WorldWideScience

Sample records for water vapour transfer

  1. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  2. Heat and water mass transfer in unsaturated swelling clay based buffer: discussion on the effect of the thermal gradient and on the diffusion of water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Robinet, J.O. [Euro-Geomat-Consulting (France)]|[Institut National des Sciences Appliquees (INSA), 35 - Rennes (France); Plas, F. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2005-07-01

    The modelling of heat, mass transfer and the behaviour coupled thermo-hydro-mechanical in swelling clay require the development of appropriate constitutive laws as well as experimental data. This former approach, allows the quantitative validation of the theoretical models. In general modelling approaches consider dominant mechanisms, (i) Fourier law for diffusion of heat, (ii) generalized Darcy law for convection of liquid water, (iii) Flick law for diffusion of water vapour, and elastic-plastic models wit h hydric hardening and thermal damage/expansion for strain-stress behaviour. Transfer of dry air and water under thermal gradient and capillary (e.g. suction) gradient in unsaturated compacted swelling clays consider evaporation, migration and condensation. These transfers take into account the capillary effect. This effect is an evaporation of liquid water in the hot part for temperature higher than 100 C associated with a, diffusion of water vapor towards cold part then condensation, and convection of liquid water with gradient of suction in the opposite direction of the water vapour diffusion. High values of the diffusion coefficient of the vapour water are considered about 10{sup -7}m{sup 2}/s. Some thermal experiments related (i) low values of the water vapour diffusion coefficient in compacted swelling clays, 2004) and (ii) a significant drying associated with a water transfer even for temperature lower than 100 C. Other enhancement phenomena are used to explain these data and observations: the vaporization is a continuous process. At short term the mechanism of drying at short term is the thermal effect on the capillary pressure (e.g. surface tension depending of temperature); the thermal gradient is a driving force. When a temperature gradient is applied, diffusion occurs in order to reach equilibrium, e.g. to make the chemical potential (m) of each component uniform throughout. This mechanism is called thermal diffusion. This paper proposes a discussion

  3. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    Science.gov (United States)

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  4. Water vapour transfer in the simulated protective clothing system with exposure to intensive solar radiation

    NARCIS (Netherlands)

    Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Tochihara, Y.; Havenith, G.

    2005-01-01

    A series of experiments has been performed to study the moisture transfer in the protective clothing exposed to a high short wave (solar) radiant heat flux at a normal condition of 20 °C with 40 % RH in terms of heat stress caused by accumulated sweat in underwear. To simulate a practical situation,

  5. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    Science.gov (United States)

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  6. The use of a heat transfer coefficient for describing the radiative exchange between water vapour and the bounding walls

    International Nuclear Information System (INIS)

    Eifler, W.; Shepherd, I.M.

    1983-01-01

    During the ''severe-fuel-damage'' experiments of the SUPER SARA test program radiation heat transfer will play an important part. For the analysis of these experiments it should be modelled therefore in a particularly appropriate manner. Based on the same engineering type principles which are used in the radiation model of the TRAC code version for boiling water reactors a new model has been developed. This model is less computer time consuming than the TRAC model and particularly appropriate for the use in the subchannel - type bundle computer code which is planned to be developed for the analysis of the ''severe-fuel-damage'' experiments. Sample calculations for the ''severe-fuel-damage'' test array show that the difference between the results obtained with the new model and those obtained with the TRAC model is in general not significant

  7. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  8. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  9. Film boiling heat transfer and vapour film collapse for various geometries

    International Nuclear Information System (INIS)

    Jouhara, H.I.; Axcell, B.P.

    2005-01-01

    Full text of publication follows: Film boiling heat transfer has application to the safe operation of water-cooled nuclear reactors under fault conditions and it has been studied using nickel-plated copper specimens in transient and steady state experiments. In the transient tests the specimens were held in a water flow; in the steady state investigation a specimen was mounted in an essentially quiescent pool of water. The transient investigation was conducted on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a short cylinder in cross flow and two flat plates with different lengths. The heat transfer coefficient, vapour film thickness (which was estimated from the heat transfer coefficient) and heat flux followed a similar behaviour with changing experimental conditions for all specimens studied. The heat transfer coefficient increased and the vapour film thickness and heat flux decreased as the specimen temperature decreased. As the water subcooling increased the heat transfer coefficient and the heat flux increased while the vapour film thickness decreased. The water velocity was found to have little influence on the film boiling heat transfer results except for the short cylinder in cross flow. The sphere diameter was found to affect the heat transfer results; the heat transfer coefficient and the heat flux were larger, for the larger sphere. No significant effect of the cylinder length on the heat transfer data was observed. However, the heat transfer coefficient was higher (and the average vapour film thinner) for the longer plate than for the shorter plate. Three vapour/liquid interface types were observed namely: 'smooth', 'rippled' and 'turbulent' depending largely on specimen and water temperatures. For all specimens, the maximum heat transfer coefficient, minimum heat flux and minimum film boiling temperature, occurring just before vapour film collapse, were found to increase as the water subcooling

  10. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  11. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J; Ovarlez, H [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1998-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  12. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the ... seasonal and annual variations in the CO2 bal- ance. Hence, it is .... motion below produced by shear stress near the.

  13. Heat transfer in vapour-liquid flow of carbon dioxide

    International Nuclear Information System (INIS)

    Yagov, V.V.

    2009-01-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO 2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO 2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO 2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  14. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  15. Aerosol formation from heat and mass transfer in vapour-gas mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)

  16. Retrieving mesospheric water vapour from observations of volume scattering radiances

    Directory of Open Access Journals (Sweden)

    P. Vergados

    2009-02-01

    Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  17. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  18. Intercomparison of TCCON and MUSICA Water Vapour Products

    Science.gov (United States)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  19. Diffusion and flow of water vapours in chromatographic Alumina gel

    International Nuclear Information System (INIS)

    Khan, M.; Shah, H. U.

    2005-01-01

    The kinetics of sorption of water vapours in chromatographic alumina gel was studied. Water vapours are adsorbed on the gel at temperature (15 degree C) at different constant relative pressure from 0.1-0.93 p/p. Rate constant, Effective diffusivities, Knudsen diffusivities and bulk diffusivities were determined through Fick type equation. Total pore volume is 0.498 cc g-1 and specific surface area comes to be 465 m2 g-1 as obtained by Gurvitsch rule and Kieselve's quantities respectively. An average pore radius (hydraulic) is 1.1x10/sub -7/ cm. The study of these quantities provide a strong basis for evaluating surface properties. (author)

  20. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  1. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  2. Numerical Analysis of Flow and Heat Transfer Characteristics of CO2 at Vapour and Supercritical Phases in Micro-Channels

    Directory of Open Access Journals (Sweden)

    Rao N.T.

    2016-01-01

    Full Text Available Supercritical carbon dioxide (CO2 has special thermal properties with better heat transfer and flow characteristics. Due to this reason, supercritical CO2 is being used recently in air-condition and refrigeration systems to replace non environmental friendly refrigerants. Even though many researches have been done, there are not many literatures for heat transfer and flow characteristics of supercritical CO2. Therefore, the main purpose of this study is to develop flow and heat transfer CFD models on two different phases; vapour and supercritical of CO2 to investigate the heat transfer characteristics and pressure drop in micro-channels. CO2 is considered to be in different phases with different flow pressures but at same temperature. For the simulation, the CO2 flow was assumed to be turbulent, nonisothermal and Newtonian. The numerical results for both phases are compared. From the numerical analysis, for both vapour and supercritical phases, the heat energy from CO2 gas transferred to water to attain thermal equilibrium. The temperature of CO2 at vapour phase decreased 1.78% compared to supercritical phase, which decreased for 0.56% from the inlet temperature. There was a drastic increase of 72% for average Nu when the phase changed from vapour to supercritical. The average Nu decreased rapidly about 41% after total pressure of 9.0 MPa. Pressure drop (ΔP increased together with Reynolds number (Re for vapour and supercritical phases. When the phase changed from vapour to supercritical, ΔP was increased about 26%. The results obtained from this study can provide information for further investigations on supercritical CO2.

  3. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    International Nuclear Information System (INIS)

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-01-01

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered

  4. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  5. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  6. A miniature discriminating monitor for tritiated water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.A.H.; Ravazzani, A.; Pacenti, P. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Campi, F. [Nuclear Engineering Dept., Polytechnic of Milan (Italy)

    1998-07-01

    In detecting tritium in air (or other gas) for worker safety, it is important to discriminate between tritiated water vapour and elemental tritium, because the first is much more easily absorbed in the lungs. We haveinvented (patent pending) an innovative discriminating monitor which works better than existing designs, and is much smaller. The air (or other sample gas) passes over a large surface area of solid scintillator, which is surface-treated to make it hygroscopic. Tritiated water vapour in the air exchanges continuously, rapidly and reversibly with the water in the thin hygroscopic layer; which is of the order of 1 micron thick. The beta-emissions from tritium in the hygroscopic layer hit the solid scintillator, causing flashes of light that are detected by a photomultiplier. The new discriminating monitor for tritiated species in air offers superior performance to existing discriminating monitors, and is much smaller. It is planned to develop a portable version which could serve as a personal tritium monitor. (authors)

  7. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  8. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    Directory of Open Access Journals (Sweden)

    Natalia Volkova

    2013-06-01

    Full Text Available Isothermal titration calorimetry (ITC was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3. The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo, was determined as the inflection point on a plot of the mean−ΔHkJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. Keywords: Isothermal titration calorimetry, Sodium bicarbonate, Sodium carbonate, Trona salt, Wegscheider’s salt, Enthalpy, Relative humidity, Pyrolytic decarboxylation

  9. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  10. Momentum, heat and vapour transfer on the surface of an open duct under the influence of wind

    International Nuclear Information System (INIS)

    Wengefeld, P.

    1978-01-01

    The increasing power demand and the resulting increase in the number of thermal power plants have incurred increasing environmental pollution. For this reason, the paper presents an experimental and theoretical investigation of the processes of heat transfer on a water surface due to convection and evaporation under the influence of a current of air. It is found that the analogy between heat and water vapour transfer is fulfilled in good approximation and that the results are thus valid for evaporation as well as for sensible heat transfer. A generally valid formula for the mean evaporation rate cannot be derived from the experiments as the parameter of surface roughness is changing with the length of the water surface which is exposed to the air current. The calculation formula for the ratio between sensible and latent heat transfer (Bowen ratio), which is required, according to this paper has a scattering range of only +-20% as against the +-40% commonly assumed. (GL) [de

  11. Energetics and dynamics of the neutralization of clustered ions in ammonia and water vapour

    International Nuclear Information System (INIS)

    Sennhauser, E.S.; Armstrong, D.A.

    1978-01-01

    The energetics and dynamics of neutralization reactions of clustered ions in ammonia and water vapour have been analysed. Neutralization rate coefficients were calculated for the ions in ammonia and for H + .(H 2 O)sub(n) combining with various clustered anions in water vapour up to densities of 4 x 10 19 molecule cm -3 at 390 K. In the case of ammonia, calculations were also performed at 298 K. For all systems, fractional contributions of the neutralization coefficients for specific cluster sizes to the overall coefficient αsub(eff) were evaluated. The computed value of αsub(eff) for NH 3 was in reasonable agreement with experimental data in the [NH 3 ] range 0.3 to 4 x 10 19 molecule cm -3 , and general trends stemming from the effects of increasing ion mass were pointed out. Calculations of energies of individual cluster sizes indicate possible neutralization reaction mechanisms. With some exception, proton transfer is the only possible path and no H atoms should be formed. This is in general agreement with literature results for water vapour at approximately 390 K and with [H 2 O] >= 2 x 10 x 10 19 molecule cm -3 . (author)

  12. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Gunnar [Dept. of Geosciences, Univ. of Oslo (Norway); Center for International Climate and Environmental Research-Oslo (CICERO), Oslo (Norway); Kvalevaag, Maria [Dept. of Geosciences, Univ. of Oslo (Norway); Raedel, Gaby; Cook, Jolene; Shine, Keith P. [Dept. of Meteorology, Univ. of Reading (United Kingdom); Clark, Hannah [CNRM/GAME Meteo France, Toulouse (France); Lab. d' Aerologie, Univ. de Toulouse (France); Karcher, Fernand [CNRM/GAME Meteo France, Toulouse (France); Markowicz, Krzysztof; Kardas, Aleksandra; Wolkenberg, Paulina [Inst. of Geophysics, Univ. of Warsaw (Poland); Balkanski, Yves [LSCE/IPSL, Lab. CEA-CNRS-UVSQ (France); Ponater, Michael [Deutsches Zentrum fuer Luft und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany); Forster, Piers; Rap, Alexandru [School of Earth and Environment, Univ. of Leeds (United Kingdom); Leon, Ruben Rodriguez de [Manchester Metropolitan Univ. (United Kingdom)

    2009-12-15

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. a combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15% for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30%. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF. and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations. (orig.)

  13. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port. Blair islands. Algorithm-3 of ...

  14. Water vapour retrieval using the Precision Solar Spectroradiometer

    Science.gov (United States)

    Raptis, Panagiotis-Ioannis; Kazadzis, Stelios; Gröbner, Julian; Kouremeti, Natalia; Doppler, Lionel; Becker, Ralf; Helmis, Constantinos

    2018-02-01

    The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD-WRC), Davos, measuring direct solar irradiance at the surface, in the 300-1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934-948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87-0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96-0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08-0.30 cm and only in extreme cases would reach up to 15 %.

  15. Mixed garnet laser crystals for water vapour DIAL transmitter

    Science.gov (United States)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  16. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  17. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  18. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  19. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  20. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  1. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  2. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  3. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2005-01-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10km, and 2.2% between 10 and 13km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels - 24% of the time in winter between 8 and 10km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  4. REFIR/BB initial observations in the water vapour rotational band: Results from a field campaign

    International Nuclear Information System (INIS)

    Esposito, F.; Grieco, G.; Leone, L.; Restieri, R.; Serio, C.; Bianchini, G.; Palchetti, L.; Pellegrini, M.; Cuomo, V.; Masiello, G.; Pavese, G.

    2007-01-01

    There is a growing interest in the far infrared spectral region 17-50 μm as a remote sensing tool in atmospheric sciences, since this portion of the spectrum contains the characteristic molecular rotational band for water vapour. Much of the Earth energy lost to space is radiated through this spectral region. The Radiation Explorer in the Far InfraRed Breadboard (REFIR/BB) spectrometer was born because of the quest to make observations in the far infrared. REFIR/BB is a Fourier Transform Spectrometer with a sampling resolution of 0.5 cm -1 and it was tested for the first time in the field to check its reliability and radiometric performance. The field campaign was held at Toppo di Castelgrande (40 o 49' N, 15 o 27' E, 1258 m a. s. l.), a mountain site in South Italy. The spectral and radiometric performance of the instrument and initial observations are shown in this paper. Comparisons to both (1) BOMEM MR100 Fourier Transform spectrometer observations and (2) line-by-line radiative transfer calculations for selected clear sky are presented and discussed. These comparisons (1) show a very nice agreement between radiance measured by REFIR/BB and by BOMEM MR100 and (2) demonstrate that REFIR/BB accurately observes the very fine spectral structure in the water vapour rotational band

  5. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...... temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...

  6. The thermotidal exciting function for water vapour absorption of solar radiation

    Directory of Open Access Journals (Sweden)

    M. BONAFEDE

    1976-06-01

    Full Text Available The thermotidal exciting function J is considered, for
    the absorption of solar radiation by water vapour, according to the model
    derived by Siebert. The Mugge-Moller formula for water vapour absorption
    is integrated numerically, using experimental data for the water vapour
    concentration in the troposphere and the stratosphere. It appears that
    Siebort's formula is a reasonable approximation at low tropospheric levels
    but it dramatically overestimates the water vapour thermotidal heating
    in the upper troposphere and in the stratosphere. It seems thus possible
    that, if the correct vertical profile is employed for J , the amplitudes and
    phases of the diurnal temperature oscillations and of the tidal wind speeds
    may suffer significant changes from those previously calculated and possibly explain the three hours delay of the observed phases from the computed values.

  7. Venera 15: Water vapour in the middle atmosphere of Venus

    Science.gov (United States)

    Ignatiev, N. I.; Moroz, V. I.; Zasova, L. V.; Khatuntsev, I. V.

    1999-01-01

    In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 a.m. to 10 a.m. and from 4 p.m. to 10 p.m. in the latitude range from -65° up to 87°. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to the early results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. Two latitude regions can be distinguished: (A) 20° 60°, which are characterised by different altitudes of the level of τ = 1: 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in region (B) are 2-4 times greater than those in region (A). In region (A) a weak dayside maximum and a nightside minimum were observed. Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the detection limit of 1 ppm up to 30 ppm. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.

  8. The drift velocity of electrons in water vapour at low values of E/N

    International Nuclear Information System (INIS)

    Cheung, B.; Elford, M.T.

    1990-01-01

    The drift velocity of electrons in water vapour at 294 K has been measured over the E/N range 1.4 to 40 Td with an error estimated to be 35 Td. The present data show that μN decreases monotonically with decreasing E/N at low E/N values as observed by Wilson et al. (1975) and does not become independent of E/N as indicated by Lowke and Rees (1963). The present values although lower than those of Lowke and Rees, lie within the combined error limits, except for values below 2 Td. The present data suggested that the momentum transfer cross section at low energies is approximately 10% larger than that obtained by Pack et al. (1962) from their drift velocity measurements. 13 refs., 2 tabs., 5 figs

  9. The water vapour flux above Switzerland and its role in the August 2005 extreme precipitation and flooding

    Energy Technology Data Exchange (ETDEWEB)

    N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics; Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; University of the Highlands and Islands, Stornoway, Scotland (United Kingdom). Lews Castle College

    2013-10-15

    The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the 'Swiss box') to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 x 10{sup 7} kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box 'import' more water vapour than it 'exports', but the amount gained remains only a small fraction (1% to 5%) of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products. (orig.)

  10. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data

    Directory of Open Access Journals (Sweden)

    H. Herbin

    2007-07-01

    Full Text Available The isotopologic composition of water vapour in the atmosphere provides valuable information on many climate, chemical and dynamical processes. The accurate measurements of the water isotopologues by remote-sensing techniques remains a challenge, due to the large spatial and temporal variations. Simultaneous profile retrievals of the main water isotopologues (i.e. H216O, H218O and HDO and their ratios are presented here for the first time, along their retrieved global distributions. The results are obtained by exploiting the high resolution infrared spectra recorded by the Interferometric Monitor for Greenhouse gases (IMG instrument, which has operated in the nadir geometry onboard the ADEOS satellite between 1996 and 1997. The retrievals are performed on cloud-free radiances, measured during ten days of April 1997, considering two atmospheric windows (1205–1228 cm−1; 2004–2032 cm−1 and using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM. Characterizations in terms of vertical sensitivity and error budget are provided. We show that a relatively high vertical resolution is achieved for H216O (~4–5 km, and that the retrieved profiles are in fair agreement with local sonde measurements, at different latitudes. The retrieved global distributions of H216O, H218O, HDO and their ratios are presented and found to be consistent with previous experimental studies and models. The Ocean-Continent difference, the latitudinal and vertical dependence of the water vapour amount and the isotopologic depletion are notably well reproduced. Others trends, possibly related to small-scale variations in the vertical profiles are also discussed. Despite the difficulties encountered for computing accurately the isotopologic ratios, our results demonstrate the ability

  11. The millennium water vapour drop in chemistry–climate model simulations

    Directory of Open Access Journals (Sweden)

    S. Brinkop

    2016-07-01

    Full Text Available This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop" and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM EMAC (ECHAM/MESSy Atmospheric Chemistry Model. The model simulations differ with respect to the prescribed sea surface temperatures (SSTs and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer–Dobson circulation (BDC. We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST changes due to a coincidence with a preceding strong El Niño–Southern Oscillation event (1997/1998 followed by a strong La Niña event (1999/2000 and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO in 2000. Correct (observed SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics

  12. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    Science.gov (United States)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  13. Sampling system of atmospheric water vapour for analysis of the γ sub(D) relationship

    International Nuclear Information System (INIS)

    Foloni, L.L.; Villa Nova, N.A.; Salati, E.

    1979-01-01

    The development of a system to water vapour air, for natural isotopic composition analysis of hydrogen is presented. The system uses molecular sieve, type '4A', without cooling agent and permits the choice of a sampling time, variyng from a few minutes to many hours, through the control of the admission of vapour flux. The system has good performance in field conditions, with errors of the order of + -3,0 0 /00 in the γ sub(D)( 0 /00) measurements [pt

  14. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    S. Noël

    2018-04-01

    Full Text Available An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17–45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within  ∼  5 %. A significant positive linear change in water vapour for the time 2003–2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year−1 around 17 km. Between 30 and 37 km the changes become significantly negative (about −0.01 ± 0.008 ppmv year−1; all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5–6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer–Dobson circulation.

  15. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  16. Dew-point measurements at high water vapour pressure

    Science.gov (United States)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  17. Steam/water separation device for drying a wet vapour

    International Nuclear Information System (INIS)

    Sundheimer, P.

    1986-01-01

    The aim of the present invention is to dry a wet vapour which flows up to the device. The device has at least a group of steam dryer elements in a zone in which there is a vertical apertured panel; this vertical apertured panel is a metal grille with baffles the inlet steam flow to make it horizontal or slightly inclined to the bottom. The invention applies more particularly, to PWR steam generators [fr

  18. A simple passive method of collecting water vapour for environmental tritium monitoring

    International Nuclear Information System (INIS)

    Iida, T.; Fukuda, H.; Ikebe, Y.; Yokoyama, S.

    1995-01-01

    To investigate the average behaviour of tritium in an atmospheric environment, it is necessary to collect water vapour in air over a long period at numerous locations. For the purpose of the study, the passive method was developed: this is handy, low-priced and could collect water vapour in air without motive power. This paper describes the characteristics of the passive collecting method, the performance of water collection in outdoor air and the measurements of tritium concentrations in water samples collected by the passive method. (author)

  19. Vapour dynamics during magma-water interaction experiments: hydromagmatic origins of submarine volcaniclastic particles (limu o Pele)

    Science.gov (United States)

    Schipper, C. Ian; Sonder, Ingo; Schmid, Andrea; White, James D. L.; Dürig, Tobias; Zimanowski, Bernd; Büttner, Ralf

    2013-03-01

    Recent observations have shattered the long-held theory that deep-sea (>500 m) explosive eruptions are impossible; however, determining the dynamics of unobserved eruptions requires interpretation of the deposits they produce. For accurate interpretation to be possible, the relative abilities of explosive magmatic degassing and non-explosive magma-water interaction to produce characteristic submarine volcaniclastic particles such as `limu o Pele' (bubble wall shards of glass) must be established. We experimentally address this problem by pouring remelted basalt (1300 °C, anhydrous) into a transparent, water-filled reservoir, recording the interaction with a high-speed video camera and applying existing heat transfer models. We performed the experiments under moderate to high degrees of water subcooling (˜8 l of water at 58 and 3 °C), with ˜0.1 to 0.15 kg of melt poured at ˜10-2 kg s-1. Videos show the non-explosive, hydromagmatic blowing and bursting of isolated melt bubbles to form limu o Pele particles that are indistinguishable from those found in submarine volcaniclastic deposits. Pool boiling around growing melt bubbles progresses from metastable vapour film insulation, through vapour film retraction/collapse, to direct melt-water contact. These stages are linked to the evolution of melt-water heat transfer to verify the inverse relationship between vapour film stability and the degree of water subcooling. The direct contact stage in particular explains the extremely rapid quench rates determined from glass relaxation speedometry for natural limu. Since our experimentally produced limu is made entirely by the entrapping of ambient water in degassed basaltic melt, we argue that the presence of fast-quenched limu o Pele in natural deposits is not diagnostic of volatile-driven explosive eruptions. This must be taken into account if submarine eruption dynamics are to be accurately inferred from the deposits and particles they produce.

  20. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  1. SPATIO-TEMPORAL ESTIMATION OF INTEGRATED WATER VAPOUR OVER THE MALAYSIAN PENINSULA DURING MONSOON SEASON

    Directory of Open Access Journals (Sweden)

    S. Salihin

    2017-10-01

    Full Text Available This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD which was estimated by Global Positioning System (GPS processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.

  2. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    Science.gov (United States)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  3. Effect of water vapour absorption on hydroxyl temperatures measured from Svalbard

    Directory of Open Access Journals (Sweden)

    J. M. Chadney

    2017-03-01

    Full Text Available We model absorption by atmospheric water vapour of hydroxyl airglow emission using the HIgh-resolution TRANsmission molecular absorption database (HITRAN2012. Transmission coefficients are provided as a function of water vapour column density for the strongest OH Meinel emission lines in the (8–3, (5–1, (9–4, (8–4, and (6–2 vibrational bands. These coefficients are used to determine precise OH(8–3 rotational temperatures from spectra measured by the High Throughput Imaging Echelle Spectrograph (HiTIES, installed at the Kjell Henriksen Observatory (KHO, Svalbard. The method described in this paper also allows us to estimate atmospheric water vapour content using the HiTIES instrument.

  4. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  5. Discovery of water vapour in the carbon star V Cygni from observations with Herschel/HIFI

    NARCIS (Netherlands)

    Neufeld, D. A.; Gonzalez-Alfonso, E.; Melnick, G.; Pulecka, M.; Schmidt, M.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Menten, K.; Olofsson, H.; Planesas, P.; Schoier, F. L.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; McCoey, C.; Shipman, R.; Jellema, W.; de Graauw, T.; Ossenkopf, V.; Schieder, R.; Philipp, S.

    2010-01-01

    We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1(11)-0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receiver. The observed spectral line profile is nearly

  6. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  7. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  8. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  9. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  10. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.

    Science.gov (United States)

    Hogg, D C; Guiraud, F O

    1979-05-31

    MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.

  11. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour

    Science.gov (United States)

    Nancy Anna Anasthasiya, A.; Ramya, S.; Rai, P. K.; Jeyaprakash, B. G.

    2018-01-01

    ZnO nanowires with hexagonal wurtzite structure were grown on the glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method. Both experimental and theoretical studies demonstrated that NH3 chemisorbed and transferred the charge to the surface of the nanowire via its nitrogen site to the zinc site of ZnO nanowires, leading to the detection of NH3 vapour. The adsorbed ammonia dissociated into NH2 and H due to steric repulsion, and then into N2 and H2 gas. The formation of the N2 gas during the desorption process confirmed by observing peak at 14 and 28 m/z in the GC-MS spectrum.

  12. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....

  13. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  14. Water vapour trends at several tropospheric levels over South America between 1973 and 2003

    International Nuclear Information System (INIS)

    Morales, L.; Mattar, C.; Da-Silva, L.; Abarca, R.

    2009-01-01

    In this paper water vapour trends were analyzed at several tropospheric levels over South America between 1973 and 2003. It was carried out using in situ values retrieved by 15 radiosonde stations and NCEP NCAR Reanalysis data (NNR). NNR and radiosonde water vapour data were linked to Koeppen-Geiger climatic zones to calculate anomalies, trends, and the non-parametric statistical significance for each mandatory level. A methodology used to process radiosonde data is shown. Water vapour trends in tropical climates presented positive decadal trends. This is statistically significant for the first mandatory levels retrieved by radiosonde. The highest values are presented in average with NNR; the decadal magnitude for climate Af being 0.15 g kg -1 for 1000 and 925 h Pa, and for climate As 0.27 g kg -1 for 925 and 850 h Pa. For non-tropical climates the magnitude trends of specific humidity are affected by the spatial resolution of NNR, which is seen when comparing the results received by the radiosondes. Finally, this paper shows the initial results of water vapour content trends in the last three decades over South America. Strong climatic events and synoptic oscillations were not commented upon.

  15. Water vapour rises from the cooling towers for the ATLAS detector at Point 1

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Electronics on the ATLAS detector produce heat when the experiment is running. An elaborate cooling system keeps the detector from overheating. On the surface, the warm water vapour that rises from the detector 100metres underground is clearly visible from the ATLAS cooling towers on the CERN Meyrin site in Switzerland.

  16. Detection of the contamination of air by tritiated water vapour around the reactor EL3

    International Nuclear Information System (INIS)

    Lebouleux, P.; Ardellier, A.; Valero, S.

    1968-01-01

    The authors describe the apparatus used for the detection of the tritiated water vapour contamination in the air around the reactor EL 3. The apparatus consists of two air-circulation ionisation chambers; the air in one of these is dried by passage through a silica-gel column. By carrying out a differential measurement of the ionization currents, it is possible to measure the tritiated water vapour concentration. A theoretical study of the response of the chambers is carried out for two types of emission of the tritiated water vapour: continuous, or in bursts. The experimental work comprises: calibration in the measurement range employed; study of the selectivity for other active gases; study of typical accidents; the interpretation of the results in the case of discontinuous emission, taking into account the desorption from the walls of the measurement chamber, a phenomenon which is observed during the emptying process. The authors give finally actual examples of how to use the results. The apparatus built makes it possible to detect, in less than ten minutes, contamination by tritiated water vapour in the presence of other active gases, in a measurement range of between 3 and 2200 MPC, and with an accuracy of about 25 per cent. A transposition to calculations of the risk to workers should be made with the utmost caution; an envelope of this risk can be drawn up more or less accurately depending on particular cases. (authors) [fr

  17. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  18. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  19. Influence of heat transfer on the dynamic response of a spherical gas/vapour bubble

    International Nuclear Information System (INIS)

    Hegedus, Ferenc; Hos, Csaba; Kullmann, Laszlo

    2010-01-01

    The standard approach to analyse the bubble motion is the well known Rayleigh-Plesset equation. When applying the toolbox of nonlinear dynamical systems to this problem several aspects of physical modelling are usually sacrificed. Particularly in vapour bubbles the heat transfer in the liquid domain has a significant effect on the bubble motion; therefore the nonlinear energy equation coupled with the Rayleigh-Plesset equation must be solved. The main aim of this paper is to find an efficient numerical method to transform the energy equation into an ODE system, which, after coupling with the Rayleigh-Plesset equation can be analysed with the help of bifurcation theory. Due to the strong nonlinearity and violent bubble motions the computational effort can be high, thus it is essential to reduce the size of the problem as much as possible. In the first part of the paper finite difference, Galerkin and spectral collocation methods are examined and compared in terms of efficiency. In the second part free and forced oscillations are analysed with an emphasis on the influence of heat transfer. In the case of forced oscillations the unstable branches of the amplification diagrams are also computed.

  20. An Analysis on the Moisture and Thermal Protective Performance of Firefighter Clothing Based on Different Layer Combinations and Effect of Washing on Heat Protection and Vapour Transfer Performance

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2015-01-01

    Full Text Available Fabric assemblies for firefighting clothing have been tested for heat protection and comfort. The constituent materials and fabric structures have been specifically selected and tailored for firefighters’ clothing. In order to do this, four types of outer shell fabrics, four types of moisture barrier fabrics, and four types of heat barriers with different weights and material compositions were used to make a multilayered fabric assembly. Heat transfer (flame, heat transfer (radiant, and water vapour resistance tests were conducted according to the latest EN469 test standard which also recommends washing tests. These tests reveal that material content and material brand have considerable effect on the required performance levels of heat protection. In addition, while washing tests have improved water vapor transfer properties, they have a deteriorating effect on heat protection performance. Considering heat protection and moisture comfort properties, the optimal assemblies are thereby identified.

  1. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-01-01

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.

  2. The Investigation of Isotopic Composition of Precipitation and water vapour by Using Air Mass Trajectories and Meteorological Parameters

    International Nuclear Information System (INIS)

    Dirican, A.; Acar, Y.; Demircan, M.

    2002-01-01

    In last century there are so many studies were carried out about stable isotopes of precipitation. The Researchers, study in this field directed to examine origin and transport of water vapour. To investigate the conditions of precipitation formation parallel with climatic changes, stable isotopes using as a powerful tool. So that a project coordinated by IAEA. In this presentation we will give some parts of this project which was carried out in Turkey. First results were obtained for 2001 year. The one of the first result which was obtained in this project is the relation between air temperature and isotopic composition of precipitation collected in Ankara Antalya and Adana station. Second was the observation of temporal variation of stable isotope composition in precipitation and water vapour in relation with water vapour transport. δD and δ 18 O content of atmospheric water vapour examined for January - December 2001 time interval. 27 precipitation event had been examined, starting from endengered place and following to trajectories until to reach Turkey, by using ground level and 500mbar synoptic charts. The observed δD and δ 18 O variations of water vapour is related with the endengered place (Atlantic Ocean, Mediterranean Sea, etc.) of water vapour. The isotopic composition of local precipitation forms by regional meteorological factors. In this study δD and δ 18 O relation of event, daily precipitation and water vapour were defined

  3. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  4. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bouin, M.-N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J.

    2005-03-01

    Water vapour plays a major role in atmospheric processes but remains difficult to quantify due to its high variability in time and space and the sparse set of available measurements. The GPS has proved its capacity to measure the integrated water vapour at zenith with the same accuracy as other methods. Recent studies show that it is possible to quantify the integrated water vapour in the line of sight of the GPS satellite. These observations can be used to study the 3D heterogeneity of the troposphere using tomographic techniques. We develop three-dimensional tomographic software to model the three-dimensional distribution of the tropospheric water vapour from GPS data. First, the tomographic software is validated by simulations based on the realistic ESCOMPTE GPS network configuration. Without a priori information, the absolute value of water vapour is less resolved as opposed to relative horizontal variations. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers was operated for 2 weeks within a 20×20-km area around Marseille (southern France). The network extends from sea level to the top of the Etoile chain (˜700 m high). Optimal results have been obtained with time windows of 30-min intervals and input data evaluation every 15 min. The optimal grid for the ESCOMTE geometrical configuration has a horizontal step size of 0.05°×0.05° and 500 m vertical step size. Second, we have compared the results of real data inversions with independent observations. Three inversions have been compared to three successive radiosonde launches and shown to be consistent. A good resolution compared to the a priori information is obtained up to heights of 3000 m. A humidity spike at 4000-m altitude remains unresolved. The reason is probably that the signal is spread homogeneously over the whole network and that such a feature is not resolvable by tomographic techniques. The results of our pure GPS inversion show a correlation with

  5. Absorption by water vapour in the 1 to 2 μm region

    International Nuclear Information System (INIS)

    Smith, K.M.; Ptashnik, I.; Newnham, D.A.; Shine, K.P.

    2004-01-01

    The near-IR (in the range 5000-10 000 cm -1 , 1-2 μm) bands of water vapour have been measured in absorption in the laboratory at sub-Doppler spectral resolution (up to 0.0054 cm -1 after numerical apodisation) by Fourier transform spectroscopy. Measurements have been made at 296 K on pure water vapour (at pressures between 2 and 20 hPa) and mixtures of water and air (at total pressures of 100 and 1000 hPa), at optical path lengths in the range 0.26-9.75 m. Measured absorption intensities have been compared with values calculated using the HITRAN 2000 molecular database. These comparisons indicate that the intensities of the 2ν(1.4 μm) and 2ν+δ(1.14 μm) bands are underestimated in HITRAN 2000 by approximately 15% and 20%, respectively, for pure water vapour measurements, and 12% for both bands in the case of water-air mixtures. The ν+δ (1.86 μm) band is in good agreement (0.4% for pure water vapour and less than 6% for mixtures with air) with HITRAN 2000. For typical atmospheric conditions, these absorption bands are sufficiently strong that radiation is fully absorbed at wavelengths in the region of the band centres. Hence the extra absorption that has been identified has only a modest impact (0.16 W m -2 or about 0.2%) on the global-mean clear-sky absorption of solar radiation. The impact in the upper troposphere is several times larger

  6. Vertical distribution of deuterium in atmospheric water vapour: problems in application to assess atmospheric condensation models

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1984-01-01

    The paper assesses the use of the author's data by Rozanski and Sonntag to support a multi-box model of the vertical distribution of deuterium in atmospheric water vapour, in which exchange between vapour and falling precipitation produces a steeper deuterium concentration profile than simpler condensation models. The mean deuterium/altitude profile adopted by Rozanski and Sonntag for this purpose is only one of several very different mean profiles obtainable from the data by arbitrary selection and weighting procedures; although it can be made to match the specified multi-box model calculations for deuterium, there is a wide discrepancy between the actual and model mean mixing ratio profiles which cannot be ignored. Taken together, the mixing ratio and deuterium profiles indicate that mean vapour of the middle troposphere has been subjected to condensation at greater heights and lower temperatures than those considered in the model calculations. When this is taken into account, the data actually fit much better to the simpler condensation models. But the vapour samples represent meteorological situations too remote in time from primary precipitation events to permit definite conclusions on cloud system mechanisms. (Auth.)

  7. Prediction of water vapour sorption isotherms and microstructure of hardened Portland cement pastes

    International Nuclear Information System (INIS)

    Burgh, James M. de; Foster, Stephen J.; Valipour, Hamid R.

    2016-01-01

    Water vapour sorption isotherms of cementitious materials reflect the multi-scale physical microstructure through its interaction with moisture. Our ability to understand and predict adsorption and desorption behaviour is essential in the application of modern performance-based approaches to durability analysis, along with many other areas of hygro-mechanical and hygro-chemo-mechanical behaviour. In this paper, a new physically based model for predicting water vapour sorption isotherms of arbitrary hardened Portland cement pastes is presented. Established thermodynamic principles, applied to a microstructure model that develops with hydration, provide a rational basis for predictions. Closed-form differentiable equations, along with a rational consideration of hysteresis and scanning phenomena, makes the model suitable for use in numerical moisture simulations. The microstructure model is reconciled with recently published 1 H NMR and mercury intrusion porosimetry results.

  8. Study of the Quantum Efficiency of CsI Photocathodes Exposed to Oxygen and Water Vapour

    CERN Document Server

    Di Mauro, A; Piuz, François; Schyns, E M; Van Beelen, J B; Williams, T D

    2000-01-01

    The operation of CsI photocathodes in gaseous detectors requires special attention to the purity of the applied gas mixtures.We have studied the influence of oxygen and water vapour contaminations on the performance of CsI photocathodes for theALICE HMPID RICH prototype. Measurements were done through comparison of Cherenkov rings obtained from beamtests. Increased levels of oxygen and water vapour did not show any effect on the performance. The results of this studyfound a direct application in the way of storing CsI photocathodes over long periods nad in particular in the shipment of theHMPID prototype from CERN to the STAR experiment at BNL. (Abstract only available,full text to follow)

  9. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347 ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  10. The influence of heat pre-treatment on the sorption of water vapour on bentonite

    Czech Academy of Sciences Publication Activity Database

    Mokrejš, P.; Zikánová, Arlette; Hradil, David; Štulík, K.; Pacáková, V.; Kočiřík, Milan; Eić, M.

    2005-01-01

    Roč. 11, č. 1 (2005), s. 57-63 ISSN 0929-5607 R&D Projects: GA ČR(CZ) GA104/02/1464; GA MŠk(CZ) LN00A028 Institutional research plan: CEZ:AV0Z40400503 Keywords : adsorption * bentonite * montmorillonite * water vapour Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.323, year: 2005

  11. The effect of coherent stirring on the advection?condensation of water vapour

    OpenAIRE

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. Key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. In order to investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls the moisture...

  12. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  13. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    Directory of Open Access Journals (Sweden)

    E. Peet

    2004-12-01

    Full Text Available In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology – Atmospheric composition and structure (middle atmosphere–composition and chemistry

  14. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    Science.gov (United States)

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  15. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Science.gov (United States)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  16. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  17. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-12-01

    Full Text Available We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.

  18. Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2009-07-01

    Full Text Available The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios.

    From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1 a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.

  19. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012).

    Science.gov (United States)

    Weigel, K; Rozanov, A; Azam, F; Bramstedt, K; Damadeo, R; Eichmann, K-U; Gebhardt, C; Hurst, D; Kraemer, M; Lossow, S; Read, W; Spelten, N; Stiller, G P; Walker, K A; Weber, M; Bovensmann, H; Burrows, J P

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  20. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  1. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  2. Use of tritium-labelled water in the study of transfers and exchanges in Helianthus annuus

    International Nuclear Information System (INIS)

    Puard, M.

    1982-01-01

    A labelling method with tritium-labelled water was developed and an experiment was carried out to study the kinetics of water transfer in the plant, to measure the extend of water vapour exchange between the leaves and atmosphere and the migration of this water towards the root systems [fr

  3. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  5. The ratio DT/μ for electrons in water vapour at 294 K

    International Nuclear Information System (INIS)

    Elford, M.T.

    1995-01-01

    The ratio D T /μ for electrons in water vapour (294 K) has been measured by the Townsend-Huxley method as a function of E/N (where E is the electric field strength and N the gas number density) at vapour pressures ranging from 0.103 to 0.413 kPa. For E/N ≤ 30 Td, where attachment and ionisation may be neglected, the values are found to be independent of vapour pressure and of the current ratio relation used to derive D T /μ values from the measured current ratios. The uncertainty of these D T /μ values is estimated to be T /μ measured at E/N > 30 Td were found to be strongly pressure dependent, the strength and sign of the dependence depending on E/N and the current ratio relation used. Since extrapolation to infinite pressure at each E/N value did not give the same value of D T /μ, it has not been possible to derive reliable D T /μ values for this higher E/N range. Possible causes of the observed pressure dependences are discussed. The present data are in good agreement with the values predicted by Ness and Robson for values of E/N ≤ 24 Td. 17 refs., 1 tab., 5 figs

  6. Dynamic behaviour of bubbles of water vapour at a temperature lower than the boiling temperature

    International Nuclear Information System (INIS)

    Jansen, Franz

    1966-01-01

    This research thesis reports the study of the theoretical movement of the wall of vapour water bubbles in a sub-saturated boiling regime, i.e. with an average water temperature lower than the boiling temperature. While assuming that bubbles have an initial translational speed at the beginning of their condensation, the author shows that their shrinkage should result in an accelerated displacement in a direction normal to the wall and inward the liquid. Layers of hot water initially close to the wall would therefore be quickly transported towards cold water areas. Experiments allowed, in some cases, the acceleration of bubbles during their condensation to be noticed: for low sub-saturations in still water and for high sub-saturations in water in forced convection, even though, in this last case, the determination of accelerations is more delicate [fr

  7. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    Science.gov (United States)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  8. Water vapour and wind measurements by a two micron space lidar

    Science.gov (United States)

    Ghibaudo, J.-B.; Labandibar, J.-Y.

    2018-04-01

    AEROSPATIALE presents the main results of the feasibility study under ESA contract on a coherent 2μm lidar instrument capable of measuring water vapour and wind velocity in the planetary boundary layer. The selected instrument configuration and the associated performance are provided, and the main critical subsystems identified (laser configuration, coherent receiver chain architecture, frequency locking and offsetting architecture. The second phase of this study is dedicated to breadboard the most critical elements of such an instrument in order to technologically consolidate its feasibility.

  9. Passivation effect of water vapour on thin film polycrystalline Si solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Müller, Martin; Becker, C.; Fejfar, Antonín

    2016-01-01

    Roč. 213, č. 7 (2016), s. 1969-1975 ISSN 1862-6300 R&D Projects: GA MŠk LM2015087; GA ČR GA13-12386S Grant - others:AV ČR(CZ) DAAD-16-27 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : passivation, * plasma hydrogenation * silicon * solar cells * thin films * water vapour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  10. Water vapour flux divergence over the Arabian Sea during 1987 summer monsoon using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; RameshKumar, M.R.

    the AS or the southern Indian Ocean. Another question which remains unanswered is whether all the NFD over AS is utilized only for precipitation over the Indian subcontinent or part of it is utilized for precipitation over the other southeast Asian countries. Only a... detailed and systematic surface and upper air data collection programme over the tropical Indian Ocean can throw light on the above questions. WATER VAPOUR FLUX DIVERGENCE OVER THE ARABIAN SEA 207 500 60’ 700 80” 500 60” 70” 500 60’ 70” 60” 700 Fig. 7...

  11. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    E. L. Simpson

    2018-05-01

    Full Text Available The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP, which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  12. Electrical Behaviour of Chitosan-Silver Nanocomposite in Presence of Water Vapour

    Directory of Open Access Journals (Sweden)

    Bal Yadav

    2017-04-01

    Full Text Available This paper presents the synthesis, characterization of the nanocomposite of silver and chitosan polymer composite reinforced by cellulose fibre and its electrical behaviour in presence of water vapour. The coated paper has been characterized by XRD, IR, SEM and EDX techniques. The size of silver nanoparticles is found to be around 9 nm and deposited uniformly. Chitosan, as well as cellulose, contain a hydrogen attached to electronegative nitrogen and oxygen. This gives a favourable environment for the formation of hydrogen bonds. IR peaks of the composite infer the intermolecular hydrogen bonding between the two constituents. The SEM pictures show that the coating of the fibres with nanoparticles is quite uniform. EDX analysis shows that the coated filter paper has sufficient amount of silver along with carbon and oxygen. The coated paper shows good sensitivity towards humidity. It gives excellent linearity in response with a concentration of water vapour after heat treatment of composite at 130 °C. The sensitivity of the sensor is 0.8 MΩ per unit of relative humidity. Sensing properties originate from protonic conductivity from adsorbed water molecule.

  13. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Science.gov (United States)

    Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon

    2018-05-01

    The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  14. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    Science.gov (United States)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  15. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    Science.gov (United States)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard

  16. An observational study of air and water vapour convergence over the Bernese Alps, Switzerland, during summertime and the development of isolated thunderstorms

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; Lews Castle College, University of the Highlands and Islands, Stornoway, Scotland (United Kingdom); N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics

    2012-12-15

    The daytime summer phenomenon of the mesoscale transport of air and water vapour from the Swiss lowlands into the nearby western Alps, leading to orographic convection, is investigated using a range of independent observations. These observations are: Global Positioning System (GPS) integrated water vapour (IWV) data, the TROWARA microwave radiometer, MeteoSwiss ANETZ surface weather station data, the Payerne radiosonde, synoptic analyses for Switzerland and Europe, EUMETSAT and NOAA visible and infrared satellite images, MeteoSwiss operational precipitation radar, photographs and webcam images including time-lapse cloud animations. The intention was to show, using GPS IWV data, that significant differences in IWV may occur between the Swiss plain and nearby Alps during small single-cell Alpine thunderstorm events, and that these may be attributable to regional airflow convergence. Two particular case studies are presented for closer examination: 20 June 2005 and 13 June 2006. On both days, fine and warm weather was followed by isolated orographic convection over the Alps in the afternoon and evening, producing thunderstorms. The thunderstorms investigated were generally small, local, discrete and short-lived phenomena. They were selected for study because of almost stationary position over orography, rendering easy observation because they remained contained within a particular mountain region before dissipating. The results show that large transfers of air and water vapour occur from the Swiss plain to the mountains on such days, with up to a 50% increase in GPS IWV values at individual Alpine stations, coincident with strong airflow convergence in the same locality. (orig.)

  17. The oxidation of stainless steels in water vapour-oxygen mixtures. Design and development of an original equipment

    International Nuclear Information System (INIS)

    Uller, Leonardo.

    1981-02-01

    A device including a thermobalance placed in a tight housing has been conceived and built. This apparatus is suitable to submit metallic samples to the action of dry oxygen, deoxygenated water vapour or mixtures of water vapour and oxygen. The first results obtained with this device, at 600 0 C, and for a 18-10 stainless steel are: - in the presence of deoxygenated water vapour, one observes very fast oxidation kinetics, with a roughly parabolic law (K approximately equal to 3x10 -2 mg 2 .cm -4 .h -1 ); - the addition of oxygen from about 10 vpm onwards, induces an important initial slowing down of the kinetics; - the duration of this 'induction' period rises with increasing the oxygen content of the water vapour, but the protection of the alloy due to the action of oxygen remains temporary; - in another way, experiments begun with water vapour, were continued with pure oxygen, and reciprocally. During these 'mixed' experiments, the weight increases were continually recorded. A swift slowing down has been observed in the first case and an important acceleration in the second one [fr

  18. Data on thermal conductivity, water vapour permeability and water absorption of a cementitious mortar containing end-of-waste plastic aggregates

    OpenAIRE

    Di Maio, Luciano; Coppola, Bartolomeo; Courard, Luc; Michel, Frédéric; Incarnato, Loredana; Scarfato, Paola

    2018-01-01

    The data presented in this article are related to the research article entitled “Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates ” (Coppola et al., 2018). This article focuses the attention on thermal conductivity, water vapour permeability and water absorption of a lightweight cementitious mortar containing foamed end-of-waste plastic aggregates, produced via foam extrusion process. Thermal conductivity, water vapour permeability ...

  19. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    Science.gov (United States)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  20. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    Science.gov (United States)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  1. The effect of coherent stirring on the advection–condensation of water vapour

    Science.gov (United States)

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  2. The effect of coherent stirring on the advection-condensation of water vapour

    Science.gov (United States)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  3. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  4. High mean water vapour pressure promotes the transmission of bacillary dysentery.

    Directory of Open Access Journals (Sweden)

    Guo-Zheng Li

    Full Text Available Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.

  5. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events

    Directory of Open Access Journals (Sweden)

    S. C. Lewis

    2010-06-01

    Full Text Available Water isotope records such as speleothems provide extensive evidence of past tropical hydrological changes. During Heinrich events, isotopic changes in monsoon regions have been interpreted as implying a widespread drying through the Northern Hemisphere tropics and an anti-phased precipitation response in the south. Here, we examine the sources of this variability using a water isotope-enabled general circulation model, Goddard Institute for Space Studies ModelE. We incorporate a new suite of vapour source distribution tracers to help constrain the impact of precipitation source region changes on the isotopic composition of precipitation and to identify nonlocal amount effects. We simulate a collapse of the North Atlantic meridional overturning circulation with a large freshwater input to the region as an idealised analogue to iceberg discharge during Heinrich events. An increase in monsoon intensity, defined by vertical wind shear, is modelled over the South American domain, with small decreases simulated over Asia. Simulated isotopic anomalies agree well with proxy climate records, with lighter isotopic values simulated over South America and enriched values across East Asia. For this particular abrupt climate event, we identify which climatic change is most likely linked to water isotope change – changes in local precipitation amount, monsoon intensity, water vapour source distributions or precipitation seasonality. We categorise individual sites according to the climate variability that water isotope changes are most closely associated with, and find that the dominant isotopic controls are not consistent across the tropics – simple local explanations, in particular, fall short of explaining water isotope variability at all sites. Instead, the best interpretations appear to be site specific and often regional in scale.

  6. Vapour pressures, densities, and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system

    International Nuclear Information System (INIS)

    Lucas, Antonio de; Donate, Marina; Rodriguez, Juan F.

    2006-01-01

    Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH 3 COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH 3 CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH 3 COOK) or (LiBr + CH 3 CH(OH)COONa) and refrigerant H 2 O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion

  7. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...

  8. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  9. Near-infrared water vapour self-continuum at close to room temperature

    International Nuclear Information System (INIS)

    Ptashnik, I.V.; Petrova, T.M.; Ponomarev, Yu.N.; Shine, K.P.; Solodov, A.A.; Solodov, A.M.

    2013-01-01

    The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm −1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT C KD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm −1 , using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm −1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT C KD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements. -- Highlights: ► New lab measurements of the near-infrared water vapour self-continuum absorption. ► First room-temperature data on the self-continuum in the 1.6 μm window. ► In the 1.6 μm window the new data exceed MT C KD-2.5 model by 2 orders of magnitude

  10. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

    International Nuclear Information System (INIS)

    Scott, T.B.; Petherbridge, J.R.; Harker, N.J.; Ball, R.J.; Heard, P.J.; Glascott, J.; Allen, G.C.

    2011-01-01

    Highlights: → High resolution imagery (FIB, SEM and SIMS) of carbide inclusions in uranium metal. → Real time images following the reaction of the carbide inclusions with water vapour. → Shown preferential consumption of carbide over that of the bulk metal. → Quantity of impurities in the metal therefore seriously influence reaction rate. → Metal purity must be considered when storing uranium in air or moist conditions. - Abstract: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO 3 .xH 2 O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.

  11. Validation for a new apparatus measuring water vapour enhancement factors up to 6 MPa

    International Nuclear Information System (INIS)

    Sairanen, H; Heinonen, M

    2014-01-01

    High accuracy dew-point measurements require a water vapour enhancement factor to correct the effects of pressure drop in a sampling line. The enhancement factor is also needed when a humidity quantity value is converted to another. In this paper a new apparatus for traceable measurements of the enhancement factor is presented along with the results of validation measurements with air and methane. The apparatus is designed for dew-point temperatures from −50 to +15 °C and the pressure range from atmospheric pressure up to 6 MPa. The performance of the apparatus was investigated by comparing measurement results to the literature data for air and the data calculated from published thermodynamic measurement results for methane. It is shown that the experimental results agree with the reference data within the estimated uncertainties. (paper)

  12. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  13. PFS/Mars Express first results: water vapour and carbon monoxide global distribution

    Science.gov (United States)

    Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team

    Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.

  14. Enhanced MODIS Atmospheric Total Water Vapour Content Trends in Response to Arctic Amplification

    Directory of Open Access Journals (Sweden)

    Dunya Alraddawi

    2017-12-01

    Full Text Available In order to assess the strength of the water vapour feedback within Arctic climate change, 15 years of the total column-integrated density of water vapour (TCWV from the moderate resolution imaging spectrometer (MODIS are analysed. Arctic TCWV distribution, trends, and anomalies for the 2001–2015 period, broken down into seasons and months, are analysed. Enhanced local spring TCWV trends above the terrestrial Arctic regions are discussed in relation to land snow cover and vegetation changes. Upward TCWV trends above the oceanic areas are discussed in lien with sea ice extent and sea surface temperature changes. Increased winter TCWV (up to 40% south of the Svalbard archipelago are observed; these trends are probably driven by a local warming and sea ice extent decline. Similarly, the Barents/Kara regions underwent wet trends (up to 40%, also associated with winter/fall local sea ice loss. Positive late summer TCWV trends above the western Greenland and Beaufort seas (about 20% result from enhanced upper ocean warming and thereby a local coastal decline in ice extent. The Mackenzie and Siberia enhanced TCWV trends (about 25% during spring are found to be associated with coincident decreased snow cover and increased vegetation, as a result of the earlier melt onset. Results show drier summers in the Eurasia and western Alaska regions, thought to be affected by changes in albedo from changing vegetation. Other TCWV anomalies are also presented and discussed in relation to the dramatic decline in sea ice extent and the exceptional rise in sea surface temperature.

  15. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  16. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2014-02-01

    Full Text Available Soil-water characteristics of Gaomiaozi (GMZ Ca-bentonite at high suctions (3–287 MPa are measured by vapour equilibrium technique. The soil-water retention curve (SWRC of samples with the same initial compaction states is obtained in drying and wetting process. At high suctions, the hysteresis behaviour is not obvious in relationship between water content and suction, while the opposite holds between degree of saturation and suction. The suction variation can change its water retention behaviour and void ratio. Moreover, changes of void ratio can bring about changes in degree of saturation. Therefore, the total change in degree of saturation includes changes caused by suction and that by void ratio. In the space of degree of saturation and suction, the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio. However, the relationship between water content and suction is less affected by changes of void ratio. The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction. Moreover, the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale. From this linear relationship, the variation of degree of saturation caused by the change in void ratio can be obtained. Correspondingly, SWRC at a constant void ratio can be determined from SWRC at different void ratios.

  17. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    International Nuclear Information System (INIS)

    Kirchheim, Dennis; Jaritz, Montgomery; Hopmann, Christian; Dahlmann, Rainer; Mitschker, Felix; Awakowicz, Peter; Gebhard, Maximilian; Devi, Anjana; Brochhagen, Markus; Böke, Marc

    2017-01-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments. (paper)

  18. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  19. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  20. Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Paul, Geo; Musso, Giorgia Elena; Bottinelli, Emanuela; Cossi, Maurizio; Marchese, Leonardo; Berlier, Gloria

    2017-04-05

    The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by 29 Si, 1 H and 13 C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH 2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH 3 + groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  2. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  3. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  4. Daily variations of delta 18O and delta D in daily samplings of air water vapour and rain water in the Amazon Basin

    International Nuclear Information System (INIS)

    Matsui, E.; Salati, E.; Ribeiro, M.N.G.; Tancredi, A.C.F.N.S.; Reis, C.M. dos

    1984-01-01

    The movement of rain water in the soil from 0 to 120 cm depth using delta 18 O weekly variations is studied. A study of the delta D variability in water vapour and rain water samples during precipitation was also done, the samples being collected a 3 minute intervals from the beginning to the end of precipitation. (M.A.C.) [pt

  5. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen

    2016-06-30

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (dv). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (dET) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime dv values. The low dET observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime dv and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime dv variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate dET can generally be expected to show

  6. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-08-15

    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  7. Tritium gas and tritiated water vapour behaviour in the environment from releases into the atmosphere from fusion reactors

    International Nuclear Information System (INIS)

    Velarde, Marta; Perlado, Manuel

    2001-01-01

    The diffusion of tritium from fusion reactors follows different ways according to the present chemical form, tritium gas or tritiated water vapour. The atmospheric conditions, speed and direction of the wind, rain intensity or stability class, are key factors in the dry and wet deposition. The obtained results demonstrate that the wet deposition is critical for the incorporation of the tritiated water vapour to the natural biological chain. However, the dry deposition is the factor that influences in the tritium gas form. The conversion of HT into HTO in the soil is rapid (1-7 days), and 20% of HT deposited in the soil is reemitted to the atmosphere in the form HTO, while the rest incorporates into the biological cycle. The rain factor accelerates the incorporation of tritium to the ground, the superficial waters and the underground waters

  8. The vapour pressure of water as a function of solute concentration above aqueous solutions of fructose, sucrose, raffinose, erythritol, xylitol, and sorbitol

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    The vapour pressure of water above an aqueous solution of sucrose at T = 298.06 K has been measured for 9 sucrose mole fractions up to 0.12. Vapour pressure measurements have also been made on aqueous solutions of meso-erythritol, xylitol, sorbitol, fructose, and raffinose at T = 317.99 K...

  9. Sodium removal from CSRDM lower part by water vapour - CO2 process

    International Nuclear Information System (INIS)

    Sundar Raj, S.I.; Sreedhar, B.K.; Gurumoorthy, K.; Rajan, K.K.; Kalyanasundaram, P.; Rajan, M.; Vaidyanathan, G.

    2006-01-01

    Sodium is the primary and secondary coolant in fast reactors. Primary and secondary circuits components like Control and Safety Rod Drive Mechanism (CSRDM), pumps, heat exchangers etc. handle liquid sodium. Sodium has good affinity to oxygen and reacts vigorously with water. Hence sodium cleaning is the first and important activity in the maintenance of the components. In reactor components this cleaning process also helps in removing a major part of radioactive contaminants after which they are subjected to chemical decontamination. There are several methods available for removing sodium from components. Out of these, the water vapour-CO 2 process is selected for large components such as pumps, heat exchangers etc. while steam cleaning is used for the core sub assemblies. The cleaning processes are to be closely monitored to ensure safety because the release of hydrogen is to be kept below 4 % during the process. This paper discusses the in house facility and the experience in the successful use of the process in the cleaning of CSRDM. (author)

  10. Desalination using spray tower and vapour compression refrigeration system

    International Nuclear Information System (INIS)

    Sathish Kumar, S.; Mani, A.

    2006-01-01

    A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate. (author)

  11. Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Noël, Stefan; Bekki, Slimane; Irbah, Abdenour; Meftah, Mustapha; Claud, Chantal

    2018-05-01

    Atmospheric water vapour plays a key role in the Arctic radiation budget, hydrological cycle and hence climate, but its measurement with high accuracy remains an important challenge. Total column water vapour (TCWV) datasets derived from ground-based GNSS measurements are used to assess the quality of different existing satellite TCWV datasets, namely from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The comparisons between GNSS and satellite data are carried out for three reference Arctic observation sites (Sodankylä, Ny-Ålesund and Thule) where long homogeneous GNSS time series of more than a decade (2001-2014) are available. We select hourly GNSS data that are coincident with overpasses of the different satellites over the three sites and then average them into monthly means that are compared with monthly mean satellite products for different seasons. The agreement between GNSS and satellite time series is generally within 5 % at all sites for most conditions. The weakest correlations are found during summer. Among all the satellite data, AIRS shows the best agreement with GNSS time series, though AIRS TCWV is often slightly too high in drier atmospheres (i.e. high-latitude stations during autumn and winter). SCIAMACHY TCWV data are generally drier than GNSS measurements at all the stations during the summer. This study suggests that these biases are associated with cloud cover, especially at Ny-Ålesund and Thule. The dry biases of MODIS and SCIAMACHY observations are most pronounced at Sodankylä during the snow season (from October to March). Regarding SCIAMACHY, this bias is possibly linked to the fact that the SCIAMACHY TCWV retrieval does not take accurately into account the variations in surface albedo, notably in the presence of snow with a nearby canopy as in Sodankylä. The MODIS bias at Sodankylä is found

  12. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.

  13. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    International Nuclear Information System (INIS)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A.

    1984-01-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH - is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface. (author)

  14. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    Science.gov (United States)

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. Validation of near infrared satellite based algorithms to relative atmospheric water vapour content over land

    International Nuclear Information System (INIS)

    Serpolla, A.; Bonafoni, S.; Basili, P.; Biondi, R.; Arino, O.

    2009-01-01

    This paper presents the validation results of ENVISAT MERIS and TERRA MODIS retrieval algorithms for atmospheric Water Vapour Content (WVC) estimation in clear sky condition on land. The MERIS algorithms exploits the radiance ratio of the absorbing channel at 900 nm with the almost absorption-free reference at 890 nm, while the MODIS one is based on the ratio of measurements centred at near 0.905, 0.936, and 0.94 μm with atmospheric window reflectance at 0.865 and 1.24 μm. The first test was performed in the Mediterranean area using WVC provided from both ECMWF and AERONET. As a second step, the performances of the algorithms were tested exploiting WVC computed from radio sounding (RAOBs)in the North East Australia. The different comparisons with respect to reference WVC values showed an overestimation of WVC by MODIS (root mean square error percentage greater than 20%) and an acceptable performance of MERIS algorithms (root mean square error percentage around 10%) [it

  16. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  17. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, Arturs, E-mail: arturs.zarins@lu.lv [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Kizane, Gunta; Supe, Arnis [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Knitter, Regina; Kolb, Matthias H.H. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), 76021 Karlsruhe (Germany); Tiliks, Juris; Baumane, Larisa [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia)

    2014-10-15

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species.

  18. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  19. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    Science.gov (United States)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  20. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2005-01-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  1. A lidar for water vapour measurements in daytime at Lampedusa, Italy

    Directory of Open Access Journals (Sweden)

    F. Marenco

    2003-06-01

    Full Text Available ENEA is planning to develop a lidar system for measurement of the vertical profi le of water vapour mixing ratio in daytime at a remote site, the Station for Climate Observations located in Lampedusa, Italy. The Raman lidar technique has been retained because of its experimental simplicity with respect to DIAL, and the UV spectral range has been chosen because Raman cross-sections and detector effi ciencies are larger. For a wavelength larger than ~ 300 nm the signal is limited in daytime by sky background, but extinction is acceptable, and the aims of the system can be reached with a strong laser source. The 355 nm wavelength of a frequency-tripled Nd:YAG laser has been retained as this laser source permits to reach a large pulse energy while keeping the system simple to operate. Geometrical form factor calculations need to be performed to evaluate the near-range overlap between the laser beam and the fi eld-of-view of the receiver. Among several options, a dual-receiver system has been retained to account for the several orders of magnitude expected in the backscattered signal intensity: a smaller receiver, with a primary mirror of 200 mm diameter for the 0.2-1 km range, and a larger 500 mm receiver for the 1-3 km range.

  2. RDF gasification with water vapour: influence of process temperature on yield and products composition

    International Nuclear Information System (INIS)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S.

    2005-01-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950 o C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling [it

  3. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  4. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  5. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Science.gov (United States)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  6. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    Directory of Open Access Journals (Sweden)

    L. Lechevallier

    2018-04-01

    Full Text Available The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2 of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies, which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm−1 and 2.0 µm (5000 cm−1 by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS and cavity ring-down spectroscopy (CRDS, respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  7. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    Science.gov (United States)

    Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain

    2018-04-01

    The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  8. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  9. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    Science.gov (United States)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  10. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  11. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev; Patankar, Neelesh A.; Marston, Jeremy; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-01-01

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  12. Precipitable water vapour forecasting: a tool for optimizing IR observations at Roque de los Muchachos Observatory.

    Science.gov (United States)

    Pérez-Jordán, G.; Castro-Almazán, J. A.; Muñoz-Tuñón, C.

    2018-04-01

    We validate the Weather Research and Forecasting (WRF) model for precipitable water vapour (PWV) forecasting as a fully operational tool for optimizing astronomical infrared (IR) observations at Roque de los Muchachos Observatory (ORM). For the model validation we used GNSS-based (Global Navigation Satellite System) data from the PWV monitor located at the ORM. We have run WRF every 24 h for near two months, with a horizon of 48 hours (hourly forecasts), from 2016 January 11 to 2016 March 4. These runs represent 1296 hourly forecast points. The validation is carried out using different approaches: performance as a function of the forecast range, time horizon accuracy, performance as a function of the PWV value, and performance of the operational WRF time series with 24- and 48-hour horizons. Excellent agreement was found between the model forecasts and observations, with R =0.951 and R =0.904 for the 24- and 48-h forecast time series respectively. The 48-h forecast was further improved by correcting a time lag of 2 h found in the predictions. The final errors, taking into account all the uncertainties involved, are 1.75 mm for the 24-h forecasts and 1.99 mm for 48 h. We found linear trends in both the correlation and RMSE of the residuals (measurements - forecasts) as a function of the forecast range within the horizons analysed (up to 48 h). In summary, the WRF performance is excellent and accurate, thus allowing it to be implemented as an operational tool at the ORM.

  13. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for

  14. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  15. Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G.; Strauss, Josiah; Element, Adrian

    2017-01-01

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study

  16. Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen

    2017-01-27

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study

  17. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Gholamireza, Afsaneh

    2011-01-01

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg -1 di-ammonium hydrogen citrate {(NH 4 ) 2 HCit} and those of (NH 4 ) 2 HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH 4 ) 2 HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH 4 ) 2 HCit}, {alanine + (NH 4 ) 2 HCit}, and {serine + (NH 4 ) 2 HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  18. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rahsadeghi@yahoo.co [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Gholamireza, Afsaneh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg{sup -1} di-ammonium hydrogen citrate {l_brace}(NH{sub 4}){sub 2}HCit{r_brace} and those of (NH{sub 4}){sub 2}HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH{sub 4}){sub 2}HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {l_brace}glycine + (NH{sub 4}){sub 2}HCit{r_brace}, {l_brace}alanine + (NH{sub 4}){sub 2}HCit{r_brace}, and {l_brace}serine + (NH{sub 4}){sub 2}HCit{r_brace} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  19. Influence of water vapour on the height distribution of positive ions, effective recombination coefficient and ionisation balance in the quiet lower ionosphere

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2014-03-01

    Full Text Available Mesospheric water vapour concentration effects on the ion composition and electron density in the lower ionosphere under quiet geophysical conditions were examined. Water vapour is an important compound in the mesosphere and the lower thermosphere that affects ion composition due to hydrogen radical production and consequently modifies the electron number density. Recent lower-ionosphere investigations have primarily concentrated on the geomagnetic disturbance periods. Meanwhile, studies on the electron density under quiet conditions are quite rare. The goal of this study is to contribute to a better understanding of the ionospheric parameter responses to water vapour variability in the quiet lower ionosphere. By applying a numerical D region ion chemistry model, we evaluated efficiencies for the channels forming hydrated cluster ions from the NO+ and O2+ primary ions (i.e. NO+.H2O and O2+.H2O, respectively, and the channel forming H+(H2On proton hydrates from water clusters at different altitudes using profiles with low and high water vapour concentrations. Profiles for positive ions, effective recombination coefficients and electrons were modelled for three particular cases using electron density measurements obtained during rocket campaigns. It was found that the water vapour concentration variations in the mesosphere affect the position of both the Cl2+ proton hydrate layer upper border, comprising the NO+(H2On and O2+(H2On hydrated cluster ions, and the Cl1+ hydrate cluster layer lower border, comprising the H+(H2On pure proton hydrates, as well as the numerical cluster densities. The water variations caused large changes in the effective recombination coefficient and electron density between altitudes of 75 and 87 km. However, the effective recombination coefficient, αeff, and electron number density did not respond even to large water vapour concentration variations occurring at other altitudes in the mesosphere. We determined the water

  20. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  1. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  2. Assessment of small-scale integrated water vapour variability during HOPE

    Science.gov (United States)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2015-03-01

    The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities on the order of 0.4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is

  3. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    Science.gov (United States)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  4. Automated calibration of laser spectrometer measurements of δ18 O and δ2 H values in water vapour using a Dew Point Generator.

    Science.gov (United States)

    Munksgaard, Niels C; Cheesman, Alexander W; Gray-Spence, Andrew; Cernusak, Lucas A; Bird, Michael I

    2018-06-30

    Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ 18 O and δ 2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ 18 O and δ 2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible. Copyright © 2018 John Wiley & Sons, Ltd.

  5. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    Science.gov (United States)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we

  6. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Water vapour

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2003-12-01

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for water vapour (H 2 O, D 2 O and HDO). About 1200 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1915 through 2000 for H 2 O. Finally, author's comments for electron collision cross sections and photodissociation processes of H 2 O are given. (author)

  7. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

    Directory of Open Access Journals (Sweden)

    I. M. Vardavas

    1998-02-01

    Full Text Available A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere · Transmission and scattering of radiation

  8. Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2018-01-01

    Soil specific surface area (SA) controls fundamental soil processes such as retention of water, ion exchange, and adsorption and release of plant nutrients and contaminants. Conventional methods for determining SA include adsorption of polar or non‐polar fluid molecules with associated advantages...... parameters varied depending on the water activity or relative humidity range of measured data (0.03–0.93 compared with 0.10–0.80), whereas the variation for desorption was minimal. For desorption isotherms, the average water activity value at which the GAB monolayer parameter was obtained was 0......‐based modelling approaches to determine SA. Measured water vapour adsorption and desorption isotherms for 321 soil samples were used to parameterize the GAB model, the Brunauer–Emmet–Teller (BET) equation and a film adsorption Tuller–Or (TO) model to estimate SA. For adsorption isotherms, the values of the GAB...

  9. The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite

    Directory of Open Access Journals (Sweden)

    M. Schröder

    2013-03-01

    Full Text Available The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF aims at the provision and sound validation of well documented Climate Data Records (CDRs in sustained and operational environments. In this study, a total column water vapour path (WVPA climatology from CM SAF is presented and inter-compared to water vapour data records from various data sources. Based on homogenised brightness temperatures from the Special Sensor Microwave Imager (SSM/I, a climatology of WVPA has been generated within the Hamburg Ocean–Atmosphere Fluxes and Parameters from Satellite (HOAPS framework. Within a research and operation transition activity the HOAPS data and operation capabilities have been successfully transferred to the CM SAF where the complete HOAPS data and processing schemes are hosted in an operational environment. An objective analysis for interpolation, namely kriging, has been applied to the swath-based WVPA retrievals from the HOAPS data set. The resulting climatology consists of daily and monthly mean fields of WVPA over the global ice-free ocean. The temporal coverage ranges from July 1987 to August 2006. After a comparison to the precursor product the CM SAF SSM/I-based climatology has been comprehensively compared to different types of meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA40, ERA INTERIM and operational analyses and from the Japan Meteorological Agency (JMA–JRA. This inter-comparison shows an overall good agreement between the climatology and the analyses, with daily absolute biases generally smaller than 2 kg m−2. The absolute value of the bias to JRA and ERA INTERIM is typically smaller than 0.5 kg m−2. For the period 1991–2006, the root mean square error (RMSE for both reanalyses is approximately 2 kg m−2. As SSM/I WVPA and radiances are assimilated into JMA and all ECMWF analyses and

  10. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  11. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  12. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    Science.gov (United States)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  13. Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE

    Directory of Open Access Journals (Sweden)

    M. Scherer

    2008-03-01

    Full Text Available This paper presents an updated trend analysis of water vapour in the lower midlatitude stratosphere from the Boulder balloon-borne NOAA frostpoint hygrometer measurements and from the Halogen Occulation Experiment (HALOE. Two corrections for instrumental bias are applied to homogenise the frostpoint data series, and a quality assessment of all soundings after 1991 is presented. Linear trend estimates based on the corrected data for the period 1980–2000 are up to 40% lower than previously reported. Vertically resolved trends and variability are calculated with a multi regression analysis including the quasi-biennal oscillation and equivalent latitude as explanatory variables. In the range of 380 to 640 K potential temperature (≈14 to 25 km, the frostpoint data from 1981 to 2006 show positive linear trends between 0.3±0.3 and 0.7±0.1%/yr. The same dataset shows trends between −0.2±0.3 and 1.0±0.3%/yr for the period 1992 to 2005. HALOE data over the same time period suggest negative trends ranging from −1.1±0.2 to −0.1±0.1%/yr. In the lower stratosphere, a rapid drop of water vapour is observed in 2000/2001 with little change since. At higher altitudes, the transition is more gradual, with slowly decreasing concentrations between 2001 and 2007. This pattern is consistent with a change induced by a drop of water concentrations at entry into the stratosphere. Previously noted differences in trends and variability between frostpoint and HALOE remain for the homogenised data. Due to uncertainties in reanalysis temperatures and stratospheric transport combined with uncertainties in observations, no quantitative inference about changes of water entering the stratosphere in the tropics could be made with the mid latitude measurements analysed here.

  14. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Lladosa, Estela; Monton, Juan B.; Burguet, MaCruz; Torre, Javier de la

    2008-01-01

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  15. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra

    Science.gov (United States)

    Barthlott, Sabine; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas; Kiel, Matthäus; Dubravica, Darko; García, Omaira E.; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Grutter, Michel; Plaza-Medina, Eddy F.; Stremme, Wolfgang; Strong, Kim; Weaver, Dan; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Mahieu, Emmanuel; Servais, Christian; Jones, Nicholas; Griffith, David W. T.; Smale, Dan; Robinson, John

    2017-01-01

    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; MUSICA/" target="_blank">ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, δD-pair distributions.

  16. Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines

    DEFF Research Database (Denmark)

    Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola

    2012-01-01

    It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method...... and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...

  17. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Schoenbach, Karl H

    2012-01-01

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H 2 /kWh and ∼4 g H 2 O 2 /kWh. (fast track communication)

  18. Sorption of water vapour by the Na+-exchanged clay-sized fractions of some tropical soil samples

    International Nuclear Information System (INIS)

    Yormah, T.B.R.; Hayes, M.H.B.

    1993-09-01

    Water vapour sorption isotherms at 299K for the Na + -exchanged clay-sized (≤ 2μm e.s.d.) fraction of two sets of samples taken at three different depths from a tropical soil profile have been studied. One set of samples was treated (with H 2 O 2 ) for the removal of much of the organic matter (OM); the other set (of the same samples) was not so treated. The isotherms obtained were all of type II and analyses by the BET method yielded values for the Specific Surface Areas (SSA) and for the average energy of adsorption of the first layer of adsorbate (E a ). OM content and SSA for the untreated samples were found to decrease with depth. Whereas removal of organic matter made negligible difference to the SSA of the top/surface soil, the same treatment produced a significant increase in the SSA of the samples taken from the middle and from the lower depths in the profile; the resulting increase was more pronounced for the subsoil. It has been deduced from these results that OM in the surface soil was less involved with the inorganic soil colloids than that in the subsoil. The increase in surface area which resulted from the removal of OM from the subsoil was most probably due to disaggregation. Values of E a obtained show that for all the samples the adsorption of water vapour became more energetic after the oxidative removal of organic matter; the resulting ΔE a also increased with depth. This suggests that in the dry state, the ''cleaned'' surface of the inorganic soil colloids was more energetic than the ''organic-matter-coater surface''. These data provide strong support for the deduction that OM in the subsoil was in a more ''combined'' state than that in the surface soil. (author). 21 refs, 4 figs, 2 tabs

  19. Use of nonwettable membranes for water transfer

    Science.gov (United States)

    Hausch, H. G.

    1970-01-01

    Transfer of water through nonwettable vinyl fluoride membranes has two unique features - /1/ very low water transfer rates can be held constant by holding temperature and solute concentrations constant, /2/ the pressure gradient against which water is transported is limited only by solution breakthrough or membrane strength.

  20. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different curre...

  1. Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions.

    Science.gov (United States)

    Wada, Ryuichi; Matsumi, Yutaka; Nakayama, Tomoki; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Kurita, Naoyuki; Muramoto, Kenichiro; Takanashi, Satoru; Kodama, Naomi; Takahashi, Yoshiyuki

    2017-12-01

    Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO 2 and water vapour were observed. The isotope ratios of both CO 2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ 13 C-CO 2 and δ 18 O-CO 2 increased, while δ 2 H-H 2 Ov and δ 18 O-H 2 Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO 2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO 2 and H 2 Ov could be used as a tracer of meteorological information.

  2. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  3. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  4. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    Subramanian, V.B.; Venkateswarlu, S.; Maheswari, M.; Sankar, G.R.M.

    1994-01-01

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  5. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  6. Surface fluxes of water vapour, momentum and CO{sub 2} over a savanna in Niger. A contribution to HAPEX-SAHEL

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, A; De Bruin, H A.R.; Krikke, R [Dept. of Meteorology. Landbouwuniversiteit, Wageningen (Netherlands)

    1995-11-01

    For large scale models such as Global Circulation Models (GCM) the lower boundary condition is often provided by a SVAT model (Soil-Vegetation-Atmosphere Transfer). A wide range of SVATs is in use nowadays, varying from models based on the simple big-leaf concept to complicated multiple source models. Obviously, a SVAT intended to provide the lower boundary condition in GCM`s needs to be able to describe a wide range of surface types, varying from completely vegetated to sparsely vegetated or completely bare surfaces. Especially sparse canopy surface types exhibit rather demanding features with respect to the exchange of momentum, water vapour, CO{sub 2} and heat between the surface and the atmosphere. In this paper attention is focused on a sparse canopy. We will compare SVAT model simulations with data collected in 1992 at a Savannah site, in the framework of the HAPEX-SAHEL project (a large-scale study of land atmosphere interactions in the semi-arid tropics). Two existing SVAT models are considered (Choudhury-Monteith and Deardorff). In a separate study these models have been tested. A combined model has been constructed, consisting of the `best` parts of the original SVAT`s. Some preliminary results will be presented. 4 figs., 14 refs., 1 appendix

  7. Virtual versus real water transfers within China

    Science.gov (United States)

    Ma, Jing; Hoekstra, Arjen Y; Wang, Hao; Chapagain, Ashok K; Wang, Dangxian

    2005-01-01

    North China faces severe water scarcity—more than 40% of the annual renewable water resources are abstracted for human use. Nevertheless, nearly 10% of the water used in agriculture is employed in producing food exported to south China. To compensate for this ‘virtual water flow’ and to reduce water scarcity in the north, the huge south–north Water Transfer Project is currently being implemented. This paradox—the transfer of huge volumes of water from the water-rich south to the water-poor north versus transfer of substantial volumes of food from the food-sufficient north to the food-deficit south—is receiving increased attention, but the research in this field has not yet reached further than rough estimation and qualitative description. The aim of this paper is to review and quantify the volumes of virtual water flows between the regions in China and to put them in the context of water availability per region. The analysis shows that north China annually exports about 52 billion m3 of water in virtual form to south China, which is more than the maximum proposed water transfer volume along the three routes of the Water Transfer Project from south to north. PMID:16767828

  8. Water vapour in the middle atmosphere of Venus:. An improved treatment of the Venera 15 ir spectra

    Science.gov (United States)

    Ignatiev, N. i.; Moroz, V. i.; Zasova, L. V.; Khatuntsev, I. v.

    1999-08-01

    In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 am to 10 am and from 4 pm to 10 pm in the latitude range from 65°S up to 87°N. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to earlier results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. In the northern hemisphere, which was mainly covered by the measurements, two latitude regions can be distinguished; (A) 20° 60°, which are characterised by different altitudes of the level of τ = 1, 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in the region (B) are 2-4 times greater than those in region (A). In region (A) a weak maximum was detected near 10 am local solar time (17 ppm at φ = 35°) and a minimum-near 10 pm (2ppm at φ = 30°). Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the low values up to 30 ppm. In region (A) the water vapour mass density at the level of τ = 1 is 2-4 times greater than the mean density of the water contained in aerosol particles, while in region (B) this ratio may vary in the limits 0.5-5. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.

  9. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9 − x)ZrxY0.1O(3 − δ)

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Caboche, G:

    2009-01-01

    The perovskite BaCe(0.9 − x)ZrxY0.1O(3 − δ) has been prepared by solid state reaction at 1400 °C and conventional sintering at 1700 °C. Water uptake experiments performed between 400 and 600 °C, at a water vapour pressure of 0.02 atm, provide data on the concentration of protons incorporated in t...

  10. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    Directory of Open Access Journals (Sweden)

    O. Bock

    2013-10-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute-Provence (OHP. Two Raman lidars (IGN mobile lidar and OHP NDACC lidar, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these data sets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. Changes in the calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2–3%. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow White measurements up to 12 km. An overall dry bias is found

  12. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  13. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    Science.gov (United States)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  14. Development of a novel smoke-flavoured salmon product by sodium replacement using water vapour permeable bags.

    Science.gov (United States)

    Rizo, Arantxa; Fuentes, Ana; Barat, José M; Fernández-Segovia, Isabel

    2018-05-01

    Food manufacturers need to reduce sodium content to meet consumer and public health demands. In the present study, the use of sodium-free (SF) salt and KCl to develop a novel smoke-flavoured salmon product with reduced sodium content was evaluated. Fifty percent of NaCl was replaced with 50% of SF salt or 50% KCl in the salmon smoke-flavouring process, which was carried out using water vapour permeable bags. Triangle tests showed that samples with either SF salt or KCl were statistically similar to the control samples (100% NaCl). Because no sensorial advantage in using SF salt was found compared to KCl and given the lower price of KCl, the KCl-NaCl samples were selected for the next phase. The changes of physicochemical and microbial parameters in smoke-flavoured salmon during 42 days showed that partial replacement of NaCl with KCl did not significantly affect the quality and shelf-life of smoke-flavoured salmon, which was over 42 days. Smoke-flavoured salmon with 37% sodium reduction was developed without affecting the sensory features and shelf-life. This is an interesting option for reducing the sodium content in such products to help meet the needs set by both health authorities and consumers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour

    Science.gov (United States)

    Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten

    2018-05-01

    To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.

  16. Water, vapour and heat transport in concrete cells for storing radioactive waste

    Science.gov (United States)

    Carme Chaparro, M.; W. Saaltink, Maarten

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  17. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  18. Online analytical investigations on solvent-, temperature- and water vapour-induced phase transformations of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Helmdach, L.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaft, Verfahrenstechnik/TVT, Halle (Saale) (Germany); Feth, M.P. [Sanofi-Aventis Deutschland GmbH, Chemical and Process Development Frankfurt Chemistry, Frankfurt (Germany)

    2012-09-15

    It was demonstrated exemplarily for the crystallization of citric acid that the usage of an ultrasound device as well as Raman spectroscopy enables the inline measurement and the control of phase transitions. The influence of different solvent compositions (water and ethanol-water) on the crystallization of citric acid was investigated. By increasing the ethanol content the transformation point was shifted towards higher temperatures. In addition, a strong impact on the nucleation point as well as on the crystal habit was detected in ethanol-water mixtures. The results lead to the assumption that a citric acid solvate exists, which is, however, highly unstable upon isolation from mother liquor and converts fast into the known anhydrate or monohydrate forms of citric acid. The presence of such a solvate, however, could not be proven during this study. Furthermore, factors such as temperature and humidity which might influence the phase transition of the solid product were analyzed by Hotstage-Raman Spectroscopy and Water Vapor Sorption Gravimetry-Dispersive Raman Spectroscopy. Both, temperature as well as humidity show a strong influence on the behaviour of CAM. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Oxidation of X20 in Water Vapour: The Effect of Temperature and Oxygen Partial Pressure

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Montgomery, Melanie; Somers, Marcel A. J.

    2009-01-01

    The oxidation behaviour of X20 in various mixtures of water, oxygen and hydrogen was investigated at temperatures between 500 C and 700 C (time: 336 h). The samples were characterised using reflected light microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy...

  20. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  1. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  2. Renovation and design of double casement windows with regard to the occurrence of water vapour condensation or mould on the interior surface of the window jamb

    Science.gov (United States)

    Kudrnacova, L.; Balik, L.

    2017-10-01

    The condensation of water vapour on the interior surface is an indicator of construction dysfunction or ignoring of the surroundings temperature and relative humidity. This paper deals with analysis of the occurrence of condensation on the jamb of double casement windows (windows with two window casements). More precisely, this is a surface in the interior where water vapour condensation or mould occur. For the renovation of existing double casement windows, there are different solutions based on window design: application of double insulating glazing on the interior window casement, application of double insulating glazing on the exterior casement, or installation of a simple window. We first describe measurement of an existing double casement window located in a mountain cottage. Second, the results and comparison of 2D thermal model of different types of double casement window construction. Also, the external insulation of the peripheral wall was included in the model.

  3. Action of the chlorine trifluoride on water vapour. Analysis of reaction products. Technical report - 589

    International Nuclear Information System (INIS)

    Bougon, R.

    1961-06-01

    As the separation of uranium 235 from uranium 238 by gaseous diffusion under the form of uranium hexa-fluoride requires the use of materials which may contain some impurities retained by chemical or physical bounds, this report addresses the use of a reactant which would allow these impurities to be removed. Due to its properties (inert with respect to UF 6 ; transforms most of impurities into volatile compounds, and different UF compounds into UF 6 ; strongly reacts on water; all its degradation products are volatile), chlorine trifluoride (ClF 3 ) has been chosen. It is used for the preprocessing of materials for their passivation with respect to UF 6 , and for a post-processing for the regeneration of porous materials by transformation of UF 4 , UO 2 F 2 and UF x into UF 6 . The authors more particularly studied the reaction between ClF 3 and water

  4. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour

    Energy Technology Data Exchange (ETDEWEB)

    Tsypkin, G.G. [Institute for Problems in Mechanics, RAS, Vernadskogo Ave. 101, 119420 Moscow (Russian Federation); Calore, C. [Istituto di Geoscienze e Georisorse - CNR, Sezione di Firenze, via La Pira 4, 50121 Florence (Italy)

    2007-07-15

    The results of a theoretical study and numerical analysis of the role of capillary pressure of cold water injection into depleted geothermal reservoirs are presented. A simplified 1-D mathematical model is developed, that describes the motion of a sharp vaporization front. Some asymptotic estimates for a wide range of parameters are given and a similarity solution is derived. Analytical results are then compared with those obtained from the numerical reservoir simulator TOUGH2, showing a good agreement between the two. (author)

  5. Hydrogen production by high temperature electrolysis of water vapour and nuclear reactors

    International Nuclear Information System (INIS)

    Jean-Pierre Py; Alain Capitaine

    2006-01-01

    This paper presents hydrogen production by a nuclear reactor (High Temperature Reactor, HTR or Pressurized Water Reactor, PWR) coupled to a High Temperature Electrolyser (HTE) plant. With respect to the coupling of a HTR with a HTE plant, EDF and AREVA NP had previously selected a combined cycle HTR scheme to convert the reactor heat into electricity. In that case, the steam required for the electrolyser plant is provided either directly from the steam turbine cycle or from a heat exchanger connected with such cycle. Hydrogen efficiency production is valued using high temperature electrolysis. Electrolysis production of hydrogen can be performed with significantly higher thermal efficiencies by operating in the steam phase than in the water phase. The electrolysis performance is assessed with solid oxide and solid proton electrolysis cells. The efficiency from the three operating conditions (endo-thermal, auto-thermal and thermo-neutral) of a high temperature electrolysis process is evaluated. The technical difficulties to use the gases enthalpy to heat the water are analyzed, taking into account efficiency and technological challenges. EDF and AREVA NP have performed an analysis to select an optimized process giving consideration to plant efficiency, plant operation, investment and production costs. The paper provides pathways and identifies R and D actions to reach hydrogen production costs competitive with those of other hydrogen production processes. (authors)

  6. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  7. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Culpin, Barry [11 Bluebell Close, Whittle -le -Woods, Chorley PR6 7RH (United Kingdom); Peters, Ken [Battery Design and Manfg Systems, Glenbank, 77 Chatsworth Road, Worsley, Manchester M28 2GG (United Kingdom)

    2006-08-25

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions. (author)

  8. Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution

    Science.gov (United States)

    Ness, K. F.; Robson, R. E.; Brunger, M. J.; White, R. D.

    2012-01-01

    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron-water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)].

  9. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per

    2015-01-01

    Soil texture, in particular the clay fraction, governs numerous environmental, agricultural and engineering soil processes. Traditional measurement methods for clay content are laborious and impractical for large-scale soil surveys. Consequently, clay prediction models that are based on water...... within a RH range from 3 to 93%. The clay contents, which ranged between 1 and 56%, were measured with a combination of sieving and sedimentation methods. Two regression models were developed for both adsorption and desorption at 10 RH levels (5, 10, 20, 30, 40, 50, 60, 70, 80 and 90%). While the first...

  10. Derivation of water vapour absorption cross-sections in the red region

    Science.gov (United States)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  11. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  12. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C G; Newland, M S [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  13. Interactions of fission product vapours with aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Newland, M.S.

    1996-01-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350 o C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs

  14. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M.

    2018-04-01

    In this work, a study of several observations of aerosol water uptake in a real (non-controlled) atmosphere, registered by remote sensing techniques, are presented. In particular, three events were identified within the Atmospheric Boundary Layer (ABL) and other two events were detected in the free troposphere (beyond the top of the ABL). Then, aerosol optical properties were measured at different relative humidity (RH) conditions by means of a multi-wavelength (MW) Raman lidar located at CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Research Centre for Energy, Environment and Technology) facilities in Madrid (Spain). Additionally, aerosol optical and microphysical properties provided by automatic sun and sky scanning spectral radiometers (CIMEL CE-318) and a meteorological analysis complement the study. However, a detailed analysis only could be carried out for the cases observed within the ABL since well-mixed atmospheric layers are required to properly characterize these processes. This characterization of aerosol water uptake is based on the curve described by the backscatter coefficient at 532 nm as a function of RH which allows deriving the enhancement factor. Thus, the Hänel parameterization is utilized, and the results obtained are in the range of values reported in previous studies, which shows the suitability of this approach to study such hygroscopic processes. Furthermore, the anti-correlated pattern observed on backscatter-related Ångström exponent (532/355 nm) and RH indicates plausible signs of aerosol hygroscopic growth. According to the meteorological analysis performed, we attribute such hygroscopic behaviour to marine aerosols which are advected from the Atlantic Ocean to the low troposphere in Madrid. We have also observed an interesting response of aerosols to RH at certain levels which it is suggested to be due to a hysteresis process. The events registered in the free troposphere, which deal with volcano

  15. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  16. Using Water Transfers to Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.

    2007-12-01

    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  17. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.; Xu, Wenbin; Feng, G. C.; Hu, J.; Wang, C. C.; Ding, X. L.; Zhu, J. J.

    2012-01-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  18. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.

    2012-05-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  19. Heat transfer with a split water channel

    International Nuclear Information System (INIS)

    Krinsky, S.

    1978-01-01

    The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port

  20. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study

    Directory of Open Access Journals (Sweden)

    S. Pfahl

    2012-07-01

    Full Text Available Variations of stable water isotopes in water vapour have become measurable at a measurement frequency of about 1 Hz in recent years using novel laser spectroscopic techniques. This enables us to perform continuous measurements for process-based investigations of the atmospheric water cycle at the time scales relevant for synoptic and mesoscale meteorology. An important prerequisite for the interpretation of data from automated field measurements lasting for several weeks or months is a detailed knowledge about instrument properties and the sources of measurement uncertainty. We present here a comprehensive characterisation and comparison study of two commercial laser spectroscopic systems based on cavity ring-down spectroscopy (Picarro and off-axis integrated cavity output spectroscopy (Los Gatos Research. The uncertainty components of the measurements were first assessed in laboratory experiments, focussing on the effects of (i water vapour mixing ratio, (ii measurement stability, (iii uncertainties due to calibration and (iv response times of the isotope measurements due to adsorption-desorption processes on the tubing and measurement cavity walls. Based on the experience from our laboratory experiments, we set up a one-week field campaign for comparing measurements of the ambient isotope signals from the two laser spectroscopic systems. The optimal calibration strategy determined for both instruments was applied as well as the correction functions for water vapour mixing ratio effects. The root mean square difference between the isotope signals from the two instruments during the field deployment was 2.3‰ for δ2H, 0.5‰ for δ18O and 3.1‰ for deuterium excess. These uncertainty estimates from field measurements compare well to those found in the laboratory experiments. The present quality of measurements from laser spectroscopic instruments combined with a calibration system opens new possibilities for investigating the atmospheric

  1. A model for radiative heat transfer in mixtures of a hot solid or molten material with water and steam

    International Nuclear Information System (INIS)

    Vaeth, L.

    1997-05-01

    A model has been devised for describing the radiative heat transfer in mixtures of a hot radiant material with water and steam, to be used, e.g., in the framework of a multiphase, multicomponent flow simulation. The main features of the model are: 1. The radiative heat transfer is modelled for a homogeneous mixture of one continuous material with droplets/bubbles of the other two, of the kind normally assumed for the material distribution in one cell of a bigger calculational problem. Neither the heat transfer over the cell boundaries nor the finite dimensions of the cell are taken into account. 2. The geometry of the mixture (radiant material continuous or discontinuous, droplet/bubble diameters and number densities) is taken into account. 3. The optical properties of water and water vapour are modelled as functions of the temperature of the radiant and, in the case of water vapour, also of the absorbing material. 4. The model distinguishes between heat transfer to the surface of the water (leading to evaporation) and into the bulk of the water (pure heating). (orig./DG) [de

  2. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G; Strauss, Josiah; Element, Adrian

    2016-01-01

    nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate dET can generally be expected to show

  3. Simulating non-isothermal water vapour transfer : an experimental validation on multi-layered building components

    NARCIS (Netherlands)

    Roels, S.; Depraetere, W.; Carmeliet, J.; Hens, H.

    1999-01-01

    The aim of this study is to validate different analytical relations used in hygrothermal simulations for the material properties. Therefore, a valida tion experiment on four types of flat roofs has been set up at the laboratory. All rele vant material properties of the individual material layers

  4. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  5. Studies in uptake and turnover of tritiated water vapour (HTO) by vegetables. Untersuchungen zur Aufnahme und zum Umsatz von tritiiertem Wasserdampf (HTO) in Gemuesepflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Roller, M.

    1989-02-01

    The aerial parts of vegetables were exposed to tritiated water vapour for up to three days in a plant growth chamber. The species used were Raphanus sativus L., Phaseolus vulgaris K. and Daucus carota L. (red radish, bean and carrot). The increase of specific activity of tissue free water as collected by freeze drying which was observed in the aerial parts of plants is explained by direct uptake of tritiated water vapour by the exposed part of the plant. It shows different characteristics for the several organs. No translocation of water from the laminae into other parts of the plant was observed. After combustion of dry matter tritium activity was detectable in the oxidation water for all parts of the plants. Kinetics of the specific activity of organically bound tritium in leaves can be described by a single curve. The lower - steep - part of the curve is increasing approximately with the uptake rate of HTO; this is explained by reversible binding of tritium by isotopic exchange reactions. The upper - flat - part of the curve represents tritium bound by light dependent reducing reactions of photosynthesis; it is increasing with a rate similar to the growth rate of leaves. (orig./KG).

  6. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network

    Science.gov (United States)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.

    2014-09-01

    The main goal of this article is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Center (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2) of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term) of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA) dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between -5 and +3%) are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA) and cloud top pressure (CTP)) on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to -20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values, changing from

  7. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air. A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Energy Technology Data Exchange (ETDEWEB)

    McGillivray, G.W. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom)); Geeson, D.A. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom)); Greenwood, R.C. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom))

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350 C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350 C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ([sup 18]O[sub 2] and H[sup 18][sub 2]O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O[sup 2-] and OH[sup -]). (orig.)

  8. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Science.gov (United States)

    McGillivray, G. W.; Geeson, D. A.; Greenwood, R. C.

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350°C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350°C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ( 18O 2 and H 218O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O 2- and OH -).

  9. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  10. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment - special observation period (hymex-sop1)

    Science.gov (United States)

    Summa, Donato; Di Girolamo, Paolo; Flamant, Cyrille; De Rosa, Benedetto; Cacciani, Marco; Stelitano, Dario

    2018-04-01

    Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL), an airborne DIAL (LEANDRE2), a microwave radiometer, radiosondes and aircraft in-situ sensors.

  11. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment – special observation period (hymex-sop1

    Directory of Open Access Journals (Sweden)

    Summa Donato

    2018-01-01

    Full Text Available Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL, an airborne DIAL (LEANDRE2, a microwave radiometer, radiosondes and aircraft in-situ sensors.

  12. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    Science.gov (United States)

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  13. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  14. Heavy water handbook. Evaluation of available thermophysical properties of heavy water (D2O) liquid and vapour

    International Nuclear Information System (INIS)

    Bukovsky, J.; Haack, K.; Wiig, P.

    1993-01-01

    Numerous publications on the thermophysical data of heavy water (D 2 O) have been published since D 2 O became commercially available in the 1930's. Some of these data are in mutual disagreement. This has led to confusion among the scientifical and technical staffs who needed the information on the D 2 O thermophysical data. Correct thermophysical data must be consistent, i.e. their mutual relations must be in accordance to the fundamental thermophysical laws. The work behind this publication has been focussed at collecting all avalilable D 2 O data and checking the data mutually by means of these fundamental thermophysical criteria. Depending on the various production methods, the oxygen content of the D 2 O is enriched more or less in the heavier oxygen isotopes 17 O and 18 O. This, together with the amount of impurities and dissolved gases in the D 2 O samples of the various references, might - to some extent - explain the discrepancies between the data sources. Only a few references contain information on these subjects. The D 2 O data sets which were found to be the most reliable are presented in chapter 9, in tables as well as in diagrams, together with the corresponding H 2 O data for comparison. The diagrams are commented for reliability where it was found necessary. Furthermore, the publication contains short descriptions on the heavy water sources, availability, production processes, economy, material and energy demands for production. A comprehensive list of references is enclosed. (author)

  15. Heavy water handbook. Evaluation of presently available thermophysical properties of heavy water (D2O) liquid and vapour

    International Nuclear Information System (INIS)

    Bukovsky, J.; Haack, K.

    1994-08-01

    Many publication on the thermophysical properties of heavy water (D 2 O) have appeared since D 2 O became commercially available in the 1930's. Some for the data contradict one another and this has led to confusion when information is needed on D 2 O thermophysical data. Correct thermophysical data must be consistent, i.e. their mutual dependence must be consistent with fundamental thermophysical laws. The work behind this publication has focused on collecting all available D 2 O data and checking them against these fundamental thermophysical criteria. Depending on the various production methods for D 2 O, its oxygen content is enriched more or less by the heavier oxygen isotopes 17 O and 18 O. This, together with the amount of impurities and dissolved gases in the D 2 O samples of the various references, might - to some extent - explain the discrepancies found between the data. Only a few references contain information on these subjects. The D 2 O data sets found to be the most reliable are presented in Chapter 9, in tables as well as in diagrams, together with the corresponding H 2 O data for comparison. Comments on the reliability of the diagrams are given where necessary. Furthermore, short descriptions are given of heavy water sources, availability, production processes, economy, material and energy requirements for the production process. Finally a comprehensive list of references and an author index are included. (au)

  16. Impact of water vapour and carbon dioxide on surface composition of C{sub 3}A polymorphs studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dubina, E.; Plank, J. [Technische Universität München, Lehrstuhl für Bauchemie, Lichtenbergstr. 4, 85747 Garching bei München (Germany); Black, L., E-mail: l.black@leeds.ac.uk [Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-07-15

    The surface specific analytical method, X-ray photoelectron spectroscopy (XPS), has been used to study the effects of water vapour and CO{sub 2} on the cubic and orthorhombic polymorphs of C{sub 3}A. Significant differences between the two polymorphs were observed in the XPS spectra. Upon exposure to water vapour, both polymorphs produced C{sub 4}AH{sub 13} on their surfaces. Additionally, the sodium-doped o-C{sub 3}A developed NaOH and traces of C{sub 3}AH{sub 6} on its surface. Subsequent carbonation yielded mono carboaluminate on both polymorphs. Large amounts of Na{sub 2}CO{sub 3} also formed on the surface of o-C{sub 3}A as a result of carbonation of NaOH. Furthermore, the extent of carbonation was much more pronounced for o-C{sub 3}A{sub o} than for c-C{sub 3}A.

  17. The other GHG : steps taken to reduce CO2 emissions may contribute to increased levels of water vapour in the atmosphere

    International Nuclear Information System (INIS)

    Collison, M.

    2008-01-01

    As a result of the Intergovernmental Panel on Climate Change (IPCC), the Canadian oil and gas industry and government are now in the midst of a massive overhaul of hydrocarbon energy use and carbon dioxide (CO 2 ) management. However, human-enhanced water evaporation (HEWE) may also be a significant contributor to global climate warming. Human-caused distortions of the hydrological cycle can cause multiple localized weather disturbances. There is currently a thousand times more water vapor being emitted than CO 2 , and this is contributing to increased rainfall levels around the world. Expansion of the agriculture and growth of industry has caused significant diversions and redistributions of water. Most of the water used is evaporated in the northern hemisphere. Climate modellers are needed to analyze the impacts of human-enhanced water evaporation local climates and weather. The main sources of water emissions are government-controlled energy projects and subsidized irrigation projects. Current levels of water vapour emissions are between 10 and 100 times the value of warming per tonne as CO 2 . Details of various research projects to use salt water as a fuel for vehicles was provided, as well as methods of improving the water-gas shift reaction method of hydrogen production. 2 figs

  18. A Raman lidar at La Reunion (20.8° S, 55.5° E for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system

    Directory of Open Access Journals (Sweden)

    C. Hoareau

    2012-06-01

    Full Text Available A ground-based Rayleigh lidar has provided continuous observations of tropospheric water vapour profiles and cirrus cloud using a preliminary Raman channels setup on an existing Rayleigh lidar above La Reunion over the period 2002–2005. With this instrument, we performed a first measurement campaign of 350 independent water vapour profiles. A statistical study of the distribution of water vapour profiles is presented and some investigations concerning the calibration are discussed. Analysis regarding the cirrus clouds is presented and a classification has been performed showing 3 distinct classes. Based on these results, the characteristics and the design of a future lidar system, to be implemented at the new Reunion Island altitude observatory (2200 m for long-term monitoring, is presented and numerical simulations of system performance have been realised to compare both instruments.

  19. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  20. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  1. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    Science.gov (United States)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the

  2. An "island" in the stratosphere - on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics

    Science.gov (United States)

    Lossow, Stefan; Garny, Hella; Jöckel, Patrick

    2017-09-01

    The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (˜ 40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer-Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.

  3. An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2017-09-01

    Full Text Available The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System Atmospheric Chemistry (EMAC simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.

  4. Sulphur dioxide removal by turbulent transfer over grass, snow, and water surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Whelpdale, D M; Shaw, R W

    1974-01-01

    Vertical gradients of sulphur dioxide concentration have been measured over grass, snow, and water surfaces in order to assess the importance of these surfaces as SO/sub 2/ sinks. Concentrations were usually found to be lower near the surface indicating that removal occurs there. Vertical concentration gradients, normalized with repect to the concentration at 8 m, were generally greatest over water and least over snow, independent of meteorological conditions, suggesting that a water surface is the strongest SO/sub 2/ sink, with grass next, and snow weakest. The turbulent transfer of SO/sub 2/ to the interface is discussed in relation to stability of the lower atmosphere and physical and chemical properties of the surfaces. Using a bulk aerodynamic transfer approach similar to that for water vapour, values of SO/sub 2/ flux averaged over periods of from one to several hours were found to be of the order of 1 microgram/M/sup 2//S to the water and grass surfaces, and an order of magnitude smaller to the snow surface. Deposition velocities were found to be of the order of 1 cm/s.

  5. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  6. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Validation of water vapour profiles (version 13 retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat

    Directory of Open Access Journals (Sweden)

    M. Milz

    2009-07-01

    Full Text Available Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, the Improved Limb Atmospheric Spectrometer-II (ILAS-II, the Polar Ozone and Aerosol Measurement (POAM III instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA, the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B, the Airborne Microwave Stratospheric Observing System (AMSOS, the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B, the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH. For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indication of a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. The results of χ2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes

  8. Modelling (vapour + liquid) and (vapour + liquid + liquid) equilibria of {water (H2O) + methanol (MeOH) + dimethyl ether (DME) + carbon dioxide (CO2)} quaternary system using the Peng-Robinson EoS with Wong-Sandler mixing rule

    International Nuclear Information System (INIS)

    Ye Kongmeng; Freund, Hannsjoerg; Sundmacher, Kai

    2011-01-01

    Highlights: → Phase behaviour modelling of H 2 O-MeOH-DME under pressurized CO 2 (anti-solvent) using PRWS. → PRWS-UNIFAC-PSRK has better performance than PRWS-UNIFAC-Lby in general. → Reliable to extend the VLE and VLLE phase behaviour from binary to multicomponent systems. → Successful prediction of the VLE and VLLE of binary, ternary, and quaternary systems. → Potential to apply the model for designing new DME separation process. - Abstract: The (vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) binary data from literature were correlated using the Peng-Robinson (PR) equation of state (EoS) with the Wong-Sandler mixing rule (WS). Two group contribution activity models were used in the PRWS: UNIFAC-PSRK and UNIFAC-Lby. The systems were successfully extrapolated from the binary systems to ternary and quaternary systems. Results indicate that the PRWS-UNIFAC-PSRK generally displays a better performance than the PRWS-UNIFAC-Lby.

  9. Improved water vapour spectroscopy in the 4174–4300 cm−1 region and its impact on SCIAMACHY HDO/H2O measurements

    Directory of Open Access Journals (Sweden)

    R. A. Scheepmaker

    2013-04-01

    Full Text Available The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007 spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.

  10. An atlas of mean distribution of precipitable water vapour over the tropical Indian Ocean for the year 1979

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathe, P.V.; Muraleedharan, P.M.; Rao, L.V.G.

    The monthly mean maps of the precipitable water (PW) over the tropical Indian Ocean are prepared using the data derived from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) sensor for the period January to December, 1979. The PW...

  11. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  12. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  13. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  14. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. First Zenith Total Delay and Integrated Water Vapour Estimates from the Near Real-Time GNSS Data Processing Systems at the University of Luxembourg

    Science.gov (United States)

    Ahmed, F.; Teferle, F. N.; Bingley, R. M.

    2012-04-01

    Since September 2011 the University of Luxembourg in collaboration with the University of Nottingham has been setting up two near real-time processing systems for ground-based GNSS data for the provision of zenith total delay (ZTD) and integrated water vapour (IWV) estimates. Both systems are based on Bernese v5.0, use the double-differenced network processing strategy and operate with a 1-hour (NRT1h) and 15-minutes (NRT15m) update cycle. Furthermore, the systems follow the approach of the E-GVAP METO and IES2 systems in that the normal equations for the latest data are combined with those from the previous four updates during the estimation of the ZTDs. NRT1h currently takes the hourly data from over 130 GNSS stations in Europe whereas NRT15m is primarily using the real-time streams of EUREF-IP. Both networks include additional GNSS stations in Luxembourg, Belgium and France. The a priori station coordinates for all of these stem from a moving average computed over the last 20 to 50 days and are based on the precise point positioning processing strategy. In this study we present the first ZTD and IWV estimates obtained from the NRT1h and NRT15m systems in development at the University of Luxembourg. In a preliminary evaluation we compare their performance to the IES2 system at the University of Nottingham and find the IWV estimates to agree at the sub-millimetre level.

  16. Influence of enhanced fluid intake on reduction of committed dose after acute intake of tritiated water vapour by occupational workers at Narora Atomic Power Station, India

    International Nuclear Information System (INIS)

    Pawar, S.K.; Mitra, S.R.; Chand, Lal

    2001-01-01

    The study of acute exposure cases of male radiation workers to tritiated water vapour (HTO) in Narora Atomic Power Station, using the bi-exponential function has provided direct practical evidence that the committed dose following an HTO exposure is directly proportional to effective half-life which in turn is inversely proportional to the fluid intake. Urine samples from these workers apparently in good health, were collected and measured for tritium concentration in urine up to maximum of 163 days after the exposure. They were advised to increase their fluid intakes to accelerate the elimination of tritium for dose mitigation. Their fluid intakes reverted to normal levels in the later stage of the post exposure period. The non-linear regression analysis of the data of tritium concentration in urine showed an effective half-life of 1.5 to 3.8 days during the period of enhanced fluid intake, 3.4 to 6.9 days during the period of normal and slightly above normal fluid intake and 23.6 to 52.3 days due to elimination of metabolized organically bound tritium. This increase in elimination rate due to enhanced fluid intake directly resulted in dose mitigation of 45.1 to 76.0 percent in different subjects. (author)

  17. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  18. Virtual versus real water transfers within China

    NARCIS (Netherlands)

    Ma, Jing; Hoekstra, Arjen Ysbert; wang, Hao; Chapagain, Ashok; Wang, Dangxian

    2006-01-01

    North China faces severe water scarcity—more than 40% of the annual renewable water resources are abstracted for human use. Nevertheless, nearly 10% of the water used in agriculture is employed in producing food exported to south China. To compensate for this ‘virtual water flow’ and to reduce water

  19. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Science.gov (United States)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  20. Mean ozone and water vapour height profiles for Southern hemisphere region using radiosonde or ozonesonde and haloe satelite data

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-01-01

    Full Text Available obtained from HALOE datasets 6 3.3. SHADOZ mean Ozone The mean ozone obtained from SHADOZ ozonesonde insitu measurement; from Nairobi located at 1.27°S and 36.8°E, Malindi at 2.99°S and 40.2°E and Irene at 25.9°S and 28.22°E, stations are displayed... - 2090. 8 2. Lohmann, M.S., et al., Water vapor profile using LEO - LEO Intersatellite Links. Danish Metereological Institute. Atmospheric Ionosphere Research. 3. Jones, R.L. and Mitchell,J.F.B., (1991) Climate change - is water vapor...

  1. Influence of low water-vapour concentrations in air and carbon dioxide on the inflammability of magnesium in these media

    International Nuclear Information System (INIS)

    Darras, Raymond; Baque, Pierre; Leclercq, Daniel

    1960-01-01

    The temperatures at which live combustion starts in magnesium and certain of its alloys have been determined systematically in air and in carbon dioxide. In carbon dioxide, the ignition temperature is reduced by 130 to 140 deg. C for very low water-vapor concentrations. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 240, p. 1647-1649, sitting of 28 October 1959 [fr

  2. Atomic layer deposition of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/TiO{sub 2} barrier coatings to reduce the water vapour permeability of polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzada, Tamkin, E-mail: tahm4852@uni.sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); McKenzie, David R.; James, Natalie L.; Yin, Yongbai [School of Physics, University of Sydney, NSW 2006 (Australia); Li, Qing [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2015-09-30

    We demonstrate significantly enhanced barrier properties of polyetheretherketone (PEEK) against water vapour penetration by depositing Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/TiO{sub 2} nanofilms grown by atomic layer deposition (ALD). Nanoindentation analysis revealed good adhesion strength of a bilayer Al{sub 2}O{sub 3}/TiO{sub 2} coating to PEEK, while the single layer Al{sub 2}O{sub 3} coating displayed flaking and delamination. We identified three critical design parameters for achieving the optimum barrier properties of ALD Al{sub 2}O{sub 3}/TiO{sub 2} coatings on PEEK. These are a minimum total thickness dependent on the required water vapour transmission rate, the use of an Al{sub 2}O{sub 3}/TiO{sub 2} bilayer coating and the application of the coating to both sides of the PEEK film. Using these design parameters, we achieved a reduction in moisture permeability of PEEK of over two orders of magnitude while maintaining good adhesion strength of the polymer–thin film system. - Highlights: • Atomic layer deposition of Al{sub 2}O{sub 3}/TiO{sub 2} coatings reduced water vapour permeability. • Bilayer coatings reduced the permeability more than single layer coatings. • Bilayer coatings displayed higher adhesion strength than the single layer coatings. • Double-sided coatings performed better than single-sided coatings. • Correlation was found between total thickness and reduced water vapour permeability.

  3. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    Science.gov (United States)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  4. Modeling of the Process of Three-Isotope (H, D, T) Exchange Between Hydrogen Gas and Water Vapour on Pt-SDBC Catalyst over a Wide Range of Deuterium Concentration

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Tchijov, A.S.; Uborsky, V.V.

    2005-01-01

    The large scale studies of Combined Electrolysis and Catalytic Exchange (CECE) process in Petersburg Nuclear Physics Institute showed a complicated influence of various factors on the process caused by the presence of two simultaneous isotope exchange sub processes: counter-current phase exchange (between liquid water and water vapour) and co-current catalytic exchange (between hydrogen gas and water vapour). A laboratory scale set-up of glass made apparatuses was established in such a way that it allows us to study phase and catalytic exchange apart. A computer model of the set-up has been developed.The catalytic isotope exchange model formulation is presented. A collection of reversible chemical reactions is accompanied by diffusion of the gaseous reactants and reaction products in the pores of catalyst carrier. This has some interesting features that are demonstrated. Thus it was noted that the flow rates ratio (gas to vapour - λ = G/V) as well as the concentrations of reactants exert influence on the process efficiency

  5. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    Science.gov (United States)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  6. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  7. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  8. Evaluation method for radiative heat transfer in polydisperse water droplets

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki

    2008-01-01

    Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media

  9. The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right

    Science.gov (United States)

    Bi-peng, Yan; Chao, Liu; Fang-ping, Tang

    the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.

  10. Vapour pressure of trideuterioammonia

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Lopes, J.N.C.; Rebelo, L.P.N. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural)

    1992-09-01

    The H-to-D vapour-pressure isotope effect in liquid ammonia has been measured at 62 temperatures between 228 K and 260 K. The vapour pressures, corrected to 100 per cent nuclidic purity, have been fitted to the equation: T ln r = A+B/T+CT, where r is the vapour-pressure ratio p(NH[sub 3])/p(ND[sub 3]). The fit yielded the parameters: A = -8.22508 K, B = 12338.2 K[sup 2], and C = -0.05544. Comparisons with the results of other authors were made in order to clarify some discrepancies found in the literature. Our values are in accord with the previous results of King et al. and an extrapolation of the fitted equation down to the triple-point temperature gave good agreement with the published results. The fitted equation was used in conjunction with the Clapeyron equation to calculate the difference in the molar enthalpies of vaporization between NH[sub 3] and ND[sub 3]. At T = 230 K that difference is -846 J.mol[sup -1] decreasing to -747 J.mol[sup -1] at 260 K. (author).

  11. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  12. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  13. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR, the unfolded protein response (UPR and the endoplasmic reticulum-associated protein degradation (ERAD, was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  14. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  15. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  16. Water market transfers in South Africa: Two case studies

    Science.gov (United States)

    Nieuwoudt, W. L.; Armitage, R. M.

    2004-09-01

    Statistical analyses (discriminant, logit, and principal components) of water transfers in the Lower Orange River showed that water rights were transferred to farmers with the highest return per unit of water applied, those producing table grapes, and with high-potential arable "outer land" without water rights. Only unused water (sleeper right) was transferred, while water saved (through adoption of conservation practices) was retained possibly for security purposes. A second study in the Nkwaleni Valley in northern KwaZulu-Natal found that no water market had emerged despite the scarcity of water in the area. No willing sellers of water rights existed. Demand for institutional change to establish tradable water rights may take more time in the second area since crop profitability in this area is similar for potential buyers and nonbuyers. Transaction costs appear larger than benefits from market transactions. Farmers generally use all their water rights in the second area and retain surplus water rights as security against drought because of unreliable river flow. This study indicates that these irrigation farmers are highly risk averse (downside risk). Government policies that increase the level of risk and reduce security of licenses are estimated to have a significant effect on future investment in irrigation. In an investment model the following variables explain future investment: expected profits, liquidity, risk aversion (Arrow-Pratt), and security of water use rights. The study is seen in the light of the New South African Water Act of 1998. According to this act, the ownership of water in South Africa has changed from private to public. This reform may not impede the development of water markets in South Africa since in the well-developed water markets of the United States, western states claim ownership of water within their boundaries. All states in the western United States allow private rights in the use of water to be established and sold.

  17. Deep water sheet transfer using tracer techniques

    International Nuclear Information System (INIS)

    Archimbaud-Potherat, Michelle

    1970-01-01

    In order to identify the water from a phreatic water sheet in the Bassin d'Aquitaine, the following components were selected for analysis: fluorides, chlorides, bromides, iodides, uranium, thorium, sodium, potassium, calcium, magnesium, cerium and boron. The methods used are described. Sixty different kinds of water from the cretaceous, eocene, oligocene and miocene eras were chemically analyzed; particular chemical properties and coefficients of correlation between the elements, characteristic of different geological periods, were observed. A geochemical interpretation of the results obtained with boron is given. (author) [fr

  18. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  19. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  20. The transfer of alkanoic acids from dodecane to water

    International Nuclear Information System (INIS)

    Sagert, N.H.; Quinn, M.J.; Dixon, R.S.

    1981-01-01

    A rotating diffusion cell was used to study the transfer of five alkanoic acids from dodecane to water under conditions of known interfacial area and hydrodynamics. hd The acids studied were acetic, butanoic, hexanoic, 2-methylbutanoic and 2,2-dimethylpropanoic acids. Small interfacial resistances to mass transfer were noted, the mass transfer coefficients for interfacial transfer being in the range 2.6 to 4.7 μm/s at 25 0 C. This small range means that the effects of the length and structure of the alkane chain on the resistance to mass transfer are minimal. A study of the temperature dependence of the resistance to mass transfer at the interface showed that the resistance is largely entropic rather than enthalpic. (author)

  1. The relationship between vapour pressure, vaporization enthalpy, and enthalpy of transfer from solution to gas: An extension of the Martin equation

    International Nuclear Information System (INIS)

    Srisaipet, A.; Aryusuk, K.; Lilitchan, S.; Krisnangkura, K.

    2007-01-01

    Martin's equation, Δ sln g G=Δ sln g G o +zδ sln g G, is extended to cover vaporization free energy (Δ l g G). The extended equation is further expanded in terms of enthalpy and entropy and then used to correlate vaporization enthalpy (Δ l g H) and enthalpy of transfer from solution to gas (Δ sln g H). Data available in the literatures are used to validate and support the speculations derived from the proposed equation

  2. Physical and virtual water transfers for regional water stress alleviation in China.

    Science.gov (United States)

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  3. Virtual water transfers unlikely to redress inequality in global water use

    International Nuclear Information System (INIS)

    Seekell, D A; D'Odorico, P; Pace, M L

    2011-01-01

    The distribution of renewable freshwater resources between countries is highly unequal and 80% of humanity lives in regions where water security is threatened. The transfer of agricultural and industrial products to areas where water is limited through global trade may have potential for redressing water imbalances. These transfers represent 'virtual water' used in commodity production. We evaluated the current water-use inequality between countries and the potential of virtual water transfers to equalize water use among nations using multiple statistical measures of inequality. Overall, the actual use of renewable water resources is relatively equal even though the physical distribution of renewable water resources is highly unequal. Most inequality (76%) in water use is due to agricultural production and can be attributed to climate and arable land availability, not social development status. Virtual water use is highly unequal and is almost completely explained by social development status. Virtual water transfer is unlikely to increase water-use equality primarily because agricultural water use dominates national water needs and cannot be completely compensated by virtual water transfers.

  4. Virtual water transfers unlikely to redress inequality in global water use

    Energy Technology Data Exchange (ETDEWEB)

    Seekell, D A; D' Odorico, P; Pace, M L [Department of Environmental Sciences, University of Virginia, Charlottesville, VA (United States)

    2011-04-15

    The distribution of renewable freshwater resources between countries is highly unequal and 80% of humanity lives in regions where water security is threatened. The transfer of agricultural and industrial products to areas where water is limited through global trade may have potential for redressing water imbalances. These transfers represent 'virtual water' used in commodity production. We evaluated the current water-use inequality between countries and the potential of virtual water transfers to equalize water use among nations using multiple statistical measures of inequality. Overall, the actual use of renewable water resources is relatively equal even though the physical distribution of renewable water resources is highly unequal. Most inequality (76%) in water use is due to agricultural production and can be attributed to climate and arable land availability, not social development status. Virtual water use is highly unequal and is almost completely explained by social development status. Virtual water transfer is unlikely to increase water-use equality primarily because agricultural water use dominates national water needs and cannot be completely compensated by virtual water transfers.

  5. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  6. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.

    Science.gov (United States)

    Verguts, Ken; Schouteden, Koen; Wu, Cheng-Han; Peters, Lisanne; Vrancken, Nandi; Wu, Xiangyu; Li, Zhe; Erkens, Maksiem; Porret, Clement; Huyghebaert, Cedric; Van Haesendonck, Chris; De Gendt, Stefan; Brems, Steven

    2017-10-25

    The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.

  7. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.

    Science.gov (United States)

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-03-09

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed

  8. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  9. Mass and charge transfer within a floating water bridge

    Science.gov (United States)

    Fuchs, Elmar C.; Agostinho, Luewton L. F.; Eisenhut, Mathias; Woisetschläger, Jakob

    2010-11-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge 1-8. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the charge and mass transfer through the water bridge are investigated with schlieren visualization and laser interferometry. It can be shown that the addition of a pH dye increases the H+ and OH- production with subsequent electrolysis, whereas schlieren and interferometric methods reveal another mechanism where charge and mass transfer appear to be coupled. Whereas this mechanism seems to be responsible for the electrolysis-less charge and mass transfer in the water bridge, it is increasingly superseded by the electrochemical mechanism with rising conductivity. Thus it can be shown that a pH dye does only indirectly visualize the charge transfer in the water bridge since it is dragged along with the water flow like any other dye, and additionally promotes conventional electrochemical conduction mechanisms, thereby enhancing electrolysis and reducing the masscoupled charge transport and thus destabilizing the bridge.

  10. Ag-to-urban water transfer in California: Win-win solutions

    International Nuclear Information System (INIS)

    Jacobi, L.A.; Carley, R.L.

    1993-01-01

    The current long-term drought in California has generated interest in water transfers. Water transfers from farms to the cities are widely viewed as the next major source of supply to urban California. Ag-to-Urban permanent water transfers may have negative consequences to the agricultural sector and to the environment. This paper presents agricultural water use statistics, discusses sources of water for transfer, and suggests sources of water for win-win transfers

  11. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    International Nuclear Information System (INIS)

    Barry, P.

    1996-09-01

    Future fusion reactors using tritium as fuel will contain large inventories of the gas. The possibility that a significant fraction of an inventory may accidentally escape into the atmosphere from this and other potential sources such as tritium handling facilities and some fission reactors e g, PWRs has to be recognized and its potential impact on local human populations and biota assessed. Tritium gas is relatively inert chemically and of low radiotoxicity but it is readily oxidized by soil organisms to the mixed oxide, HTO or tritiated water. In this form it is highly mobile, strongly reactive biologically and much more toxic. Models of how tritiated water vapour is transported through the biosphere to foodstuffs important to man are essential components of such an assessment and it is important to test the models for their suitability when used for this purpose. To evaluate such models, access to experimental measurements made after actual releases are needed. There have however, been very few accidental releases of tritiated water to the atmosphere and the experimental findings of those that have occurred have been used to develop the models under test. Models must nevertheless be evaluated before their predictions can be used to decide the acceptability or otherwise of designing and operating major nuclear facilities. To fulfil this need a model intercomparison study was carried out for a hypothetical release scenario. The study described in this report is a contribution to the development of model evaluation procedures in general as well as a description of the results of applying these procedures to the particular case of models of HTO transport in the biosphere which are currently in use or being developed. The study involved eight modelers using seven models in as many countries. In the scenario farmland was exposed to 1E10 Bq d/m 3 of HTO in air during 1 hour starting at midnight in one case and at 10.00 a.m. in the other, 30 days before harvest of crops

  12. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    Energy Technology Data Exchange (ETDEWEB)

    Barry, P. [PJS Barry (Canada)] [and others

    1996-09-01

    Future fusion reactors using tritium as fuel will contain large inventories of the gas. The possibility that a significant fraction of an inventory may accidentally escape into the atmosphere from this and other potential sources such as tritium handling facilities and some fission reactors e g, PWRs has to be recognized and its potential impact on local human populations and biota assessed. Tritium gas is relatively inert chemically and of low radiotoxicity but it is readily oxidized by soil organisms to the mixed oxide, HTO or tritiated water. In this form it is highly mobile, strongly reactive biologically and much more toxic. Models of how tritiated water vapour is transported through the biosphere to foodstuffs important to man are essential components of such an assessment and it is important to test the models for their suitability when used for this purpose. To evaluate such models, access to experimental measurements made after actual releases are needed. There have however, been very few accidental releases of tritiated water to the atmosphere and the experimental findings of those that have occurred have been used to develop the models under test. Models must nevertheless be evaluated before their predictions can be used to decide the acceptability or otherwise of designing and operating major nuclear facilities. To fulfil this need a model intercomparison study was carried out for a hypothetical release scenario. The study described in this report is a contribution to the development of model evaluation procedures in general as well as a description of the results of applying these procedures to the particular case of models of HTO transport in the biosphere which are currently in use or being developed. The study involved eight modelers using seven models in as many countries. In the scenario farmland was exposed to 1E10 Bq d/m{sup 3} of HTO in air during 1 hour starting at midnight in one case and at 10.00 a.m. in the other, 30 days before harvest of

  13. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  14. FILM-30: A Heat Transfer Properties Code for Water Coolant

    International Nuclear Information System (INIS)

    MARSHALL, THERON D.

    2001-01-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating

  15. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    Science.gov (United States)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  16. Optimized sampling of hydroperoxides and investigations of the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes; Optimierung der Probenahme von Hydroperoxiden und Untersuchungen zur Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Plagens, H.

    1997-06-01

    There are several sampling methods for hydroperoxides none of which is particularly reliable. The authors therefore tested three new methods in order to optimize hydroperoxide sampling and, using the optimized sampling procedure, to investigate the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes. (orig.) [Deutsch] Fuer die Probenahme von Hydroperoxiden existieren verschiedene Verfahren, von denen bisher keines als besonders zuverlaessig angesehen werden konnte. Daher wurden in dieser Arbeit drei Verfahren getestet, um die Probenahme von Hydroperoxiden zu optimieren und mit dem entsprechenden Verfahren die Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen zu untersuchen. (orig.)

  17. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  18. Exergy costs analysis of groundwater use and water transfers

    International Nuclear Information System (INIS)

    Carrasquer, Beatriz; Uche, Javier; Martínez-Gracia, Amaya

    2016-01-01

    Highlights: • A methodology to estimate the unit exergy cost of water supply alternatives is provided. • Two alternatives (water transfers and groundwaters) are defined. • The unit exergy costs are given as a function of design and operating parameters. • Unit exergy cost of groundwaters go from 1.01 to 2.67 and from 1 to 4.06 in water transfers. • Unit exergy costs are calculated and contrasted for the medium course of the Ebro. - Abstract: In the search for new alternatives to meet the water demands, it is interesting to analyze the cost of using alternatives different from those such as desalination and pumping. The exergy cost analysis can be a useful tool to estimate costs of those alternatives as a function of its energy efficiency and its relative abundance with respect to existing resources in their surroundings. This study proposes a methodology for assessing the costs of groundwaters and water transfers from surplus basins within the exergy perspective. An equation to assess the exergy costs of these alternatives is proposed. System boundaries are first identified to the assessment of input and output currents to the system in exergy values for the design and certain operating conditions. Next, an equation to assess water supply costs depending on design and operational parameters is proposed, from the analysis of different examples. Pumping efficiency, altitude gap and flow among other features are introduced in the calculations as those characteristics parameters. In the developed examples, unit exergy costs of groundwaters go from 1.01 to 2.67, and from 1 to 4.06 in case of water transfers. Maximum values, as expected within this perspective, are found at high pumped/transferred flows and high pumping levels and/or low pumping efficiency if pumping is required.

  19. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    Science.gov (United States)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  20. Kinetics of water-mediated proton transfer in our atmosphere

    International Nuclear Information System (INIS)

    Loerting, T.

    2000-07-01

    Variational transition state theory and multidimensional tunneling methods on hybrid density functional theory generated hypersurfaces have been used to investigate the temperature dependence of the reaction rate constants of water-mediated proton transfer reactions relevant to the chemistry of our atmosphere, namely the hydration of sulfur dioxide and sulfur trioxide and the decomposition of chlorine nitrate. Highly accurate reaction barriers were calculated using ab initio methods taking into account most of the electron correlation, namely CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ and G2(MP2). On comparing the determined rate constants with laboratory and atmospheric data, the following points could be established: All of the investigated reactions are highly sensitive to changes in humidity, as water acts as efficient catalyst, i.e., the barrier to the reaction is reduced drastically. Present-day atmospheric chemistry can only be explained when a limited number of water molecules is available for the formation of molecular clusters. Both in the troposphere and in the stratosphere SO 3 is hydrated rather than SO 2 . SO 2 emissions have to be oxidized, therefore, before being subject to hydration. A mechanism involving two or three water molecules is relevant for the production of sulfate aerosols, which play a decisive role in the context of global climate change and acid rain. A third water molecule has the function of assisting double-proton transfer rather than acting as active participant in triple-proton transfer in the case of the hydration of sulfur oxides. The observed ozone depletion above Arctica and Antarctica can be explained either by decomposition of chlorine nitrate in the presence of three water molecules (triple proton transfer) or by decomposition of chlorine nitrate in the presence of one molecule of HCl and one molecule of water (double proton transfer). The preassociation reaction required for homogeneous gas-phase conversion of chlorine

  1. Application in appraising inter-basin water transfer projects

    African Journals Online (AJOL)

    2013-07-08

    Jul 8, 2013 ... transfer projects (IBTs) with significant pumping costs overestimates ... Those findings are taken further and it is established that the URV, as currently applied, fails as a suit- .... of measures such as water demand management and catchment .... It is standard practice to also do a sensitivity analysis round.

  2. Antimicrobial Effects of Vancomycin Electro-Transferred Water ...

    African Journals Online (AJOL)

    cadewumi

    ... if there is a significant and measurable biological effect of such unorthodox medical ... such an information transfer, can effectively interact with other biological systems, such as ..... Colloids and Surfaces A: Physicochemical and Engineering .... Applied Biophysics of Activated Water: the physical properties, biological ...

  3. Summer to Winter Diurnal Variabilities of Temperature and Water Vapour in the Lowermost Troposphere as Observed by HAMSTRAD over Dome C, Antarctica

    Science.gov (United States)

    Ricaud, P.; Genthon, C.; Durand, P.; Attié, J.-L.; Carminati, F.; Canut, G.; Vanacker, J.-F.; Moggio, L.; Courcoux, Y.; Pellegrini, A.; Rose, T.

    2012-04-01

    The HAMSTRAD (H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) microwave radiometer operating at 60 GHz (oxygen line, thus temperature) and 183 GHz (water vapour line) has been permanently deployed at the Dome C station, Concordia, Antarctica [75°06'S, 123°21'E, 3,233 m above mean sea level] in January 2010 to study long-term trends in tropospheric absolute humidity and temperature. The great sensitivity of the instrument in the lowermost troposphere helped to characterize the diurnal cycle of temperature and H2O from the austral summer (January 2010) to the winter (June 2010) seasons from heights of 10 to 200 m in the planetary boundary layer (PBL). The study has characterized the vertical resolution of the HAMSTRAD measurements: 10-20 m for temperature and 25-50 m for H2O. A strong diurnal cycle in temperature and H2O (although noisier) has been measured in summertime at 10 m, decreasing in amplitude with height, and phase-shifted by about 4 h above 50 m with a strong H2O-temperature correlation (>0.8) throughout the entire PBL. In autumn, whilst the diurnal cycle in temperature and H2O is less intense, a 12-h phase shift is observed above 30 m. In wintertime, a weak diurnal signal measured between 10 to 200 m is attributed to the methodology employed, which consists of monthly averaged data, and that combines air masses from different origins (sampling effect) and not to the imprint of the null solar irradiation. In situ sensors scanning the entire 24-h period, radiosondes launched at 2000 local solar time (LST) and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses at 0200, 0800, 1400 and 2000 LST agree very well with the HAMSTRAD diurnal cycles for temperature and relatively well for absolute humidity. For temperature, HAMSTRAD tends to be consistent with all the other datasets but shows a smoother vertical profile from 10 to 100 m compared to radiosondes and in-situ data, with ECMWF profiles even smoother than HAMSTRAD

  4. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  5. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    Science.gov (United States)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  6. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  7. Thermogravimetric studies of vapour-aerosol interactions

    International Nuclear Information System (INIS)

    Henshaw, J.; Newland, M.S.; Wood, S.J.

    1991-01-01

    Thermogravimetric analysis has been used to study the interaction of iodine vapour with cadmium, silver and manganese monoxide substrates. These studies have demonstrated the importance of time-dependence data on reaction rates. Iodine did not react with manganese monoxide (as expected from thermodynamic considerations); however, extensive reaction did occur with silver and cadmium. Two rate limiting mechanisms were observed: mass transfer of iodine molecules from the gas phase (leading to linear reaction rates) and parabolic kinetics (ie inversely proportional to the extent of reaction) when the rate was limited by a diffusion process through the reaction product. (author)

  8. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  9. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    Science.gov (United States)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm-3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  10. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  11. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  12. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  13. Water resources transfers through Chinese interprovincial and foreign food trade.

    Science.gov (United States)

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  14. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2010-07-01

    Full Text Available The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS–10 was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air library and the GSW (Gibbs SeaWater library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org. This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i almost unlimited extension with respect to additional properties or relations, (ii an extraction of self-contained sub-libraries, (iii separate updating of the empirical thermodynamic potentials, and (iv code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site.

    1

  15. Transferability of polarizable models for ion-water electrostatic interaction

    International Nuclear Information System (INIS)

    Masia, Marco

    2009-01-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  16. Transfer of Virtual Water of Woody Forest Products from China

    Directory of Open Access Journals (Sweden)

    Kaisheng Luo

    2018-02-01

    Full Text Available Global freshwater resources are under increasing pressure. It is reported that international trade of water-intensive products (the so-called virtual water trade can be used to ease global water pressure. In spite of the significant amount of international trade of woody forest products, virtual water of woody forest products (VWWFP and the corresponding international trade are largely ignored. However, virtual water research has progressed steadily. This study maps VWWFP and statistically analyzes China’s official data for the period 1993–2014. The results show a rapid increase in the trend of VWWFP flow from China, reaching 7.61 × 1012 m3 or 3.48 times annual virtual water trade for agricultural products. The export and import volumes of China are respectively 1.27 × 1012 m3 and 6.34 × 1012 m3 for 1993–2014. China imported a total of 5.07 × 1012 m3 of VWWFP in 1993–2014 to lessen domestic water pressure, which is five times the annual water transfer via China’s South–North Water Transfer project. Asia and Europe account for the highest contribution (50.52% to China’s import. Other contributors include the Russian Federation (16.63%, Indonesia (13.45%, Canada (13.41%, the United States of America (9.60%, Brazil (7.23% and Malaysia (6.33%. China mainly exports VWWFP to Asia (47.68%, North America (23.24%, and Europe (20.01%. The countries which export the highest amount of VWWFP include the United States of America, Japan, Republic of Korea and Canada. Then the countries which import the highest amount of VWWFP include the Russian Federation, Canada, United States of America, and Brazil. The VWWFP flow study shows an obvious geographical distribution that is driven by proximity and traffic since transportation cost of woody forest products could be significant.

  17. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  18. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  19. Mass transfer resistance in ASFF reactors for waste water treatment.

    Science.gov (United States)

    Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M

    1996-01-01

    Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.

  20. THERMOPHYSICAL PROPERTIES AND WATER ACTIVITY OF TRANSFERRED CHEESE (UF

    Directory of Open Access Journals (Sweden)

    Mohsen Dalvi Esfahan

    2015-06-01

    Full Text Available Few data are available on the thermophysical properties of cheese in the ripening process.The main objective of this work was to investigate the effects of brining and temperature on the thermophysical properties, i.e., thermal conductivity, specific heat, density and water activity of UF cheese and finally we measure surface heat transfer coefficient .Then we develop models for thermophysical properties based on physical and multiple regression concept .

  1. Controls of the U.S. Virtual Water Transfer Network

    Science.gov (United States)

    Garcia, S.; Mejia, A.

    2017-12-01

    A complex interplay of human and natural factors shape the economic geography of the U.S., operating through socioeconomic forces that drive the consumption, production, and exchange of commodities. The virtual water content of a commodity represents the water embedded in its production. This work investigates the controls of national bilateral transfers of the virtual water transfer network (VWTN), through a gravity-type spatial interaction model. We use a probabilistic model to predict the binary network and investigate whether the gravity model can explain the topological properties of the empirical weighted network. In general, the gravity model relates transfer flows to the mass of the trading regions and their geographical distance. We hypothesize that properties of the nodes such as population, employment, and availability of land, together with the Euclidean distance between two trading regions, capture the main drivers of the national VWTN. The results from the model are then compared to the empirical weighted network to verify its ability to model the structure of this self-organized system. The proposed empirical model provides insight into the processes that underlie the formation of the VWTN. It can be a promising tool to study how flows are affected by changes in the generating conditions due to shocks and/or stresses.

  2. Water transfer in an alfalfa/maize association

    International Nuclear Information System (INIS)

    Corak, S.J.; Blevins, D.G.; Pallardy, S.G.

    1987-01-01

    The authors investigated the possibility of interspecific water transfer in an alfalfa (Medicago sativa L.) and maize (Zea mays L.) association. An alfalfa plant was grown through two vertically stacked plastic tubes. A 5 centimeter air gap between tubes was bridged by alfalfa roots. Five-week old maize plants with roots confined to the top tube were not watered, while associated alfalfa roots had free access to water in the bottom tube (the -/+ treatment). Additional treatments included: top and bottom tubes watered (+/+), top and bottom tubes droughted (-/-), and top tube droughted after removal of alfalfa root bridges and routine removal of alfalfa tillers (-*). Predawn leaf water potential of maize in the -/+ treatment fell to -1.5 megapascals 13 days after the start of drought; thereafter, predawn and midday potentials were maintained near -1.9 megapascals. Leaf water potentials of maize in the -/- and -* treatments declined steadily; all plants in these treatments were completely desiccated before day 50. High levels of tritium activity were detected in water extracted from both alfalfa and maize leaves after 3 H 2 O was injected into the bottom -/+ tube at day 70 or later. Maize in the -/+ treatment was able to survive an otherwise lethal period of drought by utilizing water lost by alfalfa roots

  3. Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

    International Nuclear Information System (INIS)

    Binns, Chris; Prieto, Pilar; Baker, Stephen; Howes, Paul; Dondi, Ruggero; Burley, Glenn; Lari, Leonardo; Kröger, Roland; Pratt, Andrew; Aktas, Sitki; Mellon, John K.

    2012-01-01

    We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe-Au and Fe-Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe-Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

  4. PHOTOINDUCED TRANSFER OF OXYGEN FROM WATER: AN ARTIFICAL PHOTOSYNTHETIC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Itamar; Otvos, John W.; Ford, William E.; Mettee, Howard; Calvin, Melvin

    1979-11-01

    The photoinduced splitting of water into hydrogen and oxygen has evoked great interest in recent years as a means for energy storag eand fuel production. Photoinduced reduction of water to hydrogen, using visible light, has been described using heterogeneous or homogeneous catalysts. However, the complementary part involving the oxidation of water to oxygen is required in order to create a cyclic artificial 'photosynthetic' fuel system. The major difficulty assocaited with the photooxidation of water involves the requirement for a four electron transfer to produce oxygen. A stepwise one-electron oxidation of water is unfavorable due to the implied formation of active hydroxyl radicals. Very recently, it has been reported that RuO{sub 2} can serve as a heterogeneous charge storage catalyst for oxygen production. On the basis of the limited knowledge about natural photosynthesis, in which manganese ions play an important role in oxygen evolution, synthetic manganese complexes, and in particular dimeric complexes, have been proposed as potential catalysts for oxygen production. So far, efforts directed toward this goal have been unsuccessful. Consequently, using a manganese complex, they attempted to perform a photoinduced oxidation of water whereby the active oxygen is transferred to a trapping substrate. In such a way, the requirement for a dimerization process to evolve molecular oxygen is avoided. They wish to report a photoinduced redox cycle sensitized by a manganese porphyrin, 5-(4{prime}-hexadecylpyridium)-10, 15, 20-tri (4{prime}-pyridyl)-porphinatomanganese(III) (abbreciated to Pn-Mn{sup III}) in which the resultant reaction is the oxidation of water and trapping of the single oxygen atom by a substrate (triphenylphosphine).

  5. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    International Nuclear Information System (INIS)

    Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.

    1996-01-01

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion

  6. Corrigendum to “Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines” [Agric. Forest Meteorol. 165 (2012) 53–63

    DEFF Research Database (Denmark)

    Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola

    2012-01-01

    It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method...... and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...

  7. Interfacial heat transfer in countercurrent flows of steam and water

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1987-04-01

    A study was conducted to examine the departure from equilibrium conditions with respect to direct contact condensation. A simple analytical model, which used an equilibrium factor, K, was derived. The model was structured to represent the physical dimensions of a nuclear reactor downcomer annulus, water subcooling, wall temperature, and water flow rate. In a two step process the model was first used to isolate the average interfacial heat transfer coefficient from vertical countercurrent steam/water data of Cook et al., with the aid of a Stanton number correlation. In the second step the model was assessed by regeneration of measured steam flow rates in the experiments by Cook et al., and an additional experiment of Kim. This report documents the analytical model, the derived Stanton number correlation, and the comparison of the calculated and measured steam flow rates by which the accuracy of the model was assessed

  8. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  9. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-24

    One of the most attractive features of photocatalytic reactions is the ability to achieve energetically uphill (photosynthetic) reactions. In many photocatalytic reactions, the reactions involve multielectron transfers with the adsorbed intermediates. In this case, photocatalysis is nothing but electrocatalysis initiated and driven by the electron potential shift caused by the photocatalyst (photon absorber). This condition is indeed true for photocatalysts for water splitting, which are also electrocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfers at the active surfaces. This chapter deals with the product-side in the six-gear concept. It shows the electrocatalytic performance when using an electrocatalyst on the surface. The chapter further shows the current-potential curve for an electrocatalytic process isolated from the photocatalyst process. For an electrocatalyst to achieve electrochemical reactions, the potential of the catalyst must be shifted at the interface of the semiconductor, providing electromotive force or overpotential for redox reactions.

  10. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2017-01-01

    One of the most attractive features of photocatalytic reactions is the ability to achieve energetically uphill (photosynthetic) reactions. In many photocatalytic reactions, the reactions involve multielectron transfers with the adsorbed intermediates. In this case, photocatalysis is nothing but electrocatalysis initiated and driven by the electron potential shift caused by the photocatalyst (photon absorber). This condition is indeed true for photocatalysts for water splitting, which are also electrocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfers at the active surfaces. This chapter deals with the product-side in the six-gear concept. It shows the electrocatalytic performance when using an electrocatalyst on the surface. The chapter further shows the current-potential curve for an electrocatalytic process isolated from the photocatalyst process. For an electrocatalyst to achieve electrochemical reactions, the potential of the catalyst must be shifted at the interface of the semiconductor, providing electromotive force or overpotential for redox reactions.

  11. Proton Transfers at the Air-Water Interface

    Science.gov (United States)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (applied quantum mechanics and molecular dynamics to simulate our experiments toward gaining insight at the

  12. Collective dynamics in dense Hg vapour

    International Nuclear Information System (INIS)

    Ishikawa, D; Inui, M; Matsuda, K; Tamura, K; Baron, A Q R; Tsutsui, S; Tanaka, Y; Ishikawa, T

    2004-01-01

    The dynamic structure factor, S(Q,ο), of dense Hg vapour has been measured by high resolution inelastic x-ray scattering for densities of 3.0, 2.1 and 1.0 g cm -3 corresponding to 0.52, 0.36 and 0.17 times the critical density, respectively, and for momentum transfers between 2.0 and 48 nm -1 . Analysis of the longitudinal current-current correlation function in the framework of generalized hydrodynamics reveals that the frequencies of the collective excitations increase faster with Q than estimated from the macroscopic speed of sound. The ratios of the frequencies were found to be 1.27 at 3.0 g cm -3 , 1.12 at 2.1 g cm -3 and 1.10 at 1.0 g cm -3 . The sound velocity obtained from the present experiments is well reproduced by a wavenumber dependent adiabatic sound velocity, which means that the collective modes remain in the spectra of dense Hg vapour. (letter to the editor)

  13. First measurement of radon transfer. Water - skin - blood - air

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Grunewald, W.A.

    2000-01-01

    While radon is disliked in uranium mines and homes, it is used medically in radon spas for the treatment of several ailments. The transfer of radon gas from water, through skin into blood and into expiratory air was studied completely for the first time for a person resting 20-30 min in radon water. For waterborne radon concentrations of 1500±100 Bq/L, 4±1 Bq/L were measured in the blood and 2.4±0.5 kBq/m 3 (Bq/L) in the expiratory air. The results can be understood according to the principles of physiology. The nature of the experiments excluded persons other than the authors. Hence the study has been radiometric (physical), not clinical (medical). (orig.)

  14. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  15. Regularities of growth, condensation, solution of vapour and gaseous bubbles in turbulent flows

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1988-01-01

    Corrections for interphase transfer exchange intensity and for bubbles dynamics in the forced turbulent flow as well are obtained on the basis of the surface periodical restoration model. Analysis of the effects, caused by turbulence additional generation due to bubbles floating-up within gravity field, is carried out. Formulae for calculating interphase heat and mass transfer at bubbling are suggested. Application limits for the developed model are determined. Comparison of calculation results according to the derived universal dependence with experimental data on growth rates and condensation of vapour bubble, and on solution rates of gaseous bubbles in water (Re=8x10 3 -2x10 6 ; Pr0.83-568, pressure up to 10 MPa) has revealed their good agreeme nt

  16. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2007-01-01

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  17. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  18. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    International Nuclear Information System (INIS)

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  19. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  20. Freezing heat transfer within water-saturated porous media

    International Nuclear Information System (INIS)

    Sasaki, Akira; Aiba, Shinya; Fukusako, Shoichiro.

    1990-01-01

    In the present study, analytical and experimental investigations were performed so as to clarify the characteristics of freezing heat transfer in porous media saturated with water in a vertical rectangular cavity. In order to establish the momentum equation, the law of conservation of momentum was applied to the fluid in our control volume, and the equation took into account Forchheimer's extension as the resistance to flow in the porous media. Three different sizes of glass, iron and copper beads were used as the porous media in this study. The temperature of the cold wall was kept at -10degC, while that of the hot wall was varied from 2degC to 22 degC. Comparisons between the analytical results and the experimental ones show good agreement with the exception of the copper bead results. (author)

  1. Effect of paint on vapour resistivity in plaster

    Directory of Open Access Journals (Sweden)

    de Villanueva, L.

    2008-12-01

    Full Text Available The vapour resistivity of plaster coatings such as paint and their effectiveness as water repellents were studied in several types of plaster. To this end, painted, unpainted and pigmented specimens were tested. Experimental values were collected on diffusion and vapour permeability, or its inverse, water vapour resistivity.The data obtained were very useful for evaluating moisture exchange between plaster and the surrounding air, both during initial drying and throughout the life of the material. They likewise served as a basis for ensuring the proper evacuation of water vapour in walls, and use of the capacity of the porous network in plaster products to regulate moisture content or serve as a water vapour barrier to avoid condensation.Briefly, the research showed that pigments, water-based paints and silicon-based water repellents scantly raised vapour resistance. Plastic paints, enamels and lacquers, however, respectively induced five-, ten- and twenty-fold increases in vapour resistivity, on average.Se estudia el fenómeno de la resistividad al vapor de los de yeso y el efecto impermeabilizante que producen los recubrimientos de pintura sobre diversos tipos de yeso y escayola. Para ello, se ensayan probetas desnudas y recubiertas con distintos tipos de pintura, así como coloreados en masa. Se obtienen valores experimentales de la difusividad o permeabilidad al vapor o su inverso la resistividad al vapor de agua.Los datos obtenidos son muy útiles para valorar el fenómeno del intercambio de humedad entre el yeso y el ambiente, tanto durante el proceso de su secado inicial, como en el transcurso de su vida. Así como para disponer soluciones adecuadas para la evacuación del vapor de agua a través de los cerramientos, para utilizar la capacidad de regulación de la humedad, que proporciona el entramado poroso de los productos de yeso, o para impedir el paso del vapor de agua y evitar condensaciones.Como resumen de la investigación, se

  2. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P R; Sautray, R R; Girard, B R [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence sur la decontamination. L'activite en

  3. Umbrella sampling of proton transfer in a creatine-water system

    Science.gov (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  4. Environmental Impact Assessment of a Water Transfer Project

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-07-01

    Full Text Available Background Reliable water supplies for drinking and agriculture are some of the objectives for the sustainable development of every country. However, constructed facilities such as dams and irrigation networks and drainage can exert positive and negative effects directly or indirectly on the environment. The environmental impact assessment is a method for identifying the positive and negative effects caused by a plan and suggests performance management best practices aimed at lessening the negative impacts and augmenting the positive ones. Objectives The present study sought to evaluate the environmental impacts of the water transfer project of the Jooban Dam in two phases of preparation and operation. Materials and Methods A checklist containing the positive, negative, short-term, and long-term effects as well as the continuation and probable occurrence of these effects was used. Results The results showed that the negative environmental and social impacts of the project outweighed the positive impacts in terms of type, number, and intensity. Conclusions Unless there are well-thought out strategies for minimizing the undesirable impact on the environment, it is not advisable that such projects be permitted.

  5. Transfer factor for 137Cs in fresh water aquatic environment

    International Nuclear Information System (INIS)

    Varughese, K.G.; Ramkumar, S.; John, Jaison T.; Rajan, M.P.; Gurg, R.P.

    2002-01-01

    137 Cs is one of the most abundant radionuclides produced in nuclear fission and due to its long radiological half-life and chemical similarity to potassium it has greater biological significance. Radioactive waste materials generated at nuclear facilities are generally disposed within the plant premises under its administrative control for effective radiation protection practices. However trace quantities of radionuclides are released into the environment through liquid and gaseous releases under the guidelines of regulatory agencies. The concentration of these radioactive elements in the environment is not detectable under normal circumstances due to the large dispersion and dilutions available in the environment. But these radionuclides can get accumulated in environmental matrices like silt, weed etc. and indicate the presence of radioactivity in the environment. This paper presents the results of a face-controlled studies conducted at Environmental Survey Laboratories at the Rajasthan Atomic Power Station (RAPS) and Kakrapar Atomic Power Station (KAPS) to estimate distribution of low-level radioactivity in the fresh water system. An attempt has been made to derive the Transfer Factor for 137 Cs in fish, weed, and silt and to evaluate the concentration of 137 Cs in water samples, which is otherwise not detectable under normal procedure of measurement. (author)

  6. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    OpenAIRE

    Yujun Yi; Caihong Tang; Zhifeng Yang; Shanghong Zhang; Cheng Zhang

    2017-01-01

    The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon), which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movem...

  7. Vapour pressure of D2O - Ice at temperatures below 237 K

    International Nuclear Information System (INIS)

    Heras, J.M.; Asensio, M.C.; Estiu, G.; Viscido, L.

    1984-01-01

    Accurate measurements of heavy water ice vapour pressures between 193 and 253 K have been carried out and an equation based on thermodynamic data has been derived in order to calculate the D 2 O-ice vapour pressures between 173 and 273 K. The agreement between our calculated vapour pressures and the available experimental data including those in this paper, is very good. The comparison between the theoretical calculations of H 2 O-ice and D 2 O-ice vapour pressures confirms the experimental evidence that H 2 O-ice is more volatile than D 2 O-ice at all temperatures in agreement with the vapour isotopic effect theory (VPIE).(author)

  8. Reconstructing the δ(18) O of atmospheric water vapour via the CAM epiphyte Tillandsia usneoides: seasonal controls on δ(18) O in the field and large-scale reconstruction of δ(18) Oa.

    Science.gov (United States)

    Helliker, Brent R

    2014-03-01

    Using both oxygen isotope ratios of leaf water (δ(18) OL ) and cellulose (δ(18) OC ) of Tillandsia usneoides in situ, this paper examined how short- and long-term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ(18) Oa ). During sample-intensive field campaigns, predictions of δ(18) OL matched observations well using a non-steady-state model, but the model required data-rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ(18) OL-M ) matched observed δ(18) OL and observed δ(18) Oa when leaf water turnover was less than 3.5 d. Using the δ(18) OL-M model and weekly samples of δ(18) OL across two growing seasons in Florida, USA, reconstructed δ(18) Oa was -12.6 ± 0.3‰. This is compared with δ(18) Oa of -12.4 ± 0.2‰ resolved from the growing-season-weighted δ(18) OC . Both of these values were similar to δ(18) Oa in equilibrium with precipitation, -12.9‰. δ(18) Oa was also reconstructed through a large-scale transect with δ(18) OL and the growing-season-integrated δ(18) OC across the southeastern United States. There was considerable large-scale variation, but there was regional, weather-induced coherence in δ(18) Oa when using δ(18) OL . The reconstruction of δ(18) Oa with δ(18) OC generally supported the assumption of δ(18) Oa being in equilibrium with precipitation δ(18) O (δ(18) Oppt ), but the pool of δ(18) Oppt with which δ(18) Oa was in equilibrium - growing season versus annual δ(18) Oppt - changed with latitude. © 2013 John Wiley & Sons Ltd.

  9. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  10. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    Science.gov (United States)

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  11. Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks.

    Science.gov (United States)

    Chanut, Nicolas; Bourrelly, Sandrine; Kuchta, Bogdan; Serre, Christian; Chang, Jong-San; Wright, Paul A; Llewellyn, Philip L

    2017-04-10

    A simple laboratory-scale protocol that enables the evaluation of the effect of adsorbed water on CO 2 uptake is proposed. 45 metal-organic frameworks (MOFs) were compared against reference zeolites and active carbons. It is possible to classify materials with different trends in CO 2 uptake with varying amounts of pre-adsorbed water, including cases in which an increase in CO 2 uptake is observed for samples with a given amount of pre-adsorbed water. Comparing loss in CO 2 uptake between "wet" and "dry" samples with the Henry constant calculated from the water adsorption isotherm results in a semi-logarithmic trend for the majority of samples allowing predictions to be made. Outliers from this trend may be of particular interest and an explanation for the behaviour for each of the outliers is proposed. This thus leads to propositions for designing or choosing MOFs for CO 2 capture in applications where humidity is present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  13. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  14. Dry and wet heat transfer through clothing dependent on the clothing properties under cold conditions

    NARCIS (Netherlands)

    Richards, M.G.M.; Rossi, R.; Meinander, H.; Broede, P.; Candas, V.; Hartog, E.A. den; Holmér, I.; Nocker, W.; Havenith, G.

    2008-01-01

    The purpose of this study was to investigate the effect of moisture on the heat transfer through clothing in relation to the water vapour resistance, type of underwear, location of the moisture and climate. This forms part of the work performed for work package 2 of the European Union THERMPROTECT

  15. Radiative heat transfer and water content in atmosphere of Venus

    International Nuclear Information System (INIS)

    Yarov, M.Y.; Gal'stev, A.P.; Shari, V.P.

    1985-01-01

    The authors present the procedure for calculating optical characteristics of the main components and the effective fluxes in the atmosphere of Venus, and concrete results of the calculations. They are compared to the results of other authors and to the experimantal data. Integration was carried out by the Simpson method with automatic selection of the step or interval for a given relative integrating accuracy delta. The calculations were done with a BESM-6 computer. Using this procedure and data on absorbtion coefficients, calculations of the spectrum of effective flux were carried out for a pure carbon dioxide atmosphere and for an atmosphere containing water vapor at various relative admixtures, for different altitude profiles of temperature and cloudiness albedo. Thus, the comparisons made, enable the authors to judge about the degree of agreement of the F(z) altitude profile, in some regions of the planet where measurements have been made, rather than about the absolute values of the heat fluxes. In conclusion, the authors point out that the task of calculating in detail the radiation balance in Venus' lower atmosphere, as also the problem of a more reliable interpretation of the experimantal data, is coupled with the necessity of elaborating reliable models of the atmospheric components' optical characteristics, which determine the radiative transfer of heat

  16. Experimental study of supercritical water flow and heat transfer in vertical tube

    International Nuclear Information System (INIS)

    Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng

    2012-01-01

    The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)

  17. Analyzing the Dynamics of Inter-state water peace: A study of the Huitzilapan-Xalapa Water Transfers

    Directory of Open Access Journals (Sweden)

    Carmen Maganda

    2017-01-01

    Full Text Available This article examines the political conflict surrounding the interstate transfer of water in the Huitzilapan-Xalapa Aqueduct, from which about 60% of the water resources for the city of Xalapa, state capital of Veracruz, come. This interstate water transfer has eventually lead to political and social conflict based on misinformation about perceived water shortages to Xalapa. The article examines a case in which water officials from Xalapa have apparently complied with guidelines related to procedural, distributive, and ecological justice. Therefore, the article proposes a focus on «justice as responsible (and informed dialogue» as a central element of procedural justice. The analysis is based on a review of official documents, such as Mexican water laws and the water concession under which this water transfer has occurred, press reviews published in regional newspapers, a field visit and interviews with key stakeholders and researchers mostly in Veracruz state.

  18. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    Science.gov (United States)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  19. One dimensional analysis model for condensation heat transfer in feed water heater

    International Nuclear Information System (INIS)

    Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

    1998-01-01

    In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

  20. No sodium in the vapour plumes of Enceladus.

    Science.gov (United States)

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  1. Study of overall heat transfer coefficient from upper crust to overlaying water during MCCI

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nishida, Ayumu; Sugimoto, Jun

    2015-01-01

    A model of the overall heat transfer between the molten core and the overlying coolant above crust during MCCI in severe accident is proposed and confirmed experimentally and analytically. The model assumes that the heat transferred from molten core to the overlaying water is proportional to the amount of water that reaches the molten core surface. The water flow to the molten core surface is assumes to be prevented by the CCFL in the porous crust. Thus, the steam flow and the non-condensable gas flow interact with the water flow. The present model describes the relationship between the overall heat transfer and the water flow, and furthermore, the CCFL effect on the water flow. The non-condensable gas effect on the overall heat transfer predicted by the present model agrees well with experiments. The effects of porosity and hole diameter on the amount of water, which reaches the molten core surface, has also been confirmed using RELAP5 code. (author)

  2. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    Science.gov (United States)

    Dütsch, Marina; Pfahl, Stephan; Meyer, Miro; Wernli, Heini

    2018-02-01

    Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily) timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso). The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso). Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP), which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing with drier air

  3. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    Directory of Open Access Journals (Sweden)

    M. Dütsch

    2018-02-01

    Full Text Available Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso. The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso. Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP, which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing

  4. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  5. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  6. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  7. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    Directory of Open Access Journals (Sweden)

    Yujun Yi

    2017-01-01

    Full Text Available The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon, which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movement in this project. Preissmann four-point partial-node implicit scheme was used to solve the governing equations in this study. Water flow and pollutant movement were appropriately simulated and the results indicated that this water quality model was comparable to MIKE 11 and had a good performance and accuracy. Simulation accuracy and model uncertainty were analyzed. Based on the validated water quality model, six pollution scenarios (Q1 = 10 m3/s, Q2 = 30 m3/s, and Q3 = 60 m3/s for volatile phenol (VOP and contaminant mercury (Hg were simulated for the MRP. Emergent pollution accidents were forecasted and changes of water quality were analyzed according to the simulations results, which helped to guarantee continuously transferring water for a large water transfer project.

  8. Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes

    International Nuclear Information System (INIS)

    Pis'menny, E.N.; Razumovskiy, V.G.; Maevskiy, E.M.; Koloskov, A.E.; Pioro, I.L.

    2006-01-01

    The results on heat transfer to supercritical water heated above the pseudo-critical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m 2 s), inlet temperature from 100 to 415 deg. C and heat flux up to 3.2 MW/m 2 . Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudo-critical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re 2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data. (authors)

  9. Eco-environmental impact of inter-basin water transfer projects: a review.

    Science.gov (United States)

    Zhuang, Wen

    2016-07-01

    The objective reality of uneven water resource distribution and imbalanced water demand of the human society makes it inevitable to transfer water. It has been an age-old method to adopt the inter-basin water transfers (IBTs) for alleviating and even resolving the urgent demand of the water-deficient areas. A number of countries have made attempts and have achieved enormous benefits. However, IBTs inevitably involve the redistribution of water resources in relevant basins and may cause changes of the ecological environment in different basins. Such changes are two-sided, namely, the positive impacts, including adding new basins for water-deficient areas, facilitating water cycle, improving meteorological conditions in the recipient basins, mitigating ecological water shortage, repairing the damaged ecological system, and preserving the endangered wild fauna and flora, as well as the negative impacts, including salinization and aridification of the donor basins, damage to the ecological environment of the donor basins and the both sides of the conveying channel system, increase of water consumption in the recipient basins, and spread of diseases, etc. Because IBTs have enormous ecological risk, it is necessary to comprehensively analyze the inter-basin water balance relationship, coordinate the possible conflicts and environmental quality problems between regions, and strengthen the argumentation of the ecological risk of water transfer and eco-compensation measures. In addition, there are some effective alternative measures for IBTs, such as attaching importance to water cycle, improving water use efficiency, developing sea water desalination, and rainwater harvesting technology, etc.

  10. Study on heat transfer from hot water to air with evaporation. 2nd report

    International Nuclear Information System (INIS)

    Yamaji, Tatsuya; Hirota, Tatsuya; Koizumi, Yasuo; Murase, Michio

    2013-01-01

    Heat transfer from hot water flow to cold air flow was examined. In the present study, the air flow was in turbulent flow condition. When the heat flux from the water flow to the air flow is divides into two terms of an evaporation term and a convection term, the evaporation term is much higher than the convection term; approximately 80 ∼ 60% of the total heat flux since latent heat is taken into the air flow by evaporating vapor. The convection term was approximately two times of the single-phase heat transfer rate with no evaporation. By making use of the analogy between the mass transfer and the heat transfer, and the single-phase heat transfer correlation, the predicting method of the heat transfer rate with the evaporation was developed. (author)

  11. Precipitation scavenging of tritiated water vapour (HTO)

    International Nuclear Information System (INIS)

    Ogram, G.L.

    1985-10-01

    Precipitation scavenging (or washout) is an important mechanism for the removal of HTO from the atmosphere. Methods of parameterizing the depletion of a plume of HTO released to the atmosphere are examined. Simple approaches, commonly used for atmospheric transport modelling purposes, such as the use of a constant washout coefficient or washout ratio, or the use of parameters based on equilibrium assumptions, are often not justified. It is shown that these parameters depend strongly on ambient temperature and plume dimensions, as well as rainfall rate. An approximate expression for washout ratio, as a function of these variables, is developed, and it is shown that near equilibrium washout conditions are only expected to hold at long plume travel distances. A possible method of treating scavenging by snow is also suggested

  12. Study of the transfer of tritium in food chains. Part of a coordinated programme on the cycling of tritium and other radionuclides of global character in different types of ecosystems

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1977-07-01

    The different transfer mechanisms of tritium discharged from nuclear facilities in vapour or liquid form are discussed for air, fresh water, sea water, and from plants to animals. The impact of these on the population are considered. The author describes his own results within the framework of the coordinated research programmes sponsored by the IAEA

  13. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  14. Analysis of combined heat and mass transfer of water- Vapor in a ...

    African Journals Online (AJOL)

    In this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System {lJ program, inserting the proper initial and ...

  15. Analysis of combined heat and mass transfer of water-vapor in a ...

    African Journals Online (AJOL)

    Jn this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System [J] program, inserting the proper initial and ...

  16. Heat transfer in a seven-rod test bundle with supercritical pressure water (1). Experiments

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Seki, Yohji; Dairaku, Masayuki; Suzuki, Satoshi; Enoeda, Mikio; Akiba, Masato; Mori, H.; Oka, Y.

    2009-01-01

    Heat transfer experiments in a seven-rod test bundle with supercritical pressure water has been carried out. The pressure drop and heat transfer coefficients (HTCs) in the test section are evaluated. In the present limited conditions, difference between HTCs at the surface facing the sub-channel center and those at the surface in the narrowest region between rods is not observed. (author)

  17. Design guide for heat transfer equipment in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    1975-07-01

    Information pertaining to design methods, material selection, fabrication, quality assurance, and performance tests for heat transfer equipment in water-cooled nuclear reactor systems is given in this design guide. This information is intended to assist those concerned with the design, specification, and evaluation of heat transfer equipment for nuclear service and the systems in which this equipment is required. (U.S.)

  18. Model description of dibenzothiophene mass transfer in oil/water dispersions with respect to biodesulfurization

    NARCIS (Netherlands)

    Marcelis, C.L.M.; Leeuwen, van M.; Polderman, H.G.; Janssen, A.J.H.; Lettinga, G.

    2003-01-01

    A mathematical model was developed in order to describe the mass transfer rate of dibenzothiophene within the oil droplet to the oil/water interface of droplets created in a stirred tank reactor. The mass transfer rate of dibenzothiophene was calculated for various complex hydrocarbon distillates

  19. Heat transfer study of water-cooled swirl tubes for neutral beam targets

    International Nuclear Information System (INIS)

    Kim, J.; Davis, R.C.; Gambill, W.R.; Haselton, H.H.

    1977-01-01

    Heat transfer considerations of water-cooled swirl-tubes including heat transfer correlations, burnout data, and 2-D considerations are presented in connection with high power neutral beam target applications. We also discuss performance results of several swirl tube targets in use at neutral beam development facilities

  20. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

    International Nuclear Information System (INIS)

    Ali, Hafiz Muhammad; Ali, Hassan; Liaquat, Hassan; Bin Maqsood, Hafiz Talha; Nadir, Malik Ahmed

    2015-01-01

    New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature

  1. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    Science.gov (United States)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  2. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  3. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  4. Transfer of 137Cs from cooking water to some green-stuffs samples

    International Nuclear Information System (INIS)

    Malek, M.A.

    2007-01-01

    The radionuclide in contaminated freshwater may directly gain access to the human body by drinking fresh water and cooking food with such water. During cooking, the radionuclide present in the water may be transferred to the various ingredients of the cooked food. The ratio of the concentration of the radionuclide absorbed in the individual ingredients to the concentration in the cooking water can be designated as the Transfer factor in cooking (TFC). The TFC's of 137 Cs in some green-stuffs have been determined and reported in this paper. (author)

  5. RDF gasification with water vapour: influence of process temperature on yield and products composition; Gassificazione con vapore del CDR: influenza della temperatura di processo su rese e composizione dei prodotti

    Energy Technology Data Exchange (ETDEWEB)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S. [C. R. ENEA Trisaglia, Rotondella (Italy). PROT-STP

    2005-08-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950{sup o}C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling. [Italian] La possibilita' di usare il CDR (combustibile derivato dai rifiuti) per produrre gas combustibile, sembra particolarmente promettente e particolare attenzione si sta rivolgendo a tecnologie alternative di trattamento termico, quali la pirolisi e la gassificazione. In questo ambito, il presente lavoro riporta le prove sperimentali e i risultati ottenuti in una campagna di prove di gassificazione di CDR con vapor d'acqua, effettuate su scala banco in un forno a tamburo rotante a temperatura di processo variabile, utilizzando tecniche di analisi termogravimetrica (TG) e di spettrometria infrarossa in trasformata di Fourier (FTIR), per la caratterizzazione del materiale di ingresso, e analisi gascromatografiche on

  6. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    Science.gov (United States)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative

  7. Analysis of a Hydrogen Isotope separation process based on a continuous hydrogen-water exchange on column Transitions of Hydrogen

    International Nuclear Information System (INIS)

    Hodor, I.

    1988-01-01

    The analysed system consists of two plane-parallel walls, a water film flows down a wall, a catalyst layer is disposed on the other, a water vapour-hydrogen mixture moves up between the walls. A mathematical treatment is presented which permits to calculate the overall transfer coefficients and other parameters of practical interest from the local differential equations. (author)

  8. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan

    2005-01-01

    Vapour pressures and the molar enthalpies of vapourization ΔlgHm-bar of the linear aliphatic nitriles C 7 -C 17 have been determined by the transpiration method. Kovat's indices of these compounds were measured by capillary gas-chromatography. A linear correlation of enthalpies of vapourization ΔlgHm-bar at T=298.15 K of the nitriles studied with the Kovats indices has been found

  9. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  10. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  11. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water

    International Nuclear Information System (INIS)

    Wang, Han; Bi, Qincheng; Yang, Zhendong; Wang, Linchuan

    2015-01-01

    Highlights: • Heat transfer of supercritical water in a narrow annulus is investigated. • Effects of system parameters and flow direction on heat transfer are studied. • Deteriorated heat transfer is analyzed both experimentally and numerically. - Abstract: Heat transfer characteristics of supercritical pressure water in a narrow annulus with vertically upward and downward flows were investigated experimentally and numerically. The outer diameter of the inner heated rod is 8 mm with an effective heated length of 620 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 400–1000 kg/m 2 s and heat flux on the outer surface of the heated rod from 200 to 1000 kW/m 2 . The general heat transfer behaviors were discussed with respect to various mass fluxes and pressures. According to the experimental data, it was found that the effect of flow direction on heat transfer depends on the heat-flux to mass-flux ratio (q/G). Heat transfer is much improved in the downward flow compared to that of upward flow at high q/G ratios. At the pressure of 25 MPa, low-mass-flux deteriorated heat transfer occurred in the upward flow but not in the downward flow. At the same test parameters, however, heat transfer deterioration was observed at both of the two flow directions when the pressure was lowered to 23 MPa. The experimental results indicate that buoyancy plays an important role for this type of deterioration, but is not the only mechanism that leads to the heat transfer deterioration. Three turbulence models were assessed against the annulus test data, it was found that the SST k-ω model gives a satisfying prediction of heat transfer deterioration especially for the case of downward flow. The mechanisms for the low-mass-flow heat transfer deterioration were investigated from the viewpoints of buoyancy and property variations of the supercritical water

  12. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  13. Investigation of heat transfer for extruded polymers cooled in water

    CSIR Research Space (South Africa)

    Kumar, R

    2015-10-01

    Full Text Available . The temperature of still water after 1, 5 and 10 min were determined experimentally using the digital temperature sensor. The temperature gains for the water after the immersion of the extruded polymers were determined at different time intervals. In the second...

  14. Transfer Rates of Enteric Microorganisms in Recycled Water during Machine Clothes Washing▿

    Science.gov (United States)

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-01-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water. PMID:19124592

  15. Updated heat transfer correlations for supercritical water-cooled reactor applications

    International Nuclear Information System (INIS)

    Mokry, S.J.; Pioro, I.L.; Farah, A.; King, K.

    2011-01-01

    In support of the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently being conducted for heat-transfer at supercritical conditions. Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (Water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. A large set of experimental data, for supercritical water was analyzed and an updated heat-transfer correlation for forced-convective heat-transfer, in the normal heat transfer regime, was developed. This experimental dataset was obtained within conditions similar to those for proposed SCWR concepts. Thus, this new correlation can be used for preliminary heat-transfer calculations in SCWR fuel channels. It has demonstrated a good fit for the analyzed dataset. Experiments with SuperCritical Water (SCW) are very expensive. Therefore, a number of experiments are performed in modeling fluids, such as carbon dioxide and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Therefore, a correlation for supercritical carbon dioxide heat transfer was developed as a less expensive alternative to using supercritical water. The conducted analysis also meets the objective of improving our fundamental knowledge of the transport processes and handling of supercritical fluids. These correlations can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the cogeneration of hydrogen, for future comparisons with other independent datasets, with bundle data, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids. (author)

  16. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  17. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  18. Modelling of vapour explosion in a stratified geometry

    International Nuclear Information System (INIS)

    Brayer, Claude

    1994-01-01

    A vapour explosion is the explosive vaporisation of a volatile liquid in contact with another hotter liquid. Such a violent vaporisation requires an intimate mixing and a fine fragmentation of both liquids. Based on a synthesis of published experimental results, the author of this research thesis reports the development of a new physical model which describes the explosion. In this model, the explosion propagation is due to the propagation of the pressure wave associated with this this explosion, all along the vapour film which initially separates both liquids. The author takes the presence of water in the liquid initially located over the film into account. This presence of vapour explains experimental propagation rates. Another consequence, when the pressure wave passes, is an acceleration of liquids at different rates below and above the film. The author considers that a mixture layer then forms from the point of disappearance of the film, between both liquids, and that fragmentation is due to the turbulence in this mixture layer. This fragmentation model is then introduced into an Euler thermodynamic, three-dimensional and multi-constituents code of calculation, MC3D, to study the influence of fragmentation on thermal exchanges between the various constituents on the volatile liquid vaporisation [fr

  19. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  20. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  1. Massive transfers of water : tools of development or instruments of power?

    International Nuclear Information System (INIS)

    Laserre, F.

    2005-01-01

    For years, water has been considered an inexhaustible good. However, it currently represents a crucial stake given the current crisis of scarcity and challenge regarding distribution and choices of water use. This book described some of the major lakes and rivers in North America, with particular reference to the dams and channels that were constructed in the 1960s for mega-scale hydro development projects. The environmental impacts of these projects were also discussed, along with the issue facing political leaders regarding the mass transfer of Canada's abundant and often underused, water resource to the United States. The reaction of the Canadian public in yielding control of water resources was also discussed along with the Canadian obligations within the framework of the North American Free Trade Agreement (NAFTA), with particular reference to whether water is considered to be a common good. An international Joint Committee that was designated to arbitrate the issue affirmed that the massive transfer of waters between Canada and the United States would only be possible as a last recourse and with the provision of restoring water back to the original basin. The book also addressed the political pressures of NAFTA as well as the potential consequences of commercial treaties. It was noted that while water transfers occur more frequently in eastern North America, they are more rare in western North America. However, if confronted with an imminent crisis, water transfer may may become the subject of a request from which Canada may profit. The political social and environmental complexity of developing dams, immense aqueducts or pumping stations to take water from where it is available, and transfer it to areas affected by an increasingly scarce water supply was also addressed. refs., tabs., figs

  2. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Science.gov (United States)

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  3. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  4. Dispersion in North Atlantic Deep Water transfer between the northern source region and the South Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Oliver; Roether, Wolfgang [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2007-07-01

    North Atlantic Deep Water (NADW) represents the Atlantic part of the deep, southward return arm of the oceanic 'conveyor belt', which moderates Europe's climate and effects most of the water transfer from the ocean surface into the deep waters globally. The transfer starts from the NADW formation regions, which in the case of upper NADW (approx. 1500-2000 m depth) is the Labrador Sea (far NW Atlantic). NADW is found concentrated toward the continental slope of the Americas, but subject to meandering, and to recirculation into, and mixing with, the waters of the interior Atlantic. Individual water parcels thus follow a complex ensemble of trajectories. We have obtained characteristics of that ensemble by fitting the free parameters of a suitable function using extensive observations of the transient tracers CFC-11, CFC-12, CCl{sub 4}, and tritium. A tracer transfer function of ocean-surface concentrations to those in newly formed NADW was derived as a precursory step. In the upper NADW we obtain RMS transfer-time dispersions on the way from the Labrador Sea of 31 years at 6 N rising to 53 years at 20 S, compared to mean transfer times ranging 46 to 79 years ({+-}20 %); furthermore, approximately 10 % to 40 % of the water is old, tracer-free water admixed on the way. Similar results have been obtained for lower NADW (approx. 2500-4000 m). The combination of tritium and CFC observations is particularly suited to constrain the dispersion, since it acts on the concentrations of these tracers in an opposite way. The tracer-adjusted transfer functions allow quantification of the NADW transport of pollutants and other compounds delivered to the NADW formation region. The results can furthermore check mean transfer times and large-scale dispersion of the NADW part of dynamic ocean circulation models.

  5. Transfer parameters in the water/forage/moose pathway

    International Nuclear Information System (INIS)

    1987-07-01

    Moose tissue samples and associated water and drinking water samples were collected from the Serpent River Drainage Area (Study Area) and outside of the watershed (Controls) during the fall of 1985. The concentrations of lead-210, polonium-210, radium-226, thorium and uranium were determined for both the study area and control samples. The radionuclide radium-226 was evaluated in the drinking water, vegetation and moose tissue to determine concentration factors. No statistical difference was found between study and control samples. Concentration factors from vegetation to moose tissue were found to range from 0.036 to 3.03 depending upon tissue type. Radionuclide concentrations found in this study were shown to be within known background levels. 2 maps

  6. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  7. Radiative transfer modeling of upwelling light field in coastal waters

    International Nuclear Information System (INIS)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan

    2013-01-01

    Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters. -- Highlights: ► RT model with depth-dependent IOPs and modified bottom boundary conditions provides accurate L u profiles in coastal waters. ► The modified phase function model will be useful for coastal waters. ► An inter-comparison with measured upwelling radiance gives merits of the

  8. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  9. [Spatiotemporal variation of Populus euphratica's radial increment at lower reaches of Tarim River after ecological water transfer].

    Science.gov (United States)

    An, Hong-Yan; Xu, Hai-Liang; Ye, Mao; Yu, Pu-Ji; Gong, Jun-Jun

    2011-01-01

    Taking the Populus euphratica at lower reaches of Tarim River as test object, and by the methods of tree dendrohydrology, this paper studied the spatiotemporal variation of P. euphratic' s branch radial increment after ecological water transfer. There was a significant difference in the mean radial increment before and after ecological water transfer. The radial increment after the eco-water transfer was increased by 125%, compared with that before the water transfer. During the period of ecological water transfer, the radial increment was increased with increasing water transfer quantity, and there was a positive correlation between the annual radial increment and the total water transfer quantity (R2 = 0.394), suggesting that the radial increment of P. euphratica could be taken as the performance indicator of ecological water transfer. After the ecological water transfer, the radial increment changed greatly with the distance to the River, i.e. , decreased significantly along with the increasing distance to the River (P = 0.007). The P. euphratic' s branch radial increment also differed with stream segment (P = 0.017 ), i.e. , the closer to the head-water point (Daxihaizi Reservoir), the greater the branch radial increment. It was considered that the limited effect of the current ecological water transfer could scarcely change the continually deteriorating situation of the lower reaches of Tarim River.

  10. Radiative heat transfer analysis in pure water heater used for semiconductor processing

    International Nuclear Information System (INIS)

    Liu, L.H.; Kudo, K.; Mochida, A.; Ogawa, T.; Kadotani, K.

    2004-01-01

    A simplified one-dimensional model is presented to analyze the non-gray radiative transfer in pure water heater used in the rinsing processes within semiconductor production lines, and the ray-tracing method is extended to simulate the radiative heat transfer. To examine the accuracy of the simplified model, the distribution of radiation absorption is determined by the ray-tracing method based the simplified model and compared with the data obtained by three-dimensional non-gray model in combination with Monte Carlo method in reference, and the effects of the water thickness on the radiation absorption are analyzed. The results show that the simplified model has a good accuracy in solving the radiation absorption in the pure water heater. The radiation absorption increases with the water thickness, but when the water thickness is greater than 50 mm, the radiation absorption increases very slowly with the water thickness

  11. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluation method for two-phase flow and heat transfer in a feed-water heater

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Minato, Akihiko

    1993-01-01

    A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)

  13. The improvement of the heat transfer model for sodium-water reaction jet code

    International Nuclear Information System (INIS)

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  14. Influence of heat consumers distribution and flashing vapours effect on steam consumption of evaporation plant of sugar factory

    Directory of Open Access Journals (Sweden)

    A. A. Gromkovskii

    2016-01-01

    Full Text Available The article considered the influence of the heat consumers distribution and the flashing vapours effect juice for multipleevaporator sugar factory on the consumption the main production flow of heat transfer agent – water vapor. The problem of rational distribution of heat transfer agent for of the corps multiple-evaporator is relevant from point of view of energy saving and energysaving heat of the sugar factory. The solution to this problem is advantageously carried out on the basis of quantitative mathematical description of the distribution of vapor on the corps of the evaporation plant. The heat consumers distribution should be based on technical and economic calculation. To solve this problem it is advisable to use a single equation that determines the dependence of the steam flow in the first unit evaporator on the amount of evaporated water and the method of heat consumers distribution for housing. Evaporators sugar factory has two functions – technology and heat, each of which is described by its equation. On the basis of the material and heat balance equations for the realization of the basic functions of the system evaporator written multipleevaporator equations. The solution of this system allows you to obtain the equation of the steam flow and the amount of evaporated water, taking into account the flashing vapours effect. Solution of the system should take into account the accepted design standards of sugar factories. As a result of solving the system of equation is obtained, which allows you to organize and optimize the heat consumers distribution of the corps evaporator. The equation can be used for any number of units evaporator. This equation allows you to assess the efficiency of the evaporation plant of a sugar factory. This is of great practical importance in the modernization of thermal schemes of sugar factories.

  15. From sea water to marine organisms; transfer to marine organisms

    International Nuclear Information System (INIS)

    Koyanagi, Taku

    1979-01-01

    As a study on transfer of radioiodine to marine organisms, accumulation and excretion of radioiodine by five species of marine fishes were observed by the aquarium experiments using Na 131 I as the tracer. Transfer of radioiodine to the fishes was examined on three different pathways, via seawater, sediment, and food. Concentration of radioiodine in organs of tissues of sea bass, Lateolabrax japonics, yellow tail, Seriola quinqueradiata, and rock fish, Sebastes nivosus, reared in labeled seawater reached maximum within five to ten days and decreased thereafter. Concentration factors calculated at the fifth day of breeding showed the highest value in gall-bladder followed by gut-content suggesting the secretion of bile into the intestine. Loss of radioactivity from the fishes showed two components elimination patterns and biological half-lives were calculated as 2.8 days and 53.5 days, respectively, in muscle of sea bass, for example. Sediment-bound radioiodine administered to benthic fish, right-eye flounder, Kareius bicoloratus, was lost rapidly after the administration but about ten per cent of the whole-body radioactivity were retained by the fishes after the excretion of sediment and eliminated with longer half-lives comparable to those taken up from seawater. Distribution of radioiodine among organs or tissues of the flounder was different between the fishes before and after the elimination experiment showing rapid loss from gill and slower elimination from liver or muscle. Radioiodine administered to sea bream, Pagrus major, as labeled anchovy was climinated also with two components loss processes and elimination rates were little higher than the fishes administered radioiodine as solution in gelatine capsules. Higher distribution of radioiodine in gill of the sea bream suggested the dominant excretion of radioiodine through gill of the fishes. (author)

  16. Mass transfer of H2O between petroleum and water: implications for oil field water sample quality

    International Nuclear Information System (INIS)

    McCartney, R.A.; Ostvold, T.

    2005-01-01

    Water mass transfer can occur between water and petroleum during changes in pressure and temperature. This process can result in the dilution or concentration of dissolved ions in the water phase of oil field petroleum-water samples. In this study, PVT simulations were undertaken for 4 petroleum-water systems covering a range of reservoir conditions (80-185 o C; 300-1000 bar) and a range of water-petroleum mixtures (volume ratios of 1:1000-300:1000) to quantify the extent of H 2 O mass transfer as a result of pressure and temperature changes. Conditions were selected to be relevant to different types of oil field water sample (i.e. surface, downhole and core samples). The main variables determining the extent of dilution and concentration were found to be: (a) reservoir pressure and temperature, (b) pressure and temperature of separation of water and petroleum, (c) petroleum composition, and (d) petroleum:water ratio (PWR). The results showed that significant dilution and concentration of water samples could occur, particularly at high PWR. It was not possible to establish simple guidelines for identifying good and poor quality samples due to the interplay of the above variables. Sample quality is best investigated using PVT software of the type used in this study. (author)

  17. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  18. Theory of lidar method for measurement of the modulation transfer function of water layers.

    Science.gov (United States)

    Dolin, Lev S

    2013-01-10

    We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America

  19. Effect of water content on dispersion of transferred solute in unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Latrille, C. [CEA Saclay, DEN/DANS/DPC/SECR/L3MR, 91191 Gif sur Yvette (France)

    2013-07-01

    Estimating contaminant migration in the context of waste disposal and/or environmental remediation of polluted soils requires a complete understanding of the underlying transport processes. In unsaturated porous media, water content impacts directly on porous solute transfer. Depending on the spatial distribution of water content, the flow pathway is more complex than in water saturated media. Dispersivity is consequently dependent on water content. Non-reactive tracer experiments performed using unsaturated sand columns confirm the dependence of dispersivity with pore velocity; moreover, a power law relationship between dispersivity and water content is evidenced. (authors)

  20. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Science.gov (United States)

    Cebo, Tomasz; Aria, Adrianus I.; Dolan, James A.; Weatherup, Robert S.; Nakanishi, Kenichi; Kidambi, Piran R.; Divitini, Giorgio; Ducati, Caterina; Steiner, Ullrich; Hofmann, Stephan

    2017-12-01

    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials.

  1. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  2. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  3. Upscaling the impact of convective overshooting (COV) through BRAMS: a continental and wet-season scale study of the water vapour (WV) budget in the tropical tropopause layer (TTL).

    Science.gov (United States)

    Behera, Abhinna; Rivière, Emmanuel; Marécal, Virginie; Rysman, Jean-François; Claud, Chantal; Burgalat, Jérémie

    2017-04-01

    The stratospheric water vapour (WV) has a conceding impact on the radiative and chemical budget of Earth's atmosphere. The convective overshooting (COV) at the tropics is well admitted for playing a role in transporting directly WV to the stratosphere. Nonetheless, its impact on the lower stratosphere is yet to be determined at global scale, as the satellite and other air-borne measurements are not of having fine enough resolution to quantify this impact at large scale. Therefore, efforts have been made to quantify the influence of COV over the WV budget in the tropical tropopause layer (TTL) through modelling. Our approach is to build two synthetic tropical wet-seasons; where one would be having only deep convection (DC) but no COV at all, and the second one would be having the COV, and in both cases the WV budget in the TTL would be estimated. Before that, a French-Brazilian TRO-pico campaign was carried out at Bauru, Brazil in order to understand the influence of COV on the WV budget in the TTL. The radio-sounding, and the small balloon-borne WV measurements from the campaign are being utilized to validate the model simulation. Brazilian version of Regional Atmospheric Modeling System (BRAMS) is used with a single grid system to simulate a WV variability in a wet-season. Grell's convective parameterization with ensemble closure, microphysics with double moment scheme and 7 types of hydrometeors are incorporated to simulate the WV variability for a wet-season at the tropics. The grid size of simulation is chosen to be 20 km x 20 km horizontally and from surface to 30 km altitude, so that there cannot be COV at all, only DC due to such a relatively coarse resolution. The European Centre for Medium-range Weather Forecasts (ECMWF) operational analyses data are used every 6 hours for grid initialization and boundary conditions, and grid center nudging. The simulation is carried out for a full wet-season (Nov 2012 - Mar 2013) at Brazilian scale, so that it would

  4. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    Science.gov (United States)

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels

    International Nuclear Information System (INIS)

    Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.

    2011-01-01

    Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.

  6. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system.

    Science.gov (United States)

    Zeng, Qinghui; Qin, Lihuan; Li, Xuyong

    2015-12-01

    Any inter-basin water transfer project would cause complex physical, chemical, hydrological and biological changes to the receiving system. The primary channel of the middle route of the South-to-North Water Transfer Project has a total length of 1267 km. There is a significant difference between the physical, chemical and biological characteristics of the originating and receiving drinking water conservation districts. To predict the impacts of this long-distance inter-basin water transfer project on the N&P (nitrogen and phosphorus) concentrations and eutrophication risk of the receiving system, an environmental fluid dynamics code (EFDC) model was applied. The calibrated model accurately reproduced the hydrodynamic, water quality and the entire algal bloom process. Thirteen scenarios were defined to fully understand the N&P and chlorophyll a (Chl a) variation among different hydrological years, different quantity and timing of water transfer, and different inflows of N&P concentrations. The results showed the following: (a) The water transfer project would not result in a substantial difference to the trophic state of the Miyun reservoir in any of the hydrological years. (b) The area affected by the water transfer did not involve the entire reservoir. To minimize the impact of water transfer on N&P nutrients and Chl a, water should be transferred as uniform as possible with small discharge. (c) The variation in Chl a was more sensitive to an increase in P than an increase in N for the transferred water. The increased percentages of the average Chl a concentration when water was transferred in the spring, summer and autumn were 7.76%, 16.67% and 16.45%. Our findings imply that special attention should be given to prevent P increment of the transferred water from May to October to prevent algal blooms. The results provide useful information for decision makers about the quantity and timing of water transfers. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  8. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  9. Fog deposition fluxes of water and ions to a mountainous site in Central Europe

    OpenAIRE

    Klemm, Otto; Wrzesinsky, Thomas

    2011-01-01

    Fog and precipitation composition and deposition were measured over a 1-yr period. Ion concentrations were higher in fog than in precipitation by factors of between 6 and 18. The causes of these differences were less dilution of fog water due to non-availability of condensable water vapour, and more efficient transfer of surface emissions to fog water as compared to rain water or snow. Fogwater and dissolved ions depositions were measured with eddy covariance in combination with a bulk fogwat...

  10. Water shortage risk assessment considering large-scale regional transfers: a copula-based uncertainty case study in Lunan, China.

    Science.gov (United States)

    Gao, Xueping; Liu, Yinzhu; Sun, Bowen

    2018-06-05

    The risk of water shortage caused by uncertainties, such as frequent drought, varied precipitation, multiple water resources, and different water demands, brings new challenges to the water transfer projects. Uncertainties exist for transferring water and local surface water; therefore, the relationship between them should be thoroughly studied to prevent water shortage. For more effective water management, an uncertainty-based water shortage risk assessment model (UWSRAM) is developed to study the combined effect of multiple water resources and analyze the shortage degree under uncertainty. The UWSRAM combines copula-based Monte Carlo stochastic simulation and the chance-constrained programming-stochastic multiobjective optimization model, using the Lunan water-receiving area in China as an example. Statistical copula functions are employed to estimate the joint probability of available transferring water and local surface water and sampling from the multivariate probability distribution, which are used as inputs for the optimization model. The approach reveals the distribution of water shortage and is able to emphasize the importance of improving and updating transferring water and local surface water management, and examine their combined influence on water shortage risk assessment. The possible available water and shortages can be calculated applying the UWSRAM, also with the corresponding allocation measures under different water availability levels and violating probabilities. The UWSRAM is valuable for mastering the overall multi-water resource and water shortage degree, adapting to the uncertainty surrounding water resources, establishing effective water resource planning policies for managers and achieving sustainable development.

  11. Silicon nanowire arrays as learning chemical vapour classifiers

    International Nuclear Information System (INIS)

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M

    2011-01-01

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions.

  12. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  13. Molecular dynamics simulation of heat transfer through a water layer between two platinum slabs

    International Nuclear Information System (INIS)

    Iype, E; Arlemark, E J; Nedea, S V; Rindt, C C M; Zondag, H A

    2012-01-01

    Heat transfer through micro channels is being investigated due to its importance in micro channel cooling applications. Molecular dynamics simulation is regarded as a potential tool for studying such microscopic phenomena in detail. However, the applicability of molecular dynamics method is limited due to scarcely known inter atomic interactions involved in complex fluids. In this study we use an empirical force field (ReaxFF), which is parameterized using accurate quantum chemical simulation results for water, to simulate heat transfer phenomena through a layer of water confined between two platinum slabs. The model for water seems to reproduce the macroscopic properties such as density, radial distribution function and diffusivity quite well. The heat transfer phenomena through a channel filled with water, which is confined by two platinum (100) surfaces are studied using ReaxFF. The model accurately predicts the formation of surface mono-layer. The heat transfer analysis shows temperature jumps near the walls which are creating significant heat transfer resistances. A low bulk density in the channel creates a multi-phase region with vapor transport in the region.

  14. Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors.

    Science.gov (United States)

    Kim, Hyun Ho; Chung, Yoonyoung; Lee, Eunho; Lee, Seong Kyu; Cho, Kilwon

    2014-05-28

    Transferring graphene without water enables water-sensitive substrates to be used in graphene electronics. A polymeric bilayer (PMMA/PBU) is coated on graphene as a supporting layer for the water-free transfer process and as an excellent passivation layer that enhances device operation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  16. Preoperational test report, cross-site transfer water flush system (POTP-001)

    International Nuclear Information System (INIS)

    Parsons, G.L.

    1998-01-01

    This report documents the results of the testing performed per POTP-001, for the Cross-Site Transfer Water Flush System. (HNF-1552, Rev. 0) The Flush System consists of a 47,000 gallon tank (302C), a 20 hp pump, two 498kW heaters, a caustic addition pump, various valves, instruments, and piping. The purpose of this system is to provide flush water at 140 F, 140gpm, and pH 11-12 for the Cross-Site Transfer System operation

  17. Consideration of heat transfer performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Miyamoto, Yoshiaki

    1986-10-01

    The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)

  18. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    Directory of Open Access Journals (Sweden)

    Zeinali Heris Saeed

    2011-01-01

    Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

  19. The response of liquid-filled pipes to vapour collapse

    International Nuclear Information System (INIS)

    Tijsseling, A.S.; Fan, D.

    1991-01-01

    The collapse of vapour cavities in liquid is usually accompanied with almost instantaneous pressure rises. These pressure rises impose severe loads on liquid-conveying pipes whenever the cavities become sufficiently large. Due to the impact nature of loadings, movement of the pipe walls can be expected. Tests are performed in a water-filled closed pipe suspended by thin steel wires. Vaporous cavities are induced in the liquid by hitting the pipe axially by a steel rod. The volume of the cavities can be varied by changing the initial pressure of the water. The developing and collapsing of cavities in the liquid is inferred from pressure measurements. Strain gauges and a laser Doppler vibrometer are used to record the response of the pipe to these pressures. The test results are compared with predictions from a numerical model. The model describes 1) axial stress wave propagations in the pipe and 2) water hammer and cavitation phenomena in the liquid. Pipe and liquid interact via 1) the radial expansion and contraction of the pipe wall and 2) the closed ends of the pipe, where large vapour cavities may develop. (author)

  20. Simulation of heat and mass transfer in boiling water with the Melodif code

    International Nuclear Information System (INIS)

    Freydier, P.; Chen, O.; Olive, J.; Simonin, O.

    1991-04-01

    The Melodif code is developed at Electricite de France, Research and Development Division. It is an eulerian two dimensional code for the simulation of turbulent two phase flows (a three dimensional code derived from Melodif, ASTRID, is currently being prepared). Melodif is based on the two fluid model, solving the equations of conservation for mass, momentum and energy, for both phases. In such a two fluid model, the description of interfacial transfers between phases is a crucial issue. The model used applies to a dominant continuous phase, and a dispersed phase. A good description of interfacial momentum transfer exists in the standard MELODIF code: the drag force, the apparent mass force... are taken into account. An important factor for interfacial transfers is the interfacial area per volume unit. With the assumption of spherical gas bubbles, an equation has been written for this variable. In the present wok, a model has been tested for interfacial heat and mass transfer in the case of boiling water: it is assumed that mass transfer is controlled by heat transfer through the latent massic energy taken in the phase that vaporizes (or condenses). This heat and mass transfer model has been tested in various configurations: - a cylinder with water flowing inside, is being heated. Boiling takes place near the wall, while bubbles migrating to the core of the flow recondense. This roughly simulates a sub-cooled boiling phenomenon. - a box containing liquid water is depressurized. Boiling takes place in the whole volume of the fluid. The Melodif code can simulate this configuration due to the implicitation of the relation between interphase mass transfer and the pressure variable

  1. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  2. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  3. Discourses of Deflection: The Politics of Framing China’s South-North Water Transfer Project

    Directory of Open Access Journals (Sweden)

    Britt Crow-Miller

    2015-06-01

    Full Text Available Despite significant financial, ecological and social trade-offs, China has moved forward with constructing and operationalising the world’s largest interbasin water transfer project to date, the South-North Water Transfer Project (SNWTP. While it is fundamentally linked to broader political-economic goals within the context of China’s post-Mao development agenda, the SNWTP is frequently discussed in apolitical terms. Based on extensive discourse analysis and interviews with government officials across North China, I argue that the Chinese government is using "discourses of deflection" to present the project as politically neutral in order to serve its ultimate goal of maintaining the high economic growth rates that underpin its continued legitimacy. These discourses, which replace concerns with human-exacerbated water stress with naturalised narratives about water scarcity and the ecological benefits of water transfer, serve to deflect attention away from anthropogenic sources of water stress in the North China Plain and serve as apolitical justifications for pursuing a short-term supply-side approach rather than the more politically challenging and longer-term course of dealing with the underlying drivers of water stress in the region.

  4. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W...... to an extremely narrow polarized potential window (ppw) caused by these moderately hydrophobic ionic components. In this article, we show that TPI technique has virtually eliminated the ppw limitation based on a controlling step of concentration polarization at the electrode|water interface. With the aid...

  5. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  6. The mass transfers of water by diffusion and permeation through a covering of wastes disposal

    International Nuclear Information System (INIS)

    Beaudoing, G.; Duding, B.; Margrita, R.; Launay, M.

    1991-01-01

    The purpose of the experiments described in this article is to measure the transfer conditions similarly to the reality 'in situ', for a barrier constituted of sodic bentonite. For that purpose, these experiments were realized with a possibility of distension into the material receiving the membrane. The studied samples are constituted by a film of heavy, strong, durable and supple propylene coated with a bed of particles of sodic mineral bentonite. This clay is covered with a thin film of polyester for the mechanical protection (transport, placing). The characterisation of water transfer was realized with non mineral tritiated water HTO, nH 2 0 with a specific activity of 37 GBq.m -3 (1 Ci.m -3 ) and placed in the upward cavity of the permeameter. Diffusion, permeation and permeability coefficients are determined under pressure of 0.15.10 5 Pa (1.50 meter of water) and 10 5 Pa (10 meters of water)

  7. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  8. Heat transfer and hydraulic resistance in steam-water mixture flow with large void fractions in an annular channel

    International Nuclear Information System (INIS)

    Dzarasov, Yu.I.

    1976-01-01

    Results of studies for a vapour-water dispersive-ring flow in the heated tore channel are presented. The work area has been a vertical tore channel with external and internal cross-section diameters equal to 12 and 6 mm, respectively, and with the internal heated wall of 1000 mm and 2500 mm long, respectively. The medium moves upward with the pressure 35 and 70 bar. Local heat emission factors α as a function of the channel height have been determined with measuring wall-flow temperature difference at the outlet cross-section. It has been noted that in addition to dependence of the α factor from heat emission q, the factor is also greatly affected by the mass speed and steam content X with the growth of which α increases. The model of the flow explaining the effect of X upon α has been proposed. It has been found that convective heat emission under boiling of the vapour-water mixture in the channels is determined not only by the flow rate but by the amount of liquid in the flow and particular, by the amount of liquid setting at the heating surface

  9. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  10. A mathematical model of vapour film destabilisation

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1985-04-01

    In a hypothetical reactor accident, destabilisation of an intervening vapour film between the molten fuel and liquid coolant by a weak shock wave (trigger), is considered likely to initiate the molten fuel-coolant interaction. The one-dimensional model presented here is part of a larger programme of fundamental research aimed at improved reactor safety. (U.K.)

  11. Laminar forced convective heat transfer to near-critical water in a tube

    International Nuclear Information System (INIS)

    Lee, Sang Ho

    2003-01-01

    Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed

  12. The STARTWAVE atmospheric water database

    Directory of Open Access Journals (Sweden)

    J. Morland

    2006-01-01

    Full Text Available The STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV measurements made over the last ten years by ground-based microwave radiometers, Global Positioning System (GPS receivers and sun photometers located throughout Switzerland at altitudes between 330 and 3584 m. At Bern (46.95° N, 7.44° E tropospheric and stratospheric water vapour profiles are obtained on a regular basis and integrated liquid water, which is important for cloud characterisation, is also measured. Additional stratospheric water vapour profiles are obtained by an airborne microwave radiometer which observes large parts of the northern hemisphere during yearly flight campaigns. The database allows us to validate the various water vapour measurement techniques. Comparisons between IWV measured by the Payerne radiosonde with that measured at Bern by two microwave radiometers, GPS and sun photometer showed instrument biases within ±0.5 mm. The bias in GPS relative to sun photometer over the 2001 to 2004 period was –0.8 mm at Payerne (46.81° N, 6.94° E, 490 m, which lies in the Swiss plains north of the Alps, and +0.6 mm at Davos (46.81° N, 9.84° E, 1598 m, which is located within the Alps in the eastern part of Switzerland. At Locarno (46.18° N, 8.78° E, 366 m, which is located on the south side of the Alps, the bias is +1.9 mm. The sun photometer at Locarno was found to have a bias of –2.2 mm (13% of the mean annual IWV relative to the data from the closest radiosonde station at Milano. This result led to a yearly rotation of the sun photometer instruments between low and high altitude stations to improve the calibrations. In order to demonstrate the capabilites of the database for studying

  13. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  14. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor Hugo; Hurtado, Antonio

    2011-01-01

    Highlights: → Implementation of heat transfer correlations for supercritical water into TRACE. → Simulation of several heat transfer experiments with modified TRACE version. → Most correlations are not able to reproduce the experimental results. → Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  15. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    Science.gov (United States)

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  16. Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor

    Directory of Open Access Journals (Sweden)

    David Palko

    2008-01-01

    Full Text Available A numerical investigation of the heat transfer deterioration (HTD phenomena is performed using the low-Re k-ω turbulence model. Steady-state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS (International Association for the Properties of Water and Steam tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable of simulating the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low-mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates.

  17. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  18. Effect of aging on mass transfer naphthalene from creosotes to water

    International Nuclear Information System (INIS)

    Alshafie, M.; Ghoshal, S.

    2002-01-01

    Semi-gelatinous interfacial films or 'skins' have been observed to form at the interface of creosote and water when creosote is aged (contacted over an extended time period) in water under quiescent conditions for a few days. The objective of the research is to investigate whether aging of creosote-water interfaces and the formation of interfacial films retard dissolution of a target solute, naphthalene, from samples of creosote. Mass transfer experiments were conducted in gently stirred flow-through reactors where the NAPL was coated on glass beads so as to keep the NAPL and the aqueous phases segregated. The aqueous concentration in the reactor effluent was determined in samples collected at different time points and the equilibrium partitioning coefficients and area-independent mass transfer coefficients were calculated. Over the period of one week, the mass transfer rate coefficients of the naphthalene from creosote to water underwent approximately 30% reduction. Further reduction was observed up to 3 weeks of aging. This significant reduction in mass transfer coefficient has important implications on potential rates of dissolution of the solutes, and thus on rates of clean up of creosote-contaminated sites. (author)

  19. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  20. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger

    Science.gov (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.

    2017-02-01

    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  1. [Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in the growth period].

    Science.gov (United States)

    Wang, Li-Zhi; Wang, Guo-Xiang; Yu, Zhen-Fei; Zhou, Bei-Bei; Chen, Qiu-Min; Li, Zhen-Guo

    2012-02-01

    In order to study the process of phosphorus transfer between sediment and overlying water, Hydrilla verticillata and Vallisneria natans were cultured in spring, Potamogeton crispus was cultured in winter. Changes of environmental factors and phosphorus concentrations in water and sediment were investigated. The results indicated that: submerged macrophytes could reduce all phosphorus fractions in the overlying water. Phosphorus concentrations in overlying water maintained in a relative low level in the growth period of submerged macrophytes. The concentrations of total phosphorus (TP) in overlying water of H. verticillata, V. natans and P. crispus were 0.03-0.05, 0.04-0.12, 0.02-0.11 mg x L(-1), respectively. All phosphorus fractions in sediment were reduced. The maximum value between submerged macrophyte and control of H. verticillata, V. natans and P. crispus were 35.34, 60.67 and 25.92 mg x kg(-1), respectively. Dissolved oxygen (DO), redox potential (Eh) and pH in overlying water increased (DO 10.0-14.0 mg x L(-1), Eh 185-240 mV, pH 8.0-11.0) in the submerged macrophytes groups. Submerged macrophytes increased Eh( -140 - -23 mV) and maintained pH(7.2-8.0) in neutral range. The results indicated that submerged macrophytes affected phosphorus transferring between sediment and overlying water through increasing DO, Eh and pH in overlying water, and Eh in sediment.

  2. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.