possible with the increasing volume of satellite imagery of glacierized regions, recent advances in tools and standards, and dedication to this important task.

  19. Responding to Social Change. Community Development Series, Volume 19.

    Science.gov (United States)

    Honikman, Basil, Ed.

    This book presents a spectrum of the environmental design and research issues of today, an introduction to the field as a whole, and an emphasis on the need for changes in attitudes and procedures in the disciplines. Contributions, multidisciplinary in approach, range from a diversity of perspectives, including urban planning, social and…

  20. Cell volume changes affect gluconeogenesis in the perfused liver of ...

    Indian Academy of Sciences (India)

    These changes were partly blocked in the presence of cycloheximide, suggesting that the aniso-osmotic regulations of gluconeogenesis possibly occurs through an inverse regulation of enzyme proteins and/or a regulatory protein synthesis in this catfish. In conclusion, gluconeogenesis appears to play a vital role in C.

  1. Analyzing temporal changes in maximum runoff volume series of the Danube River

    International Nuclear Information System (INIS)

    Halmova, Dana; Pekarova, Pavla; Onderka, Milan; Pekar, Jan

    2008-01-01

    Several hypotheses claim that more extremes in climatic and hydrologic phenomena are anticipated. In order to verify such hypotheses it is inevitable to examine the past periods by thoroughly analyzing historical data. In the present study, the annual maximum runoff volumes with t-day durations were calculated for a 130-year series of mean daily discharge of Danube River at Bratislava gauge (Slovakia). Statistical methods were used to clarify how the maximum runoff volumes of the Danube River changed over two historical periods (1876-1940 and 1941-2005). The conclusion is that the runoff volume regime during floods has not changed significantly during the last 130 years.

  2. Densities, molar volumes, and isobaric expansivities of (d-xylose+hydrochloric acid+water) systems

    International Nuclear Information System (INIS)

    Zhang Qiufen; Yan Zhenning; Wang Jianji; Zhang Hucheng

    2006-01-01

    Densities of (d-xylose+HCl+water) have been measured at temperature in the range (278.15 to 318.15) K as a function of concentration of both d-xylose and hydrochloric acid. The densities have been used to estimate the molar volumes and isobaric expansivity of the ternary solutions. The molar volumes of the ternary solutions vary linearly with mole fraction of d-xylose. The standard partial molar volumes V 2,φ - bar for d-xylose in aqueous solutions of molality (0.2, 0.4, 0.7, 1.1, 1.6, and 2.1) mol.kg -1 HCl have been determined. In the investigated temperature range, the relation: V 2,φ - bar =c 1 +c 2 {(T/K)-273.15} 1/2 , can be used to describe the temperature dependence of the standard partial molar volumes. These results have, in conjunction with the results obtained in water, been used to deduce the standard volumes of transfer, Δ t V - bar , of d-xylose from water to aqueous HCl solutions. An increase in the transfer volume of d-xylose with increasing HCl concentrations has been explained by the stronger interactions of H + with the hydrophilic groups of d-xylose

  3. Global water resources: vulnerability from climate change and population growth.

    Science.gov (United States)

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  4. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  5. Laser fluorosensor demonstration flights over Newfoundland coastal waters. Volume 1

    International Nuclear Information System (INIS)

    Brown, C.E.; Marois, R.

    2007-01-01

    The development and application of advanced oil spill remote sensing equipment was discussed with particular reference to 9 laser fluorosensor demonstration flights undertaken in March 2007 in the coastal waters of Newfoundland and Labrador. The Scanning Laser Environmental Airborne Fluorosensor (SLEAF) provides a fluorescent spectrum of oil to accurately identify even small amounts of fresh crudes equally well during full daylight conditions as at night. They allow for airborne detection, classification, surveillance monitoring of oil spills, as well as the exploration of marine petroleum resources. With the advent of powerful processors in modern computers, the classification capabilities of laser fluorosensors have significantly improved. Fluorescence information can be quickly transferred to response personnel on the ground or at sea to help plan effective oil spill countermeasures and to mitigate the effects of an oil spill in marine and coastal environments. Laser fluorosensors can successfully discriminate between oiled and un-oiled weeds and detect oil in water, snow, ice and beaches. The SLEAF flights were the third series undertaken over a period of 4 years in later winter weather conditions. The flights were focused over shipping lanes south of Newfoundland and Labrador around the local petroleum handling facilities. In addition to laser data, they provided georeferenced infrared, ultraviolet, colour video and digital still imagery. During the flights, SLEAF did not indicate much evidence of petroleum oil on the surface of the marine environment. None of the flights over 17 marine tankers, container vessels, supply vessels and tugs indicated any signs of oily discharge. 10 refs., 1 tab., 7 figs

  6. Sea Water Acidification Affects Osmotic Swelling, Regulatory Volume Decrease and Discharge in Nematocytes of the Jellyfish Pelagia noctiluca

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2013-12-01

    Full Text Available Background: Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP, regulatory volume decrease (RVD and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa nematocytes, collected from the Strait of Messina (Italy, was assessed. Methods: Isolated nematocytes, suspended in artificial sea water (ASW with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. Results: At normal pH (7.65, nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Conclusion: Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment.

  7. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca.

    Science.gov (United States)

    Morabito, Rossana; Marino, Angela; Lauf, Peter K; Adragna, Norma C; La Spada, Giuseppa

    2013-01-01

    Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment. © 2014 S. Karger AG, Basel.

  8. International Law and the Changing Character of War. Volume 87

    Science.gov (United States)

    2011-01-01

    the way of observable evidence. Yet the prospect of low-intensity CNA is likely to change the calculus of these decisions. With these cheap, anonymous... dental civilian deaths associated with the use of drones, the numbers (as discussed below in the sections on proportionality and military necessity) are...the use of sophisticated persis- tent surveillance, assess with much greater accuracy the anticipated effects of inci- dental loss or damage to civilian

  9. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  10. Practical guidelines for small-volume additions of uninhibited water to waste storage tanks

    International Nuclear Information System (INIS)

    Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

    1994-01-01

    Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick's second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem

  11. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2016-01-01

    Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

  12. Technical procedures for water resources, Deaf Smith County site, Texas: Volume 2: Environmental Field Program: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    This volume contains the following Technical Procedures pursuant to the Water Resources Site Study Plan operation of a Playa Lake conductivity monitoring station and processing of data from a Playa Lake conductivity monitoring station. This procedure defines steps and methods for the installation, operation, and maintenance of the Playa Lake conductivity monitoring stations. Conductivity measurements will be taken at six playa lakes in the site study area to record changes in total dissolved solids as a function of stage. Playa lake conductivity and stage (volume) measurements will be used, in conjunction with other water quality data collected at the Playa Lake and precipitation stations, to determine the mass of dissolved solids entering and leaving the playas. This baseline information on the pollutant mass balance of the playas will be used to assess potential changes in playa lake water quality and the magnitude of those changes due to site development. The pollutant mass balances will also be used on determining the source of pollutants. 2 refs., 5 figs

  13. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  14. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    International Nuclear Information System (INIS)

    Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.; Miller, Benjamin T.; Brooks, Bernard R.; Ichiye, Toshiko

    2015-01-01

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V E as a function of ethanol mole fraction X E is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water

  15. Water Remedial Investigation Report, Version 2.2. Volume 2

    Science.gov (United States)

    1989-03-01

    aaa-a M!a 1 ý1!lýlýl 1 l P a~~~ a m-- m m I" ; i4 s: - :a o at lmemot 4 em: W! me Ili -ý Ot At on emt:ý I! ISO -- -t~ -t utmmmm -t -t -t emt -- t eq...mm em mm m1 mmý IN eý 4 "! mý4 ! l 0 emo -- P p 40 ISO ------ a* do 2sgaI- w im 0;C 01O- - - #0’ - - . Is:111 ’t,"ý i 9: t a 4ýWt l "n4i Wt1":7 p...13) Water Level 26143 5175.9 26145 -999.9 27002 5095.3 27003 5098.0 27004 5093.9 27005 5094.1 27006 5094.2 27007 5095.2 27008 5095.3 27009 5095.7

  16. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    Science.gov (United States)

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  17. The Northeastern United States Energy-Water Nexus: Climate Change Impacts and Alternative Water Management Strategies for the Power Sector

    Science.gov (United States)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Cohen, S. M.; Rosenzweig, B.

    2014-12-01

    The Northeastern United States (NE) relies heavily on thermoelectric power plants (90% of total capacity) to provide electricity to more than 70 million people. This region's power plants require consistent, large volumes of water at sufficiently cold temperatures to generate electricity efficiently, and withdraw approximately 10.5 trillion gallons of water annually. Previous findings indicate that assessments of future electricity pathways must account for water availability, water temperature and the changing climate, as changes in these conditions may limit operational efficiency in the future. To account for such electric system vulnerabilities, we have created a link between an electricity system capacity expansion model (ReEDS) and a hydrologic model that is coupled to a power plant simulation model (FrAMES-TP2M) that allows for a new approach to analyze electricity system development, performance, and environmental impacts. Together, these coupled tools allow us to estimate electricity development and operations in the context of a changing climate and impacts on the seasonal spatial and temporal variability of water resources, downstream thermal effluents that cause plant-to-plant interferences and harm aquatic habitat, economic costs of water conservation methods and associated carbon emissions. In this study, we test and compare a business-as-usual strategy with three alternative water management scenarios that include changes in cooling technologies and water sources utilized for the years 2014-2050. Results of these experiments can provide useful insight into the feasibility of the electricity expansion scenarios in terms of associated water use and thermal impacts, carbon emissions, the cost of generating electricity, and also highlight the importance of accounting for water resources in future power sector planning and performance assessments.

  18. Effects of Contrast Agent and Outer Volume Saturation Bands on Water Suppression and Shimming of Hepatic Single-Volume Proton MR Spectroscopy at 3.0T

    Directory of Open Access Journals (Sweden)

    Li Xu

    2012-01-01

    Full Text Available Purpose. To determine whether administration of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA and whether placement of the outer volume saturation bands significantly affect shimming and water suppression on hepatic MR spectroscopic prescanning. Method. Region of interest (ROI of 2 cm × 2 cm × 2 cm was carefully positioned in the region of the middle portion of the right hepatic lobe. 32 patients were examined before and after administration of Gd-DTPA with and without outer-volume saturation bands. Linewidths (Full-Width Half-Maximum (FWHM and water suppression were obtained. A paired t-test for comparison of means was used. Results. (1 The group with the outer volume saturation bands demonstrated slightly better water suppression effect than the group without outer volume saturation bands before administration. (2 The group with the outer volume saturation bands demonstrated better water suppression effect than the group without outer volume saturation bands after administration. (3 Both shimming and water suppression effectswere decreased on enhanced MR spectroscopic prescanning (all P<0.05. Conclusions. Placement of the outer volume saturation bands is helpful to improve water suppression both before and after contrast agent administration. Gd-DTPA exerts a slightly adverse effect (a statistically significant but clinically unimportant on magnetic resonance spectroscopic prescanning at 3T.

  19. Longitudinal changes in total brain volume in schizophrenia: relation to symptom severity, cognition and antipsychotic medication.

    Directory of Open Access Journals (Sweden)

    Juha Veijola

    Full Text Available Studies show evidence of longitudinal brain volume decreases in schizophrenia. We studied brain volume changes and their relation to symptom severity, level of function, cognition, and antipsychotic medication in participants with schizophrenia and control participants from a general population based birth cohort sample in a relatively long follow-up period of almost a decade. All members of the Northern Finland Birth Cohort 1966 with any psychotic disorder and a random sample not having psychosis were invited for a MRI brain scan, and clinical and cognitive assessment during 1999-2001 at the age of 33-35 years. A follow-up was conducted 9 years later during 2008-2010. Brain scans at both time points were obtained from 33 participants with schizophrenia and 71 control participants. Regression models were used to examine whether brain volume changes predicted clinical and cognitive changes over time, and whether antipsychotic medication predicted brain volume changes. The mean annual whole brain volume reduction was 0.69% in schizophrenia, and 0.49% in controls (p = 0.003, adjusted for gender, educational level, alcohol use and weight gain. The brain volume reduction in schizophrenia patients was found especially in the temporal lobe and periventricular area. Symptom severity, functioning level, and decline in cognition were not associated with brain volume reduction in schizophrenia. The amount of antipsychotic medication (dose years of equivalent to 100 mg daily chlorpromazine over the follow-up period predicted brain volume loss (p = 0.003 adjusted for symptom level, alcohol use and weight gain. In this population based sample, brain volume reduction continues in schizophrenia patients after the onset of illness, and antipsychotic medications may contribute to these reductions.

  20. DYNAMICS OF WATER CONSUMPTION CHANGES IN A TOURIST RESORT

    Directory of Open Access Journals (Sweden)

    Izabela Bartkowska

    2014-10-01

    Over 2011–2012 water extraction to the municipal water supply network was studied. The volume of water extracted every day was analyzed and the gathered volumes were analyzed statistically. The varying water extraction was also studied. The obtained results were presented in a graphic form. Basing on the descriptive stats and prepared diagrams certain general conclusions were drawn and the collected study figures and facts were summed up. This allowed to determine days of the highest and lowest water consumption. Also months of extreme water extraction and consumption were determined. The water extraction ranged from 1641 m3/24h to 2607 m3/24h, at an average value of 2077.4 m3/24h. Over the period under study the day of the largest water extraction and consumption was in July and the day of the lowest water extraction and consumption in December. During a week inhabitants used the highest water amount on Saturdays and the lowest on Sundays and other feast-days. Basing on the conducted measurements also the coefficient of water consumption per capita was determined. The fluctuation of this coefficient was identical as that for the water consumption. Within the period of study it ranged from 73.3 l/M 24h to 116.5 l/M 24h. The average value of the specific water consumption was 92.8 l/M 24h. For the sake of discussion the obtained results were compared with observations across the country.

  1. Quantifying the potential effects of high-volume water extractions on water resources during natural gas development: Marcellus Shale, NY

    Directory of Open Access Journals (Sweden)

    Laura C. Best

    2014-07-01

    New hydrological insights for the region: The potential effects of the withdrawal scenarios on both the water table and stream discharge were quantified. Based on these impact results, locations in the aquifer and stream networks were identified, which demonstrate particular vulnerability to increased withdrawals and their distribution. These are the locations of importance for planners and regulators who oversee water permitting, to reach a sustainable management of the water resources under changing conditions of energy and corresponding water demand.

  2. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    International Nuclear Information System (INIS)

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures

  3. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    Science.gov (United States)

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  4. Serial Changes in 3-Dimensional Supraspinatus Muscle Volume After Rotator Cuff Repair.

    Science.gov (United States)

    Chung, Seok Won; Oh, Kyung-Soo; Moon, Sung Gyu; Kim, Na Ra; Lee, Ji Whan; Shim, Eungjune; Park, Sehyung; Kim, Youngjun

    2017-08-01

    There is considerable debate on the recovery of rotator cuff muscle atrophy after rotator cuff repair. To evaluate the serial changes in supraspinatus muscle volume after rotator cuff repair by using semiautomatic segmentation software and to determine the relationship with functional outcomes. Case series; Level of evidence, 4. Seventy-four patients (mean age, 62.8 ± 8.8 years) who underwent arthroscopic rotator cuff repair and obtained 3 consecutive (preoperatively, immediately postoperatively, and later postoperatively [≥1 year postoperatively]) magnetic resonance imaging (MRI) scans having complete Y-views were included. We generated a 3-dimensional (3D) reconstructed model of the supraspinatus muscle by using in-house semiautomatic segmentation software (ITK-SNAP) and calculated both the 2-dimensional (2D) cross-sectional area and 3D volume of the muscle in 3 different views (Y-view, 1 cm medial to the Y-view [Y+1 view], and 2 cm medial to the Y-view [Y+2 view]) at the 3 time points. The area and volume changes at each time point were evaluated according to repair integrity. Later postoperative volumes were compared with immediately postoperative volumes, and their relationship with various clinical factors and the effect of higher volume increases on range of motion, muscle power, and visual analog scale pain and American Shoulder and Elbow Surgeons scores were evaluated. The interrater reliabilities were excellent for all measurements. Areas and volumes increased immediately postoperatively as compared with preoperatively; however, only volumes on the Y+1 view and Y+2 view significantly increased later postoperatively as compared with immediately postoperatively ( P < .05). There were 9 patients with healing failure, and area and volume changes were significantly less later postoperatively compared with immediately postoperatively at all measurement points in these patients ( P < .05). After omitting the patients with healing failure, volume increases

  5. Pilot Projects in Water Management : Practicing Change and Changing Practice

    NARCIS (Netherlands)

    Vreugdenhil, H.S.I.

    2010-01-01

    Pilot projects are widely applied in water management. They can be used to test risky innovations at confined scale, but can also be used to delay policy decisions or to advocate a particular innovation. In this book the phenomenon ‘pilot project’ is explored both theoretically and empirically. A

  6. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evidence for the changes of pituitary volumes in patients with post-traumatic stress disorder.

    Science.gov (United States)

    Atmaca, Murad; Ozer, Omer; Korkmaz, Sevda; Taskent, Ismail; Yildirim, Hanefi

    2017-02-28

    In pubertal and postpubertal patients with post-traumatic stress disorder (PTSD), significantly greater pituitary gland volumes have been reported. Moving from this point, in the present study, we aimed to investigate pituitary gland volumes in patients with PTSD and hypothesized that volumes of the gland would be structurally changed. Volumetric magnetic resonance imaging of the pituitary gland was performed among sixteen patients with PTSD and fifteen healthy control subjects. We found that the mean volume of the pituitary gland was statistically significant and smaller than that of healthy subjects (0.69±0.08cm 3 for patient group and 0.83±0.21 for control subjects). Consequently, in the present study, we found that patients with PTSD had smaller pituitary gland volumes than those of healthy controls like other anxiety disorders. It is important to provide support for this finding in future longitudinal investigations. Copyright © 2016. Published by Elsevier B.V.

  8. Like Kayaking: Rough Waters Needed for School Change.

    Science.gov (United States)

    Zimmerman, Judith A.

    2003-01-01

    Makes an analogy that educational leadership in this changing society is a lot like paddling a kayak through calm waters. Suggests that if public school leaders do not instill a sense of urgency in times of calm waters, schools may lose focus and fail to evolve and change. (SG)

  9. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  10. An assessment of impacts of climate change on available water ...

    African Journals Online (AJOL)

    Water is the first sector to be affected by changes in climate. The prediction is that with climate change, the climate will be more variable with more intense storms which will increase the risks of flooding and droughts. Attaining and sustaining water security will therefore be more challenging than it has been up to now.

  11. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  12. Brain Volume Changes After Withdrawal of Atypical Antipsychotics in Patients With First-Episode Schizophrenia

    NARCIS (Netherlands)

    Boonstra, Geartsje; van Haren, Neeltje E. M.; Schnack, Hugo G.; Cahn, Wiepke; Burger, Huibert; Boersma, Maria; de Kroon, Bart; Grobbee, Diederick E.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    The influence of antipsychotic medication on brain morphology in schizophrenia may confound interpretation of brain changes over time. We aimed to assess the effect of discontinuation of atypical antipsychotic medication on change in brain volume in patients. Sixteen remitted, stable patients with

  13. Survey of fish impingement at power plants in the United States. Volume II. Inland waters

    International Nuclear Information System (INIS)

    Freeman, R.F. III; Sharma, R.K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 33 power plants located on inland waters other than the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV

  14. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume IV

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2016-12-01

    In total 32 manuscripts were published in Volume IV, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  15. The effect of water saturation deficit on the volume of intercellular space in laeves

    Directory of Open Access Journals (Sweden)

    J. Czerski

    2015-01-01

    Full Text Available The volume of intercellular spaces in leaves at various stages of water saturation was determined by method of Czerski (1964, 1968. The investigation were performed with the following plant species: Vicia faba L., Nicotiana tabacum L. var. rustica, Solarium tuberosum L. var. Flisak, Helichrysum bracteatum Wild., Bmssica napus L. var. oleifera, Beta vulgaris L. var. saccharifera.

  16. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  17. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  18. Research Award: Climate Change and Water

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    2013-08-07

    Aug 7, 2013 ... IDRC is one of the world's leaders in generang new knowledge to ... CCW encourages the development of research on specific tools to cope with water stress, ... CCW also seeks to build research capacity to help vulnerable ...

  19. Evaluation of the Free Volume Theory to Predict Moisture Transport and Quality Changes During Broccoli Drying

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Boxtel, van A.J.B.

    2011-01-01

    Moisture diffusion in porous broccoli florets and stalks is modeled using the free volume and Maxwell-Eucken theories. These theories are based on the mobility of water and concern the variation of the effective diffusion coefficient for a wide range of temperature and moisture content during

  20. Evaluation of the free volume theory to predict moisture transport and quality changes during broccoli drying

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Boxtel, van A.J.B.

    2010-01-01

    Abstract: Moisture diffusion in porous broccoli florets and stalks is modeled by using the free volume and Maxwell-Eucken theories. These theories are based on the mobility of water and show the variation of the effective diffusion coefficient for a wide range of temperatures and moisture content of

  1. Effect of Fiber Volume Fraction and Water Absorption toward Bending Strength of Coconut Filters/ Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Putu Lokantara

    2012-11-01

    Full Text Available The variation of fibre volume and the duration of water soaking take influence on the mechanical properties of composite. This research aim is to know the influence of fraction volume fibre and soaking duration on the mineral watertoward the tensile strength and flexural of polyester-coconut-tapis composite. This research used coconut-tapis fibre which is cut 1 cm in length with 0%, 5%, 7,5%, and 10% fiber volume fraction, unsaturated-polyester (UPRs matrix resin type Yucalac 157 BQTN-EX, and MEKPO hardener. The flexure specimen are made by press hand lay-up method and cut according ASTM D790-03 for the flexure test. The result of flexure test shows that the duration of soaking and the fiber volume fraction give a significant effect on the flexural strength of composite. The highest strength are reached by composite with 10% fibre volume on 48 hour soaking time equal to 41.994 MPa. The flexure modulus happenend shows increasing until 24 hour soaking time. The highest modulus are reached by composite with 10% fibre volume equal to 7.114 GPa while the lowest are reached by composite with 0% fibre volume equal to 3,023 GPa.

  2. Global and regional changes of cardiopulmonary blood volume under continuous work load

    International Nuclear Information System (INIS)

    Hoeck, A.; Schuerch, P.; Freundlieb, C.; Vyska, K.; Kunz, N.; Feinendegen, L.E.; Hollmann, W.

    1980-01-01

    The present study describes a method for the continuous determination of global and regional stress-induced alterations of cardiopulmonary blood volumes in normals, trained athletes and patients with latent cardiac insufficiency. In contrast to normals and athletes there is an increase of the total cardiac blood volume in the cardiac patients. There are also significant differences in blood volume changes of the left lung between normals and athletes on the one hand and the cardiac patients on the other. The method is simple and non-hazardous; it permits the observation of the obviously different adaptation of the cardiopulmonary system during exercise in normals, athletes and cardiac patients. (orig.) [de

  3. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Variable-Volume Flushing (V-VF) device for water conservation in toilets

    Science.gov (United States)

    Jasper, Louis J., Jr.

    1993-01-01

    Thirty five percent of residential indoor water used is flushed down the toilet. Five out of six flushes are for liquid waste only, which requires only a fraction of the water needed for solid waste. Designers of current low-flush toilets (3.5-gal. flush) and ultra-low-flush toilets (1.5-gal. flush) did not consider the vastly reduced amount of water needed to flush liquid waste versus solid waste. Consequently, these toilets are less practical than desired and can be improved upon for water conservation. This paper describes a variable-volume flushing (V-VF) device that is more reliable than the currently used flushing devices (it will not leak), is simple, more economical, and more water conserving (allowing one to choose the amount of water to use for flushing solid and liquid waste).

  5. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    Science.gov (United States)

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  6. Water Security and Climate Change: The Need for Adaptive Governance

    Directory of Open Access Journals (Sweden)

    Tuula Honkonen

    2017-01-01

    Full Text Available Climate change will bring about unprecedented economic, social and environmental effects, which require both the mitigation of greenhouse gas emissions and adaptation to its adverse effects. Water is the main element through which the impacts of climate change will be felt. Climate change results in increased uncertainties, complexities, stress and potential for conflicts within water management, both among and within states. New forms of governance are needed if the world is to respond to the need to adapt to changes in freshwater supply and to manage water security risks. This paper suggests that adaptive governance should to be main-streamed into all water regulation to ensure the availability of and access to safe water resources and to prevent water-related conflicts. The paper discusses the concept of water security in the context of climate change, the threats that climate change poses to water security, and the concept and implications of adaptive governance as a possible solution. The application of adaptive governance requires a certain degree of institutional and normative flexibility, instruments and institutions that can respond and adapt to changes and manage the level of uncertainty associated with the impacts of climate change. The governance institutions, methods and instruments should be responsive to new information and different kinds of uncertainties, while reflecting the vulnerabilities, capacities, needs and priorities of both societies and ecosystems in the face of climate change. Water security risks could be reduced by increased hydrosolidarity among states, which would present the challenges posed by climate change on water governance and security as primarily an opportunity for new forms of cooperation.

  7. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    Science.gov (United States)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    water availability in the region, were simulated by SWIM and WBalMo respectively. Next to changing climate conditions, also the different mining scenarios have considerable impacts on natural and managed discharges. Using the dynamic approach for cooling water demand, the simulated water demands are lower in winter, but higher in summer compared to the static approach. As a consequence of changes in the seasonal pattern of the cooling water demand of the power plants, lower summer discharges downstream of the thermal power plants are simulated using the dynamical approach. Due to the complex water management system in the region included in the water management model WBalMo, also the simulation of reservoir releases and volumes is impacted by the choice of either the static or the dynamic approach for calculating the cooling water demand of the thermal power plants.

  8. Water demand management: A policy response to climate change

    International Nuclear Information System (INIS)

    Rivers, R.; Tate, D.

    1990-01-01

    The impacts of climate change on the water resources of the Great Lakes region are discussed. It is predicted that there will be a relative water scarcity in the Great Lakes basin of Ontario as climate changes occur over the next two decades. Declines in water supply will be accompanied by deterioration in the quality of fresh water as higher temperatures and higher relative quantities of discharged wastewater to water bodies reduce both assimilative and dilutive capacity. The most cost effective policy is to encourage water conservation through programs of water demand management. Water should be priced at the point at which its marginal cost is equal to its marginal product, ie. if priced any higher, less efficient substitutes would be used. Not only would water usage, and subsequent degradation of used water, be reduced, but energy and other cost savings would be achieved. The additional costs that apply to water users could be returned to the communities as additional revenue to be applied against sewage treatment upgrades and other environmental enhancements. Communities involved in water study should consider the development of water use analysis models to assist with decision making about allocation, pricing and availability of water supplies. 10 refs

  9. Climate Change and Water Adaptation Options | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This expansive body of work was generated with the support of the IDRC Climate Change Adaptation in Africa and ... This information has a number of potential user groups including IDRC teams, our network of research ... Related content ...

  10. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake

    2013-05-01

    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  11. Trade in water and commodities as adaptations to global change

    Science.gov (United States)

    Lammers, R. B.; Hertel, T. W.; Prousevitch, A.; Baldos, U. L. C.; Frolking, S. E.; Liu, J.; Grogan, D. S.

    2015-12-01

    The human capacity for altering the water cycle has been well documented and given the expected change due to population, income growth, biofuels, climate, and associated land use change, there remains great uncertainty in both the degree of increased pressure on land and water resources and in our ability to adapt to these changes. Alleviating regional shortages in water supply can be carried out in a spatial hierarchy through i) direct trade of water between all regions, ii) development of infrastructure to improve water availability within regions (e.g. impounding rivers), iii) via inter-basin hydrological transfer between neighboring regions and, iv) via virtual water trade. These adaptation strategies can be managed via market trade in water and commodities to identify those strategies most likely to be adopted. This work combines the physically-based University of New Hampshire Water Balance Model (WBM) with the macro-scale Purdue University Simplified International Model of agricultural Prices Land use and the Environment (SIMPLE) to explore the interaction of supply and demand for fresh water globally. In this work we use a newly developed grid cell-based version of SIMPLE to achieve a more direct connection between the two modeling paradigms of physically-based models with optimization-driven approaches characteristic of economic models. We explore questions related to the global and regional impact of water scarcity and water surplus on the ability of regions to adapt to future change. Allowing for a variety of adaptation strategies such as direct trade of water and expanding the built water infrastructure, as well as indirect trade in commodities, will reduce overall global water stress and, in some regions, significantly reduce their vulnerability to these future changes.

  12. Method for volume reduction and encapsulation of water-bearing, low-level radioactive wastes

    International Nuclear Information System (INIS)

    1982-01-01

    The invention relates to the processing of water-bearing wastes, especially those containing radioactive materials from nuclear power plants like light-water moderated and cooled reactors. The invention provides a method to reduce the volume of wastes like contaminated coolants and to dispose them safely. According to the invention, azeotropic drying is applied to remove the water. Distilation temperatures are chosen to be lower than the lowest boiling point of the mixture components. In the preferred version, a polymerizing monomer is used to obtain the azeotropic mixture. In doing so, encapsulation is possible by combination with a co-reactive polymer that envelopes the waste material. (G.J.P.)

  13. Dilatometric measurement of the partial molar volume of water sorbed to durum wheat flour.

    Science.gov (United States)

    Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    Moisture sorption isotherms were measured at 25 °C for untreated, dry-heated and pre-gelatinized durum wheat flour samples. The isotherms could be expressed by the Guggenheim-Anderson-de Boer equation. The amount of water sorbed to the untreated flour was highest for low water activity, with water sorbed to the pre-gelatinized and dry-heated flour samples following. The dry-heated and pregelatinized flour samples exhibited the same dependence of the moisture content on the partial molar volume of water at 25 °C as the untreated flour. The partial molar volume of water was ca. 9 cm(3)/mol at a moisture content of 0.03 kg-H2O/kg-d.m. The volume increased with increasing moisture content, and reached a constant value of ca. 17.5 cm(3)/mol at a moisture content of 0.2 kg-H2O/kg-d.m. or higher.

  14. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  15. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  16. Changes in intracranial morphology, regional cerebral water content and vital physiological variables during epidural bleeding

    International Nuclear Information System (INIS)

    Ganz, J.C.; Inst. of Surgical Research, National Hospital, Oslo; Thuomas, K.AA.; Inst. of Surgical Research, National Hospital, Oslo; Vlajkovic, S.; Inst. of Surgical Research, National Hospital, Oslo; Nilsson, P.; Inst. of Surgical Research, National Hospital, Oslo; Bergstroem, K.; Inst. of Surgical Research, National Hospital, Oslo; Ponten, U.; Inst. of Surgical Research, National Hospital, Oslo; Zwetnow, N.N.; Inst. of Surgical Research, National Hospital, Oslo

    1993-01-01

    Epidural bleeding was produced in 8 anaesthetised and heparinised dogs by an artificial system. Changes in vital physiological variables were related to intracranial shifts and tissue water content assessed with MR imaging. Six animals survived while 2 succumbed. In the surviving animals intracranial shifts and compressions remained unchanged from an early stage. The cerebral perfusion pressure was reduced from between 80 and 110 mm Hg to between 40 and 60 mm Hg. Some increase in supratentorial white matter tissue water was observed. In the lethal experiments cerebral perfusion pressure fell to less than 40 mm Hg. Moreover, secondary delayed anatomical changes were seen including hydrocephalus. Increase in cerebral tissue water was more intense and widespread than in the survivors. These findings indicate that the outcome of epidural bleeding is related to cerebral perfusion pressure with secondary deterioration resulting from additional volume loading from increased tissue water and hydrocephalus. (orig.)

  17. Fate and effects of nearshore discharges of OCS produced waters. Volume 2. Technical report (Final)

    International Nuclear Information System (INIS)

    Rabalais, N.N.; McKee, B.A.; Reed, D.J.; Means, J.C.

    1991-06-01

    While the number of facilities that discharge OCS produced waters into coastal environments of Louisiana are few in number, they account for large volumes, individually and collectively. Of the 15 facilities which discharge OCS-generated produced water into coastal environments of Louisiana (as of February 1990), 10 discharges in seven areas were studied. The discharge volumes of the study areas range from 3,000 to 106,000/bbl.d. The receiving environments for these effluents are varied, but include the shallow, nearshore continental shelf; high energy, freshwater distributaries of the Mississippi River delta; and brackish and saline coastal environments with moderately to poorly flushed waters. All study areas are within the Mississippi River Deltaic Plain. The study expanded on the initial assessment of Boesch and Rabalais (1989a) with increased temporal and spatial studies of three areas, additional study sites including an abandoned discharge, and additional analytical and field observations

  18. Water volume quantitation using nuclear magnetic resonance imaging: application to cerebrospinal fluid

    International Nuclear Information System (INIS)

    Lecouffe, P.; Huglo, D.; Dubois, P.; Rousseau, J.; Marchandise, X.

    1990-01-01

    Quantitation in proton NMR imaging is applied to cerebrospinal fluid (CSF). Total intracranial CSF volume was measured from Condon's method: CSF signal was compared with distilled water standard signal in a single sagittal thick slice. Brain signal was reduced to minimum using a 5000/360/400 sequence. Software constraints did not permit easy implementing on imager and uniformity correction was performed on a microcomputer. Accuracy was better than 4%. Total intracranial CSF was found between 91 and 164 ml in 5 healthy volunteers. Extraventricular CSF quantitation appears very improved by this method, but planimetric methods seem better in order to quantify ventricular CSF. This technique is compared to total lung water measurement from proton density according to Mac Lennan's method. Water volume quantitation confirms ability of NMR imaging to quantify biologic parameters but image defects have to be known by strict quality control [fr

  19. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  20. Climate. For a successful change. Volume 1: How to commit one's territory in an adaptation approach. Volume 2: How to implement a territorial project which integrates adaptation. Volume 3: How to understand the complexity of climate change - Scientific issues

    International Nuclear Information System (INIS)

    2013-12-01

    The first volume presents the climate issue as a world issue as well as a local issue (historic context of adaptation to climate change effects, legal obligation for local communities, indicators of direct and indirect effects of climate change, economic impacts), and presents adaptation as a way of action at a local level (definition of a strategy, articulation between works on greenhouse gas emissions and those on adaptation, actions to be implemented, action follow-up and adjustment). The second volume describes how to communicate and talk about climate change, and more specifically about the above-mentioned issues (reality of climate change, indirect and direct effects, obligations and responsibilities for local communities, economic impacts). It addresses the issue of climate change in the Rhone-Alpes region: adaptation within the regional scheme on climate, air and energy (SRCAE), role of local communities. It presents an action methodology: to inform and organise, to prepare the mobilisation of actors, to prepare the territory vulnerability diagnosis, to define the adaptation strategy, and to implement, follow-up and assess the action. The third volume proposes a set of sheets containing scientific information and data related to climate change: factors of climate variability, current global warming, greenhouse gases and aerosols, physical-chemical principles involved in greenhouse effect, carbon sinks and carbon sources, effects of land assignment and agriculture, combined effects of mankind actions on the atmosphere, climate change and oceans, climate change and cryo-sphere, climate change and biodiversity, extreme meteorological and climate events and their consequences

  1. Climate change, food, water and population health in China.

    Science.gov (United States)

    Tong, Shilu; Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-10-01

    Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change's most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially - although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources - e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change - e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases - are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population's resilience to the risks of climate variability and change.

  2. Modeling U.S. water resources under climate change

    Science.gov (United States)

    Blanc, Elodie; Strzepek, Kenneth; Schlosser, Adam; Jacoby, Henry; Gueneau, Arthur; Fant, Charles; Rausch, Sebastian; Reilly, John

    2014-04-01

    Water is at the center of a complex and dynamic system involving climatic, biological, hydrological, physical, and human interactions. We demonstrate a new modeling system that integrates climatic and hydrological determinants of water supply with economic and biological drivers of sectoral and regional water requirement while taking into account constraints of engineered water storage and transport systems. This modeling system is an extension of the Massachusetts Institute of Technology (MIT) Integrated Global System Model framework and is unique in its consistent treatment of factors affecting water resources and water requirements. Irrigation demand, for example, is driven by the same climatic conditions that drive evapotranspiration in natural systems and runoff, and future scenarios of water demand for power plant cooling are consistent with energy scenarios driving climate change. To illustrate the modeling system we select "wet" and "dry" patterns of precipitation for the United States from general circulation models used in the Climate Model Intercomparison Project (CMIP3). Results suggest that population and economic growth alone would increase water stress in the United States through mid-century. Climate change generally increases water stress with the largest increases in the Southwest. By identifying areas of potential stress in the absence of specific adaptation responses, the modeling system can help direct attention to water planning that might then limit use or add storage in potentially stressed regions, while illustrating how avoiding climate change through mitigation could change likely outcomes.

  3. Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2014-01-01

    Full Text Available Obstructive sleep apnea (OSA is accompanied by cognitive, motor, autonomic, learning, and affective abnormalities. The putamen serves several of these functions, especially motor and autonomic behaviors, but whether global and specific sub-regions of that structure are damaged is unclear. We assessed global and regional putamen volumes in 43 recently-diagnosed, treatment-naïve OSA (age, 46.4 ± 8.8 years; 31 male and 61 control subjects (47.6 ± 8.8 years; 39 male using high-resolution T1-weighted images collected with a 3.0-Tesla MRI scanner. Global putamen volumes were calculated, and group differences evaluated with independent samples t-tests, as well as with analysis of covariance (covariates; age, gender, and total intracranial volume. Regional differences between groups were visualized with 3D surface morphometry-based group ratio maps. OSA subjects showed significantly higher global putamen volumes, relative to controls. Regional analyses showed putamen areas with increased and decreased tissue volumes in OSA relative to control subjects, including increases in caudal, mid-dorsal, mid-ventral portions, and ventral regions, while areas with decreased volumes appeared in rostral, mid-dorsal, medial-caudal, and mid-ventral sites. Global putamen volumes were significantly higher in the OSA subjects, but local sites showed both higher and lower volumes. The appearance of localized volume alterations points to differential hypoxic or perfusion action on glia and other tissues within the structure, and may reflect a stage in progression of injury in these newly-diagnosed patients toward the overall volume loss found in patients with chronic OSA. The regional changes may underlie some of the specific deficits in motor, autonomic, and neuropsychologic functions in OSA.

  4. Comparison of doses according to change of bladder volume in treatment of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae [Dept. of Radiologic Technology, Dongnam Health University, Suwon (Korea, Republic of); Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Seongnam (Korea, Republic of)

    2017-09-15

    In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose R2= -0.94. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose R2= 0.04. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

  5. Volume of baseline data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes of the annual report 1988 'Environmental radioactivity and radiation exposure'

    International Nuclear Information System (INIS)

    Abelmann, S.; Buenger, T.; Fusban, H.U.; Ruehle, H.; Viertel, H.; Gans, I.

    1991-01-01

    This WaBoLu volume is a shortened version of the annual report by the Federal Ministry of the Environment, Nature Protection and Reactor Safety 'Environmental radioactivity and radiation exposure' and gives an overview of the data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes, compiled for the area of the Federal Republic of Germany in 1988 by the Institute of Water, Soil and Air Hygiene (WaBoLu) of the Federal Health Office. (BBR) With 22 figs., 15 tabs [de

  6. How a change in the interaction potential affects the p-wave scattering volume

    International Nuclear Information System (INIS)

    Jamieson, M J; Dalgarno, A

    2012-01-01

    We derive a simple expression for the change in the s-wave scattering length in terms of zero-energy wavefunctions, we generalize it to obtain an expression for the change in the p-wave scattering volume and we use both expressions to derive the first order differential equations of variable phase theory that are satisfied by the closely related accumulated scattering length and volume. We provide numerical demonstrations for the example of a pair of hydrogen atoms interacting via the X 1 Σ + g molecular state. (fast track communication)

  7. Changes in forced expiratory volume in 1 second over time in COPD

    DEFF Research Database (Denmark)

    Vestbo, Jørgen; Edwards, Lisa D; Scanlon, Paul D

    2011-01-01

    A key feature of chronic obstructive pulmonary disease (COPD) is an accelerated rate of decline in forced expiratory volume in 1 second (FEV(1)), but data on the variability and determinants of this change in patients who have established disease are scarce.......A key feature of chronic obstructive pulmonary disease (COPD) is an accelerated rate of decline in forced expiratory volume in 1 second (FEV(1)), but data on the variability and determinants of this change in patients who have established disease are scarce....

  8. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

    DEFF Research Database (Denmark)

    Jørgensen, A.; Magnusson, P.; Hanson, Lars G.

    2016-01-01

    , and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results......: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations...

  9. Technologies for climate change adaptation. The water sector

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, T De [ed.; UNEP Risoe Centre, Roskilde (Denmark); Elliott, M; Armstrong, A; Lobuglio, J; Bartram, J [The Water Institute at the Univ. of North Carolina at Chapel Hill, Chapel Hill, NC (United States)

    2011-04-15

    This guidebook aims to provide expert information on the technologies most relevant for climate change adaptation in the water sector in developing countries. It is meant to be a practical tool for use by a broad range of stakeholders, including those in governmental agencies, water utilities, community water boards, non-governmental organizations, and private sector companies. Adaptation is an essential element of human response to climate change. The adverse impacts of climate change on the water sector will be experienced worldwide and are often projected to be most severe in resource-poor countries. Therefore, it is necessary to have access to a diverse array of adaptation technologies and practices that are appropriate and affordable in various contexts. The scale of these adaptation technologies/practices should range from the individual household level (e.g. household water treatment), to the community scale (e.g. rainwater collection in small reservoirs), to large facilities that can benefit a city or region (e.g. a desalination plant). The guidebook first reviews the projected impacts of climate change on the water sector. It then addresses the role of adaptation in the water sector and six typologies under which available strategies are categorized. Eleven technologies and practices are given detailed treatment in this guidebook and four others are covered briefly. While these do not constitute all of the adaptation technologies available in the water sector, they do represent many of the most important adaptation technologies for developing countries. For each of the 11 adaptation technologies and practices, the following are addressed: basic description, contribution to climate change and development, institutional and capacity building requirements, costs, barriers and opportunities for implementation, and extensive reference to external resources and case studies. The practical steps and appropriate contexts for implementation are covered in the

  10. Change in volume of lumpectomy cavity during external-beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Jacobson, Geraldine; Betts, Vicki; Smith, Brian

    2006-01-01

    Purpose: Definition of the lumpectomy cavity is an important component of irradiation of the breast. We use computed tomography (CT)-based planning and contour the lumpectomy volume on the planning CT. We obtained a second CT in the 4th or 5th week of treatment for boost planning and compared the volume change with the first planning-CT scan. Methods and Materials: This retrospective study reviewed the planning-CT data for 20 patients. In the first CT, images were obtained from the mandible to 2 cm below the breast in 3-mm slices. In the second CT, for the boost, images were obtained from the top to the bottom of the clinically defined breast, in 3-mm slices. Lumpectomy cavities were contoured on both CT scans and volumes compared. Results: Sixteen of the 20 patients (80%) had more than a 20% decrease from the first to the second volume, with a corresponding 95% confidence interval. The mean decrease was 16.13 cc, with a standard deviation of 14.05. The Spearman correlation coefficient of 0.18 did not show a significant correlation between the initial volume and the percent change. Conclusions: During external breast irradiation, many patients will have significant volume reduction in the lumpectomy cavity. Because CT-based definition of the lumpectomy cavity can influence the planning of a boost technique, further study appears warranted

  11. Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  12. Technical procedures for water resources: Volume 4, Deaf Smith County site, Texas: Environmental Field Program: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    This volume contains Technical Procedures pursuant to the water Resources Site Study Plan: including Collection, Preservation, and Shipment of Ground-Water Samples; Inventory Current Water Use and Estimating Projected Water Use; Estimation of Precipitation Depth, Duration, Frequence; Estimation of Probable Maximum Precipitation; Calculation of Floodplains

  13. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  14. Multimodel assessment of water scarcity under climate change.

    Science.gov (United States)

    Schewe, Jacob; Heinke, Jens; Gerten, Dieter; Haddeland, Ingjerd; Arnell, Nigel W; Clark, Douglas B; Dankers, Rutger; Eisner, Stephanie; Fekete, Balázs M; Colón-González, Felipe J; Gosling, Simon N; Kim, Hyungjun; Liu, Xingcai; Masaki, Yoshimitsu; Portmann, Felix T; Satoh, Yusuke; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Wisser, Dominik; Albrecht, Torsten; Frieler, Katja; Piontek, Franziska; Warszawski, Lila; Kabat, Pavel

    2014-03-04

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (water resources, suggesting a high potential for improved water resource projections through hydrological model development.

  15. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Komeil Rokni

    2014-05-01

    Full Text Available Lake Urmia is the 20th largest lake and the second largest hyper saline lake (before September 2010 in the world. It is also the largest inland body of salt water in the Middle East. Nevertheless, the lake has been in a critical situation in recent years due to decreasing surface water and increasing salinity. This study modeled the spatiotemporal changes of Lake Urmia in the period 2000–2013 using the multi-temporal Landsat 5-TM, 7-ETM+ and 8-OLI images. In doing so, the applicability of different satellite-derived indexes including Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, and Automated Water Extraction Index (AWEI were investigated for the extraction of surface water from Landsat data. Overall, the NDWI was found superior to other indexes and hence it was used to model the spatiotemporal changes of the lake. In addition, a new approach based on Principal Components of multi-temporal NDWI (NDWI-PCs was proposed and evaluated for surface water change detection. The results indicate an intense decreasing trend in Lake Urmia surface area in the period 2000–2013, especially between 2010 and 2013 when the lake lost about one third of its surface area compared to the year 2000. The results illustrate the effectiveness of the NDWI-PCs approach for surface water change detection, especially in detecting the changes between two and three different times, simultaneously.

  16. Climate change and water supply and demand in western Canada

    International Nuclear Information System (INIS)

    Lawford, R.G.

    1990-01-01

    There is reason to be concerned that water resources on the Canadian Prairies could be at considerable risk due to climatic change. The Canadian Prairies frequently experience variations in the climate, which can reduce crop production by 25-50% and annual volumetric river flows by 70-90%. The potential impacts of climatic change on the Prairies are discussed. Consumptive water uses on the Prairies are dominated by irrigation and the water demands arising from thermal power generation. The overall effect of climatic change on water supplies will depend on the ways in which the various components of the hydrological cycle are affected. At the present time it is unsure whether complementary equations are more realistic in estimating evaporation than mass balance techniques. There is a need to obtain good baseline data which will allow the unequivocal resolution of the most accurate technique for estimating evaporation on the Prairies. Climate change could lead to a decrease in spring runoff, and would also lead to earlier snowmelt and peak flows. This could lead to a longer period of low flows during the summer and fall and a further drawdown of moisture reserves. Some appropriate strategies for adapting to climate change would be: encouraging water conservation; reductions in agricultural water use by developing/utilizing strains of plants with lower water demand; controlling new water developments; and enhancing on-farm retention. 10 refs

  17. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  18. EFFECT OF SITTING POSTURE ON THORACIC CONFIGURATION AND CHANGES IN VOLUME OF HEMITHORACES

    Directory of Open Access Journals (Sweden)

    Shōbo A

    2017-06-01

    Full Text Available Background: Poor posture is detrimental to breathing. Our purpose was to investigate the effect of upright and hunchbacked sitting on thoracic configuration and changes in the volume of the thorax during quiet and volitional deep breathing. Methods: The participants were 11 healthy men with a mean age of 21.6 years, mean body mass of 59.8 kg, mean height of 169.7 cm and a body mass index of 20.7 kg/m2. Eighty-four reflective markers were placed on the trunk. Three-dimensional motion analysis measured the volume within the hemithoraces. To calculate upper and lower thoracic volumes, six imaginary hexahedra were visualized using four reflective markers for each on both aspects of the thorax. Each hexahedron was divided into three imaginary triangular pyramids to calculate positional vectors. Finally, the volume for the hexahedra and triangular pyramids was calculated. Upper thoracic volume encompassed a space from the sternal notch to a midpoint on the ventral aspect of the third rib and the lower thoracic volume from the xiphoid process to the midpoint on tenth rib’s dorsal aspect. Results: In hunchbacked sitting during quiet breathing the left lower hemithorax yielded a significantly larger volume (p=0.003, and both breathing patterns during inspiration and expiration yielded a significantly greater change in thoracic configuration (p=0.01, p=0.016. Conclusion: Findings suggested that, in a hunchbacked sitting, there was decreased thoracic asymmetry with re-establishment of thoracic vertebral alignment, consequently stabilizing the sitting position, but breathing was suppressed and tidal volume decreased. Physiotherapy should aim at ensuring correction of hunchbacked posture and maintenance of thoracic symmetry.

  19. Direct Measurement of the Volume of Liquid Water Emitted During Eruptions of Lone Star Geyser, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Murphy, F.; Hurwitz, S.; Johnston, M. J.; Vandemeulebrouck, J.; Pontbriand, C.; Sohn, R. A.; Karlstrom, L.; Rudolph, M. L.

    2011-12-01

    In September, 2010 a comprehensive series of instrumental observations was carried out at Lone Star Geyser in Yellowstone National Park to measure changes in the geyser and its surroundings during eruptions. That project included measurements of flow in the streams that drain the geyser area. Three small streams convey liquid water from the geyser and many of the surrounding hot springs to the Firehole River, about 75 m south of the geyser cone. We developed rating curves for two of these streams by measuring channel cross-sections and timing floating markers (using stopwatches and video recordings) while simultaneously recording stream depth at two-second intervals at two locations using pressure transducers and dataloggers. We estimated the flow in the third (ungaged) stream to be 0.15 of the flow in the easternmost stream, with which it shares a source area and part of its channel. The eruption cycle takes about 3 hours, and a total of nine eruption cycles were observed. During these 3-hour cycles the geyser and the nearby hot springs deliver a total of between 15 and 28 m3 of water to the Firehole River. During the 10-20 minutes of the main phase of an eruption, the geyser delivered between 8 and 11 m3 of water to the three streams. The volume of water emitted during eruptions appears to display a significant diurnal variation which strongly correlates with air temperature, with significantly more flow during early afternoon hours. There were also significant variations in the distribution of flow between the different channels. Our calculations suggest that losses due to evaporation along the flow channels are negligible, and losses due to infiltration appear to be small. The calculated volumes of water discharge do not account for the volume of erupted steam or evaporation of liquid water from the jet. Steam discharge will be assessed using image analysis of high speed video. The calculated volumes provide accurate and important constraint for models of

  20. Variations in gastric emptying of liquid elicited by acute blood volume changes in awake rats

    Directory of Open Access Journals (Sweden)

    Gondim F. de-A.A.

    1998-01-01

    Full Text Available We have observed that acute blood volume expansion increases the gastroduodenal resistance to the flow of liquid in anesthetized dogs, while retraction decreases it (Santos et al. (1991 Acta Physiologica Scandinavica, 143: 261-269. This study evaluates the effect of blood volume expansion and retraction on the gastric emptying of liquid in awake rats using a modification of the technique of Scarpignato (1980 (Archives Internationales de Pharmacodynamie et de Therapie, 246: 286-294. Male Wistar rats (180-200 g were fasted for 16 h with water ad libitum and 1.5 ml of the test meal (0.5 mg/ml phenol red solution in 5% glucose was delivered to the stomach immediately after random submission to one of the following protocols: 1 normovolemic control (N = 22, 2 expansion (N = 72 by intravenous infusion (1 ml/min of Ringer-bicarbonate solution, volumes of 1, 2, 3 or 5% body weight, or 3 retraction (N = 22 by controlled bleeding (1.5 ml/100 g. Gastric emptying of liquid was inhibited by 19-51.2% (P<0.05 after blood volume expansion (volumes of 1, 2, 3 or 5% body weight. Blood volume expansion produced a sustained increase in central venous pressure while mean arterial pressure was transiently increased during expansion (P<0.05. Blood volume retraction increased gastric emptying by 28.5-49.9% (P<0.05 and decreased central venous pressure and mean arterial pressure (P<0.05. Infusion of the shed blood 10 min after bleeding reversed the effect of retraction on gastric emptying. These findings suggest that gastric emptying of liquid is subject to modulation by the blood volume.

  1. Air-water flow in a vertical pipe with sudden changes of superficial water velocity

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Eckhard Krepper; Thomas Frank

    2005-01-01

    Full text of publication follows: For further model development and the validation of CFD codes for two-phase flow applications experiments were carried out with a sudden change of the superficial velocity of water. The tests were performed in a vertical pipe of 51.2 mm diameter. The gas was injected through 19 capillaries of 0.8 mm inner diameter equally distributed over the cross section of the pipe. Measurements were taken by two wire-mesh sensors (24 x 24 points, 2500 Hz) mounted in a short distance (16 mm) behind each other. This sensor assembly was placed 3030 mm downstream of the gas injection. The change of the superficial water velocity was produced by a butterfly valve, the flap of which was perforated. In this way, a rapid closure of the valve caused a jump-like reduction of the liquid flow rate. The valve was located upstream of the gas injection. In a second series of tests a jump-like increase of the water flow rate was studied. Time sequences of the gas fraction profile were calculated from the wire-mesh sensor data over sampling periods of 0.2 s per profile. To increase the statistical reliability of the data, the transient was repeated several times and the data superposed (ensemble averaging). Gas velocity distributions were determined by correlation of the signals with the measurements of the second sensor. The tests enable the observation of the restructuring process of bubbly flow between two steady state conditions. The process is subdivided into three main stages: (1) the undisturbed flow before the velocity jump, (2) the passage of the bubbly flow formed under initial conditions, but travelling with the new velocity and (3) the bubbly flow generated under the new boundary conditions. Transient behaviour between these stages is reflected by the measured data. Special attention was paid to stage 2, where the radial gas fraction profiles change shape due to the excitation of the force balance acting on the bubbles. The experimental results for

  2. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    Science.gov (United States)

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  3. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state.

    Science.gov (United States)

    Mudie, Deanna M; Murray, Kathryn; Hoad, Caroline L; Pritchard, Susan E; Garnett, Martin C; Amidon, Gordon L; Gowland, Penny A; Spiller, Robin C; Amidon, Gregory E; Marciani, Luca

    2014-09-02

    The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent upon the volumes and distribution of gastric and small intestinal water. However, little is known about the time courses and distribution of water volumes in vivo in an undisturbed gut. Previous imaging studies offered a snapshot of water distribution in fasted humans and showed that water in the small intestine is distributed in small pockets. This study aimed to quantify the volume and number of water pockets in the upper gut of fasted healthy humans following ingestion of a glass of water (240 mL, as recommended for bioavailability/bioequivalence (BA/BE) studies), using recently validated noninvasive magnetic resonance imaging (MRI) methods. Twelve healthy volunteers underwent upper and lower abdominal MRI scans before drinking 240 mL (8 fluid ounces) of water. After ingesting the water, they were scanned at intervals for 2 h. The drink volume, inclusion criteria, and fasting conditions matched the international standards for BA/BE testing in healthy volunteers. The images were processed for gastric and intestinal total water volumes and for the number and volume of separate intestinal water pockets larger than 0.5 mL. The fasted stomach contained 35 ± 7 mL (mean ± SEM) of resting water. Upon drinking, the gastric fluid rose to 242 ± 9 mL. The gastric water volume declined rapidly after that with a half emptying time (T50%) of 13 ± 1 min. The mean gastric volume returned back to baseline 45 min after the drink. The fasted small bowel contained a total volume of 43 ± 14 mL of resting water. Twelve minutes after ingestion of water, small bowel water content rose to a maximum value of 94 ± 24 mL contained within 15 ± 2 pockets of 6 ± 2 mL each. At 45 min, when the glass of water had emptied completely from the stomach, total intestinal water volume was 77 ± 15 mL distributed into 16 ± 3 pockets of 5 ± 1 mL each. MRI provided unprecedented insights into

  4. Water state changes during the composting of kitchen waste.

    Science.gov (United States)

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Volume de água armazenado no tanque de bromélias, em restingas da costa brasileira Water volume stored in bromeliad tanks in Brazilian restinga habitats

    Directory of Open Access Journals (Sweden)

    Luciana Cogliatti-Carvalho

    2010-03-01

    Full Text Available Muitas espécies de bromélias armazenam água da chuva em seu interior, sendo esta característica resultado da distribuição espiralada de suas folhas, que formam pequenos tanques. O objetivo deste estudo foi avaliar e comparar o volume de água efetivamente armazenado e o volume máximo que pode ser armazenado no tanque de diferentes espécies de bromélias de 13 restingas brasileiras. Em cada restinga, em 100 plots de 100 m² cada, registramos as espécies de bromélias-tanque, os parâmetros morfométricos e o volume efetivo e máximo em 20 indivíduos de cada espécie. Encontramos 32 espécies de bromélias-tanque, para as quais medimos o volume máximo e o volume efetivo de água armazenado. Em 59.007 rosetas, estimamos o volume máximo em 44.388 litros e medimos 17.000 litros de água efetivamente armazenados. Encontramos diferenças interespecíficas nos volumes máximo e efetivamente reservado de água, na biomassa, no número de folhas e no volume do cone da planta. Aechmea aquilega, A. blanchetiana e Hohenbergia castelanosii tiveram os maiores volumes efetivos. Somente A. nudicaulis e Billbergia amoena diferiram entre suas populações em todos os parâmetros analisados. As restingas de Maricá, Prado, Trancoso e Jurubatiba tiveram os maiores volumes de água.ha-1 armazenada nas bromélias-tanque. O volume máximo de água estimado para as bromélias-tanque variou entre espécies devido a diferenças na forma e no tamanho das bromélias.Many bromeliad species store rain water in tanks, as a result of the spiraled distribution of their leaves. The aim of this study was to evaluate how much water is stored and what is the maximum volume of water possible to be stored in different tank-bromeliad species in 13 different Brazilian restingas. The species were recorded in 100 plots of 100 m2, in each restinga habitat. For each bromeliad species, the effective and the maximum water stored in the tanks were measured. We found 32 tank

  6. The Economic Value of Changes in Water Quality

    DEFF Research Database (Denmark)

    Jensen, Anne Kejser

    Water quality is from both a European and Danish perspective challenged by private use of the resource. The public good characteristics of the resource require that regulation should internalize the non-market values of water quality, in order to reach an optimal level from a welfare economic...... perspective. Valuation using stated preference techniques to value changes in ecosystem services has been widely used to estimate values of water quality. However, heterogeneity in values exists across different groups in the population. The objective of this PhD-thesis is to explore two different kinds...... of preference heterogeneity, when valuing changes in water quality. The PhD thesis consists of four papers all related to heterogeneity in the public preferences for water quality improvements. Papers referred to as 1, 2 and 3 are based on a discrete choice experiment (DCE) on water quality improvements...

  7. Climate change and managing water crisis: Pakistan's perspective.

    Science.gov (United States)

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30-150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water

  8. IWRA/IDRC webinar on climate change and adaptive water ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-04-18

    Apr 18, 2018 ... ... irrigation technology in Indian Punjab: The case of tensiometer; and,. • Water resource management under changing climate in Angola's coastal ... public health, and health systems research relevant to the emerging crisis.

  9. Water, energy, and climate change: what's the link? | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-01-31

    Jan 31, 2013 ... Related articles ... researchers have found changes in weather patterns and in the intensity of extreme weather events are resulting in the erosion of lo ... Water management and food security in vulnerable regions of China.

  10. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2010-08-01

    Full Text Available Higher temperatures and changes in precipitation patterns have induced an acute decrease in Andean glaciers, thus leading to additional stress on water supply. To adapt to climate changes, local governments need information on the rate of glacier area and volume losses and on current ice thickness. Remote sensing analyses of Coropuna glacier (Peru delineate an acute glaciated area decline between 1955 and 2008. We tested how volume changes can be estimated with remote sensing and GIS techniques using digital elevation models derived from both topographic maps and satellite images. Ice thickness was measured in 2004 using a Ground Penetrating Radar coupled with a Ground Positioning System during a field expedition. It provided profiles of ice thickness on different slopes, orientations and altitudes. These were used to model the current glacier volume using Geographical Information System and statistical multiple regression techniques. The results revealed a significant glacier volume loss; however the uncertainty is higher than the measured volume loss. We also provided an estimate of the remaining volume. The field study provided the scientific evidence needed by COPASA, a local Peruvian NGO, and GTZ, the German international cooperation agency, in order to alert local governments and communities and guide them in adopting new climate change adaptation policies.

  11. Water Boiler Change-Over in Mini-TPP Mode

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2011-01-01

    Full Text Available The paper considers water boiler modernization by its change-over in mini-TPP mode with an expansion tank and a heating turbine of small capacity.  A software complex permitting to evaluate competitive ability of such water boiler modernization in comparison with a cogeneration plant.

  12. NORTH PORTAL - WATER HEATER CALCULATION - CHANGE HOUSE FACILITY No.5008

    International Nuclear Information System (INIS)

    R.B. Blackstone

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot water in the Change House Facility and the selection of a water heater of appropriate size in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  13. Safeguarding water availability for food and ecosystems under global change

    NARCIS (Netherlands)

    Pastor, Amandine V.

    2017-01-01

    In a context of future population increase and intensification of water cycle by climate change, water demand for irrigation is projected to double. However, freshwater resources have been degraded the last decades especially in rivers via fragmentation, dam contraction and pollution. Flow

  14. Protecting access to water from urban sprawl, climate change in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-05-13

    May 13, 2011 ... Water is scarce for residents on the edge of South Asia's expanding cities. ... and a changing climate affect water security in peri-urban South Asia and find fair and sustainable ... Villages in Nepal prepare for weather extremes.

  15. Adaptation: Forests as water infrastructure in a changing climate

    Science.gov (United States)

    Todd Gartner; Heather McGray; James Mulligan; Jonas Epstein; Ayesha Dinshaw

    2014-01-01

    Natural ecosystems like forests and wetlands provide a suite of water-related services that are increasingly critical for communities as the impacts of climate change intensify. Yet, these natural ecosystems are increasingly lost or degraded. In the face of growing water-related challenges in an age of fiscal austerity, investing in the conservation, restoration, and...

  16. Climate change and urbanization threaten water resources in South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-08-14

    Aug 14, 2014 ... JAGP: Have you found that climate-related pressures are related to ... SAK: We found that urbanization and climate change have put extra stress on water ... JAGP: Will the research team continue to work together on water ...

  17. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...

  18. Changes in lung volume and ventilation during surfactant treatment in ventilated preterm infants

    NARCIS (Netherlands)

    Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Veenendaal, Mariëtte B.; van Kaam, Anton H.

    2011-01-01

    The immediate and regional effects of exogenous surfactant in open lung high-frequency oscillatory ventilated (HFOV) preterm infants are unknown. To assess regional changes in lung volume, mechanics, and ventilation during and after surfactant administration in HFOV preterm infants with respiratory

  19. Changes in forced expiratory volume in 1 second over time in COPD

    DEFF Research Database (Denmark)

    Vestbo, Jørgen; Edwards, Lisa D; Scanlon, Paul D

    2011-01-01

    A key feature of chronic obstructive pulmonary disease (COPD) is an accelerated rate of decline in forced expiratory volume in 1 second (FEV(1)), but data on the variability and determinants of this change in patients who have established disease are scarce....

  20. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries.

    Science.gov (United States)

    Ko, Minseong; Chae, Sujong; Cho, Jaephil

    2015-11-01

    Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems.

  1. Climate change: Implications for water and ecological resources

    International Nuclear Information System (INIS)

    Wall, G.; Sanderson, M.

    1990-01-01

    A conference was held to discuss the implications of climate change on water and ecological resources. The meeting consisted of a number of plenary sessions, luncheon speeches, an open forum, and five workshops. Presentations concerned regional and global issues, climate modelling, international aspects of climate change, water resources supply and demand, wetlands, wildlife and fisheries, agriculture and forests, and conservation strategies. Separate abstracts have been prepared for 32 presentations from the conference

  2. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change

    International Nuclear Information System (INIS)

    Koch, Hagen; Voegele, Stefan

    2009-01-01

    According to the latest IPCC reports, the frequency of hot and dry periods will increase in many regions of the world in the future. For power plant operators, the increasing possibility of water shortages is an important challenge that they have to face. Shortages of electricity due to water shortages could have an influence on industries as well as on private households. Climate change impact analyses must analyse the climate effects on power plants and possible adaptation strategies for the power generation sector. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short- and medium-term. In the long-term, the water demand will change as old units are phased out and new generating units appear in their place. In this paper, we describe the integration of functions for the calculation of the water demand of power plants into a water resources management model. Also included are both short-term reactive and long-term planned adaptation. This integration allows us to simulate the interconnection between the water demand of power plants and water resources management, i.e. water availability. Economic evaluation functions for water shortages are also integrated into the water resources management model. This coupled model enables us to analyse scenarios of socio-economic and climate change, as well as the effects of water management actions. (author)

  3. Water System Adaptation to Hydrological Changes: Module 1, Introduction to Water System Adaptation

    Science.gov (United States)

    Contemporary water management requires resilience, the ability to meet ever increasing water needs, and capacity to adapt to abrupt or transient changes in water quality and availability. For this purpose, effective adaptation to extreme hydrological events (e.g. intense storms, ...

  4. Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: robson@ien.gov.br; brandao@ien.gov.br; otero@ien.gov.br; cmnap@ien.gov.br; Schirru, Roberto; Silva, Ademir Xavier da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: schirru@lmp.ufrj.br; ademir@con.ufrj.br

    2007-07-01

    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic {sup 241}Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)

  5. Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    International Nuclear Information System (INIS)

    Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da

    2007-01-01

    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic 241 Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)

  6. Quantifying Changes in Accessible Water in the Colorado River Basin

    Science.gov (United States)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  7. Surprising volume change in PPy(DBS): An atomic force microscopy study

    DEFF Research Database (Denmark)

    Smela, E.; Gadegaard, N.

    1999-01-01

    Communication: Conjugated polymers such as polypyrrole (PPy) have potential use as artificial muscles or in microsystems such as valves for micro-fluid handling. One of the most important parameters in such uses is the magnitude of volume change during associated redox processes; however, until now...... estimates have varied greatly. Atomic force microscopy is reported here as allowing direct measurement of the in situ thickness change during oxidation and reduction of thin films of PPy doped with dodecylbenzenesulfonate....

  8. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    Science.gov (United States)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  9. The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes

    International Nuclear Information System (INIS)

    Carmen Grande, Maria del; Julia, Jorge Alvarez; Barrero, Carmen R.; Marschoff, Carlos M.; Bianchi, Hugo L.

    2006-01-01

    Density and viscosity of (water + acetonitrile) mixtures were measured over the whole composition range at the temperatures: (298.15, 303.15, 308.15, 313.15, and 318.15) K. A new mathematical approach was developed which allows the calculation of the derivatives of density with respect to composition avoiding the appearance of local discontinuities. Thus, reliable partial molar volumes and thermal expansion coefficients were obtained

  10. Water stress from high-volume hydraulic fracturing potentially threatens aquatic biodiversity and ecosystem services in Arkansas, United States

    Science.gov (United States)

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly O.; Fargione, Joseph; Kiesecker, Joseph M.; Baruch-Mordo, Sharon; Konschnik, Katherine E.; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N.

    2018-01-01

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and “frack” ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7–51% of catchments from June–November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  11. Water Stress from High-Volume Hydraulic Fracturing Potentially Threatens Aquatic Biodiversity and Ecosystem Services in Arkansas, United States.

    Science.gov (United States)

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly; Fargione, Joseph; Kiesecker, Joseph; Baruch-Mordo, Sharon; Konschnik, Katherine; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N

    2018-02-20

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and "frack" ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7-51% of catchments from June-November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  12. Characterization of Volume F Trash from Four Recent STS Missions: Weights, Categorization, Water Content

    Science.gov (United States)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The fate of space-generated solid wastes, including trash, for future missions is under consideration by NASA. Several potential treatment options are under consideration and active technology development. Potential fates for space-generated solid wastes are: Storage without treatment; storage after treatment(s) including volume reduction, water recovery, sterilization, and recovery plus recycling of waste materials. Recycling might be important for partial or full closure scenarios because of the prohibitive costs associated with resupply of consumable materials. For this study, we determined the composition of trash returned from four recent STS missions. The trash material was 'Volume F' trash and other trash, in large zip-lock bags, that accompanied the Volume F trash. This is the first of two submitted papers on these wastes. This one will cover trash content, weight and water content. The other will report on the microbial Characterization of this trash. STS trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were catalogued and placed into one of the following categories: food waste (and containers), drink containers, personal hygiene items - including EVA maximum absorbent garments (MAGs)and Elbow packs (daily toilet wipes, etc), paper, and packaging materials - plastic firm and duct tape. Trash generation rates for the four STS missions: Total wet trash was 0.602 plus or minus 0.089 kg(sub wet) crew(sup -1) d(sup -1) containing about 25% water at 0.154 plus or minus 0.030 kg(sub water) crew(sup -1) d(sup -1) (avg plus or minus stdev). Cataloguing by category: personal hygiene wastes accounted for 50% of the total trash and 69% of the total water for the four missions; drink items were 16% of total weight and 16% water; food wastes were 22% of total weight and 15% of the water; office waste and plastic film were 2% and 11% of the total waste and did not contain any water. The results can be

  13. Positron Annihilation as a Probe of Free Volume Changes in Polyoxymethylene-copolymer

    International Nuclear Information System (INIS)

    Mohamed, H.F.M.; Abdel-Hady, E.E.; Farid, S.S.

    2005-01-01

    The positron annihilation lifetime measurements have been carried out to study the free volume properties of polyoxymethylene-copolymer (POM). The effect of temperature changes on free volume hole sizes and hole size distribution has been investigated over the temperature range (5-100 degree C). All PAL spectra were analyzed with LT program, which is a finite term lifetime analysis and by MELT which is a continuous lifetime analysis. The free volume sites probed by o-Ps increase in size with increasing temperature. PALS measurements revealed the glass transition temperature (Tg) at 15 degree C. Below the glass transition temperature the hole size slowly (linearly) increases with temperatures, while the slope is steeper above Tg. The temperature of this transition as measured by PALS has turned out to be somewhat lower than what is obtained with differential scanning calorimetry (DSC). At room temperature the results show a narrow distribution, reflecting that the free volume holes are small and of rather equal size. As the temperature is raised, the distribution broadens. The largest change in distribution width will be discussed on the frame of the free volume model

  14. Relationship of carotid arterial functional and structural changes to left atrial volume in untreated hypertension.

    Science.gov (United States)

    Jaroch, Joanna; Rzyczkowska, Barbara; Bociąga, Zbigniew; Vriz, Olga; Driussi, Caterina; Loboz-Rudnicka, Maria; Dudek, Krzysztof; Łoboz-Grudzień, Krystyna

    2016-04-01

    The contribution of arterial functional and structural changes to left ventricular (LV) diastolic dysfunction has been the area of recent research. There are some studies on the relationship between arterial stiffness (a.s.) and left atrial (LA) remodelling as a marker of diastolic burden. Little is known about the association of arterial structural changes and LA remodelling in hypertension (H). The aim of this study was to examine the relationship between carotid a.s. and intima-media thickness (IMT) and LA volume in subjects with H. The study included 245 previously untreated hypertensives (166 women and 79 men, mean age 53.7 ± 11.8 years). Each patient was subjected to echocardiography with measurement of LA volume, evaluation of left ventricular hypertrophy (LVH) and LV systolic/diastolic function indices, integrated assessment of carotid IMT and echo-tracking of a.s. and wave reflection parameters. Univariate regression analysis revealed significant correlations between indexed LA volume and selected clinical characteristics, echocardiographic indices of LVH and LV diastolic/systolic function and a.s./wave reflection parameters. The following parameters were identified as independent determinants of indexed LA volume on multivariate regression analysis: diastolic blood pressure (beta = -0.229, P arterial stiffness but not intima-media thickness and LA volume in patients with untreated hypertension.

  15. Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents

    Science.gov (United States)

    Herting, Megan M.; Nagel, Bonnie J.

    2012-01-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. PMID:22610054

  16. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents.

    Science.gov (United States)

    Herting, Megan M; Nagel, Bonnie J

    2012-08-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. Published by Elsevier B.V.

  17. Wood decay by brown-rot fungi : changes in pore structure and cell wall volume

    Science.gov (United States)

    Douglas S. Flournoy; T. Kent Kirk; T.L. Highley

    1991-01-01

    Sweetgum (Liquidambar styraciflua L.) wood blocks were decayed by Postia (= Poria) placenta in soilblock cultures. Decay was terminated at various weight losses, and the pore volumes available to four low molecular weight molecules, (water, 4 Å,; glucose, 8 Å,; maltose, 10 Å; and raffinose, 128,) and three dextrans (Mr 6,000, 38 Å; 11,200, 51 Å; nd 17,500, 61 Å) were...

  18. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  19. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  20. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Science.gov (United States)

    Hecht, Vivian C.; Son, Sungmin; Li, Yingzhong; Knudsen, Scott M.; Olcum, Selim; Higgins, John M.; Chen, Jianzhu; Grover, William H.; Manalis, Scott R.

    2013-01-01

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell. PMID:23844039

  1. Acute changes in forearm venous volume and tone using radionuclide plethysmography

    International Nuclear Information System (INIS)

    Manyari, D.E.; Malkinson, T.J.; Robinson, V.; Smith, E.R.; Cooper, K.E.

    1988-01-01

    In this investigation blood pool scintigraphy was validated as a method to study acute changes in human forearm veins. Changes in regional forearm vascular volume (capacity) and the occluding pressure-volume (P-V) relationship induced by sublingual nifedipine (NIF) and nitroglycerin (GTN) were recorded in 16 patients with simultaneous data collection by the radionuclide and the mercury-in-rubber strain-gauge techniques. The standard error of estimate (Syx) between successive control measurements using the radionuclide method was 3.1% compared with 3.2% for the strain-gauge method. The venous P-V curves were highly reproducible using both techniques. Strain gauge and radionuclide measurements of acute changes in forearm venous volume correlated well (r = 0.86; Syx = 7%, n = 156). After 20 mg of NIF or 0.6 mg of GTN, mean heart rate increased from 71 +/- 10 to 77 +/- 9 and from 68 +/- 10 to 75 +/- 11 beats/min, respectively, and group systolic blood pressure decreased from 128 +/- 22 to 120 +/- 19 and from 136 +/- 18 to 126 +/- 23 mmHg, respectively (P less than 0.05). At venous occluding pressures of 0 and 30 mmHg, the forearm vascular volume did not change after NIF (2 +/- 4 and -1 +/- 4%; P greater than 0.05), whereas it increased after GTN (8 +/- 5 and 12 +/- 7%; P less than 0.001). The forearm venous P-V relationship did not change after NIF, whereas a significant rightward shift (venodilation, with an increase in unstressed volume) occurred after GTN

  2. Endogenous change: on cooperation and water in ancient history

    Science.gov (United States)

    Pande, S.; Ertsen, M.

    2013-04-01

    We propose and test the theory of endogenous change based on historical reconstructions of two ancient civilizations, Indus and Hohokam, in two water scarce basins, the Indus basin in the Indian subcontinent and the Lower Colorado basin in Southwestern United States. The endogenous institutional change sees changes in institutions as a sequence of equilibria brought about by changes in "quasi-parameters" such as rainfall, population density, soil and land use induced water resource availability. In the historical reconstructions of ancient civilizations, institutions are proximated by the scale of cooperation be it in the form of the extent of trade, sophisticated irrigation network, a centrally planned state or a loosely held state with a common cultural identity. The "quasi-parameters" either change naturally or are changed by humans and the changes affect the stability of cooperative structures over time. However, human influenced changes in the quasi-parameters itself are conditioned on the scale of existing cooperative structures. We thus provide insights into the quantitative dimensions of water access by ancient populations and its co-evolution with the socioeconomic and sociopolitical organization of the human past. We however do not suggest that water manipulation was the single most significant factor in stimulating social development and complexity - clearly this has been shown as highly reductionist, even misleading. The paper cautiously contributes to proximate prediction of hydrological change by attempting to understand the complexity of coupled human-hydrological systems.

  3. Modelling Per Capita Water Demand Change to Support System Planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.

    2016-12-01

    Water utilities have a number of levers to influence customer water usage. These include levers to proactively slow demand growth over time such as building and landscape codes as well as levers to decrease demands quickly in response to water stress including price increases, education campaigns, water restrictions, and incentive programs. Even actions aimed at short term reductions can result in long term water usage declines when substantial changes are made in water efficiency, as in incentives for fixture replacement or turf removal, or usage patterns such as permanent lawn watering restrictions. Demand change is therefore linked to hydrological conditions and to the effects of past management decisions - both typically included in water supply planning models. Yet, demand is typically incorporated exogenously using scenarios or endogenously using only price, though utilities also use rules and incentives issued in response to water stress and codes specifying standards for new construction to influence water usage. Explicitly including these policy levers in planning models enables concurrent testing of infrastructure and policy strategies and illuminates interactions between the two. The City of Las Vegas is used as a case study to develop and demonstrate this modeling approach. First, a statistical analysis of system data was employed to rule out alternate hypotheses of per capita demand decrease such as changes in population density and economic structure. Next, four demand sub-models were developed including one baseline model in which demand is a function of only price. The sub-models were then calibrated and tested using monthly data from 1997 to 2012. Finally, the best performing sub-model was integrated with a full supply and demand model. The results highlight the importance of both modeling water demand dynamics endogenously and taking a broader view of the variables influencing demand change.

  4. Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory.

    Science.gov (United States)

    Graziano, Giuseppe

    2006-04-07

    The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.

  5. Potential future changes in water limitations of the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gerten, D.; Schaphoff, S.; Lucht, W. [Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam (Germany)

    2007-02-15

    This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W{sub r} ) and biome-level water limitation (L{sub TA}), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L{sub TA} is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071-2100 compared to 1961-1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L{sub TA}, ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L{sub TA} tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L{sub TA} suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L{sub TA} would be reversed from predominantly positive to predominantly negative.

  6. Potential future changes in water limitations of the terrestrial biosphere

    International Nuclear Information System (INIS)

    Gerten, D.; Schaphoff, S.; Lucht, W.

    2007-01-01

    This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W r ) and biome-level water limitation (L TA ), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L TA is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071-2100 compared to 1961-1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L TA , ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L TA tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L TA suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L TA would be reversed from predominantly positive to predominantly negative

  7. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    Science.gov (United States)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture

  8. Whole Prostate Volume and Shape Changes with the Use of an Inflatable and Flexible Endorectal Coil

    International Nuclear Information System (INIS)

    Osman, M.; Shebel, H.; Sankineni, S.; Bernardo, M.L.; Daar, D.; Choyke, P.L.; Turkbey, B.; Agarwal, H.K.; Osman, M.; Shebel, H.; Bernardo, M.L.; Wood, P.J.; Pinto, P.A.; Agarwal, H.K.

    2014-01-01

    To determine to what extent an inflatable endorectal coil (ERC) affects whole prostate (WP) volume and shape during prostate MRI. Materials and Methods. 79 consecutive patients underwent T2W MRI at 3T first with a 6-channel surface coil and then with the combination of a 16-channel surface coil and ERC in the same imaging session. WP volume was assessed by manually contouring the prostate in each T2W axial slice. PSA density was also calculated. The maximum anterior-posterior (AP), left-right (LR), and cranio caudal (CC) prostate dimensions were measured. Changes in WP prostate volume, PSA density, and prostate dimensions were then evaluated. Results. In 79 patients, use of an ERC yielded no significant change in whole prostate volume (0.6 ± 5.7 %, Ρ=0.270) and PSA density (-0.2 ±5.6%,Ρ=0.768 ). However, use of an ERC significantly decreased the AP dimension of the prostate by -8.6 ±7.8%(Ρ<0.001), increased LR dimension by 4.5 ± 5.8 %(Ρ<0.001), and increased the CC dimension by 8.8 ±6.9 %( Ρ<0.001). Conclusion. Use of an ERC in prostate MRI results in the shape deformation of the prostate gland with no significant change in the volume of the prostate measured on T2W MRI. Therefore, WP volumes calculated on ERC MRI can be reliably used in clinical work flow.

  9. INFLUENCE OF CLIMATE CHANGES ON WATER RESOURCES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Violeta Ivanov

    2012-06-01

    Full Text Available The paper aims to analyze the current state of affairs with water resources in Moldova, the challenges it faces for its national human and economic development, having in mind that the water resources are quite limited in Moldova, which encounters pollution, degradation influenced by climate change and unwise human activity to their biodiversity and ecosystems, availability and accessibility. It also attempts to highlight the relationship between climate change and water resources in Moldova, which has adverse effects on both environment and people’s health, and raise significant hurdles to the international, regional and sectoral development.

  10. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  11. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    Science.gov (United States)

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  12. The influence of peat volume change and vegetation on the hydrology of a kettle-hole wetland in Southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    P. Whittington

    2007-12-01

    Full Text Available Links between local hydrology and vegetation type exist in wetlands, yet it is unclear what role peat volume change plays in these interactions. We measured peat volume change and hydraulic conductivity (Kfield at three contrasting sites located on the quaking vegetation mat of a kettle-hole peatland in southern Ontario. The three sites had visibly different plant communities and were named, according to their dominant vegetation, Sedge (Carex spp., Typha (Typha angustifolia and Carr (Cornus stolonifera. Peat was also collected for laboratory studies of peat volume change, vertical (Kv and horizontal (Kh hydraulic conductivity and the effect of compression on hydraulic conductivity (Kc.In the field, the water table rose throughout the study period, resulting in swelling of the peat. Peat volume change above the -100 cm layer was 11.2%, 6.0% and 3.8% at the Sedge, Typha, and Carr sites respectively. In laboratory samples, a falling water table caused compression of the peat below the structured surface mat, and relative peat volume change between the sites followed the same pattern as in the field. Kfield, Kv and Kh generally decreased with depth from ca. 10-2 to 10-6 cm s-1. In the surface layers (0 to -50cm K trended Carr>Typha>Sedge, whereas the reverse trend was observed in deeper peat. Artificial compression affected K only in the uppermost layers (0 to -15cm. The decline in Kc with compression also trended Sedge>Typha>Carr. Differences in peat volume change and K are probably related to differences in vegetation and soil structure, and may be important for maintaining suitable growing conditions within each community.

  13. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

    Directory of Open Access Journals (Sweden)

    El Ganaoui Mohammed

    2009-01-01

    Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

  14. Groundwater-level and storage-volume changes in the Equus Beds aquifer near Wichita, Kansas, predevelopment through January 2015

    Science.gov (United States)

    Whisnant, Joshua A.; Hansen, Cristi V.; Eslick, Patrick J.

    2015-10-01

    Development of the Wichita well field began in the 1940s in the Equus Beds aquifer to provide the city of Wichita, Kansas, a new water-supply source. After development of the Wichita well field began, groundwater levels began to decline. Extensive development of irrigation wells that began in the 1970s also contributed to substantial groundwater-level declines. Groundwater-level declines likely enhance movement of brine from past oil and gas production near Burrton, Kansas, and natural saline water from the Arkansas River into the Wichita well field. Groundwater levels reached a historical minimum in 1993 because of drought conditions, irrigation, and the city of Wichita’s withdrawals from the aquifer. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program to ensure that Wichita’s water needs would be met through the year 2050 and beyond as part of its efforts to manage the part of the Equus Beds aquifer Wichita uses. A key component of the Integrated Local Water Supply Program was the Equus Beds Aquifer Storage and Recovery project. The Aquifer Storage and Recovery project’s goal is to store and eventually recover groundwater and help protect the Equus Beds aquifer from oil-field brine water near Burrton, Kansas, and saline water from the Arkansas River. Since 1940, the U.S. Geological Survey has monitored groundwater levels and storage-volume changes in the Equus Beds aquifer to provide data to the city of Wichita in order to better manage its water supply.

  15. Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

  16. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud

    2012-01-01

    the Soviet Union collapsed. Will climate change exacerbate water stress and thus conflicts? We have developed a coupled climate, land-ice and rainfall-runoff model for the Syr Darya to quantify impacts and show that climatic changes are likely to have consequences on runoff seasonality due to earlier snow......-melt. This will increase water stress in unregulated catchments because less water will be available for irrigation in the summer months. Threats from geohazards, above all glacier lake outbursts, are likely to increase as well. The area at highest risk is the densely populated, agriculturally productive, and politically......Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since...

  17. Water Quality and Management Changes Over the History of Poland.

    Science.gov (United States)

    Szalinska, Ewa

    2018-01-01

    Poland is one of the countries distinguished by a long and colorful past. Undergoing numerous turbulent socio-economic changes forced by the course of history, Poland is now one of the member states of the European Union. Experiencing low water quantity and high contamination levels in surface waters, Poland is following other EU countries in the effort to reach a "good" water status. Herein are presented impacts of changes in Polish history on water legislation, management, and research, as well as explanations for the perceptible split between engineering and scientific approaches to the aquatic issues. Drawbacks caused by unsatisfactory state research funding for the sciences and division of the water related contemporary scientific interests are also discussed.

  18. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    Science.gov (United States)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg

  19. Improving Water Governance and Climate Change Adaptation in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving Water Governance and Climate Change Adaptation in Cambodia. Cambodia's Tonle Sap Lake is the largest freshwater lake in Southeast Asia. It is estimated that up to half of Cambodia's population benefits directly or indirectly from the lake's resources. Over the next few decades, climate change and new ...

  20. Sustainable Water Management under Climate Change in Small ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sustainable Water Management under Climate Change in Small Island States of the Caribbean. In the Caribbean islands, climate change is affecting freshwater availability and other ecosystem services in complex ways. For example, freshwater supply is diminished by droughts and affected by saline intrusion due to sea ...

  1. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  2. Climate change impacts on boundary and transboundary water management

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, J.P.; Martin, H.; Colucci, P. [Global Change Strategies International, Ottawa, ON (Canada); McBean, G. [Institute for Catastrophic Loss Reduction, Toronto, ON (Canada); McDougall, J.; Shrubsole, D.; Whalley, J. [Western Ontario Univ., London, ON (Canada); Halliday, R. [R. Halliday and Associates, Saskatoon, SK (Canada); Alden, M.; Mortsch, L.; Mills, B. [Environment Canada, Downsview, ON (Canada). Meteorological Service of Canada; Coleman, C.; Zhang, Y.; Jia, J.; Porco, M.; Henstra, S.

    2003-06-30

    Climate change will have an impact on water cycles, with increased river flows in some areas, and decreased river flows in others. This report focuses on climate change related issues of water management in boundary and transboundary areas between Canada and the United States. Water resources in these areas are governed by agreements between provinces, territories and the federal governments of Canada and the United States. The Climate Change Action Fund and Natural Resources Canada launched a project through a partnership between the Global Change Strategies International (GCSI), the Institute for Catastrophic Loss Reduction (ICLR) and the Meteorological Services of Canada (MSC). The objective was to address potential difficulties in water management resources within North America. This report presents the results of the collaboration. It includes climate scenarios and climate model outputs on future temperature and precipitation by 2050, under a range of emission scenarios. It also includes an analysis of Canada-United States transboundary water instruments for vulnerability to climate change, as well as perceptions of fairness in allocating water in the Saskatchewan River Basin. This report also includes a review of the terms of existing Treaties and Agreements of 11 river basins between Canada and the United States on boundary and transboundary waters. The report concludes that it is very likely that much of Canada will see increased intense precipitation events while the interior regions will have increased risk of drought. These two projections will have major implications for river flows and the management of water resource. Seven recommendations were presented to ensure that water is allocated fairly and responsibly. refs., tabs., figs.

  3. Climate changes and water resource planning: WIZ, an operational tool

    Directory of Open Access Journals (Sweden)

    Bernardo Mazzanti

    2013-09-01

    Full Text Available The institutional activity of the Arno River Basin Authority is focused on two strategical planning processes: the River Basin Management Plan, according to 2000/60/CE European Direcitve, and the Flood Management Plan, according to 2007/60/CE European Directive. Both plans contain most of the contents of Arno River Basin Plan, developed after the italian law L. 183/89, and are tackling with a global approach the management of extreme flood events and water budget problems. In this context, the evaluation of climate change impact on the water cycle is extremely relevant. Therefore the Arno River Basin Authority is engaged to analyze the impact of climate changes on water status, regarding as main reference the IPCC AR4 report e their connected forecasting scenarios. The involvement in a LIFE+ project (WIZ – WaterIZe Spatial Planning is the framework for a sample of preliminary evaluations, with the aim to include in the next updated edition of River Basin Management Plan new adapting measures (more than mitigation actions, in order to fight the negative impact of climate change on the possibility to achieve the Water Framework Directive’s quality objectives. Focusing the attention on the Lower Arno valley (Valdarno Inferiore and taking into account as simplifying hypothesis a linear correlation between groundwater recharge and total rainfall fluctuations, the effects of actual and projected climate changes are evaluated. For each water abstraction area, the potential variation of available groundwater for antropic use (in cubic meter per year is estimated, showing a decreasing trend ranging, with a high spatial variability, in a 5-10% interval. Due the increase of water demand and the distribution network losses, even such a percentage of decreasing potential recharge should be carefully evaluated; without water savings measures and investments on the renovation of distribution networks, an increase of the typical summer water scarcity crisis

  4. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  5. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  6. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

    International Nuclear Information System (INIS)

    Hodel, Jerome; Besson, Pierre; Pruvo, Jean-Pierre; Leclerc, Xavier; Rahmouni, Alain; Grandjacques, Benedicte; Luciani, Alain; Petit, Eric; Lebret, Alain; Outteryck, Olivier; Benadjaoud, Mohamed Amine; Maraval, Anne; Decq, Philippe

    2014-01-01

    To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. (orig.)

  7. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Hopital Roger Salengro, Service de Neuroradiologie, Lille (France); Besson, Pierre; Pruvo, Jean-Pierre; Leclerc, Xavier [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Rahmouni, Alain; Grandjacques, Benedicte; Luciani, Alain [Hopital Henri Mondor, Department of Radiology, Creteil (France); Petit, Eric; Lebret, Alain [Signals Images and Intelligent Systems Laboratory, Creteil (France); Outteryck, Olivier [Hopital Roger Salengro, Department of Neurology, Lille (France); Benadjaoud, Mohamed Amine [Radiation Epidemiology Team, CESP, Centre for Research in Epidemiology and Population Health U1018, Villejuif (France); Maraval, Anne [Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Decq, Philippe [Hopital Henri Mondor, Department of Neurosurgery, Creteil (France)

    2014-01-15

    To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. (orig.)

  8. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... to be in accordance with results obtained by other methods. Noncontrast functional MR (fMR) imaging showed signal increases in gray matter, but also inconsistent changes in some white matter regions. CONCLUSION: In this experiment, contrast-enhanced imaging seemed to show a somewhat higher sensitivity towards changes...

  9. Exercise induced pulmonary, hepatic and splenic blood volume changes in diabetic subjects

    International Nuclear Information System (INIS)

    Mubashar, M.

    1993-01-01

    Exercise induced blood volume changes in visceral organs were determined by scintillation gamma camera imaging in 11 normal healthy male volunteers and 15 NIDDM male diabetics without clinical signs of neuropathy. After in-vivo labelling of red cells with Technetium-99m, the data was acquired in the supine position at rest and immediately after graded upright ergometer bicycle exercise. From rest to peak exercise, pulmonary blood volume increased 19% and 75% in normal volunteers of less than and more than 40 years of age respectively. A decrease of 18% and 42% was noted in the hepatic and splenic blood volume respectively, regardless of the age, in the normal subjects. In contrast to normals, the diabetic patients showed in response to peak exercise as compared to age-matched controls. A significant difference in the drop in pulmonary blood volume 82.37% and 90% was observed between diabetics of more than and less than 7 years duration respectively. The liver and spleen of the diabetic subjects revealed a lesser decrease of 87.6% and 71.33% respectively in response to peak stress in comparison to the age matched controls. The reduction in the hepatic and splenic blood volume was equally evident in diabetics of more than or less than 50 years of age and it was statistically nonsignificant. This study demonstrates that the normal pattern of redistribution of blood volume in response to maximum exercise in diabetics is altered such that there is restricted pulmonary perfusion and diminished vasoconstriction of the hepato splenic vascular bed and the changes in the pulmonary circulation are related to the duration of the diabetics rather than the age of the patient. (author)

  10. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  11. How is the River Water Quality Response to Climate Change Impacts?

    Science.gov (United States)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  12. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    Science.gov (United States)

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  13. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  14. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  15. Residual limb fluid volume change and volume accommodation: Relationships to activity and self-report outcomes in people with trans-tibial amputation.

    Science.gov (United States)

    Sanders, Joan E; Youngblood, Robert T; Hafner, Brian J; Ciol, Marcia A; Allyn, Katheryn J; Gardner, David; Cagle, John C; Redd, Christian B; Dietrich, Colin R

    2018-02-01

    Fluctuations in limb volume degrade prosthesis fit and require users to accommodate changes using management strategies, such as donning and doffing prosthetic socks. To examine how activities and self-report outcomes relate to daily changes in residual limb fluid volume and volume accommodation. Standardized, two-part laboratory protocol with an interim observational period. Participants were classified as "accommodators" or "non-accommodators," based on self-report prosthetic sock use. Participants' residual limb fluid volume change was measured using a custom bioimpedance analyzer and a standardized in-laboratory activity protocol. Self-report health outcomes were assessed with the Socket Comfort Score and Prosthesis Evaluation Questionnaire. Activity was monitored while participants left the laboratory for at least 3 h. They then returned to repeat the bioimpedance test protocol. Twenty-nine people were enrolled. Morning-to-afternoon percent limb fluid volume change per hour was not strongly correlated to percent time weight-bearing or to self-report outcomes. As a group, non-accommodators ( n = 15) spent more time with their prosthesis doffed and reported better outcomes than accommodators. Factors other than time weight-bearing may contribute to morning-to-afternoon limb fluid volume changes and reported satisfaction with the prosthesis among trans-tibial prosthesis users. Temporary doffing may be a more effective and satisfying accommodation method than sock addition. Clinical relevance Practitioners should be mindful that daily limb fluid volume change and prosthesis satisfaction are not dictated exclusively by activity. Temporarily doffing the prosthesis may slow daily limb fluid volume loss and should be investigated as an alternative strategy to sock addition.

  16. Know your tools - concordance of different methods for measuring brain volume change after ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew [The University of Melbourne, Departments of Medicine and Neurology, Melbourne Brain Centre rate at The Royal Melbourne Hospital, Parkville, Victoria (Australia); Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M. [The University of Melbourne, Department of Radiology, The Royal Melbourne Hospital, Parkville (Australia); Churilov, Leonid [The University of Melbourne, The Florey Institute of Neurosciences and Mental Health, Parkville (Australia); Parsons, Mark W. [University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Translational Neuroscience and Mental Health, Newcastle (Australia)

    2015-07-15

    Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods. Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements. Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions. Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions. (orig.)

  17. Know your tools - concordance of different methods for measuring brain volume change after ischemic stroke

    International Nuclear Information System (INIS)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew; Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M.; Churilov, Leonid; Parsons, Mark W.

    2015-01-01

    Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods. Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements. Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions. Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions. (orig.)

  18. Volume-of-change cone-beam CT for image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Junghoon; Stayman, J Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A Jay; Siewerdsen, Jeffrey H; Prince, Jerry L

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D–2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. (paper)

  19. Improving the clinical correlation of multiple sclerosis black hole volume change by paired-scan analysis.

    Science.gov (United States)

    Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B

    2012-01-01

    The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.

  20. Mechanisms controlling the volume of pleural fluid and extravascular lung water

    Directory of Open Access Journals (Sweden)

    G. Miserocchi

    2009-12-01

    Full Text Available Pleural and interstitial lung fluid volumes are strictly controlled and maintained at the minimum thanks to the ability of lymphatics to match the increase in filtration rate. In the pleural cavity, fluid accumulation is easily accommodated by retraction of lung and chest wall (high compliance of the pleural space; the increase of lymph flow per unit increase in pleural fluid volume is high due to the great extension of the parietal lymphatic. However, for the lung interstitium, the increase in lymph flow to match increased filtration does not need to be so great. In fact, increased filtration only causes a minor increase in extravascular water volume (<10% due to a marked increase in interstitial pulmonary pressure (low compliance of the extracellular matrix which, in turn, buffers further filtration. Accordingly, a less extended lymphatic network is needed. The efficiency of lymphatic control is achieved through a high lymphatic conductance in the pleural fluid and through a low interstitial compliance for the lung interstitium. Fluid volume in both compartments is so strictly controlled that it is difficult to detect initial deviations from the physiological state; thus, a great physiological advantage turns to be a disadvantage on a clinical basis as it prevents an early diagnosis of developing disease.

  1. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Early changes in volume and non-enhanced volume of acoustic neurinoma after stereotactic gamma-radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Hirofumi; Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Mori, Yoshimasa; Iwakoshi, Takayasu; Niwa, Masahiro; Kai, Osamu; Hirose, Mitsuhiko [Komaki City Hospital, Aichi (Japan)

    1994-09-01

    The effectiveness of stereotactic gamma-radiosurgery for treating acoustic neurinoma was evaluated by measuring the volumes of the tumor, non-enhanced tumor, and cerebellar edema in 13 patients with acoustic neurinoma who were followed up for 9 to 15 months (median 12.7 mos) after treatment. The tumor volume and non-enhanced volume tended to reach a maximum after 6 months, and cerebellar edema volume after 9 months, then decreased gradually thereafter. Hearing loss tended to increase gradually, but involvement of the facial nerve was transient. (author).

  3. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  4. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost of indiv......Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost...... of individual very extreme events (e.g. more than 100 years) of approximately 70 % and a 900 % increase in the expected annual losses due to floods. Other case studies in Denmark show smaller impacts, but still very significant increased annual costs compared to the present state. This calls for systematic...

  5. CLIMATE CHANGE AND WATER POTENTIAL OF THE PAMIR MOUNTAINS

    Directory of Open Access Journals (Sweden)

    Alexander F. Finaev

    2016-01-01

    Full Text Available The Pamir region supplies water for most countries of the Central Asia. Discussions and arguments with regard to reduction of water resources related to climate change are popular today among various governmental and international institutions being a greatconcern for modern society. Probable decrease of the Pamirs runoff will affect downstreamcountries that can face water deficiency. However, there is no scientific rationale behindsuch disputes. The Pamir region is a remote, high-mountainous and hard-to-access area with scarce observation network and no reliable data. It is not sufficiently investigated in order to perform any assessment of climate change. This article represents results of study of climate parameters change (such as temperature, precipitation and river discharge in the Pamirs. The study area covers all countries included in this mountain region (Tajikistan, China, Afghanistan and Kyrgyzstan. Observation records, remote sensing data and GIS modeling were used in the present work. Chronological data series were divided into two equal time intervals and were treated as climatic periods. Further analysis of climate change helped to estimate its influence on change of water potential in the Pamirs. The paper considers issues of liquid and solid precipitation change in the study area.

  6. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  7. Cerebral blood volume changes in cats with acute increased intracranial pressure

    International Nuclear Information System (INIS)

    Kondo, Takashi; Kano, Mitsumasa; Ikeda, Takuya.

    1984-01-01

    We measured the changes in cerebral blood volume in cats with increased intracranial pressure with a high-speed CT scanner, employing contrast effects by the iodine agent. In acute increased intracranial pressure caused by raising the extradural pressure by 20 mmHg, cerebral blood volume showed a significant decrease by 32% in comparison with that at normal intracranial pressure. There was also a tendency that a decline of iodine was delayed with time at increased intracranial pressure than that at normal pressure. This was supposed to be a delay of cerebral circulation due to venous congestion. This experimental model and measuring method provide the changes in CBV in the same individual without any tedious procedure, and therefore this is a reliable method with respect to precision. (author)

  8. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  9. Large electrically induced height and volume changes in poly(3,4- ethylenedioxythiophene) /poly(styrenesulfonate) thin films

    NARCIS (Netherlands)

    Charrier, D.S.H.; Janssen, R.A.J.; Kemerink, M.

    2010-01-01

    We demonstrate large, partly reversible height and volume changes of thin films of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) on the anode of interdigitating gold electrodes under ambient conditions by applying an electrical bias. The height and volume changes were monitored

  10. Climate Change and Water Scarcity: The Case of Saudi Arabia.

    Science.gov (United States)

    DeNicola, Erica; Aburizaiza, Omar S; Siddique, Azhar; Khwaja, Haider; Carpenter, David O

    2015-01-01

    Climate change is expected to bring increases in average global temperatures (1.4°C-5.8°C [34.52°F-42.44°F] by 2100) and precipitation levels to varying degrees around the globe. The availability and quality of water will be severely affected, and public health threats from the lack of this valuable resource will be great unless water-scarce nations are able to adapt. Saudi Arabia provides a good example of how the climate and unsustainable human activity go hand in hand in creating stress on and depleting water resources, and an example for adaptation and mitigation. A search of the English literature addressing climate change, water scarcity, human health, and related topics was conducted using online resources and databases accessed through the University at Albany, State University of New York library web page. Water scarcity, which encompasses both water availability and water quality, is an important indicator of health. Beyond drinking, water supply is intimately linked to food security, sanitation, and hygiene, which are primary contributors to the global burden of disease. Poor and disadvantaged populations are the ones who will suffer most from the negative effects of climate change on water supply and associated human health issues. Examples of adaptation and mitigation measures that can help reduce the strain on conventional water resources (surface waters and fossil aquifers or groundwater) include desalination, wastewater recycling and reuse, and outsourcing food items or "virtual water trade." These are strategies being used by Saudi Arabia, a country that is water poor primarily due to decades of irresponsible irrigation practices. The human and environmental health risks associated with these adaptation measures are examined. Finally, strategies to protect human health through international collaboration and the importance of these efforts are discussed. International, multidisciplinary cooperation and collaboration will be needed to promote

  11. Parameterization of phase change of water in a mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Eppel, D; Grassl, H

    1987-01-01

    A parameterization scheme of phase change of water is suggested to be used in the 3-D numerical nonhydrostatic model GESIMA. The microphysical formulation follows the so-called bulk technique. With this procedure the net production rates in the balance equations for water and potential temperature are given both for liquid and ice-phase. Convectively stable as well as convectively unstable mesoscale systems are considered. With 2 figs..

  12. MR imaging of experimental subdural bleeding. Correlates of brain deformation and tissue water content, and changes in vital physiological parameters

    International Nuclear Information System (INIS)

    Orlin, J.R.; Thuomas, K.Aa.; Ponten, U.; Bergstroem, K.; Zwetnow, N.N.

    1997-01-01

    Purpose: To evaluate morphological and physiological changes during acute lethal subdural bleeding in 2 models of anaesthetized dogs. Material and Methods: In model I, blood from the aorta was led into a collapsed subdural rubber balloon while in model II, the blood was directed into the subdural compartment over the left cerebral frontoparietal lobe. Eight vital physiological parameters were continuously registered. MR imaging visualized the compression and displacement of cerebral tissue, and assessed the dynamic changes in cerebral tissue water. Results: In model I, tissue herniation and compression of cerebral ventricles led to death at a haematoma volume corresponding to 8% of the intracranial volume. In model II, the extravasated blood progressed infratentorially and into the spinal sac with a volume that was 3 times larger than that of the lethal haematoma. Tissue water increased almost linearly during bleeding in both models. (orig.)

  13. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... in cerebral hemodynamics than noncontrast-enhanced imaging. The results of the deconvolution analysis suggested that perfusion calculation by conventional tracer kinetic methods may be impracticable because of nonlinear effects in contrast-enhanced MR imaging....

  14. The change of volume of each hepatic segment in liver cirrhosis

    International Nuclear Information System (INIS)

    Arai, Kazunori; Takashima, Tsutomu; Matsui, Osamu; Kadoya, Masumi; Kameyama, Tomiaki; Nishijima, Hiroshi; Takanaka, Tsuyoshi; Gabata, Toshifumi

    1986-01-01

    We studied morphological changes of liver due to liver cirrhosis by evaluating the volume of liver and each hepatic segments (left lateral, left medial, right anterior, right posterior, and caudate lobe) divided using dynamic sequential CT during arterial portography. In liver cirrhosis, left lateral segment and caudate lobe were relatively enlarged, while right lobe and left medial segment showed significant shrinkage. But when posterior inferior right hepatic vein was evident on CT, right posterior segment did not shrink. (author)

  15. Growing sensitivity of maize to water scarcity under climate change.

    Science.gov (United States)

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  16. Optimization of the Water Volume in the Buckets of Pico Hydro Overshot Waterwheel by Analytical Method

    Science.gov (United States)

    Budiarso; Adanta, Dendy; Warjito; Siswantara, A. I.; Saputra, Pradhana; Dianofitra, Reza

    2018-03-01

    Rapid economic and population growth in Indonesia lead to increased energy consumption, including electricity needs. Pico hydro is considered as the right solution because the cost of investment and operational cost are fairly low. Additionally, Indonesia has many remote areas with high hydro-energy potential. The overshot waterwheel is one of technology that is suitable to be applied in remote areas due to ease of operation and maintenance. This study attempts to optimize bucket dimensions with the available conditions. In addition, the optimization also has a good impact on the amount of generated power because all available energy is utilized maximally. Analytical method is used to evaluate the volume of water contained in bucket overshot waterwheel. In general, there are two stages performed. First, calculation of the volume of water contained in each active bucket is done. If the amount total of water contained is less than the available discharge in active bucket, recalculation at the width of the wheel is done. Second, calculation of the torque of each active bucket is done to determine the power output. As the result, the mechanical power generated from the waterwheel is 305 Watts with the efficiency value of 28%.

  17. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  18. Water Resources Data, Colorado, Water Year 1999. Volume 1. Missouri River Basin, Arkansas River Basin, and Rio Grande Basin

    Science.gov (United States)

    2000-04-01

    because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any...CO WATER-QUALITY RECORDS LOCATIOI -Lat 38=16󈧖», long 104°43󈧇", in SEV4 NEV4 sec.36, T.20 S. ielt bank 200 ft downstream from northeast comer of

  19. Inseminating dose and water volume applied to the artificial fertilization of Steindachneridion parahybae (Steindachner, 1877 (Siluriformes: Pimelodidae: Brazilian endangered fish

    Directory of Open Access Journals (Sweden)

    Eduardo Antônio Sanches

    Full Text Available Abstract The Steindachneridion parahybae is an endangered catfish from Brazil and strategies applied for gametes optimization are necessary. The aim of this study was to assess inseminating doses and water volume upon the fertilization, hatching rates and percentage of normal larvae in S. parahybae . Was used a randomized design in factorial scheme (4×4 with four inseminating doses: 1.0×104, 1.0×105, 1.0×106, 1.0×107spermatozoa oocyte-1 and four volumes of water: 1, 35, 65 and 95mL of water g-1 of oocytes. The combination of doses and volumes were performed in triplicates (n=48. Each incubator (1.5L of useful volume with 1g of oocytes was considered as an experimental unit. Significant interaction between inseminating doses and volumes of water to the values of the fertilization rates and quadratic effect of doses and volume for the values of hatching rates were observed. The doses and volumes did not influence the percentage of normal larvae (87.70±5.06%. It is recommended the use of 5.5×106 spermatozoa oocyte-1 and 1mL of water g-1 of oocytes during in vitro fertilization procedure. These results allowed us to develop new biotechnological strategies applied to the conservation of S. parahybae .

  20. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Elliott, W.P.; Smith, M.E.; Angell, J.K.

    1990-01-01

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  1. Landsat change detection can aid in water quality monitoring

    Science.gov (United States)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  2. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.

    Science.gov (United States)

    Abay, T Y; Kyriacou, P A

    2018-06-01

    Photoplethysmography (PPG) is an optical technique that measures blood volume variations. The main application of dual-wavelength PPG is pulse oximetry, in which the arterial oxygen saturation (SpO[Formula: see text]) is calculated noninvasively. However, the PPG waveform contains other significant physiological information that can be used in conjunction to SpO[Formula: see text] for the assessment of oxygenation and blood volumes changes. This paper investigates the use of near infrared spectroscopy (NIRS) processing techniques for extracting relative concentration changes of oxygenated ([Formula: see text]HbO[Formula: see text]), reduced ([Formula: see text]HHb) and total haemoglobin ([Formula: see text]tHb) from dual-wavelength PPG signals during intermittent pressure-increasing vascular occlusions. A reflectance PPG sensor was attached on the left forearm of nineteen (n = 19) volunteers, along with a reference NIRS sensor positioned on the same forearm, above the left brachioradialis. The investigation protocol consisted of seven intermittent and pressure-increasing vascular occlusions. Relative changes in haemoglobin concentrations were obtained by applying the modified Beer-Lambert law to PPG signals, while oxygenation changes were estimated by the difference between red and infrared attenuations of DC PPGs (A[Formula: see text] = [Formula: see text]A[Formula: see text] - [Formula: see text]A[Formula: see text]) and by the conventional SpO[Formula: see text]. The [Formula: see text]HbO[Formula: see text], [Formula: see text]HHb, [Formula: see text]tHb from the PPG signals indicated significant changes in perfusion induced by either partial and complete occlusions (p < 0.05). The trends in the variables extracted from PPG showed good correlation with the same parameters measured by the reference NIRS monitor. Bland and Altman analysis of agreement between PPG and NIRS showed underestimation of the magnitude of changes by the PPG. A[Formula: see text

  3. The Morphological Change of Silver Nanoparticles in Water

    International Nuclear Information System (INIS)

    Wang Peng; Wang Rong-Yao; Jin Jing-Yang; Xu Le; Shi Qing-Fan

    2012-01-01

    The solvent-induced morphological change of silver nanoparticles is studied with a combination of optical spectroscopy and atomic force microscopy (AFM). By using the local surface plasmon resonance (LSPR) spectroscopy arising from Ag nanoparticles, an in-situ investigation of the spectral changes is carried out before, during and after exposure of Ag island films to water. Combining with the morphological observations by AFM, we sort out the morphological and dielectric contributions to the water-induced LSPR changes. Our results demonstrate that a slight morphological change induced by water contact can result in an apparent blue shift of the LSPR spectral maximum. Furthermore, it is found that this structural change leads to a higher sensitivity of the Ag island films in response to the change in the external dielectric environment. This solvent-induced morphological change, and consequently the modification of the LSPR of the metal nanoparticles, may have significant impact in the applications of solvent-involved plasmon sensors, such as chemical/biological sensing and single-molecule spectroscopy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  5. Hippocampal volume changes in healthy subjects at risk of unipolar depression

    DEFF Research Database (Denmark)

    Baaré, William F C; Vinberg, Maj; Knudsen, Gitte M

    2010-01-01

    Unipolar depression is moderately heritable. It is unclear whether structural brain changes associated with unipolar depression are present in healthy persons at risk of the disorder. Here we investigated whether a genetic predisposition to unipolar depression is associated with structural brain...... changes. A priori, hippocampal volume reductions were hypothesized. Using a high-risk study design, magnetic resonance imaging brain scans were obtained from 59 healthy high-risk subjects having a co-twin with unipolar depression, and 53 healthy low-risk subjects without a first-degree family history...

  6. Chemistry in water reactors: operating experience and new developments. 2 volumes

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings of the International conference on chemistry in water reactors (Operating experience and new developments), Volume 1, are divided into 8 sessions bearing on: (session 1) Primary coolant activity, corrosion products (5 conferences), (session 2) Dose reduction (4 conferences), (session 3) New developments (4 conferences), poster session: Primary coolant chemistry (16 posters), (session 4) Decontamination (5 conferences), poster session (2 posters), (session 5) BWR-Operating experience (3 conferences), (session 6) BWR-Modelling of operating experience (4 conferences), (session 7) BWR-Basic studies (4 conferences), (session 8) BWR-New technologies (3 conferences)

  7. Change of secondary water regime of Paks NPP. Change of secondary water regime at Unit 2

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.; Pinter, T.; Bajari, M.; Tilky, P.

    2001-01-01

    The installation of high pH water regime during the 17th cycle of Unit 2 aimed to decrease the amount of transportation inlet of erosion-corrosion products (magnitude) in feedwater to SGs. The resolution of OAH-NBI permitting the installation ordained to make an evaluation of the process. The main conclusions and results are discussed. The high pH water regime proved to be adequate in the case of Unit 2 as well, similarly to Units 3, 4 and 1. (R.P.)

  8. Changes with age in left ventricular function and volumes at rest and postexercise in postmenopausal women

    International Nuclear Information System (INIS)

    Yamada, Kiyoyasu; Isobe, Satoshi; Hirai, Makoto

    2006-01-01

    In postmenopausal women, it has been reported that the plasma estrogen levels diminish immediately after menopause, and that this phenomenon affects left ventricular (LV) function and volumes. However, the effects of age on LV function and volumes for a relatively short period in the postmenopausal women remain to be established. Electrocardiographically gated-myocardial single-photon emission computed tomography (SPECT) has recently provided accurate estimations of perfusion, cardiac systolic and diastolic functions. We investigated the age-related changes in LV function and volumes in postmenopausal women using electrocardiographically gated-myocardial scintigraphy. Twenty-two consecutive healthy postmenopausal women (mean age of 63.8±9.4 years, from 42 to 77 years) without cardiac disease underwent stress/rest technetium-99m tetrofosmin gated-myocardial SPECT with 16 frames per cardiac cycle at baseline and follow-up (1.0±0.3 years later). LV ejection fraction (LVEF) and LV volumes were calculated by quantitative gated SPECT (QGS) software. Fourier series were retained for the analysis of the volume curve. From this volume curve, we derived the following diastolic indices: peak filling rate (PFR) and time to PFR (TPFR). End-systolic volume index (ESVI) significantly decreased at postexercise (p=0.02) and tended to decrease at rest (p=0.06) from the baseline to the follow-up study. LVEF significantly increased at both postexercise (p=0.01) and rest (p=0.03) from the baseline to the follow-up study. The TPFR at rest tended to be prolonged from the baseline to the follow-up study (p=0.07). The absolute increase in LVEF at postexercise tended to decrease with age [4.8% (50s) vs. 3.4% (60s) vs. 1.2% (70s)]. An age-related change in cardiac performance is apparent at an approximately 1 year follow-up in postmenopausal women. In particular, the increase in LV systolic function tends to show the greatest value in the 50s subjects among the 3 generations. (author)

  9. Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations

    International Nuclear Information System (INIS)

    Evans, Matthew C.; Barnes, Josephine; Nielsen, Casper; Clegg, Shona L.; Blair, Melanie; Douiri, Abdel; Boyes, Richard G.; Fox, Nick C.; Kim, Lois G.; Leung, Kelvin K.; Ourselin, Sebastien

    2010-01-01

    To assess the relationship between MRI-derived changes in whole-brain and ventricular volume with change in cognitive scores in Alzheimer's disease (AD), mild cognitive impairment (MCI) and control subjects. In total 131 control, 231 MCI and 99 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort with T1-weighted volumetric MRIs from baseline and 12-month follow-up were used to derive volume changes. Mini mental state examination (MMSE), Alzheimer's disease assessment scale (ADAS)-cog and trails test changes were calculated over the same period. Brain atrophy rates and ventricular enlargement differed between subject groups (p < 0.0005) and in MCI and AD were associated with MMSE changes. Both measures were additionally associated with ADAS-cog and trails-B in MCI patients, and ventricular expansion was associated with ADAS-cog in AD patients. Brain atrophy (p < 0.0005) and ventricular expansion rates (p = 0.001) were higher in MCI subjects who progressed to AD within 12 months of follow-up compared with MCI subjects who remained stable. MCI subjects who progressed to AD within 12 months had similar atrophy rates to AD subjects. Whole-brain atrophy rates and ventricular enlargement differed between patient groups and healthy controls, and tracked disease progression and psychological decline, demonstrating their relevance as biomarkers. (orig.)

  10. Variations in gastric compliance induced by acute blood volume changes in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Graça J.R.V.

    2002-01-01

    Full Text Available The impact of acute volume imbalances on gastric volume (GV was studied in anesthetized rats (250-300 g. After cervical and femoral vessel cannulation, a balloon catheter was positioned in the proximal stomach. The opposite end of the catheter was connected to a barostat with an electronic sensor coupled to a plethysmometer. A standard ionic solution was used to fill the balloon (about 3.0 ml and the communicating vessel system, and to raise the reservoir liquid level 4 cm above the animals' xiphoid appendix. Due to constant barostat pressure, GV values were considered to represent the gastric compliance index. All animals were monitored for 90 min. After a basal interval, they were randomly assigned to normovolemic, hypervolemic, hypovolemic or restored protocols. Data were compared by ANOVA followed by Bonferroni's test. Mean arterial pressure (MAP, central venous pressure (CVP and GV values did not change in normovolemic animals (N = 5. Hypervolemic animals (N = 12 were transfused at 0.5 ml/min with a suspension of red blood cells in Ringer-lactate solution with albumin (12.5 ml/kg, which reduced GV values by 11.3% (P0.05. MAP and CVP values increased (P<0.05 after hypervolemia but decreased (P<0.05 with hypovolemia. In conclusion, blood volume level modulates gastric compliance, turning the stomach into an adjustable reservoir, which could be part of the homeostatic process to balance blood volume.

  11. A voxel-based morphometry study of brain volume changes in patients with neuromyelitis optica

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Huang Jing; Ren Zhuoqiong; Ye Jing; Dong Huiqing; Chen Hai; Li Kuncheng

    2012-01-01

    Objective: To detect changes of regional grey matter and white matter volume in patients of neuromyelitis optica (NMO) by voxel-based morphometry (VBM), and investigate its relationship with clinical variables. Methods: Conventional magnetic resonance imaging (MRI) and structural three-dimensional MRI were obtained from 20 NMO and 20 sex-and age-matched healthy volunteers. The comparison of grey matter and white matter volume between the two groups was analyzed by VBM tools of statistical parametric mapping (SPM) 5. Pearson correlation analysis was used to assess correlations between regional volume decrease and disease duration and expanded disability status scale (EDSS) scores in NMO patients. Results: Compared with normal controls, NMO patients had grey matter atrophy in several cortical regions, such as right inferior frontal gyrus (cluster size 514), left superior temporal gyrus (282), right middle temporal gyrus (229) and right insula (211) (t=3.58-5.11, AlphaSim corrected, P<0.05). White matter atrophy was found in several subcortical regions in NMO patients, such as right precentral and postcentral gyrus (cluster size 457, 110), left middle frontal gyrus (285), and right inferior parietal lobule (231) (t=2.90-4.25, AlphaSim corrected, P<0.05). Grey matter and white matter volume loss were not significantly correlated with clinical duration or EDSS score in NMO. Conclusion: By means of VBM, regional atrophy of grey matter and white matter is found in NMO patients, which may provide evidence for brain structural abnormality in NMO. (authors)

  12. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux.

    Directory of Open Access Journals (Sweden)

    Clare M Florence

    Full Text Available Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+](o and pH homeostasis. Pathological brain states that result in [K(+](o and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+](o (3 mM. Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3- ions as swelling was significantly decreased when the influx of HCO(3- was reduced. We found: 1 in HCO(3- free extracellular solution astrocytes swelled by 5.4±0.7%, 2 when the activity of the sodium-bicarbonate cotransporter (NBC was blocked the astrocytes swelled by 8.3±0.7%, and 3 in the presence of an extracellular carbonic anhydrase (CA inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3- efflux is known to occur through the γ-amino-butyric acid (GABA channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3- mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A channel agonist muscimol. Astrocyte shrinkage from GABA(A channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ. These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.

  13. A comparative assessment of endogenous water institutional change

    Science.gov (United States)

    Pande, Saket; Ersten, Maurits

    2013-04-01

    This paper builds the theory of endogenous institutional change, first proposed by Greif and Laitin (2004), for water scarce regions in context of water institutions. The current emphasis on environmental change, including hydrological change, largely ignores the adaptation of human societies to change. Humans have mostly been considered as boundary conditions or parameters of the dynamics of hydrological change and are not considered as conduits of feedbacks. Nonetheless, the dynamical representation of hydrological change with feedbacks between various components of a system is assuring since it is reminiscent of processual ecological anthropology(Orlove, 1980), except that individual decision making is absent. This paper proposes to consider selected dryland basins of the world, to conceptualize proxies of water relevant socio-economic organisation, such as spatial scales of upstream-downstream cooperation in water use, synthesized over time and then proposes a comparative assessment to test regularities predicted by an extension of river game theory (Ambec and Ehlers, 2008; van der Brink et al, 2012) to endogenous institutional change. References: Orlove, B. S. (1980). Ecological Anthropology. Annual Review of Anthropology, Vol. 9 (1980), pp. 235-273. Greif. A. and D. D. Laitin (2004). A Theory of Endogenous Institutional Change. American Political Science Review, Vol. 98, No. 4 November 2004. Ambec, S. and L. Ehlers (2008). Sharing a river amongst satiable agents. Games and Economic Behavior, 64, 35-50. Van der Brink, G. van der Laan and N. Moes (2012). Fair agreements for sharing international rivers with multiple springs and externalities. Journal of Environmental Economics and Management, 63, 388-403.

  14. Comparison of extravascular lung water volume with radiographic findings in dogs with experimentally increased permeability pulmonary edema

    International Nuclear Information System (INIS)

    Takeda, A.; Okumura, S.; Miyamoto, T.; Hagio, M.; Fujinaga, T.

    1995-01-01

    The relationship between extravascular lung water volume (ELWV) and chest radiographical findings was studied in general-anesthetized beagles. The dogs were experimentally injected with oleic acid to increase pulmonary vascular permeability. When the ELWV value in the dogs increased more than approximately 37% from the control value, their chest radiographs began to show signs of pulmonary edema. At this time, the chest X-ray density increased to 10% above the control level. PaO2 decreased, and PaCO2 increased after the administration of oleic acid. This clearly showed that the pulmonary gas exchange function was reduced following increasing ELWV. This comparison showed that probably the thermal-sodium double indicator dilution measurement of ELWV can detect slight hyperpermeability pulmonary edema that does not show on chest radiographs. The chest radiograph was therefore not suitable for the detection of slight pulmonary edema, because it did not show any changes in the early stages in hyperpermeability pulmonary edema

  15. Significance of breast boost volume changes during radiotherapy in relation to current clinical interobserver variations

    International Nuclear Information System (INIS)

    Hurkmans, Coen; Admiraal, Marjan; Sangen, Maurice van der; Dijkmans, Ingrid

    2009-01-01

    Background and purpose: Nowadays, many departments introduce CT images for breast irradiation techniques, aiming to obtain a better accuracy in the definition of the relevant target volumes. However, the definition of the breast boost volume based on CT images requires further investigation, because it may not only vary between observers, but it may also change during the course of treatment. This study aims to quantify the variability of the CT based visible boost volume (VBV) during the course of treatment in relation to the variability between observers. Materials and methods: Ten patients with stage T1-2 invasive breast cancer treated with breast conservative surgery and post surgical radiotherapy were included in this study. In addition to the regular planning CT which is obtained several days prior to radiotherapy, three additional CT scans were acquired 3, 5 and 7 weeks after the planning CT scan. Four radiation oncologists delineated the VBV in all scans. Conformity of the delineations was analysed both between observers, and between scans taken at different periods of the radiotherapy treatment. Results: The VBV averaged over all patients decreased during the course of the treatment from an initial 40 cm 3 to 28 cm 3 , 27 cm 3 and 25 cm 3 after 3, 5 and 7 weeks, respectively. Assuming the VBV to be spherical, this corresponds to a reduction in diameter of 5-6 mm. More detailed analysis revealed that this reduction was more pronounced when radiotherapy started within 30 days after surgery. These boost volume changes over time were found to be significant (p = 0.02) even in the presence of interobserver variations. Moreover, the conformity index (CI) for the volume changes was of the same magnitude as the conformity index for the interobserver variation (0.25 and 0.31, respectively). Conclusions: Breast boost volume variations during a course of radiotherapy are significant in relation to current clinical interobserver variations. This is an important

  16. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Weller, G.; Wilson, C.L.; Severin, B.A.B. [eds.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.

  17. International conference on the role of the polar regions in global change: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Weller, G.; Wilson, C.L.; Severin, B.A.B. [eds.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks; (6) paleoenvironmental studies; and, (7) aerosols and trace gases.

  18. Effect of tidal volume on extravascular lung water content during one-lung ventilation for video-assisted thoracoscopic surgery: a randomised, controlled trial.

    Science.gov (United States)

    Qutub, Hatem; El-Tahan, Mohamed R; Mowafi, Hany A; El Ghoneimy, Yasser F; Regal, Mohamed A; Al Saflan, AbdulHadi A

    2014-09-01

    The use of low tidal volume during one-lung ventilation (OLV) has been shown to attenuate the incidence of acute lung injury after thoracic surgery. To test the effect of tidal volume during OLV for video-assisted thoracoscopic surgery on the extravascular lung water content index (EVLWI). A randomised, double-blind, controlled study. Single university hospital. Thirty-nine patients scheduled for elective video-assisted thoracoscopic surgery. Patients were randomly assigned to one of three groups (n = 13 per group) to ventilate the dependent lung with a tidal volume of 4, 6 or 8 ml  kg(-1) predicted body weight with I:E ratio of 1:2.5 and PEEP of 5 cm H2O. The primary outcomes were perioperative changes in EVLWI and EVLWI to intrathoracic blood volume index (ITBVI) ratio. Secondary outcomes included haemodynamics, oxygenation indices, incidences of postoperative acute lung injury, atelectasis, pneumonia, morbidity and 30-day mortality. A tidal volume of 4 compared with 6 and 8 ml  kg(-1) after 45 min of OLV resulted in an EVLWI of 4.1 [95% confidence interval (CI) 3.5 to 4.7] compared with 7.7 (95% CI 6.7 to 8.6) and 8.6 (95% CI 7.5 to 9.7) ml  kg(-1), respectively (P tidal volume of 4 ml kg during OLV was associated with less lung water content than with larger tidal volumes of 6 to 8 ml kg(-1), although no patient developed acute lung injury. Further studies are required to address the usefulness of EVLWI as a marker for the development of postoperative acute lung injury after the use of a low tidal volume during OLV in patients undergoing pulmonary resection. Clinicaltrials.gov identifier: NCT01762709.

  19. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  20. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  1. The challenges of water, waste and climate change in cities

    NARCIS (Netherlands)

    Koop, Stef; van Leeuwen, C. J.

    2017-01-01

    Cities play a prominent role in our economic development as more than 80 % of the gross world product (GWP) comes from cities. Only 600 urban areas with just 20 % of the world population generate 60 % of the GWP. Rapid urbanization, climate change, inadequate maintenance of water and wastewater

  2. Enhancing Climate Change Adaptation in Agriculture and Water ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate change extremes such as flooding and seasonal drought are already undermining the economies of countries in the Horn of Africa, with agriculture and water resources being the most affected sectors. Countries are drawing up national adaptation programs of action (NAPAs) to serve as roadmaps for future ...

  3. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  4. Effects of climate change on spring wheat phenophase and water ...

    Indian Academy of Sciences (India)

    And temperature change further affects crop water requirement and irrigation system. In the north-west of China, one of the most important crop production bases is Heihe River basin where the observed phenological data is scarce. This study thus first adopted accumulated temperature threshold (ATT) method to define the ...

  5. Effects of climate change on spring wheat phenophase and water ...

    Indian Academy of Sciences (India)

    water sources management in Ningxia, Gansu and. Inner Mongolia. ... climate change, these studies tend to limit their ... were acquired from the China Meteorological Sci- ... (DEM) were obtained from National Topographic ... AT identified for wheat jointing stage, heading ... mended by the Food and Agriculture Organization.

  6. Fast and effective determination of strontium-90 in high volumes water samples

    International Nuclear Information System (INIS)

    Basarabova, B.; Dulanska, S.

    2014-01-01

    A simple and fast method was developed for determination of 90 Sr in high volumes of water samples from vicinity of nuclear power facilities. Samples were taken from the environment near Nuclear Power Plants in Jaslovske Bohunice and Mochovce in Slovakia. For determination of 90 Sr was used solid phase extraction using commercial sorbent Analig R Sr-01 from company IBC Advanced Technologies, Inc.. Determination of 90 Sr was performed with dilute solution of HNO 3 (1.5-2 M) and also tested in base medium with NaOH. For elution of 90 Sr was used eluent EDTA with pH in range 8-9. To achieve fast determination, automation was applied, which brings significant reduction of separation time. Concentration of water samples with evaporation was not necessary. Separation was performed immediately after filtration of analyzed samples. The aim of this study was development of less expensive, time unlimited and energy saving method for determination of 90 Sr in comparison with conventional methods. Separation time for fast-flow with volume of 10 dm 3 of water samples was 3.5 hours (flow-rate approximately 3.2 dm 3 / 1 hour). Radiochemical strontium yield was traced by using radionuclide 85 Sr. Samples were measured with HPGe detector (High-purity Germanium detector) at energy E φ = 514 keV. By using Analig R Sr-01 yields in range 72 - 96 % were achieved. Separation based on solid phase extraction using Analig R Sr-01 employing utilization of automation offers new, fast and effective method for determination of 90 Sr in water matrix. After ingrowth of yttrium samples were measured by Liquid Scintillation Spectrometer Packard Tricarb 2900 TR with software Quanta Smart. (authors)

  7. Climate change impacts on water barriers and possibilities

    DEFF Research Database (Denmark)

    Frederiksen, Peter

    in precipitation in 2100 and regional warming. Peak run-off will be displaced from spring to winter, run-off may be reduced by more than 40 % because of warming and rivers in the driest valleys may become intermittent streams with no water for irrigation except if minor reservoirs are constructed. In conclusion......The purpose is to elucidate climate change impacts on water related to precipitation, catchment hydrology, water management and land development in fruit export regions at the desert margin in Chile. The case is a region exposed to intense globalization and severe climate change. A timeline (past......, present, future) was applied to four valleys for comparative purposes. Data collection included field observations, semi-structured interviews, archives and library investigations. Precipitation decreased during the last century and varied as a function of El Niño Southern Oscillation impacts...

  8. Mapping, organic matter mass and water volume of a peatland in Serra do Espinhaço Meridional

    Directory of Open Access Journals (Sweden)

    José Ricardo da Rocha Campos

    2012-06-01

    Full Text Available Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha, and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.

  9. Water erosion and climate change in a small alpine catchment

    Science.gov (United States)

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS

  10. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    International Nuclear Information System (INIS)

    Gavenda, Tadeáš; Gedeon, Ondrej; Jurek, Karel

    2017-01-01

    Highlights: • Volume changes were correlated with both incubation dose and Raman spectra. • Irradiation decreases Si-O-Si angle and increases the amount of three-membered rings. • Levelling of the pits depends on the dose below and above incubation dose. • Restoration of the original structure was limited to low-frequency region. - Abstract: Two binary alkali silicate glasses (15K 2 O·85SiO 2 – denoted as K15 and 15Li 2 O·85SiO 2 – denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1–15.9 kC/m 2 . Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher T g of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  11. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gavenda, Tadeáš, E-mail: gavendat@vscht.cz [Department of Glass and Ceramics, University of Chemical Technology, Technicka 5, CZ-166 28 Prague (Czech Republic); Gedeon, Ondrej [Department of Glass and Ceramics, University of Chemical Technology, Technicka 5, CZ-166 28 Prague (Czech Republic); Jurek, Karel [Institute of Physics, Academy of the Czech Republic, Na Slovance 2, CZ-182 21 Prague (Czech Republic)

    2017-04-15

    Highlights: • Volume changes were correlated with both incubation dose and Raman spectra. • Irradiation decreases Si-O-Si angle and increases the amount of three-membered rings. • Levelling of the pits depends on the dose below and above incubation dose. • Restoration of the original structure was limited to low-frequency region. - Abstract: Two binary alkali silicate glasses (15K{sub 2}O·85SiO{sub 2} – denoted as K15 and 15Li{sub 2}O·85SiO{sub 2} – denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1–15.9 kC/m{sup 2}. Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher T{sub g} of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  12. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  13. Climate change and water availability for vulnerable agriculture

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  14. Endogenous technological and demographic change under increasing water scarcity

    Science.gov (United States)

    Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu

    2014-05-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  15. Endogenous technological and population change under increasing water scarcity

    Science.gov (United States)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-11-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  16. Glacier Volume Change Estimation Using Time Series of Improved Aster Dems

    Science.gov (United States)

    Girod, Luc; Nuth, Christopher; Kääb, Andreas

    2016-06-01

    Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be

  17. GLACIER VOLUME CHANGE ESTIMATION USING TIME SERIES OF IMPROVED ASTER DEMS

    Directory of Open Access Journals (Sweden)

    L. Girod

    2016-06-01

    Full Text Available Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER system embarked on the Terra (EOS AM-1 satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter

  18. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  19. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes.

    Directory of Open Access Journals (Sweden)

    Mu-En Liu

    Full Text Available The anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2 gene is a major regulator of neural plasticity and cellular resilience. Recently, the Bcl-2 rs956572 single nucleotide polymorphism was proposed to be a functional allelic variant that modulates cellular vulnerability to apoptosis. Our cross-sectional study investigated the genetic effect of this Bcl-2 polymorphism on age-related decreases in gray matter (GM volume across the adult lifespan. Our sample comprised 330 healthy volunteers (191 male, 139 female with a mean age of 56.2±22.0 years (range: 21-92. Magnetic resonance imaging and genotyping of the Bcl-2 rs956572 were performed for each participant. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. The association between the Bcl-2 rs956572 polymorphism and age was a predictor of regional GM volumes in the right cerebellum, bilateral lingual gyrus, right middle temporal gyrus, and right parahippocampal gyrus. We found that the volume of these five regions decreased with increasing age (all P<.001. Moreover, the downward slope was steeper among the Bcl-2 rs956572 A-allele carriers than in the G-homozygous participants. Our data provide convergent evidence for the genetic effect of the Bcl-2 functional allelic variant in brain aging. The rs956572 G-allele, which is associated with significantly higher Bcl-2 protein expression and diminished cellular sensitivity to stress-induced apoptosis, conferred a protective effect against age-related changes in brain GM volume, particularly in the cerebellum.

  20. On a relationship between molecular polarizability and partial molar volume in water.

    Science.gov (United States)

    Ratkova, Ekaterina L; Fedorov, Maxim V

    2011-12-28

    We reveal a universal relationship between molecular polarizability (a single-molecule property) and partial molar volume in water that is an ensemble property characterizing solute-solvent systems. Since both of these quantities are of the key importance to describe solvation behavior of dissolved molecular species in aqueous solutions, the obtained relationship should have a high impact in chemistry, pharmaceutical, and life sciences as well as in environments. We demonstrated that the obtained relationship between the partial molar volume in water and the molecular polarizability has in general a non-homogeneous character. We performed a detailed analysis of this relationship on a set of ~200 organic molecules from various chemical classes and revealed its fine well-organized structure. We found that this structure strongly depends on the chemical nature of the solutes and can be rationalized in terms of specific solute-solvent interactions. Efficiency and universality of the proposed approach was demonstrated on an external test set containing several dozens of polyfunctional and druglike molecules.

  1. Sediment accumulation and water volume in Loch Raven Reservoir, Baltimore County, Maryland

    Science.gov (United States)

    Banks, William S.L.; LaMotte, Andrew E.

    1999-01-01

    Baltimore City and its metropolitan area are supplied with water from three reservoirs, Liberty Reservoir, Prettyboy Reservoir, and Loch Raven Reservoir. Prettyboy and Loch Raven Reservoirs are located on the Gunpowder Falls (figure 1). The many uses of the reservoir system necessitate coordination and communication among resource managers. The 1996 Amendment to the Safe Drinking Water Act require States to complete source-water assessments for public drinking-water supplies. As part of an ongoing effort to provide safe drinking water and as a direct result of these laws, the City of Baltimore and the Maryland Department of the Environment (MDE), in cooperation with other State and local agencies, are studying the Gunpowder Falls Basin and its role as a source of water supply to the Baltimore area. As a part of this study, the U.S. Geological Survey (USGS), in cooperation with the Maryland Geological Survey (MGS), with funding provided by the City of Baltimore and MDE, is examining sediment accumulation in Loch Raven Reservoir. The Baltimore City Department of Public Works periodically determines the amount of water that can be stored in its reservoirs. To make this determination, field crews measure the water depth along predetermined transects or ranges. These transects provide consistent locations where water depth, or bathymetric, measurements can be made. Range surveys are repeated to provide a record of the change in storage capacity due to sediment accumulation over time. Previous bathymetric surveys of Loch Raven Reservoir were performed in 1943, 1961, 1972, and 1985. Errors in data-collection and analysis methods have been assessed and documented (Baltimore City Department of Public Works, 1989). Few comparisons can be made among survey results because of changing data-collection techniques and analysis methods.

  2. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy.

    Science.gov (United States)

    Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko

    2011-09-01

    This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  3. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  4. Water Planning and Climate Change: Actionable Intelligence Yet?

    Science.gov (United States)

    Milly, P.

    2008-05-01

    Within a rational planning framework, water planners design major water projects by evaluating tradeoffs of costs, benefits, and risks to life and property. The evaluation is based on anticipated future runoff and streamflow. Generally, planners have invoked the stationarity approximation: they have assumed that hydrologic conditions during the planned lifetime of a project will be similar to those observed in the past. Contemporary anthropogenic climate change arguably makes stationarity untenable. In principle, stationarity-based planning under non- stationarity potentially leads to incorrect assessment of tradeoffs, sub-optimal decisions, and excessive financial and environmental costs (e.g., a reservoir that is too big to ever be filled) and/or insufficient benefits (e.g., levees that are too small to hold back the flood waters). As the reigning default assumption for planning, stationarity is an easy target for criticism; provision of a practical alternative is not so easy. The leading alternative, use of quantitative climate-change projections from global climate models in conjunction with water planners' river-basin models, has serious shortcomings of its own. Climate models (1) neglect some terrestrial processes known to influence runoff and streamflow; (2) do not represent precipitation well at the finer resolved time and space scales; (3) do not resolve any processes at the even finer spatial scale of relevance to much of water planning; and (4) disagree among themselves about some changes. Even setting aside the issue of scale mismatch, for which various "downscaling" methods have been proposed, outputs from climate models generally are not directly transferable to river-basin models, and river-basin models commonly use empiricisms whose historical validity might not extrapolate well under climate change. So climate science is informing water management that stationarity is a flawed assumption, but it has not presented a universally and reliably superior

  5. Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-02-01

    Full Text Available Introduction: The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake. Materials and Methods:Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of

  6. Surface water change as a significant contributor to global evapotranspiration change

    Science.gov (United States)

    Zhan, S.; Song, C.

    2017-12-01

    Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in

  7. A study of rumen water volume, rate of flow of water and rumen dry matter turnover time measurement by using 51Cr-labelled EDTA

    International Nuclear Information System (INIS)

    Krishna, G.; Ekern, A.

    1974-01-01

    Two fistulated adult sheep were infused with 100 μVi 51 Cr-EDTA, four hours after morning feeding, so as to calculate fumen water volume, and rate of flow of water from reticulo-rumen. The average figure of rumen water volume obtained was 2.191 litre, rate of flow of water expressed as volume per cent per hour was 7.55. The biological half-life of marker 51 Cr-EDTA in rumen was 9.34 hours. The percent recovery of infused dosage of 51 Cr-EDTA through faeces and urine was 66 and 5 during the period of four days after infusion. Dry matter turnover time in the rumen was 0.483 days. (author)

  8. A study of rumen water volume, rate of flow of water and rumen dry matter turnover time measurement by using /sup 51/Cr-labelled EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, G; Ekern, A [Agricultural University of Norway. Dept. of Animal Nutrition

    1974-06-01

    Two fistulated adult sheep were infused with 100 ..mu..Vi /sup 51/Cr-EDTA, four hours after morning feeding, so as to calculate rumen water volume, and rate of flow of water from reticulo-rumen. The average figure of rumen water volume obtained was 2.191 litre, rate of flow of water expressed as volume per cent per hour was 7.55. The biological half-life of marker /sup 51/Cr-EDTA in rumen was 9.34 hours. The percent recovery of infused dosage of /sup 51/Cr-EDTA through feces and urine was 66 and 5 during the period of four days after infusion. Dry matter turnover time in the rumen was 0.483 days.

  9. Dependence of the Internal Structure on Water/Particle Volume Ratio in an Amphiphilic Janus Particle-Water-Oil Ternary System: From Micelle-like Clusters to Emulsions of Spherical Droplets.

    Science.gov (United States)

    Noguchi, Tomohiro G; Iwashita, Yasutaka; Kimura, Yasuyuki

    2017-01-31

    Amphiphilic Janus particles (AJP), composed of hydrophilic and hydrophobic hemispheres, are one of the simplest anisotropic colloids, and they exhibit higher surface activities than particles with homogeneous surface properties. Consequently, a ternary system of AJP, water, and oil can form extremely stable Pickering emulsions, with internal structures that depend on the Janus structure of the particles and the system composition. However, the detail of these structures has not been fully explored, especially for the composition range where the amount of the minority liquid phase and AJP are comparable, where one would expect the Janus characteristics to be directly reflected. In this study, we varied the volume ratio of the particles and the minority liquid phase, water, by 2 orders of magnitude around the comparable composition range, and observed the resultant structures at the resolution of the individual particle dimensions by optical microscopy. When the volume ratio of water is smaller than that of the Janus particles, capillary interactions between the hydrophilic hemispheres of the particles induce micelle-like clusters in which the hydrophilic sides of the particles face inward. With increasing water content, these clusters grow into a rodlike morphology. When the water volume exceeds that of the particles, the structure transforms into an emulsion state composed of spherical droplets, colloidosomes, because of the surface activity of particles at the liquid-liquid interface. Thus, we found that a change in volume fraction alters the mechanism of structure formation in the ternary system, and large resulting morphological changes in the self-assembled structures reflect the anisotropy of the particles. The self-assembly shows essential commonalities with that in microemulsions of surfactant molecules, however the AJP system is stabilized only kinetically. Analysis of the dependence of the emulsion droplet size on composition shows that almost all the

  10. Water Evaporation and Conformational Changes from Partially Solvated Ubiquitin

    Directory of Open Access Journals (Sweden)

    Saravana Prakash Thirumuruganandham

    2010-01-01

    Full Text Available Using molecular dynamics simulation, we study the evaporation of water molecules off partially solvated ubiquitin. The evaporation and cooling rates are determined for a molecule at the initial temperature of 300 K. The cooling rate is found to be around 3 K/ns, and decreases with water temperature in the course of the evaporation. The conformation changes are monitored by studying a variety of intermediate partially solvated ubiquitin structures. We find that ubiquitin shrinks with decreasing hydration shell and exposes more of its hydrophilic surface area to the surrounding.

  11. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  12. Food and water security in a changing arctic climate

    International Nuclear Information System (INIS)

    White, Daniel M; Gerlach, S Craig; Loring, Philip; Tidwell, Amy C; Chambers, Molly C

    2007-01-01

    In the Arctic, permafrost extends up to 500 m below the ground surface, and it is generally just the top metre that thaws in summer. Lakes, rivers, and wetlands on the arctic landscape are normally not connected with groundwater in the same way that they are in temperate regions. When the surface is frozen in winter, only lakes deeper than 2 m and rivers with significant flow retain liquid water. Surface water is largely abundant in summer, when it serves as a breeding ground for fish, birds, and mammals. In winter, many mammals and birds are forced to migrate out of the Arctic. Fish must seek out lakes or rivers deep enough to provide good overwintering habitat. Humans in the Arctic rely on surface water in many ways. Surface water meets domestic needs such as drinking, cooking, and cleaning as well as subsistence and industrial demands. Indigenous communities depend on sea ice and waterways for transportation across the landscape and access to traditional country foods. The minerals, mining, and oil and gas industries also use large quantities of surface water during winter to build ice roads and maintain infrastructure. As demand for this limited, but heavily-relied-upon resource continues to increase, it is now more critical than ever to understand the impacts of climate change on food and water security in the Arctic

  13. NORTH PORTAL - HOT WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540. The method used for the calculations is based on Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote plumbing fixture and the main supply. The pressure drop for the hot water system is based on the total length of the supply piping from the cold water supply source through the water heater to the most remote hot water outlet. Equivalent fixture units are then assigned using Section 4.4.1. For hot water, the values are reduced by 25 percent in accordance with the UPC. The demand load in gpm is then determined based on the number of fixture units. The demand load and the pressure drop between the source and the most remote fixture is used to determine the pipe size and the corresponding friction losses for a given flow velocity not to exceed 10 feet/second

  14. Modeling Alpine hydropower reservoirs management to study the water-energy nexus under change.

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Fumagalli, E.; Weber, E.

    2014-12-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) were already observed over the last few years and produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system, Italy. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series.. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e.g. expansion of the electric vehicle sector, load

  15. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    Science.gov (United States)

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  16. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Inima, A.K.

    1998-01-01

    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  17. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    International Nuclear Information System (INIS)

    Langenberg, Rick van de; Dohmen, Amy J.C.; Bondt, Bert J. de; Nelemans, Patty J.; Baumert, Brigitta G.; Stokroos, Robert J.

    2012-01-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention after radiotherapy was defined as “no additional intervention group, ” absence of radiological growth was defined as “radiological control group. ” Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% ± 0.03; the 4-year radiological control probability was 85.4% ± 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.

  18. Water immersion and changes in the foetoplacental and uteroplacental circulation

    DEFF Research Database (Denmark)

    Thisted, Dorthe Louise Ahrenkiel; Nørgaard, Lone Nikoline; Meyer, Helle Mølgaard

    2015-01-01

    Abstract Objective: To evaluate the effect of immersion into water on maternal blood pressure, amount of amniotic fluid and on the foetoplacental- and uteroplacental circulation in healthy women with an uncomplicated singleton pregnancy. Methods: Twenty-five healthy women were included. Recordings...... of blood pressure, deepest vertical pocket of amniotic fluid and pulsatility index (PI) measured by Doppler in the umbilical and uterine arteries were obtained. The participants were immersed into water and the measurements were repeated after 5 and 25 min in water and again 15 and 30 min post immersion....... Results: The amount of amniotic fluid increased significantly (p immersion (p immersion on either umbilical- or uterine artery PI. All changes returned toward baseline-level within 30 min...

  19. Examination of water quality changes during transportation of different fish

    Directory of Open Access Journals (Sweden)

    Istvan Nemeth

    2015-12-01

    Full Text Available Introduction The growth of population is increasing intensively (7.3 billion people in 2015 and it generates growing importance of fish farming. Primarily, fish meat could provide protein requirements for population so more and more attention must be paid to each sections of farming, for example fish transportation. A badly organized transportation technology can significantly reduce high quality stocks which were produced over several years. Deterioration of transport may occur on each fish distinctly. Bacterial or fungal diseases appear either immediately or days later. During our work, changes in several freshwater (peaceful or predator fish species (of different ages were monitored and analyzed during transport. There were two reasons why we examined the main physical and chemical parameters of the water. On one hand, we were curious to know how much the individuals exposed to heavy loads, which we tried to identify with some stress tests. On the other hand, we would develop a national water carrier monitoring system for the practice. Materials and methods Delivery technologies (foil sack and transport tankers used in practice was applied in the experiment of the study in a real road transport. The physical and chemical data were monitored and checked with the use of multiparameter instruments and photometrial tests. Physiological and stress tests were analyzed from blood plasma of each fish, primarily plasma glucose determination was used. Results After analysis of examined fish species and each ages, it is obvious that either short or long delivery times we choose physical and chemical properties of the transport water would change dramatically, even adequate oxygen balance was ensured. Values of individuals exposed to stress were more significant compared to baseline values. Conclusion We could define concrete changes in key parameters of the transport water with the number of realtime transport implementation which is a good help to

  20. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  1. On the Vulnerability of Water Limited Ecosystems to Climate Change

    Directory of Open Access Journals (Sweden)

    Kelly K. Caylor

    2013-06-01

    Full Text Available Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA. The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.

  2. Collaborative Research for Water Resource Management under Climate Change Conditions

    Science.gov (United States)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by

  3. Adapting to a changing world: Implications for water management.

    Science.gov (United States)

    Loucks, Daniel

    2010-05-01

    Everyone is aware that the world is changing, and that many of these changes will impact our water resource supplies and how they are used and managed. It's always a challenge to try to predict the future, especially the very uncertain distant future. But one thing is certain, the future environment our descendants will experience will differ from the economic, social, technological and natural conditions we experience today. Some aspects of the changes that are happening may not be under human control, but many are. And to the extent they are, we can influence that future. In this paper I attempt to speculate about a future some 40 to 50 years from now, and how water will need to be managed then. My goal is to motivate some thinking and discussion about how we as water managers can influence and prepare ourselves (or our successors) for that future. It will require collaboration among multiple disciplines to determine how best we as a profession can help society adapt to these changes, and this in turn will require all of us to learn how to work together more effectively than we do now. This theme fits in with the current interest in sustainability, for no matter how it is defined, sustainability makes us think about the long-term future. How do we develop and manage our natural and cultural resources in ways that benefit both us and future generations of people living on this earth? What will their needs and goals be? We don't know and that is the major challenge in deciding what decisions we might make today on their behalf. Here I attempt to identify the challenges and issues water managers could be addressing some 40 to 50 years from now, and what we in each of our disciplines, and together, can begin to do now to address them.

  4. South Asian Water (SAWA) Leadership Program on Climate Change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    South Asian Water (SAWA) Leadership Program on Climate Change. Selon le cinquième rapport du Groupe d'experts intergouvernemental sur l'évolution du climat, les principaux risques en Asie du Sud seraient une augmentation du débordement des rivières, des inondations côtières et des inondations en milieu urbain ...

  5. Effects of the spermatozoa: oocyte ratio, water volume and water temperature on artificial fertilization and sperm activation of cascudo-preto

    Directory of Open Access Journals (Sweden)

    Robie Allan Bombardelli

    2013-01-01

    Full Text Available The objective of this study was to evaluate the effects of water volume and water temperature on the sperm motility duration and the number of spermatozoa, and the water volume on the fertilization rates of oocytes of Rhinelepis aspera. Experiments were carried out to evaluate the effect of semen dilutions (1.74×10-5, 1.74×10-4, 1.74×10-3, 1.74×10-2, 1.74×10-1 and 1.00 mL of sperm.mL-1 of water and water temperature (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 ºC on spermatozoa motility duration. In addition, the effects of insemination dose (7×10³, 7×10(4, 7×10(5, 7×10(6 and 7×10(7 spermatozoa.oocyte-1 and water volume (1.0, 30.0, 60.0, 90.0 and 120.0 mL water.2.0 mL-1 oocytes on the artificial fertilization rates of oocytes were evaluated. The longest sperm motility duration were observed for the semen dilution of 1.74×10-5 mL semen.mL-1 water and in water at 5 ºC. The highest fertilization rates were obtained for insemination doses between 7.00×10³ and 1.23×10(7 spermatozoa. oocyte-1 and water volume of 28.11 mL water.2.0 mL-1 oocytes.

  6. Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh

    NARCIS (Netherlands)

    Acharjee, Tapos Kumar; Ludwig, Fulco; Halsema, van Gerardo; Hellegers, Petra; Supit, Iwan

    2017-01-01

    Understanding future changes in crop water requirements and irrigation demand in the context of climate change is essential for long-term water resources management and agricultural planning. This study investigates the impacts of climate change on future water requirements of dry season Boro

  7. Changes in gray matter volume after microsurgical lumbar discectomy: A longitudinal analysis

    Directory of Open Access Journals (Sweden)

    Michael eLuchtmann

    2015-02-01

    Full Text Available People around the world suffer chronic lower back pain. Because spine imaging often does not explain the degree of perceived pain reported by patients, the role of the processing of nociceptor signals in the brain as the basis of pain perception is gaining increased attention. Modern neuroimaging techniques (including functional and morphometric methods have produced results that suggest which brain areas may play a crucial role in the perception of acute and chronic pain. In this study, we examined twelve patients with chronic low back pain and sciatica, both resulting from lumbar disc herniation. Structural magnetic resonance imaging (MRI of the brain was performed one day prior to and about four weeks after microsurgical lumbar discectomy. The subsequent MRI revealed an increase in gray matter volume in the basal ganglia but a decrease in volume in the hippocampus, which suggests the complexity of the network that involves movement, pain processing, and aspects of memory. Interestingly, volume changes in the hippocampus were significantly correlated to preoperative pain intensity but not to the duration of chronic pain. Mapping structural changes of the brain that result from lumbar disc herniation has the potential to enhance our understanding of the neuropathology of chronic low back pain and sciatica and therefore may help to optimize the decisions we make about conservative and surgical treatments in the future. The possibility of illuminating more of the details of central pain processing in lumbar disc herniation, as well as the accompanying personal and economic impact of pain relief worldwide, calls for future large-scale clinical studies.

  8. Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.

    Science.gov (United States)

    Khir, Ashraf William; Bruti, Gianpaolo

    2013-07-01

    It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  9. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Courtney Knaup

    2011-09-01

    Full Text Available Purpose: This study evaluates low dose-rate brachytherapy (LDR prostate plans to determine the biological effectof dose degradation due to prostate volume changes. Material and methods: In this study, 39 patients were evaluated. Pre-implant prostate volume was determinedusing ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1® to create treatmentplans using 103Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. Fromthe pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP were determinedusing the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. Results: The prostate volume changed between pre and post implant image sets ranged from –8% to 110%. TCP andthe mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreasesto the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose.A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined thatpatients with a small prostates were more likely to suffer TCP decrease. Conclusions: The biological effect of post operative prostate growth due to operative trauma in LDR was evaluatedusing the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volumepost-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  10. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    Science.gov (United States)

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S.

    2011-12-01

    Water impoundment in the Three Gorges Reservoir (TGR) of China caused a large mass redistribution from the oceans to a concentrated land area in a short time period. We show that this mass shift is captured by the Gravity Recovery and Climate Experiment (GRACE) unconstrained global solutions at a 400 km spatial resolution after removing correlated errors. The WaterGAP Global Hydrology Model (WGHM) is selected to isolate the TGR contribution from regional water storage changes. For the first time, this study compares the GRACE (minus WGHM) estimated TGR volume changes with in situ measurements from April 2002 to May 2010 at a monthly time scale. During the 8 year study period, GRACE-WGHM estimated TGR volume changes show an increasing trend consistent with the TGR in situ measurements and lead to similar estimates of impounded water volume. GRACE-WGHM estimated total volume increase agrees to within 14% (3.2 km3) of the in situ measurements. This indicates that GRACE can retrieve the true amplitudes of large surface water storage changes in a concentrated area that is much smaller than the spatial resolution of its global harmonic solutions. The GRACE-WGHM estimated TGR monthly volume changes explain 76% (r2 = 0.76) of in situ measurement monthly variability and have an uncertainty of 4.62 km3. Our results also indicate reservoir leakage and groundwater recharge due to TGR filling and contamination from neighboring lakes are nonnegligible in the GRACE total water storage changes. Moreover, GRACE observations could provide a relatively accurate estimate of global water volume withheld by newly constructed large reservoirs and their impacts on global sea level rise since 2002.

  11. Radio-chemical dosage of 90Sr in large volumes of drinking water

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Patti, F.; Bullier, D.

    1965-01-01

    I. Principle of the method: 1. Fixing on a resin of all the cations present in the water. 2. Elution using 5 N nitric acid and precipitation of strontium as the carbonate. 3. Concentration of the strontium using the fuming nitric acid method. 4. Purification of the strontium on a resin by selective elution with ammonium citrate. 5. The strontium-90 is measured by separation at the 90 Y equilibrium in the form of the oxalate which is then counted. II. Advantages of the method The concentration of the radio-activity starting from large volumes (100 l) is generally tedious but this method which makes use of a fixation on a cationic resin makes it very simple. The rest of the method consists of a series of simple chemical operations using ion-exchange on resins and coprecipitation. Finally, it is possible to dose stable strontium. (authors) [fr

  12. Pulmonary Edema and Plasma Volume Changes in Dysbarism. M.S. Thesis - Texas Univ.

    Science.gov (United States)

    Joki, J. A.

    1972-01-01

    Two groups of anesthetized, fasted pigs were utilized. One group of 13 animals (8.5 to 16.6 kilograms) was exposed to a high-pressure environment, and the other group of eight animals (6.9 to 20.0 kilograms) constituted the control group. The experimental group was subjected to an atmosphere of 90 percent nitrogen and 10 percent oxygen at a pressure of 50 psig for 30 minutes and then decompressed at a rate 10 psi/min. Plasma volumes, using both iodine-125-tagged-albumin and chromium-51-tagged-cell dilution techniques, were measured before, immediately after, and at 30 and 60 minutes after decompression. Aortic and right-ventricular systolic pressures were also recorded. At 60 minutes after decompression, blood samples were taken, the animals were sacrificed, and the water content of the lungs, kidneys, livers, and spleens was estimated by measuring tissue wet weight and dry weight. Protein extravasation and tissue blood volumes were determined by measuring the iodine-125-tagged-albumin and chromium-51-tagged-cell spaces in homo-genates of the organs under investigation.

  13. CryoSat-2 Processing and Model Interpretation of Greenland Ice Sheet Volume Changes

    Science.gov (United States)

    Nilsson, J.; Gardner, A. S.; Sandberg Sorensen, L.

    2015-12-01

    CryoSat-2 was launched in late 2010 tasked with monitoring the changes of the Earth's land and sea ice. It carries a novel radar altimeter allowing the satellite to monitor changes in highly complex terrain, such as smaller ice caps, glaciers and the marginal areas of the ice sheets. Here we present on the development and validation of an independent elevation retrieval processing chain and respective elevation changes based on ESA's L1B data. Overall we find large improvement in both accuracy and precision over Greenland relative to ESA's L2 product when comparing against both airborne data and crossover analysis. The seasonal component and spatial sampling of the surface elevation changes where also compared against ICESat derived changes from 2003-2009. The comparison showed good agreement between the to product on a local scale. However, a global sampling bias was detected in the seasonal signal due to the clustering of CryoSat-2 data in higher elevation areas. The retrieval processing chain presented here does not correct for changes in surface scattering conditions and appears to be insensitive to the 2012 melt event (Nilsson et al., 2015). This in contrast to the elevation changes derived from ESA's L2 elevation product, which where found to be sensitive to the effects of the melt event. The positive elevation bias created by the event introduced a discrepancy between the two products with a magnitude of roughly 90 km3/year. This difference can directly be attributed to the differences in retracking procedure pointing to the importance of the retracking of the radar waveforms for altimetric volume change studies. Greenland 2012 melt event effects on CryoSat-2 radar altimetry./ Nilsson, Johan; Vallelonga, Paul Travis; Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg; Forsberg, René; Dahl-Jensen, Dorthe; Hirabayashi, Motohiro; Goto-Azuma, Kumiko; Hvidberg, Christine S.; Kjær, Helle A.; Satow, Kazuhide.

  14. The change in the primary production of Danish coastal waters

    International Nuclear Information System (INIS)

    Edelvang, K.; Erichsen, A.; Gustavson, K.; Bundgaard, K.; Dahl-Madsen, K.I.

    2001-01-01

    The background for this study is the development of the 'Farvandsmodel' for the NOVA-2003 programme and the nationally founded research project DECO (Danish Environmental Monitoring of Coastal Waters), which focuses on the use of remote sensing for the monitoring of Danish Coastal waters. Danish national programmes for the monitoring of the marine ecosystem are a relatively new activity, which has grown during the last 20 years. The HAV90 research programme amassed important information to be included in future environmental efforts such as the NOVA-2003 programme, aimed at monitoring the Danish coastal waters. The following is a selection of the topics mentioned in the NOVA-2003 programme (NOVA-2003, 2000) especially relevant to this study: 1) Hydrography. 2) Concentration and spatial distribution of nutrients. 3) Water and nutrient fluxes. 4) Oxygen depletion. As part of this programme, a 3D hydrographic model describing currents and fluxes in Danish waters has been designed by DHI Water and Environment for the Danish Ministry of Energy and Environment. The model is called the 'Farvandsmodel', which is the collective Danish name of this regional 3D hydrodynamic model and its associated database for storage and dissemination of model results and field measurements. The model is planned to be in operation until 2004. It has a great potential within hydrographic modelling in Danish waters, as it is capable of running 5-day prognoses for currents, water levels and stratification. The model is also able to calculate the sensitivity of the present system to changes in various input parameters. In this way the model may be used as a tool for testing the sensitivity of Danish coastal waters to the impact of the green house effects. The nationally funded research programme, DECO (1997-2000), aims to investigate the use of remote sensing for monitoring Danish coastal waters. To support this research, a eutrophication module (EU) was set up for the 'Farvandsmodel'. The

  15. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  16. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  17. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in

  19. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  20. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    Science.gov (United States)

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  1. Cell volume changes regulate slick (Slo2.1, but not slack (Slo2.2 K+ channels.

    Directory of Open Access Journals (Sweden)

    Maria A Tejada

    Full Text Available Slick (Slo2.1 and Slack (Slo2.2 channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control by cell swelling and inhibited (57% of control by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  2. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    Science.gov (United States)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of

  3. The implications of economic development, climate change and European Water Policy on surface water quality threats

    Directory of Open Access Journals (Sweden)

    Jolanta Dąbrowska

    2017-06-01

    Full Text Available The paper presents historical background, up-to-date situation and future perspectives for the development of nutrient pollution threats to European surface water quality, as well as the evolution of the approach to water pollution. Utilized agricultural area in European countries is slightly diminishing, however the consumption of mineral fertilisers is steadily increasing. The consumption in Europe in the years 2015–2030 is projected to increase by 10%, and in the world by 20%. Both climate changes leading to the increase of temperature even of ca. 6°C (in comparison to the pre-industrial period and accelerated soil erosion due to high intensity rainfall cause increased productivity of water ecosystems. Those aspects have to be taken into consideration in water management. Due to legal regulations introduced in the last twenty years, wastewater treatment has been made more effective and population connected to wastewater treatment systems has increased. The improvement has been seen mainly in eastern and southern parts of Europe. After the implementation of Water Framework Directive theories regarding modern water management have been developed, with the aim to increase the ecosystem’s capacity and its resilience to climate changes and anthropopressure.

  4. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Science.gov (United States)

    2010-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  5. Environmentally assisted cracking in light water reactors. Semiannual report, April 1994--September 1994, Volume 19

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J.

    1995-09-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors from April to September 1994. Topics that have been investigated include (a) fatigue of carbon and low-alloy steel used in piping and reactor pressure vessels, (b) EAC of austenitic stainless steels (SSs) and Alloy 600, and (c) irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests have been conducted on A106-Gr B and A533-Gr B steels in oxygenated water to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack growth data were obtained on fracture-mechanics specimens of SSs and Alloy 600 to investigate EAC in simulated boiling water reactor (BWR) and pressurized water reactor environments at 289 degrees C. The data were compared with predictions from crack growth correlations developed at ANL for SSs in water and from rates in air from Section XI of the ASME Code. Microchemical changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials

  6. Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K.

    1994-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289 degree C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy

  7. How do people gain access to water resources in the Brazilian semiarid (Caatinga) in times of climate change?

    Science.gov (United States)

    de Lira Azevêdo, Evaldo; Alves, Rômulo Romeu Nóbrega; Dias, Thelma Lúcia Pereira; Molozzi, Joseline

    2017-08-01

    Climate change is becoming an imminent reality, especially in arid and semiarid regions. Therefore, it is essential to understand the relationships between humans and aquatic ecosystems in order to devise efficient management and conservation strategies. We conducted 126 interviews using a semi-structured form to record water sources, transport strategies, and the use and treatment of water by communities surrounding four reservoirs within two drainage basins in the semiarid region of Brazil. These factors were then compared to the mean water volumes of the respective reservoirs from 2013 to 2015, a period of severe drought in that area. Seven types of water sources were considered, according to the perspectives of the interviewees: large reservoirs (dams) (43% of the citations), other smaller reservoirs (25%), rainwater (17.5%), wells (7%), waterholes (3%), bottled water (4%), and water tanks (0.5%). The water resources obtained are transported to human residences in seven different manners: actively pumped (34% of the citations), by water tanker truck (33%), distributed in pipes by local resident associations (11%), transport by animal (14%), human transport (4%), by car (2%), and by motorcycle (2%). The water is then used for domestic purposes (21%), for personal hygiene (20%), by animals (19%), in agriculture (18%), for cooking (10%), for fishing (7%), and for drinking (6%). A worrisome trend was that many local residents did not treat the water they were consuming. Climate change affects seasonal patterns of rainfall that will, in turn, determine the availability and quantities of water resources, provoking changes in the sources of water used by human populations, their strategies of access to that resource, and water-use patterns. It is necessary sustainable use of water resources based on the realities of local populations.

  8. Volume changes and electrostriction in the primary photoreactions of various photosynthetic systems: estimation of dielectric coefficient in bacterial reaction centers and of the observed volume changes with the Drude-Nernst equation.

    Science.gov (United States)

    Mauzerall, David; Hou, Jian-Min; Boichenko, Vladimir A

    2002-01-01

    Photoacoustics (PA) allows the determination of enthalpy and volume changes of photoreactions in photosynthetic reaction centers on the 0.1-10 mus time scale. These include the bacterial centers from Rb. sphaeroides, PS I and PS II centers from Synechocystis and in whole cells. In vitro and in vivo PA data on PS I and PS II revealed that both the volume change (-26 A(3)) and reaction enthalpy (-0.4 eV) in PS I are the same as those in the bacterial centers. However the volume change in PS II is small and the enthalpy far larger, -1 eV. Assigning the volume changes to electrostriction allows a coherent explanation of these observations. One can explain the large volume decrease in the bacterial centers with an effective dielectric coefficient of approximately 4. This is a unique approach to this parameter so important in estimation of protein energetics. The value of the volume contraction for PS I can only be explained if the acceptor is the super- cluster (Fe(4)S(4))(Cys(4)) with charge change from -1 to -2. The small volume change in PS II is explained by sub-mus electron transfer from Y(Z) anion to P(680) cation, in which charge is only moved from the Y(Z) anion to the Q(A) with no charge separation or with rapid proton transfer from oxidized Y(Z) to a polar region and thus very little change in electrostriction. At more acid pH equally rapid proton transfer from a neighboring histidine to a polar region may be caused by the electric field of the P(680) cation.

  9. Impacts of Rainfall Variability and Expected Rainfall Changes on Cost-Effective Adaptation of Water Systems to Climate Change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.; Weikard, H.P.; Hendrix, E.M.T.

    2015-01-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change

  10. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improvi