WorldWideScience

Sample records for water vapor profiling

  1. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  2. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  3. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  4. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    Energy Technology Data Exchange (ETDEWEB)

    FERRARE,R.A.

    2000-01-09

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  5. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  6. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Troyan, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  7. Continuous Time Series of Water Vapor Profiles from a Combination of Raman Lidar and Microwave Radiometer

    Directory of Open Access Journals (Sweden)

    Foth Andreas

    2016-01-01

    Full Text Available In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination can be well compensated by the application of a two–step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.

  8. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    Science.gov (United States)

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

  9. Tropospheric water-vapor profiling using an airborne DIAL system: results from the EFEDA '91 experiment

    Science.gov (United States)

    Kiemle, Christoph; Ehret, Gerhard; Renger, Wolfgang

    1992-12-01

    An airborne near infrared differential absorption lidar (DIAL) has been completed for meteorological applications. This system is based on a Nd:YAG pumped narrow-band tunable dye laser for both the on- and off-line measurements. Performing H2O measurements within and above the planetary boundary layer (PBL) up to an altitude of 4 km, it successfully participated in the European Field Experiment on Desertification Threatened Areas (EFEDA '91) conducted in Spain in the summer of 1991. Data processing of the lidar signals provides range resolved horizontal and vertical water vapor profiles, horizontal power spectra of turbulence, and aerosol backscattering profiles. Water vapor profiles are being calculated using gliding averages of single lidar returns. Typical horizontal resolutions range from 1.3 to 3 km with vertical resolutions varying from 300 to 600 m, depending on the signal-to-noise ratio, in order to meet a 5 to 10% accuracy. The systematic errors, however, are estimated to be around 6%. The vertical water vapor profiles agree well with radiosonde measurements.

  10. Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.

  11. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Rye, B.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences]|[National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.; Machol, J.L.; Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  12. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  13. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Science.gov (United States)

    Grund, Christian J.; Hardesty, R. Michael; Rye, Barry J.

    1995-04-01

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution (e.g. high resolution infrared (IR) Fourier transform radiometry), poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  14. On the quality of the Nimbus 7 LIMS Version 6 water vapor profiles and distributions

    Directory of Open Access Journals (Sweden)

    B. T. Marshall

    2009-12-01

    Full Text Available This report describes the quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS water vapor (H2O profiles of 1978/79 that were processed with a Version 6 (V6 algorithm and archived in 2002. The V6 profiles incorporate a better knowledge of the instrument attitude for the LIMS measurements along its orbits, leading to improvements for its temperature profiles and for the registration of its water vapor radiances with pressure. As a result, the LIMS V6 zonal-mean distributions of H2O exhibit better hemispheric symmetry than was the case from the original Version 5 (V5 dataset that was archived in 1982. Estimates of the precision and accuracy of the V6 H2O profiles are developed and provided. Individual profiles have a precision of order 5% and an estimated accuracy of about 19% at 3 hPa, 14% at 10 hPa, and 26% at 50 hPa. Profile segments within about 2 km of the tropopause are often affected by emissions from clouds that appear in the finite field-of-view of the detector for the LIMS H2O channel. Zonally-averaged distributions of the LIMS V6 H2O are compared with those from the more recent Microwave Limb Sounder (MLS satellite experiment for November, February, and May of 2004/05. The patterns and values of their respective distributions are similar in many respects. Effects of a strengthened Brewer-Dobson circulation are indicated in the MLS distributions of the recent decade versus those of LIMS from 1978/79. A tropical tape recorder signal is present in the 7-month time series of LIMS V6 H2O with lowest values in February 1979, and the estimated, annually-averaged "entry-level" H2O is 3.5 to 3.8 ppmv. It is judged that this historic LIMS water vapor dataset is of good quality for studies of the near global-scale chemistry and transport for pressure levels from 3 hPa to about 70 to 100 hPa.

  15. On the Quality of the Nimbus 7 LIMS Version 6 Water Vapor Profiles and Distributions

    Science.gov (United States)

    Remsberg, E. E.; Natarajan, M.; Lingenfelser, G. S.; Thompson, R. E.; Marshall, B. T.; Gordley, L. L.

    2009-01-01

    This report describes the quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) water vapor (H2O) profiles of 1978/79 that were processed with a Version 6 (V6) algorithm and archived in 2002. The V6 profiles incorporate a better knowledge of the instrument attitude for the LIMS measurements along its orbits, leading to improvements for its temperature profiles and for the registration of its water vapor radiances with pressure. As a result, the LIMS V6 zonal-mean distributions of H2O exhibit better hemispheric symmetry than was the case from the original Version 5 (V5) dataset that was archived in 1982. Estimates of the precision and accuracy of the V6 H2O profiles are developed and provided. Individual profiles have a precision of order 5% and an estimated accuracy of about 19% at 3 hPa, 14% at 10 hPa, and 26% at 50 hPa. Profile segments within about 2 km of the tropopause are often affected by emissions from clouds that appear in the finite field-of-view of the detector for the LIMS H2O channel. Zonally-averaged distributions of the LIMS V6 H2O are compared with those from the more recent Microwave Limb Sounder (MLS) satellite experiment for November, February, and May of 2004/2005. The patterns and values of their respective distributions are similar in many respects. Effects of a strengthened Brewer-Dobson circulation are indicated in the MLS distributions of the recent decade versus those of LIMS from 1978/79. A tropical tape recorder signal is present in the 7-month time series of LIMS V6 H2O with lowest values in February 1979, and the estimated, annually-averaged "entry-level" H2O is 3.5 to 3.8 ppmv. It is judged that this historic LIMS water vapor dataset is of good quality for studies of the near global-scale chemistry and transport for pressure levels from 3 hPa to about 70 to 100 hPa.

  16. Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes

    Science.gov (United States)

    Pougatchev, Nikita; August, Thomas; Calbet, Xavier; Hultberg, Tim; Oduleye, Osoji; Schlüssel, Peter; Stiller, Bernd; St. Germain, Karen; Bingham, Gail

    2008-08-01

    The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI) Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The L2 data were validated through assessment of their error covariances and biases using radiosonde data for the reference. The radiosonde data set includes dedicated launches as well as the ones performed at regular synoptic times at Lindenberg station, Germany). For optimal error estimate the linear statistical Validation Assessment Model (VAM) was used. The model establishes relation between the compared satellite and reference measurements based on their relations to the true atmospheric state. The VAM utilizes IASI averaging kernels and statistical characteristics of the ensembles of the reference data to allow for finite vertical resolution of the retrievals and spatial and temporal non-coincidence. For temperature retrievals expected and assessed errors are in good agreement; error variances/rms of a single FOV retrieval are 1K between 800 - 300 mb with an increase to ~1K in tropopause and ~2K at the surface, possibly due to wrong surface parameters and undetected clouds/haze. Bias against radiosondes oscillates within +/-0 5K . between 950 - 100 mb. As for water vapor, its highly variable complex spatial structure does not allow assessment of retrieval errors with the same degree of accuracy as for temperature. Error variances/rms of a single FOV relative humidity retrieval are between 10 - 13% RH in the 800 - 300 mb range.

  17. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Lee, Jae N.

    2015-01-01

    Additional changes in Version-6.19 include all previous updates made to the q(p) retrieval since Version-6: Modified Neural-Net q0(p) guess above the tropopause Linearly tapers the neural net guess to match climatology at 70 mb, not at the top of the atmosphereChanged the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 24 functions used in T(p) retrieval step. These modifications resulted in improved water vapor profiles in Version-6.19 compared to Version-6.Version-6.19 is tested for all of August 2013 and August 2014, as well for select other days. Before finalized and operational in 2016, the V-6.19 can be acquired upon request for limited time intervals.

  18. Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements

    OpenAIRE

    Costa-Surós Montserrat; Stachlewska Iwona S.; Markowicz Krzysztof

    2016-01-01

    A study of comparison of water vapor mixing ratio profiles, relative humidity profiles, and cloud vertical structures using two different instruments, a multiwavelength Aerosol-Depolarization-Raman lidar and radiosoundings, is presented. The observations were taken by the lidar located in Warsaw center and the radiosoundings located about 30km to the North in Legionowo (Poland). We compared the ground-based remote sensing technology with in-situ method in order to improve knowledge about wate...

  19. Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the SGP CART site

    Science.gov (United States)

    Goldsmith, J. E. M.; Blair, Forest H.; Bisson, Scott E.

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the SGP CART (southern great plains cloud and radiation testbed) site. Research conducted at several laboratories, including our work in a previous ARM instrument development project, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are in the final stages of building a ruggedized Raman lidar system that will reside permanently at the CART site, and that is computer automated to reduce the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar will provide quantitative characterization of aerosols and clouds, including depolarization measurements for particle phase studies.

  20. Validation and statistical analysis of temperature, humidity profiles and Integrated Water Vapor (IWV) from microwave measurements over Granada (Spain)

    Science.gov (United States)

    Bedoya, Andres; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2017-04-01

    Profiles of meteorological variables such as temperature, relative humidity and integrated water vapor derived from a ground-based microwave radiometer (MWR, RPG-HATPRO) are continuously monitored since 2012 at Granada station (Southeastern Spain). During this period up to 210 collocated meteorological balloons, equipped with a radiosonde DFM-09 (GRAWMET), were launched. This study is carried out with a twofold goal. On one hand, a validation of the MWR products such as temperature and water vapor mixing ratio profiles and the IWV from MWR is carried out comparing with radiosonde measurements. The behavior of MWR retrievals under clear and cloudy conditions and for special situations such as inversions has been analyzed. On the other hand, the whole period with continuous measurements is used for a statistical evaluation of the meteorological variables derived from MWR in order to thermodynamically characterize the atmosphere over Granada.

  1. Free energy partitioning analysis of the driving forces that determine ion density profiles near the water liquid-vapor interface.

    Science.gov (United States)

    Arslanargin, Ayse; Beck, Thomas L

    2012-03-14

    Free energy partitioning analysis is employed to explore the driving forces for ions interacting with the water liquid-vapor interface using recently optimized point charge models for the ions and SPC/E water. The Na(+) and I(-) ions are examined as an example kosmotrope/chaotrope pair. The absolute hydration free energy is partitioned into cavity formation, attractive van der Waals, local electrostatic, and far-field electrostatic contributions. We first compute the bulk hydration free energy of the ions, followed by the free energy to insert the ions at the center of a water slab. Shifts of the ion free energies occur in the slab geometry consistent with the SPC/E surface potential of the water liquid-vapor interface. Then the free energy profiles are examined for ion passage from the slab center to the dividing surface. The profiles show that, for the large chaotropic I(-) ion, the relatively flat total free energy profile results from the near cancellation of several large contributions. The far-field electrostatic part of the free energy, largely due to the water liquid-vapor interface potential, has an important effect on ion distributions near the surface in the classical model. We conclude, however, that the individual forms of the local and far-field electrostatic contributions are expected to be model dependent when comparing classical and quantum results. The substantial attractive cavity free energy contribution for the larger I(-) ion suggests that there is a hydrophobic component important for chaotropic ion interactions with the interface.

  2. Water vapor on Titan: the stratospheric vertical profile from Cassini/CIRS infrared spectra

    Science.gov (United States)

    Cottini, V.; Jennings, D. E.; Nixon, C. A.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Achterberg, R. K.; Teanby, N. A.; de Kok, R.; Irwin, P. G. J.; Bézard, B.; Lellouch, E.; Flasar, F. M.; Bampasidis, G.

    2012-04-01

    Water vapor in Titan’s middle atmosphere has previously been detected only by disk-average observations from the Infrared Space Observatory (Coustenis et al., 1998). We report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al., 2004) following an earlier null result (de Kok et al., 2007a). CIRS senses water emissions in the far-infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer and inversion codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al., 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 ± 0.05) ppb at 100 km, corresponding to a column abundance of approximately (3.7 ± 1.3) × 10^14 mol/cm2. Using limb observations, we obtained mixing ratios of (0.13 ± 0.04) ppb at 125 km and (0.45 ± 0.15) ppb at 225 km of altitude, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. In the latitude range (80˚S - 30˚N) we see no evidence for latitudinal variations in these abundances within the error bars. References: Coustenis, A.; Salama, A.; Lellouch, E.; Encrenaz, Th.; Bjoraker, G. L.; Samuelson, R. E.; de Graauw, Th.; Feuchtgruber, H.; Kessler, M. F., 1998. Evidence for water vapor in Titan's atmosphere from ISO/SWS data. Astronomy and Astrophysics, v.336, p.L85-L89 Coustenis, A.; Jennings, D. E.; Nixon, C. A.; Achterberg, R. K.; Lavvas, P.; Vinatier, S.; Teanby, N. A.; Bjoraker, G. L.; Carlson, R. C.; Piani, L.; Bampasidis, G.; Flasar, F. M.; Romani, P. N., 2010. Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission. Icarus, Volume 207, Issue 1, p. 461-476. de Kok, R.; Irwin, P. G. J.; Teanby, N. A.; Lellouch, E.; Bézard, B.; Vinatier, S.; Nixon, C. A.; Fletcher, L.; Howett, C.; Calcutt, S. B.; Bowles, N. E.; Flasar, F. M.; Taylor, F. W. , 2007a. Oxygen compounds in Titan's stratosphere as observed by

  3. Time series analysis of ground-based microwave measurements at K- and V-bands to detect temporal changes in water vapor and temperature profiles

    Science.gov (United States)

    Panda, Sibananda; Sahoo, Swaroop; Pandithurai, Govindan

    2017-01-01

    Ground-based microwave measurements performed at water vapor and oxygen absorption line frequencies are widely used for remote sensing of tropospheric water vapor density and temperature profiles, respectively. Recent work has shown that Bayesian optimal estimation can be used for improving accuracy of radiometer retrieved water vapor and temperature profiles. This paper focuses on using Bayesian optimal estimation along with time series of independent frequency measurements at K- and V-bands. The measurements are used along with statistically significant but short background data sets to retrieve and sense temporal variations and gradients in water vapor and temperature profiles. To study this capability, the Indian Institute of Tropical Meteorology (IITM) deployed a microwave radiometer at Mahabubnagar, Telangana, during August 2011 as part of the Integrated Ground Campaign during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX-IGOC). In this study, temperature profiles for the first time have been estimated using short but statistically significant background information so as to improve the accuracy of the retrieved profiles as well as to be able to detect gradients. Estimated water vapor and temperature profiles are compared with those taken from the reanalysis data updated by the Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), to determine the range of possible errors. Similarly, root mean square errors are evaluated for a month for water vapor and temperature profiles to estimate the accuracy of the retrievals. It is found that water vapor and temperature profiles can be estimated with an acceptable accuracy by using a background information data set compiled over a period of 1 month.

  4. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  5. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  6. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2011-07-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofisica de Andalucia (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radio sondes, frost point hygrometers, lidars, microwave radiometers and FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10 % of the data of all correlative instruments, while a high bias of up to 10 % is found in comparison to ground-based microwave instruments around 45 km. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40 % around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS is provided as well.

  7. The vertical structure of ozone and water vapor profiles in Lhasa within Asia summer monsoon anticyclone during the stratospheric intrusion

    Science.gov (United States)

    Li, Dan; Vogel, Bärbel; Bian, Jianchun; Müller, Rolf; Günther, Gebhard; Bai, Zhixuan; Li, Qian; Fan, Qiujun; Zhang, Jinqiang

    2017-04-01

    A stratospheric intrusion process occurred over the southeastern side of the Asia summer monsoon (ASM) region is investigated using the balloon-borne measurements of ozone and water vapor during 18-20 August 2013. Data from Lhasa (29.66° N, 91.14° E, above sea level (asl.) 3,650 m) show that the positive relative change of the ozone mixing ratios in the tropopause layer attained to 90 % on 19 and 20 August. The backward trajectory calculation from CLaMS model and the satellite data from the ozone monitoring instrument (OMI) and the atmospheric infrared sounder (AIRS) indicate that the (stratospheric) air parcels intruded (originated) from the Northeast Asia to the southeastern edge of the ASM anticyclone. Meanwhile, typhoon Utor occurred over the sourtheastern edge of the ASM and lasted from 8 to 18 August 2013. The convection associated with Utor uplifted air with low ozone from the Western Pacific to the middle/upper troposphere. Air parcels with high ozone from the high latitude and with low ozone from the Western Pacific met at the sourtheastern side of the ASM and then transported westward to Lhasa over long-distances (˜2,000 km). In addition, the laminated identification method is used to identify the laminae structure of the ozone and water vapor profiles from the middle troposphere to the lower stratosphere in Lhasa, confirming the role of the dynamic disturbance (e.g., Rossby and gravity wave)

  8. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    Science.gov (United States)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  9. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  10. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  11. Water Vapor Profiles up to the UT/LS from Raman Lidar at Reunion Island (21°S, 55°E) : Technical Description, Data Processing and Comparison with Sondes

    Science.gov (United States)

    Vérèmes, Hélène; Keckhut, Philippe; Baray, Jean-Luc; Cammas, Jean-Pierre; Dionisi, Davide; Payen, Guillaume; Duflot, Valentin; Gabarrot, Franck; Leclair De Bellevue, Jimmy; Posny, Françoise; Evan, Stéphanie; Meier, Susanne; Vömel, Holger; Dirksen, Ruud

    2016-06-01

    The Maïdo high-altitude observatory located in Reunion Island (21°S, 55°E) is equipped with an innovative lidar designed to monitor the water vapor in the whole troposphere up to the lower stratosphere with a Raman system and to monitor, simultaneously, the temperature in the stratosphere and in the mesosphere based on a Rayleigh scattering technique. Several improvements have been performed on the new instrument to optimize the water vapor mixing ratio measurements thanks to the experience of the previous system. The choice of the operational configuration of the system and the calibration methodology were realized during the campaign MALICCA-1 (MAïdo LIdar Calibration CAmpaign) which provided simultaneous measurements of water vapor and ozone in April 2013. The lidar water vapor profiles are calibrated with water vapor columns obtained from a collocated GNSS receiver. By comparing CFH and Vaisala radiosondes and satellites water vapor mixing ratio profiles with the Raman lidar profiles, the performances of the lidar are shown to be good in the troposphere. With a suitable integration time period, the ability of measuring quantities of a few ppmv in the lower stratosphere is demonstrated. This Raman lidar will provide regular measurements to international networks with high vertical resolution profiles of water vapor in order to document various studies and to insure a long-term survey of the troposphere and of the lower stratosphere.

  12. Refraction of microwave signals by water vapor

    Science.gov (United States)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  13. Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements.

    Science.gov (United States)

    Bisson, S E; Goldsmith, J E; Mitchell, M G

    1999-03-20

    We describe a high-performance Raman lidar system with combined day and night capability for tropospheric water-vapor profile measurements. The system incorporates high-performance UV interference filters and a narrow-band, dual-field-of-view receiver for rejection of background sunlight. Daytime performance has been demonstrated up to 5 km with 150-m vertical and 5-min temporal averaging. The nighttime performance is significantly better with measurements routinely extending from 10 to 12 km with 75-m range resolution and a 5-min temporal average. We describe design issues for daytime operation and a novel daytime calibration technique.

  14. Possible seasonal variability of mesospheric water vapor

    Science.gov (United States)

    Bevilacqua, R. M.; Schwartz, P. R.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz water vapor line in atmospheric emission were made at the Jet Propulsion Laboratory, which have been used to deduce the mesospheric water vapor profile. The measurements were made nearly continuously in the spring and early summer of 1984. The results indicate a temporal increase in the water vapor mixing ratio in the upper mesosphere from April through June. At 75 km, this increase is nearly by a factor of 2. Comparison of the present results with the results of a similar series of measurements made at the Haystack (radio astronomy) Observatory indicate that this temporal increase is part of a seasonal variation.

  15. Water Vapor Measurements by Mobile Raman Lidar Over The Mediterranean Sea in the Framework of HyMex: Application to Multi-Platform Validation of Moisture Profiles

    Directory of Open Access Journals (Sweden)

    Totems Julien

    2016-01-01

    Full Text Available The Water Aerosol Lidar (WALI system, deployed for 14 weeks during 2012 & 2013 on the island of Menorca, provided the Hydrological cycle in the Mediterranean eXperiment (HyMeX with an opportunity to perform a multi-platform comparison on moisture retrievals at the timescales relevant for extreme precipitation events in the West Mediterranean basin. After calibration, the WALI lidar yields nighttime profiles of water vapor with ~7% accuracy from the ground up to 7 km, and daytime coverage of the lower layers, alongside common aerosol retrievals. It is used to characterize the water vapor profile product given by the IASI instrument on-board MetOp-B, and the fields simulated by the Météo-France AROME-WMED model and the open-source WRF model. IASI is found to be reliable above 1 km altitude, and the two models obtain similar high scores in the middle troposphere; WRF beneficiates from a more accurate modelling of the planetary boundary layer.

  16. Effects of Satellite Spectral Resolution and Atmospheric Water Vapor on Retrieval of Near-Ground Temperatures

    Science.gov (United States)

    1993-04-28

    alternate low-level water vapor profile was considered. This " dry " water vapor profile (dashed in Fig. I) was specified to be equal to the "basic...the dry water vapor profile for the night situation. As expected, the unresolvable perturbations of surface temperature were smaller for the dry

  17. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles

    Science.gov (United States)

    Todd Clancy, R.; Smith, Michael D.; Lefèvre, Franck; McConnochie, Timothy H.; Sandor, Brad J.; Wolff, Michael J.; Lee, Steven W.; Murchie, Scott L.; Toigo, Anthony D.; Nair, Hari; Navarro, Thomas

    2017-09-01

    Since July of 2009, The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) has periodically obtained pole-to-pole observations (i.e., full MRO orbits) of limb scanned visible/near IR spectra (λ = 0.4 - 4.0 μ m, △λ ∼ 10 nm- Murchie et al., 2007). These CRISM limb observations support the first seasonally and spatially extensive set of Mars 1.27 μm O2(1△g) dayglow profile retrievals (∼ 1100) over ≥ 8-80 km altitudes. Their comparison to Laboratoire de Météorologie Dynamique (LMD) global climate model (GCM) simulated O2(1△g) volume emission rate (VER) profiles, as a function of altitude, latitude, and season (solar longitude, Ls), supports several key conclusions regarding Mars atmospheric water vapor (which is derived from O2(1△g) emission rates), Mars O3, and the collisional de-excitation of O2(1△g) in the Mars CO2 atmosphere. Current (Navarro et al., 2014) LMDGCM simulations of Mars atmospheric water vapor fall 2-3 times below CRISM derived water vapor abundances at 20-40 km altitudes over low-to-mid latitudes in northern spring (Ls = 30-60°), and northern mid-to-high latitudes over northern summer (Ls = 60-140°). In contrast, LMDGCM simulated water vapor is 2-5 times greater than CRISM derived values at all latitudes and seasons above 40 km, within the aphelion cloud belt (ACB), and over high-southern to mid-southern latitudes in southern summer (Ls = 190-340°) at 15-35 km altitudes. Overall, the solstitial summer-to-winter hemisphere gradients in water vapor are reversed between the LMDGCM modeled versus the CRISM derived water vapor abundances above 10-30 km altitudes. LMDGCM-CRISM differences in water vapor profiles correlate with LMDGCM-CRISM differences in cloud mixing profiles; and likely reflect limitations in simulating cloud microphysics and radiative forcing, both of which restrict meridional transport of water from summer-to-winter hemispheres on Mars (Clancy et al., 1996

  18. Multispectral Fitting Validation of the Speed Dependent Voigt Profile at up to 1300K in Water Vapor with a Dual Frequency Comb Spectrometer

    Science.gov (United States)

    Schroeder, Paul James; Cich, Matthew J.; Yang, Jinyu; Drouin, Brian; Rieker, Greg B.

    2017-06-01

    Using broadband, high resolution dual frequency comb spectroscopy, we test the power law temperature scaling relationship with Voigt, Rautian, and quadratic speed dependent Voigt profiles over a temperature range of 296-1300K for pure water vapor. The instrument covers the spectral range from 6800 cm^{-1} to 7200 cm^{-1} and samples the (101)-(000), (200)-(000), (021)-(000), (111)-(010), (210)-(010), and (031)-(010) vibrational bands of water. The data is sampled with a point spacing of 0.0033 cm^{-1} and absolute frequency accuracy of coal gasifiers and other high temperature systems. In order to extract water concentration and temperature, an extended range of lineshape parameters are needed. Lineshape parameters for pure and argon broadened water are obtained for 278 transitions using the multispectral fitting program Labfit, including self-broadening coefficients, power law temperature scaling exponents, and speed dependence coefficients. The extended temperature range of the data provides valuable insight into the application of the speed-dependence corrections of the line profiles, which are shown to have more reasonable line broadening temperature dependencies.

  19. New mobile Raman lidar for measurement of tropospheric water vapor

    Institute of Scientific and Technical Information of China (English)

    XIE Chenbo; ZHOU Jun; YUE Guming; QI Fudi; FAN Aiyuan

    2007-01-01

    The content of water vapor in atmosphere is very little and the ratio of volume of moisture to air is about 0.1%-3%,but water vapor is the most active molecule in atmosphere.There are many absorption bands in infrared(IR)wavelength for water vapor,and water vapor is also an important factor in cloud formation and precipitation,therefore it takes a significant position in the global radiation budget and climatic changes.Because of the advantages of the high resolution,wide range,and highly automatic operation,the Raman lidar has become a new-style and useful tool to measure water vapor.In this paper,first,the new mobile Raman lidar's structure and specifications were introduced.Second,the process method of lidar data was described.Finally,the practical and comparative experiments were made over Hefei City in China.The results of measurement show that this lidar has the ability to gain profiles of ratio of water vapor mixing ratio from surface to a height of about 8 km at night.Mean-while,the measurement of water vapor in daytime has been taken,and the profiles of water vapor mixing ratio at ground level have been detected.

  20. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  1. Water vapor retrieval from OMI visible spectra

    Directory of Open Access Journals (Sweden)

    H. Wang

    2014-01-01

    optimization of retrieval windows and parameters. The Air Mass Factor (AMF is calculated using look-up tables of scattering weights and monthly mean water vapor profiles from the GEOS-5 assimilation products. We convert from SCD to Vertical Column Density (VCD using the AMF and generate associated retrieval averaging kernels and shape factors. Our standard water vapor product has a median SCD of ~ 1.3 × 1023 molecule cm−2 and a median relative uncertainty of ~ 11% in the tropics, about a factor of 2 better than that from a similar OMI algorithm but using narrower retrieval window. The corresponding median VCD is ~ 1.2 × 1023 molecule cm−2. We have also explored the sensitivities to various parameters and compared our results with those from the Moderate-resolution Imaging Spectroradiometer (MODIS and the Aerosol Robotic NETwork (AERONET.

  2. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  3. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  4. Water vapor diffusion membrane development

    Science.gov (United States)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  5. Water Vapor, Temperature and Wind Profiles within Maize Canopy under in-Field Rainwater Harvesting with Wide and Narrow Runoff Strips

    Directory of Open Access Journals (Sweden)

    Weldemichael A. Tesfuhuney

    2013-11-01

    Full Text Available Micrometeorological measurements were used to evaluate heat and water vapor to describe the transpiration (Ev and soil evaporation (Es processes for wide and narrow runoff strips under in-field rainwater harvesting (IRWH system. The resulting sigmoid-shaped water vapor (ea in wide and narrow runoff strips varied in lower and upper parts of the maize canopy. In wide runoff strips, lapse conditions of ea extended from lowest measurement level (LP to the upper middle section (MU and inversion was apparent at the top of the canopy. The virtual potential temperature (θv profile showed no difference in middle section, but the lower and upper portion (UP had lower  in narrow, compared to wide, strips, and LP-UP changes of 0.6 K and 1.2 K were observed, respectively. The Ev and Es within the canopy increased the ea concentration as determined by the wind order of magnitude. The ea concentration reached peak at about 1.6 kPa at a range of wind speed value of 1.4–1.8 m∙s−1 and 2.0–2.4 m∙s−1 for wide and narrow treatments, respectively. The sparse maize canopy of the wide strips could supply more drying power of the air in response to atmospheric evaporative demand compared to narrow strips. This is due to the variation in air flow in wide and narrow runoff strips that change gradients in ea for evapotranspiration processes.

  6. Saturn's Stratospheric Water Vapor Distribution

    Science.gov (United States)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  7. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  8. Water Vapor Forecasting for Chilean Sites

    Science.gov (United States)

    Marín, Julio C.; Cuevas, O.; Pozo, D.; Curé, M.

    2017-09-01

    "A number of observatories in Chile operate in the infrared region of the electromagnetic spectrum. Therefore, it is very important to them to accurately know the water vapor content of the atmosphere for a better observational planning. This talk provides an overview of the methods used to forecast water vapor over astronomical sites in Chile using observations and atmospheric numerical modeling."

  9. Spectroscopy underlying microwave remote sensing of atmospheric water vapor

    Science.gov (United States)

    Tretyakov, M. Yu.

    2016-10-01

    The paper presents a spectroscopist's view on the problem of recovery of the atmosphere humidity profile using modern microwave radiometers. Fundamental equations, including the description of their limitations, related to modeling of atmospheric water vapor absorption are given. A review of all reported to date experimental studies aimed at obtaining corresponding numerical parameters is presented. Best estimates of these parameters related to the Voigt (Lorentz, Gross, Van Vleck - Weisskopf and other equivalent) profile based modeling of the 22- and 183-GHz water vapor diagnostic lines and to non-resonance absorption as well as corresponding uncertainties are made on the basis of their comparative analysis.

  10. Characterisation of Special Sensor Microwave Water Vapor Profiler (SSM/T-2) radiances using radiative transfer simulations from global atmospheric reanalyses

    Science.gov (United States)

    Kobayashi, Shinya; Poli, Paul; John, Viju O.

    2017-02-01

    The near-global and all-sky coverage of satellite observations from microwave humidity sounders operating in the 183 GHz band complement radiosonde and aircraft observations and satellite infrared clear-sky observations. The Special Sensor Microwave Water Vapor Profiler (SSM/T-2) of the Defense Meteorological Satellite Program began operations late 1991. It has been followed by several other microwave humidity sounders, continuing today. However, expertise and accrued knowledge regarding the SSM/T-2 data record is limited because it has remained underused for climate applications and reanalyses. In this study, SSM/T-2 radiances are characterised using several global atmospheric reanalyses. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), the first ECMWF reanalysis of the 20th-century (ERA-20C), and the Japanese 55-year Reanalysis (JRA-55) are projected into SSM/T-2 radiance space using a fast radiative transfer model. The present study confirms earlier indications that the polarisation state of SSM/T-2 antenna is horizontal (not vertical) in the limit of nadir viewing. The study also formulates several recommendations to improve use of the SSM/T-2 measurement data in future fundamental climate data records or reanalyses. Recommendations are (1) to correct geolocation errors, especially for DMSP 14; (2) to blacklist poor quality data identified in the paper; (3) to correct for inter-satellite biases, estimated here on the order of 1 K, by applying an inter-satellite recalibration or, for reanalysis, an automated (e.g., variational) bias correction; and (4) to improve precipitating cloud filtering or, for reanalysis, consider an all-sky assimilation scheme where radiative transfer simulations account for the scattering effect of hydrometeors.

  11. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter.

    Science.gov (United States)

    Wulfmeyer, V

    1998-06-20

    An all-solid-state laser transmitter for a water-vapor and temperature differential absorption lidar (DIAL) system in the near infrared is introduced. The laser system is based on a master-slave configuration. As the slave laser a Q-switched unidirectional alexandrite ring laser is used, which is injection seeded by the master laser, a cw Ti:sapphire ring laser. It is demonstrated that this laser system has, what is to my knowledge, the highest frequency stability (15 MHz rms), narrowest bandwidth (99.99%) of all the laser transmitters developed to date in the near infrared. These specifications fulfill the requirements for water-vapor measurements with an error caused by laser properties of system makes the narrow-band detection of the DIAL backscatter signal possible. Thus the system has the potential to be used for accurate temperature measurements and for simultaneous DIAL and Doppler wind measurements.

  12. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vertical structure of water vapor in atmosphere is one of the initial information of numerical weather forecast model. Because of the strong variation of water vapor in atmosphere and limited spatio-temporal solutions of traditional observation technique, the initial water vapor field of numerical weather forecast model can not accurately be described. At present, using GPS slant observations to study water vapor profile is very popular in the world. Using slant water vapor(SWV) observations from Shanghai GPS network,we diagnose the three-dimensional(3D) water vapor structure over Shanghai area firstly in China. In water vapor tomography, Gauss weighted function is used as horizontal constraint, the output of numerical forecast is used as apriori information, and boundary condition is also considered. For the problem without exact apriori weights for observations, estimation of variance components is introduced firstly in water vapor tomography to determine posteriori weights. Robust estimation is chosen for reducing the effect of blunders on solutions. For the descending characteristic of water vapor with height increasing, non-equal weights are used along vertical direction. Comparisons between tomography results and the profile provided by numerical model (MM5) show that the forecasted moisture fields of MM5 can be improved obviously by GPS slant water vapor. Using GPS slant observations to study 3D structure of atmosphere in near real-time is very important for improving initial water vapor field of short-term weather forecast and enhancing the accuracy of numerical weather forecast.

  13. Water Vapor Corrosion in EBC Constituent Materials

    Science.gov (United States)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  14. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

    Directory of Open Access Journals (Sweden)

    B. C. Kindel

    2014-10-01

    Full Text Available Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near infrared spectra acquired with the Solar Spectral Flux Radiometer during the first science phase of the NASA Airborne Tropical Tropopause EXperiment. From the 1400 and 1900 nm absorption bands, we infer water vapor amounts in the tropical tropopause layer and adjacent regions between 14 and 18 km altitude. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004. Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amount, 0.004 absorptance change at 1870 nm results in 5.5 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm and 44% (1870 nm differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2 and 7% (1367 nm and 12% (1870 nm differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2. A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere (TOA is discussed.

  15. Water vapor feedback in the tropics deduced from SSM/T-2 water vapor and MSU temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.W. [NASA Marshall Space Flight Center, Huntsville, AL (United States); Braswell, W.D. [Nichols Research Corp., Huntsville, AL (United States)

    1996-12-31

    In simulations of the atmospheric response to increases in surface temperature or radiative forcing by CO{sub 2}, water vapor is usually found to produce a large positive feedback. In studies using the NCAR Community Climate Model (CCM2), it was found that the dependence of clear sky outgoing longwave radiation on sea surface temperature (SST) was almost a factor of two less with water vapor feedback included. However, other studies have provided negative vapor feedback results. Because the outgoing longwave radiation can be computed given tropospheric temperature and water vapor profiles and surface temperature, it is proposed to use satellite measurements that are primarily sensitive to these quantities. This paper discusses the method and preliminary results obtains from four satellite instrument types used to gather data on tropical SSTs between 1992 and 1995. So far, evidence from the new microwave water vapor retrievals indicates that most of the tropical upper troposphere is quite dry, with the most frequently occurring relative humidity near 10%. The hypersensitivity of clear sky outgoing longwave radiation to humidity changes at low relative humidity suggests that the tropical subsidence zones could have a controlling influence on water vapor feedback. 16 refs., 3 figs.

  16. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  17. An interim reference model for the variability of the middle atmosphere water vapor distribution

    Science.gov (United States)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  18. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  19. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    Science.gov (United States)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  20. Water vapor release from biofuel combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-03-01

    Full Text Available We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  1. Water vapor release from biofuel combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-03-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  2. Water vapor release from biomass combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-10-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  3. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  4. Remote sensing of water vapor within the solar spectrum

    Science.gov (United States)

    Bartsch, Barbara; Bakan, Stephan; Fischer, Juergen

    1995-01-01

    Due to the great importance of atmospheric water vapor for weather and climate, much effort is devoted to remote sensing of atmospheric water vapor. The detection over water is well established, while the situation over land surface is worse. Therefore, a new method is developed to derive the total atmospheric water vapor content over land surfaces even for higher aerosol contents with the aid of backscattered solar radiances. Numerous radiative transfer simulations with a matrix operator code of vertically backscattered solar radiance were carried out for different vertically stratified atmospheres. The resolution of 1.7 nm in the wavelength range from 700 to 1050 nm was adopted to the resolution of our multichannel spectrometer OVID (Optical Visible and near Infrared Detector). Various atmospheric conditions were chosen, which were defined by variable input parameters of: (a) vertical profiles of temperature, pressure, and water vapor, (b) total water vapor content, (c) aerosols, (d) surface reflectance, and (e) sun zenith angle. Clouds were not taken into account. From the evaluation of these theoretical calculations it can be concluded that this technique allows the detection of total atmospheric water vapor content over land surfaces with an error of less than 10%. This result is important with regard to future measurements planed with the MERIS imaging spectrometer on board the european satellite ENVISAT, which will be launched in 1998. In addition to these theoretical calculations also various aircraft measurements of the backscattered radiances in the wavelength range from 600 to 1650 nm were carried out. These measurements are done with the above mentioned OVID, a new multichannel array spectrometer of the Universities of Hamburg and Berlin. First comparisons of these airborne CCD measurements with calculated spectra are shown.

  5. Water vapor release from biomass combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the ...

  6. Water vapor release from biofuel combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 ...

  7. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  8. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  9. Water vapor toward starless cores: the Herschel view

    CERN Document Server

    Caselli, P; Pagani, L; Aikawa, Y; Yildiz, U A; van der Tak, F F S; Tafalla, M; Bergin, E A; Nisini, B; Codella, C; van Dishoeck, E F; Bachiller, R; Baudry, A; Benedettini, M; Benz, A O; Bjerkeli, P; Blake, G A; Bontemps, S; Braine, J; Bruderer, S; Cernicharo, J; Daniel, F; di Giorgio, A M; Dominik, C; Doty, S D; Encrenaz, P; Fich, M; Fuente, A; Gaier, T; Giannini, T; Goicoechea, J R; de Graauw, Th; Helmich, F; Herczeg, G J; Herpin, F; Hogerheijde, M R; Jackson, B; Jacq, T; Javadi, H; Johnstone, D; Jorgensen, J K; Kester, D; Kristensen, L E; Laauwen, W; Larsson, B; Lis, D; Liseau, R; Luinge, W; Marseille, M; McCoey, C; Megej, A; Melnick, G; Neufeld, D; Olberg, M; Parise, B; Pearson, J C; Plume, R; Risacher, C; Santiago-Garcia, J; Saraceno, P; Shipman, R; Siegel, P; van Kempen, T A; Visser, R; Wampfler, S F; Wyrowski, F

    2010-01-01

    SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) 7000 AU and ~2x10^-10 toward the center. The radiative trans fer analysis shows that this is consistent with a x(o-H2O) profile peaking at ~10^-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Herschel has provided the first measurement of water vapor in dark regions. Prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) are very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds.

  10. Distribution of Water Vapor in Molecular Clouds

    CERN Document Server

    Melnick, Gary J; Snell, Ronald L; Bergin, Edwin A; Hollenbach, David J; Kaufman, Michael J; Li, Di; Neufeld, David A

    2010-01-01

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J =5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to Av < 15 mag., the ratio of H2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large Av. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations...

  11. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  12. Water vapor release from biomass combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-10-01

    Full Text Available We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  13. Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, Richard; Browell, E. V.; Ismail, S.; Barrick, J. D. W.; Diskin, G. S.; Sachse, G. W.; Kooi, S. A.; Brasseur, L. H.; Brackett, V. G.; Clayton, M. B.; Goldsmith, John E M.; Lesht, B. M.; Podolske, J. R.; Schmidlin, F. J.; Turner, David D.; Whiteman, D. N.; Demoz, B. B.; Tobin, D. C.; Revercomb, Henry E.; Miloshevich, Larry M.; di Girolamo, P.

    2004-12-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between November 27 and December 10, 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWV profiles were about 5-7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8-12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ Diode Laser Hygrometer (DLH) UTWV measurements generally agreed to within about 3 to 4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10-25% and 10-15%, respectively. Sippican (formerly VIZ manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with

  14. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  15. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  16. Phoenix Water Vapor Measurements using the SSI Camera

    Science.gov (United States)

    Tamppari, Leslie; Lemmon, Mark T.

    2016-10-01

    The Phoenix and Mars Reconnaissance Orbiter (MRO) spacecraft participated together in an observation campaign that was a coordinated effort to study the Martian atmosphere. These coordinated observations were designed to provide near-simultaneous observations of the same column of atmosphere over the Phoenix lander. Seasonal coverage was obtained at Ls=5-10° resolution and diurnal coverage was obtained as often as possible and with as many times of day as possible. One key aspect of this observation set was the means to compare the amount of water measured in the whole column (via the MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) and the Phoenix Surface Stereo Imager (SSI) with that measured at the surface (via the Phoenix Thermal and Electrical Conductivity probe (TECP; Zent et al., 2008) which contained a humidity sensor). This comparison, along with the Phoenix LIDAR observations of the depth to which aerosols are mixed (Whiteway et al., 2008, 2009), provides clues to the water vapor mixing ratio profile. Tamppari et al. (2009) showed that examination of a subset of these coordinated observations indicate that the water vapor is not well mixed in the atmosphere up to a cloud condensation height at the Phoenix location during northern summer, and results indicated that a large amount of water must be confined to the lowest 0.5-1 km. This is contrary to the typical assumption that water vapor is "well-mixed."Following a similar approach to Titov et al. (2000), we use the Phoenix SSI camera [Lemmon et al., 2008] filters to detect water vapor: LA = 930.7 nm (broad), R4 = 935.5 nm (narrow), and R5 = 935.7 nm (narrow). We developed a hybrid DISORT-spherical model (DISORT model, Stamnes et al. 1988) to model the expected absorption due to a prescribed water vapor content and profile, to search for matches to the observations. Improvements to the model have been made and recent analysis using this model and comparisons to

  17. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    Science.gov (United States)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  18. Water vapor intrusions into the High Arctic during winter

    Science.gov (United States)

    Doyle, J. G.; Lesins, G.; Thackray, C. P.; Perro, C.; Nott, G. J.; Duck, T. J.; Damoah, R.; Drummond, J. R.

    2011-06-01

    The meridional transport of water vapor into the High Arctic, accompanied by dry enthalpy and clouds, impacts the surface radiative forcing. The evolution of one such moist intrusion over 9-11 February 2010 is presented. The event is analyzed using a unique blend of measurements including a new pan-Arctic retrieval of column water vapor from the Microwave Humidity Sounders, water vapor profiles from a Raman lidar and a ground-based microwave radiometer at the Polar Environment Atmospheric Research Laboratory (PEARL), in Eureka (80°N, 86°W), on Ellesmere Island in the Canadian High Arctic. A radiation model reveals the intrusion is associated with a 17 W m-2 average increase in downwelling longwave irradiance. Optically thin clouds, as observed by the lidar, contribute a further 20 W m-2 to the downwelling longwave irradiance at their peak. Intrusion events are shown to be a regular occurrence in the Arctic winter with implications for the understanding of the mechanisms driving Arctic Amplification.

  19. Determination of water vapor and ozone profiles in the middle atmosphere by microwave-spectroscopy. Bestimmung von Wasserdampf- und Ozonprofilen in der mittleren Atmosphaere durch Millimeterwellenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Puliafito, S.E.

    1989-10-17

    This work was performed at the Max-Planck-Institut fuer Aeronomie (F.R.G.) and treats the following points: 1. Satellite borne microwave radiometry. Principles for a real-time evaluation of the MAS-Limb-Sounding measurements. (MAS: Millimeter Wave Atmospheric Sounder from Space Shuttle as part of the NASA ATLAS Missions, 1991-1997). (a) Deconvolution of the 60 GHz-antenna. (b) Test of different inversion proceedings. A detailed study of the boundary conditions and 'error influence' as well as a discussion of the radiometer specifications. (c) Near real time inversion of microwave spectral lines of the Earth atmosphere. i. The possibility of a (near) real time evaluation (retrieval of the profiles of the atmospheric components) was proved for the first time with a space proof microprocessor. ii. Data reduction of about a factor > 10{sup 3} in comparison with other methods. 2. Airborne and ground based microwave radiometry. (a) Study of the possibilities of ground- and aircraft based measurements for validation and cross calibration of the satellite measurements. (b) Study of the possibilities of ground based radiometric measurements of water vapour in the Artic or Antartica. Precise boundary conditions were given for the first time in order to perform ground based millimeter radiometric measurements in these areas. (orig.).

  20. Development of Field-deployable Diode-laser-based Water Vapor Dial

    Directory of Open Access Journals (Sweden)

    Le Hoai Phong Pham

    2016-01-01

    Full Text Available In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  1. The Water Vapor Abundance in Orion KL Outflows

    CERN Document Server

    Cernicharo, J; Daniel, F; Lerate, M R; Barlow, M J; Swinyard, B M; Van Dishoeck, E F; Lim, T L; Viti, S; Yates, J

    2006-01-01

    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O for...

  2. Lunar absorption spectrophotometer for measuring atmospheric water vapor.

    Science.gov (United States)

    Querel, Richard R; Naylor, David A

    2011-02-01

    A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

  3. Water vapor sorption hysteresis of ceramic bricks

    Science.gov (United States)

    Koronthalyova, Olga

    2016-07-01

    A quantification of the hysteretic effects and their thorough analysis was carried out for three types of ceramic bricks. Water vapor adsorption/desorption isotherms were measured by the standard desiccator method. The desorption measurements were carried out from capillary moisture content as well as from equilibrium moisture content corresponding to the relative humidity of 98 %. For all three tested types of bricks the hysteretic effects were present but their significance differed depending on the particular type of brick. Significant differences were noticed also in desorption curves determined from capillary moisture content and from equilibrium moisture content corresponding to the relative humidity of 98 %. Based on the measured data a possible correlation between pore structure parameters and noticed hysteretic effects as well as relevance of the open pore model are discussed. The obtained adsorption/desorption curves were approximated by an analytical relation.

  4. Water recovery by catalytic treatment of urine vapor

    Science.gov (United States)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  5. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  6. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  7. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  8. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System)satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented.A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information,which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.

  9. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    Science.gov (United States)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  10. Characterization of merged AIRS and MLS water vapor sensitivity through integration of averaging kernels and retrievals

    Directory of Open Access Journals (Sweden)

    C. K. Liang

    2010-07-01

    Full Text Available In this paper, we analyze averaging kernels to assess the sensitivity of the Aqua Atmospheric Infrared Sounder (AIRS and Aura Microwave Limb Sounder (MLS to water vapor. The averaging kernels, in the tropical and extra-tropical upper tropospheric and lower stratospheric region of the atmosphere, indicate that AIRS is primarily sensitive to water vapor concentrations typical of tropospheric values up to a level around 260 hPa. At lower pressures AIRS retrievals lose sensitivity to water vapor, though not completely as indicated by the non-zero verticalities at pressures less than 260 hPa. The MLS is able to provide high quality retrievals, with verticalities ~1 for all pressure levels, down to the same level for where AIRS begins to lose sensitivity. Previous analyses have estimated both instruments to have overlapping sensitivity to water vapor over a half temperature scale height layer, within the upper troposphere, for concentrations between ~30–400 ppmv. Thus, we implement a method using the averaging kernel information to join the AIRS and MLS profiles into an merged set of water vapor profiles. The final combined profiles are not only smooth functions with height but preserve the atmospheric state as interpreted by both the AIRS and MLS instruments.

  11. Tracing water vapor and ice during dust growth

    CERN Document Server

    Krijt, Sebastiaan; Bergin, Edwin A

    2016-01-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ${\\sim}50$ in the disk atmosphere. In our isothermal column, this vapor depletion r...

  12. Water vapor in the protoplanetary disk of DG Tau

    CERN Document Server

    Podio, L; Codella, C; Cabrit, S; Nisini, B; Dougados, C; Sandell, G; Williams, J P; Testi, L; Thi, W -F; Woitke, P; Meijerink, R; Spaans, M; Aresu, G; Menard, F; Pinte, C

    2013-01-01

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K...

  13. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  14. DSMC simulation of Europa water vapor plumes

    Science.gov (United States)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  15. Water vapor: An extraordinary terahertz wave source under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith [Massachusetts Institute of Technology, PO Box 380792, Cambridge, MA 02238-0792 (United States); HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada)], E-mail: kjohnson@mit.edu; Price-Gallagher, Matthew [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Mamer, Orval; Lesimple, Alain [Mass Spectroscopy Unit, 740 Dr. Penfield, Suite 5300, McGill University, Montreal, QC, H3A 1A4 (Canada); Fletcher, Clark [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Chen Yunqing; Lu Xiaofei; Yamaguchi, Masashi; Zhang, X.-C. [W.M. Keck Laboratory for Terahertz Science, Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2008-09-15

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H{sub 2}O vapor is significantly stronger than that from D{sub 2}O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  16. Raman lidar measurements of tropospheric water vapor over Hefei

    Institute of Scientific and Technical Information of China (English)

    Yonghua Wu(吴永华); Huanling Hu(胡欢陵); Shunxing Hu(胡顺星); Jun Zhou(周军)

    2003-01-01

    L625 Raman lidar has been developed for water vapor measurements over Hefei, China since September2000. By transmitting laser beam of frequency-tripled Nd:YAG laser, Raman scattering signals of watervapor and nitrogen molecules are simultaneously detected by the cooled photomultipliers with photoncounting mode. Water vapor mixing ratios measured by Raman lidar show the good agreements withradiosonde observations, which indicates this Raman lidar is reliable. Many observation cases show thataerosol optical parameters have the good correlation with water vapor distribution in the lower troposphere.

  17. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  18. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene

    Science.gov (United States)

    Liang, Jin-Hu; Wang, Su; Zhang, Sheng-Tao; Yue, Lian-Jie; Fan, Bing-Cheng; Zhang, Xin-Yu; Cui, Ji-Ping

    2014-08-01

    In ground tests of hypersonic scramjet, the high-enthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when ϕ = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when ϕ = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at ϕ = 0.5, while no effect is found at ϕ = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.

  19. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  20. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  1. Urban emissions of water vapor in winter

    Science.gov (United States)

    Salmon, Olivia E.; Shepson, Paul B.; Ren, Xinrong; Marquardt Collow, Allison B.; Miller, Mark A.; Carlton, Annmarie G.; Cambaliza, Maria O. L.; Heimburger, Alexie; Morgan, Kristan L.; Fuentes, Jose D.; Stirm, Brian H.; Grundman, Robert; Dickerson, Russell R.

    2017-09-01

    Elevated water vapor (H2Ov) mole fractions were occasionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emission estimates range between 1.6 × 104 and 1.7 × 105 kg s-1 and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1°C d-1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.

  2. A New Way to Study Water-Vapor Absorption Coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱ ozone monitor,water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.

  3. Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance

    Science.gov (United States)

    Hu, Mingke; Zhao, Bin; Ao, Xianze; Pei, Gang

    2017-05-01

    A radiative cooler based on aluminum-evaporated polyvinyl-fluoride surface was employed to investigate the effect of precipitable water vapor amount on its radiative cooling performance. A mathematic model of steady heat transfer that considers the spectral radiant distribution of the sky, the transparent cover and the collecting surface was established. The results indicate that the amount of precipitable water vapor shows a remarkable and negative effect on radiative cooling performance of the radiative cooler. Both the temperature difference between the cooler and surroundings and the net radiative cooling power decrease as the precipitable water vapor amount increases. The net radiative cooling power drops by about 41.0% as the the precipitable water vapor amount changes from 1.0 cm to 7.0 cm. Besides, the radiative cooler shows better cooling performance in winter than in summer. The net radiative cooling power in summer of Hefei is about 82.2% of that in winter.

  4. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    DEFF Research Database (Denmark)

    Massman, W.J.; Ibrom, Andreas

    2008-01-01

    Recent studies with closed-path eddy covariance (EC) systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies...... of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines...... the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent...

  5. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  6. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations - Method, validation, and data characteristics

    Science.gov (United States)

    Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1993-01-01

    Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.

  7. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    Science.gov (United States)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  8. A new technique for monitoring the water vapor in the atmosphere

    Science.gov (United States)

    Black, H. D.; Eisner, A.

    1984-01-01

    In the correction of satellite Doppler data for tropospheric effects the precipitable water vapor (PWV) is inferred at the tracking site. The technique depends on: (1) an ephemeris for the satellite; (2) an analytic model for the refraction range effect that is good to a few centimeters; (3) Doppler data with noise level below 10 centimeters; and (4) a surface pressure/temperature measurement at the tracking site. The PWV is a by product of the computation necessary to correct the Doppler data for tropospheric effects. A formulation of the refraction integral minimizes the necessity for explicit water vapor, temperature and pressure profiles.

  9. In-Situ Water Vapor Probe for a Robot Arm-Mounted, Compact Water Vapor Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to test a prototype water vapor sampling end-effector in the laboratory and in the field thatwill eventually be integrated with a small, infrared...

  10. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  11. A novel, optimized approach of voxel division for water vapor tomography

    Science.gov (United States)

    Yao, Yibin; Zhao, Qingzhi

    2017-02-01

    Water vapor information with highly spatial and temporal resolution can be acquired using Global Navigation Satellite System (GNSS) water vapor tomography technique. Usually, the targeted tomographic area is discretized into a number of voxels and the water vapor distribution can be reconstructed using a large number of GNSS signals which penetrate the entire tomographic area. Due to the influence of geographic distribution of receivers and geometric location of satellite constellation, many voxels located at the bottom and the side of research area are not crossed by signals, which would undermine the quality of tomographic result. To alleviate this problem, a novel, optimized approach of voxel division is here proposed which increases the number of voxels crossed by signals. On the vertical axis, a 3D water vapor profile is utilized, which is derived from radiosonde data for many years, to identify the maximum height of tomography space. On the horizontal axis, the total number of voxel crossed by signal is enhanced, based on the concept of non-uniform symmetrical division of horizontal voxels. In this study, tomographic experiments are implemented using GPS data from Hong Kong Satellite Positioning Reference Station Network, and tomographic result is compared with water vapor derived from radiosonde and European Center for Medium-Range Weather Forecasting (ECMWF). The result shows that the Integrated Water Vapour (IWV), RMS, and error distribution of the proposed approach are better than that of traditional method.

  12. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  13. Microwave Radiometer Networks for Measurement of the Spatio-Temporal Variability of Water Vapor

    Science.gov (United States)

    Reising, S. C.; Iturbide-Sanchez, F.; Padmanabhan, S.

    2006-12-01

    Tropospheric water vapor plays a key role in the prediction of convective storm initiation, precipitation and extreme weather events. Conventionally, water vapor profiles are derived from dewpoint and temperature measurements using instrumented weather balloons, including radiosondes. These balloons take approximately one hour to measure from surface to tropopause, and transmitter-sensor packages cannot be reused. Such in-situ measurements provide profiles with very high vertical resolution but with severe limitations in temporal and spatial coverage. Raman lidars use active optical techniques to provide comparable vertical resolution and measurement accuracy to radiosondes. However, these lidars are bulky and expensive, and their operation is limited to clear-sky conditions due to the high optical opacity of clouds. Microwave radiometers provide path-integrated water vapor and liquid water with high temporal resolution during nearly all weather conditions. If multiple frequencies are measured near the water vapor resonance, coarse vertical profiles can be obtained using statistical inversion. Motivated by the need for improved temporal and spatial resolutions, a network of elevation and azimuth scanning radiometers is being developed to provide coordinated volumetric measurements of tropospheric water vapor. To realize this network, two Miniaturized Water Vapor profiling Radiometers (MVWR) have been designed and fabricated at Colorado State University. MWVR is small, light-weight, consumes little power and is highly stable. To reduce the mass, volume, cost and power consumption as compared to traditional waveguide techniques, MWVR was designed based on monolithic microwave integrated-circuit technology developed for the wireless communication and defense industries. It was designed for network operation, in which each radiometer will perform a complete volumetric scan within a few minutes, and overlapping scans from multiple sensors will be combined

  14. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  15. Rapid and fully automated Measurement of Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2014-01-01

    Eminent environmental challenges such as remediation of contaminated sites, the establishment and maintenance of nuclear waste repositories, or the design of surface landfill covers all require accurate quantification of the soil water characteristic at low water contents. Furthermore, several...... essential but difficult-to-measure soil properties such as clay content and specific surface area are intimately related to water vapor sorption. Until recently, it was a major challenge to accurately measure detailed water vapor sorption isotherms within an acceptable time frame. This priority...... and pesticide volatilization, toxic organic vapor sorption kinetics, and soil water repellency are illustrated. Several methods to quantify hysteresis effects and to derive soil clay content and specific surface area from VSA-measured isotherms are presented. Besides above mentioned applications, potential...

  16. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    Science.gov (United States)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  17. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  18. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  19. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  20. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  1. Carbon and water vapor fluxes of different ecosystems in Oklahoma

    Science.gov (United States)

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspira...

  2. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    Science.gov (United States)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  3. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  4. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  5. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  6. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    Science.gov (United States)

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  7. Detection and Measurement of Charge in Water Vapor

    Science.gov (United States)

    Feng, C. L.

    2015-12-01

    Abstract: Positive charge is found in newly formed water vapor. Two detection and two measurement experiments are presented. The detection experiments are simple; their purpose is only to show the existence of charge in water vapor. The first of these experiments places one exposed end of an insulated wire in the vapor space of a flask, which holds boiling water. The other end of this wire is connected to the input high of an electrometer. The input low, in all of the presented experiments, is grounded. The second experiment detects charge by capacitive induction. It uses a beaker with gold leaves gilded on its outside surface. When water boils inside the beaker, the vapor charge is detected by the gold layer without contacting the water or vapor. The two measurement experiments have sensors made of conducting fabric. The fabric is used to cover the opening of a flask, which holds boiling water, to collect the charge in the escaping vapor. These two experiments differ by the number of fabric layers --- four in one and six in the other. The results obtained from these two experiments are essentially the same, within the margin of error, 0.734 & 0.733 nC per gram of vapor. Since the added two layers of the six-layer sensor do not collect more charge than the four-layer sensor, the four-layer sensor must have collected all available charge. The escaping vapor exits into a chamber, which has only a small area opening connecting to the atmosphere. This chamber prevents direct contact between the sensor and the ambient air, which is necessary because air is found to affect the readings from the sensor. Readings taken in the surrounding area in all four experiments show no accumulation of negative charge. These experiments identify a source for the atmospheric electricity in a laboratory environment other than that has been discussed in the literature. However, they also raise the question about the missing negative charge that would be predicted by charge balance or the

  8. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    Science.gov (United States)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    Global Navigation Satellite Systems (GNSS) have recently proved to be one of the crucial tools for determining continuous and precise precipitable water vapor (GNSS-MET networks). GNSS, especially CORS networks such as CORS-TR (the Turkish Network-RTK), provide high temporal and spatial accuracy for the wet tropospheric zenith delays which are then converted to the precipitable water vapor due to the fact that they can operate in all weather conditions continuously and economically. The accuracy of wet tropospheric zenith delay highly depends on the accuracy of precipitable water vapor content in the troposphere. Therefore, the precipitable water vapor is an important element of the tropospheric zenith delay. A number of studies can be found in the literature on the determination of the precipitable water vapor from the tropospheric zenith delay. Studies of Hogg showed that when the precipitable water vapor is known, the tropospheric zenith delay can be computed. Askne and Nodius have developed fundamental equations between the wet tropospheric zenith delay and the precipitable water vapor from the equation of the index of refraction in the troposphere. Furthermore, Bevis have developed a linear regression model to determine the weighted mean temperature (Tm) depending on the surface temperature (Ts) in Askne and Nodius studies. For this reason, nearly 9000 radiosonde profiles in USA were analyzed and the coefficients calculated. Similarly, there are other studies on the calculation of those coefficients for different regions: Solbrig for Germany, Liou for Taiwan, Jihyun for South Korea, Dongseob for North Korea, Suresh Raju for India, Boutiouta and Lahcene for Algeria, Bokoye for Canada, Baltink for Netherlands and Baltic, Bock for Africa. It is stated that the weighted mean temperature can be found with a root mean square error of ±2-5 K. In addition, there are studies on the calculation of the coefficients globally. Another model for the determination of

  9. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  10. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  11. Condensation of Water Vapor on Waterproof Breathable Fabrics

    Institute of Scientific and Technical Information of China (English)

    周小红; 王善元; 袁观洛

    2003-01-01

    Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20°C and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃. The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics,which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.

  12. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  13. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  14. Remote sensing of water vapor within the solar spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, B. [Univ. Hamburg (Germany). Meteorologisches Inst.; Bakan, S. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften

    1995-12-31

    Water vapor is the most important natural atmospheric greenhouse gas, influencing strongly solar and thermal infrared radiative transfer, and giving rise for clouds, which have strong influence on weather and climate. Therefore, much effort is devoted to remote sensing of atmospheric water vapor. The detection over water is well established, while the situation over land surfaces is worse. A new method is developed to derive the total atmospheric water vapor content over land surfaces even for higher aerosol contents with the aid of backscattered solar radiances. Numerous radiative transfer simulations with a matrix operator code of vertically backscattered solar radiance were carried out for different vertically stratified atmospheres. From the evaluation of these theoretical calculations it can be concluded that this technique allows the detection of total atmospheric water vapor content over land surfaces with an error of less than 10%. This result is important with regard to future measurements planned with the MERIS imaging spectrometer on board the European satellite ENVISAT, which will be launched in 1998. In addition to these theoretical calculations also various aircraft measurements of the backscattered radiances in the wavelength range from 600 to 1,650 nm were carried out. These measurements are done with the above mentioned OVID, a new multichannel array spectrometer of the Universities of Hamburg and Berlin. First comparisons of these airborne CCD measurements with calculated spectra are shown.

  15. Supersaturation in the spontaneous formation of nuclei in water vapor

    Science.gov (United States)

    Sander, Adolf; Damkohler, Gerhard

    1953-01-01

    According to experience, a certain supersaturation is required for condensation of water vapor in the homogeneous phase; that is, for inception of the condensation, at a prescribed temperature, the water vapor partial pressure must lie above the saturation pressure. The condensation starts on so-called condensation nuclei. Solid or liquid suspended particles may serve as nuclei; these particles may either a priori be present in the gas phase (dust, soot), or may spontaneously be formed from the vapor molecules to be condensed themselves. Only the second case will be considered. Gas ions which facilitate the spontaneous formation of nuclei may be present or absent. The supersaturations necessary for spontaneous nucleus formation are in general considerable higher than those in the presence of suspended particles.

  16. UTLS water vapor trends as observed by the Boulder balloon series

    Science.gov (United States)

    Kunz, A.; Mueller, R.; Homonnai, V.; Janosi, I. M.; Rohrer, F.; Spelten, N.; Hurst, D. F.; Forster, P.

    2012-12-01

    Thirty years of high resolution balloon-borne measurements over Boulder, Colorado, are used to investigate the water vapor trend in the tropopause region. This analysis extents already existing Boulder sonde trend statistics, usually focusing on altitudes above 16km, to lower altitudes in the UTLS. This is achieved using two new concepts: 1) Trends are presented in a tropopause (TP) referenced coordinate system from -2km below to 10km above the TP. 2) The sonde profiles are characterized according to tropical and midlatitude TP heights, since the sonde location at 40°N is affected by dynamics and seasonality of the local jet stream. A data selection according to branches with z_TP>14km (B1) and z_TPwater vapor reservoirs. An analysis based on these concepts reduces the dynamically-induced water vapor variability at the TP and allows trend studies in the UTLS. The analysis shows that trends in branch B1 have a better significance -2 to 4km around the TP compared with trends in branch B2. At higher altitudes trends are comparable with published trends, suggesting that a TP based trend calculation is not necessary there. Nevertheless, a decrease in water vapor beginning in 2001 is not visible in both branches between -2 to 4km around the TP. At higher altitudes, this decrease is flattened for the two branches compared with a third branch (B3) with TP heights between 12 and 14km. Branch B3 is characterized by a sharp slope of TP heights across the jet stream. We discuss the hypothesis that the decrease in water vapor beginning in 2001 above Boulder may also be linked with dynamics above the jet stream. These results are also revealed by HALOE based analyses. Using radiative transfer calculations based on a fixed dynamical heating assumption we will study the possible impact of observed water vapor trends around the TP on radiative forcing of surface temperatures.

  17. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    Science.gov (United States)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  18. Characterization of the vertical structure of tropospheric water vapor over the Island of Tahiti

    Science.gov (United States)

    Serafini, Jonathan

    2014-05-01

    We study the vertical variability of tropospheric water vapor over the island of Tahiti from radiosondes made every 12 hours from 2003 to 2011. In particular, we present the characteristic profiles associated with the trade winds and those associated with the presence of deep convection. The vertical profiles associated with trade winds are usually strongly influenced by a temperature inversion layer about 400 meters thick. It is typically located 3 km altitude. This inversion area generally bounds the lower troposphere wetted by the ocean and the free tropophere dried by subsidence. The vertical structure of the water vapor is marked by a sudden decrease in the inversion layer. Conversely, when the convection is deep enough, it enhances mixing between the different layers of the troposphere and the profiles are more continuous. To characterize the vertical structure of the water vapor, we define a model whose objective is to identify the presence of this inversion layer (obstruction of deep convection), its altitude and its thickness. These two parameters, coupled with other weather index are used to characterize tropical rainfall.

  19. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.

  20. Diurnal variations in water vapor over Central and South America

    Science.gov (United States)

    Meza, Amalia; Mendoza, Luciano; Bianchi, Clara

    2016-07-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 73 GNSS tracking sites (GPS + GLONASS) which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, with different diurnal variations of the integrated total humidity content. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). The numerical tools, Singular Value Decomposition and classical Multidimensional Scaling methods, are used to study these variations, considering the measurements made at each stations, as sample in the analysis. The aim of this investigation is to identify the IWV variability with respect to the local time associated to the different climate regions. In order to improve our analysis, all available weather information, such as radiosondes measurements (which are few), measurements of pressure and temperature and Numerical Weather Models reanalysis data, are used. Reference: Dai, A., K. E. Trenberth, and T. R. Karl, 1999 a: Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate, 12, 2451-2473. Dai, A., F. Giorgi, and K. E. Trenberth, 1999 b: Observed and model simulated precipitation diurnal cycle over the contiguous United States.J. Geophys. Res., 104, 6377-6402. KEYWORDS: water vapor, diurnal cycle, GNSS

  1. Vaporization of fault water during seismic slip

    NARCIS (Netherlands)

    Chen, Jianye|info:eu-repo/dai/nl/370819071; Niemeijer, André R.|info:eu-repo/dai/nl/370832132; Fokker, Peter A.|info:eu-repo/dai/nl/08711092X

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase

  2. Radiometric estimation of water vapor content over Brazil

    Science.gov (United States)

    Karmakar, P. K.; Maiti, M.; Sett, S.; Angelis, C. F.; Machado, L. A. T.

    2011-11-01

    A multi-channel microwave radiometre (make: Radiometrics Corporation) is installed at Instituto Nacional de Pesquisas Espaciais-INPE, Brazil (22°S). The radiometric output of two channels of the radiometer in the form of brightness temperature at 23.834 GHz and 30 GHz, initially, were used to find out the ambient water vapor content and the non-precipitable cloud liquid water content. The necessary algorithm was developed for the purpose. The best results were obtained using the hinge frequency 23.834 GHz and 30 GHz pair having an r.m.s. error of only 2.64. The same methodology was then adopted exploiting 23.034 GHz and 30 GHz pair. In that case the r.m.s. error was 3.42. These results were then compared with those obtained over Kolkata (22°N), India, by using 22.234 GHz and 31.4 GHz radiometric data. This work conclusively suggests the use of a frequency should not be at the water vapor resonance line. Instead, while measuring the vapor content for separation of vapor and cloud liquid, one of them should be a few GHz left or right from the resonance line i.e., at 23.834 GHz and the other one should be around 30 GHz.

  3. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  4. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  5. Measurements of an Intrusion of Water Vapor into the High Arctic and its Effect on Wintertime Radiation

    Science.gov (United States)

    Nott, G. J.; Doyle, J. G.; Lesins, G. B.; Thackray, C. P.; Perro, C. W.; Duck, T. J.; Drummond, J. R.

    2010-12-01

    Water vapor is the most important greenhouse gas, yet little is known about it in the High Arctic during winter due to a historic lack of measurements and difficulties associated with satellite retrievals. With cold temperatures and a very stable boundary layer, the water vapor mixing ratio peaks around only 0.3 g kg-1. Any influxes of moist air from more moderate latitudes are thus likely to have a significant impact on Arctic tropospheric processes and the radiation budget. With lidar and accompanying radiometer measurements at Eureka (79°59'N, 85°56'W) we present one highly dynamic instance of such an intrusion from the winter of 2009/10. Measurements with the Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh/Mie/Raman lidar, shown in the figure, display distinct and seperate wet and dry air parcels during the case study. Two significant influxes of moist air (mixing ratio peaking at 1.2 g kg-1) are observed while aerosol profiles show associated cloud and precipitation. An animated map of precipitable water measured by the Microwave Humidity Sounder will be presented that shows the moist air originating over the Bering Sea and sweeping north-east into the Arctic, reaching Eureka on Feburary 9. Radiometer measurements of downwelling radiation during this time period show that the influx of water vapor alone caused a 13% increase in longwave radiation at the surface. A radiative transfer model (SBDART) has been used to isolate the effect of the water vapor, temperature, and cloud cover variations associated with this intrusion, on the overall radiation flux. Only the single event will be presented in detail however longer term data sets of water vapor indicate that such intrusions happen once or twice a month each winter. With such significant influxes of water vapor it is possible that these intrusions significantly affect the average wintertime radiation budget. Lidar measurements of water vapor mixing ratio over Eureka showing two

  6. A summary of meteorological requirements for water vapor data and possible space shuttle applications

    Science.gov (United States)

    1976-01-01

    The accuracy of water vapor measurement required by modelers and forecasters at a number of scales of motion is discussed. Direct and indirect methods for operational use in obtaining atmospheric water vapor data are reviewed along with meteorological applications of water vapor data obtained by a space shuttle laboratory lidar system.

  7. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.

    Science.gov (United States)

    Ehret, G; Kiemle, C; Renger, W; Simmet, G

    1993-08-20

    A near-infrared airborne differential absorption lidar (DIAL) system has become operational. Horizontal and vertical water vapor profiles of the troposphere during summer (nighttime) conditions extending from the top of the planetary boundary layer (PBL) up to near the tropopause are investigated. These measurements have been performed in Southern Bavaria, Germany. The system design, the frequency control units, and an estimation of the laser line profile of the narrow-band dye laser are discussed. Effective absorption cross sections in terms of altitude are calculated. Statistical and systematic errors of the water vapor measurements are evaluated as a function of altitude. The effect of a systematic range-dependent error caused by molecular absorption is investigated by comparing the DIAL data with in situ measurements. Typical horizontal resolutions range from 4 km in the lower troposphere to 11 km in the upper troposphere, with vertical resolutions varying from 0.3 to 1 km, respectively. The lower limit of the sensitivity of the water vapor mixing ratio is calculated to be 0.01 g/kg. The total errors of these measurements range between 8% and 25%. A sine-shaped wave structure with a wavelength of 14 km and an amplitude of 20% of its mean value, detected in the lower troposphere, indicates an atmospheric gravity wave field.

  8. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2010-09-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry and presents first results using measurements from SCIAMACHY. In the previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in 11–25 km altitude range. In this study the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 20%.

  9. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  10. Water vapor analysis with use of sunphotometry and radiosoundings

    Science.gov (United States)

    Pakszys, Paulina; Zielinski, Tymon; Petelski, Tomek; Makuch, Przemyslaw; Strzalkowska, Agata; Markuszewski, Piotr; Kowalczyk, Jakub

    2014-05-01

    Information about vertically integrated content of water vapor in the atmosphere and type, composition and concentration of aerosols is relevant in many types of atmospheric studies. Such information is required to understand mechanisms of global climate and its further modeling (Smirnov et al., 2000). This work is devoted to the description of a basic technique of analysis and comparing the derivation of Columnar Water Vapor (CWV) from different instruments, such as a radiosonde and a sunphotometer. The measurements were carried out using Microtops II Ozone Monitor & Sunphotometer during the cruises onboard the R/V Oceania (13 cruises) and from one cruise onboard of the SY TASK in the southern Baltic Sea. Measurements were collected for the NASA program Maritime Aerosol Network. Data collected with the DiGICORA III Radiosonde (RS92) come from the webpage of the University of Wyoming, Department of Atmospheric Science. The first instrument, sunphotometer, allows us to collect data on days that are cloud-free. The Microtops II is capable of measuring the total ozone column, total precipitable water vapor and aerosol optical depth at 1020 nm (Morys et al. 2001; Ichoku et al., 2002). Each of these parameters is automatically derived. Data collected by Microtops have been processed with the pre- and post-field calibration and automatic cloud clearing. Precipitable water vapor in the column was derived from the 936nm channel. Detailed data description is available on the AERONET webpage. In radiousoundings the total precipitable water is the water that occurs in a vertical column of a unit cross-sectional area between any two specified levels, commonly expressed as from the earth's surface to the 'top' of the atmosphere. The Integrated Precipitable Water Vapor (IPWV) is the height of liquid water that would result from the condensation of all water vapor in a column. The study of one cruise (29 March - 20 April) shows that 241 Microtops measurements were made, each of

  11. Self-deactivation of water vapor - Role of the dimer

    Science.gov (United States)

    Zuckerwar, A. J.

    1984-01-01

    A phenomenological multiple-relaxation theory of the deactivation rate constant for the nu-2 (1 - 0) bending mode of water vapor is presented which incorporates the role not only of the excited monomer but also of the bound molecular complex, in particular the dimer. The deactivation takes place by means of three parallel processes: (1) collisional deexcitation of the excited monomer, (2) a two-step reaction involving association and spontaneous redissociation of an H2O collision complex, and (3) spontaneous dissociation of the stably bound H2O dimer. Oxygen, but not nitrogen or argon, serves as an effective chaperon for the formation of the activated complex. This observation explains the impurity dependence of the self-deactivation rate constant of water vapor. Analysis of an ultrasonic absorption peak based on the third process yields values for the standard entropy and enthalpy of dissociation of the stably bound H2O dimer.

  12. Error analysis of integrated water vapor measured by CIMEL photometer

    Science.gov (United States)

    Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.

    2017-01-01

    Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.

  13. An automated dynamic water vapor permeation test method

    Science.gov (United States)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  14. A nonisothermal emissivity and absorptivity formulation for water vapor

    Science.gov (United States)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  15. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  16. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  17. Modeling an integrated photoelectrolysis system sustained by water vapor

    OpenAIRE

    Xiang, Chengxiang; Chen, Yikai; Lewis, Nathan S.

    2013-01-01

    Two designs for an integrated photoelectrolysis system sustained by water vapor have been investigated using a multi-physics numerical model that accounts for charge and species conservation, electron and ion transport, and electrochemical processes. Both designs leverage the use of a proton-exchange membrane that provides conductive pathways for reactant/product transport and prevents product crossover. The resistive losses, product gas transport, and gas crossovers as a function of the geom...

  18. First detection of water vapor in a pre-stellar core

    CERN Document Server

    Caselli, Paola; Bergin, Edwin A; Tafalla, Mario; Aikawa, Yuri; Douglas, Thomas; Pagani, Laurent; Yildiz, Umut A; van der Tak, Floris F S; Walmsley, C Malcolm; Codella, Claudio; Nisini, Brunella; Kristensen, Lars E; van Dishoeck, Ewine F

    2012-01-01

    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than Helium are expected to freeze-out onto dust grains, and the ortho:para H2 ratio has to be around 1:1 or larger. The observed amount of water vapor wi...

  19. Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; HU Jin-lian; YAN Hao-jing

    2002-01-01

    Solution-cast films of shape memory polyurethane have beea investigated. Differential scanning calorimetry,DMA, tensile test, water vapor permeability and the shape merry effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S- shaped curve, and increases abruptly at Tm of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D)are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below Tg. The crystalline state hardsegment is necessary for the good shape memory effect.

  20. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  1. Adsorption characteristics of water vapor on honeycomb adsorbents

    Science.gov (United States)

    Wajima, Takaaki; Munakata, Kenzo; Takeishi, Toshiharu; Hara, Keisuke; Wada, Kouhei; Katekari, Kenichi; Inoue, Keita; Shinozaki, Yohei; Mochizuki, Kazuhiro; Tanaka, Masahiro; Uda, Tatsuhiko

    2011-10-01

    Recovery of tritium released into working areas in nuclear fusion plants is a key issue of safety. A large volume of air from tritium fuel cycle or vacuum vessel should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes high-pressure drop in catalyst and adsorbent beds. In this study, the applicability of honeycomb-type adsorbents, which offers a useful advantage in terms of their low-pressure drop, to ACS was examined, in comparison with conventional pebble-type adsorbent. Honeycomb-type adsorbent causes far less pressure drop than pebble-type adsorbent beds. Adsorption capacity of water vapor on a honeycomb-type adsorbent is slightly lower than that on a pebble-type adsorbent, while adsorption rate of water vapor on honeycomb-type adsorbent is much higher than that of pebble-type adsorbent.

  2. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  3. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  4. Airborne Lidar Observations of Water Vapor Variability in the Northern Atlantic Trades

    Science.gov (United States)

    Kiemle, Christoph; Groß, Silke; Wirth, Martin; Bugliaro, Luca

    2017-04-01

    During the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiments in December 2013 and August 2016 the DLR lidar WALES (Water vapor Lidar Experiment in Space) was operated on board the German research aircraft HALO. The lidar simultaneously provided two-dimensional curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution, in order to help improve our knowledge on the coupling between water vapor, clouds, and circulation in the trades. The variability of water vapor, ubiquitous in our measurements, poses challenges to climate models because it acts on the small-scale low-cloud cover. Aloft, the very dry free troposphere in the subsiding branch of the Hadley cell acts as an open window in a greenhouse, efficiently cooling the lower troposphere. Secondary circulations between radiatively heated and cooled regions are supposed to occur, adding complexity to the situation. After recently having identified them to be mainly responsible for the uncertainty in global climate sensitivity, such interactions between shallow convection, circulation and radiation are at the heart of present scientific debate, endorsed by the WCRP (World Climate Research Programme) "Grand Challenge on Clouds, Circulation and Climate Sensitivity". Out of the wealth of about 30 winter and 60 summer flight hours totaling 75000 km of data over the Tropical Atlantic Ocean east of Barbados, several representative lidar segments from different flights are presented, together with Meteosat Second Generation (MSG) images and dropsonde profiles. All observations indicate high heterogeneity of the humidity in the lowest 5 km, as well as high variability of the depth of the cloud layer (1 - 2 km thick) and of the sub-cloud boundary layer ( 1 km thick). Layer depths and partial water vapor columns within the layers may vary by up to a factor of 2, and on a large range of horizontal scales. Occasionally, very dry, up

  5. New Isotopic Water Analyzer for Hydrological Measurements of Both Liquid Water and Water Vapor

    Science.gov (United States)

    Owano, T.; Gupta, M.; Berman, E.; Baer, D.

    2012-04-01

    Measurements of the stable isotope ratios of liquid water allow determination of water flowpaths, residence times in catchments, and groundwater migration. Previously, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of the first Isotopic Water Analyzer that simultaneously quantifies δ2H, δ17O and δ18O in liquid water or in water vapor from different natural water sources (e.g., rain, snow, streams and groundwater). In High-Throughput mode, the IWA can report measurements at the unprecedented rate of over 800 injections per day, which yields more than 140 total unknown and reference samples per day (still with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ2H, δ17O, δ18O) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift despite changes in ambient temperature (over the entire range from 0-45 degrees C). Measurements from recent field studies using the IWA will be presented.

  6. Molecular dynamics of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  7. Molecular dynamics of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  8. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  9. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  10. Relation between 183 GHz Water Vapor Line and Water Continuum Absorption Measured with FTS

    Science.gov (United States)

    Matsushita, S.; Matsuo, H.

    ve carried out Fourier Transform Spectrometer (FTS) measurements of the millimeter and submillimeter-wave (100-1500 GHz or 3 mm - 200 micron) atmospheric opacity at Pampa la Bola, 4800 m above sea level in northern Chile on September 1997 and June 1998. Correlations between 220 GHz opacities and those of the center of submillimeter-wave windows were obtained using the entire data set, and good correlations were obtained except for the periods affected by the liquid water opacity component. We succeeded to separate the total opacity to water vapor and liquid water opacity components. The separated water vapor opacity component shows good correlation with the 183 GHz pure water vapor line opacity, which is also covered in the measured spectra, but the liquid water opacity component shows no correlation. Since the submillimeter-wave opacity is merely affected by the liquid water component, it may be better to use the submillimeter-wave opacity for the phase correction.

  11. Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales

    CERN Document Server

    Makarieva, Anastassia M

    2010-01-01

    Basic physical principles are considered that are responsible for the origin of dynamic air flow upon condensation of water vapor, the partial pressure of which represents a store of potential energy in the atmosphere of Earth. Quantitative characteristics of such flow are presented for several spatial scales. It is shown that maximum condensation-induced velocities reach 160 m/s and are realized in compact circulation patterns like tornadoes.

  12. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  13. Water vapor diffusion into a nanostructured iron oxyhydroxide.

    Science.gov (United States)

    Song, Xiaowei; Boily, Jean-François

    2013-06-17

    Water diffusion through 0.4 nm × 0.4 nm wide tunnels of synthesized akaganéite (β-FeOOH) nanoparticles was studied by a coupled experimental-molecular modeling approach. A sorption isotherm model obtained from quartz crystal microbalance measurements suggests that the akaganéite bulk can accommodate a maximum of 22.4 mg of water/g (44% bulk site occupancy) when exposed to atmospheres of up to 16 Torr water vapor. Fourier transform infrared spectroscopy also showed that water molecules interact with (hydr)oxo groups on both the akaganéite bulk and surface. Diffusion reactions through the akaganéite bulk were confirmed through important changes in the hydrogen-bonding environment of bulk hydroxyl groups. Molecular dynamics simulations showed that water molecules are localized in cavities that are bound by eight hydroxyl groups, forming short-lived (water are three orders of magnitude lower than they are in liquid water (D = 0.0-11.1 × 10(-12) m(2)·s(-1)), whereas large integral rotational correlation times are 4 to 15 times higher (τr = 8.4-31.8 ps). Moreover, both of these properties are strongly loading-dependent. The simulations of the interface between the water vapor phase and the (010) surface plane of the akaganéite, where tunnel openings are exposed, revealed sluggish rates of incorporation between interfacial water species and their tunnel counterparts. The presence of defects in the synthesized particles are suspected to contribute to different diffusion rates in the laboratory when compared to those observed in pristine crystalline materials, as studied by molecular modeling.

  14. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    Science.gov (United States)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  15. Short-term, seasonal and interannual variability of the vertical distribution of water vapor observed by AIRS

    Science.gov (United States)

    Olsen, E. T.; Granger, S. L.; Fetzer, E. J.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) consists of a suite of instruments on board the Aqua spacecraft which retrieve atmospheric parameters over the globe at radiosonde quality on a daily basis in non-precipitating fields of view with less than 80% cloud cover. Although quantitative global measurements of water vapor have been available since the 1980's, the vertical resolution of these measurements was very coarse. AIRS provides global coverage amounting to 324,000 precipitable water vapor profiles with spatial resolution at nadir of 45 km and a vertical resolution in the troposphere of 2 km.

  16. Projections of Horizontal Water Vapor Transport across Europe

    Science.gov (United States)

    Lavers, D. A.

    2015-12-01

    With a warming Earth's atmosphere, the global water cycle is expected to intensify, a process that is likely to yield changes in the frequency and intensity of hydrological extremes. To quantify such changes over Europe, most previous research has been based upon precipitation scenarios. However, seldom has the horizontal water vapor transport (integrated vapor transport IVT) been investigated, a key variable responsible for heavy precipitation events and one that links water source and sink regions. It is hence the aim of this study to assess the projections of IVT across Europe. The Climate Model Intercomparison Project Phase 5 (CMIP5) is the source of the climate model projections. The historical simulations (1979-2005) and two emissions scenarios (2073-2099), or representative concentration pathways (RCP4.5 and RCP8.5) from 22 global circulation models were retrieved and evaluated. In particular, at model grid points across Europe the mean, standard deviation, and the 95th percentile of IVT were calculated for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean closely resembles the ECMWF ERA-Interim reanalysis. In the future under the two emissions scenarios, the IVT increases in magnitude, with the highest percentage changes occurring in the extreme emissions (RCP8.5) scenario; for example, multi-model mean IVT increases of 30% are found in the domain. An evaluation of the low-altitude moisture and winds indicates that higher atmospheric water vapor content is the primary cause of these projected changes.

  17. Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system

    Science.gov (United States)

    Ehret, G.; Kiemle, C.; Renger, W.; Simmet, G.

    1992-01-01

    Summarized here are the results of airborne water vapor measurements in the lower middle and upper troposphere using the Differential Absorption Lidar (DIAL) technique in the near infrared. The measurements were performed in July 1990 in Southern Bavaria between Allersberg and Straubing from 20 to 23 UTC taking advantage of night time conditions. The tropospheric H2O profiles were range investigated both horizontally and vertically. With the DIAL system that was used, water vapor measurements in the upper troposphere have been carried out for the first time. To calibrate the H2O-retrievals, effective absorption cross sections of selected H2O lines in terms of altitude around 724 nm were calculated using line parameter data from the literature (B. E. Grossmann et al). The frequency of the on-line measurements was adjusted by the spectra of a Polyacenic Semiconductor (PAS) cell filled with H2O. We found that the calibration error ranged between 0.005 and 0.015 cm(exp -1). The systematic errors of the H2O as a function of altitude were estimated below 7 km and 12 percent accuracy in the upper troposphere. The vertical H2O profile agrees well with in situ measurements in the investigated range between the top of the planetary boundary layer (PBL) up to near the tropopause. Horizontal and vertical H2O profiles are calculated by means of averaging single lidar returns. Typical horizontal resolutions range from 4 km in the lower to 11 km in the upper troposphere with vertical resolutions varying from 0.3 km up to 1 km, respectively, in order to satisfy a 5 - 10 percent accuracy in the statistical error. The measurement sensibility of the water vapor mixing ration in the upper troposphere is 0.01 g/kg.

  18. An optical water vapor sensor for unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  19. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies the mass transport properties for water vapor and nitrogen for a series of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) multi-block copolymers via: (a) the permeation of a water vapor/N2 mixture (b) the sorption of water vapor, (c) the diffusion of water vapor, (d

  20. FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola: III. Water Vapor, Liquid Water, and 183GHz Water Vapor Line Opacities

    Science.gov (United States)

    Matsushita, Satoki; Matsuo, Hiroshi

    2003-02-01

    Further analysis has been made on the millimeter- and submillimeter-wave (100-1600GHz or 3mm-188 μm) atmospheric opacity data taken with the Fourier Transform Spectrometer (FTS) at Pampa la Bola, 4800 m above the sea level in northern Chile, which is the site of the Atacama Large Millimeter/submillimeter Array (ALMA). Time-sequence plots of millimeter- and submillimeter-wave opacities show similar variations to each other, except for during the periods with liquid water (fog or clouds) in the atmosphere. Using millimeter- and submillimeter-wave opacity correlations under two conditions, which are affected and not affected by liquid water, we succeeded to separate the measured opacity into water vapor and liquid water opacity components. The water vapor opacity shows a good correlation with the 183GHz water vapor line opacity, which is also covered in the measured spectra. On the other hand, the liquid water opacity and the 183GHz line opacity show no correlation. S ince only the water vapor component is expected to affect the phase of interferometers significantly, and the submillimeter-wave opacity is less affected by the liquid water component, it may be possible to use the submillimeter-wave opacity for a phase correction of submillimeter interferometers.

  1. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    Energy Technology Data Exchange (ETDEWEB)

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  2. Oxidation of Carbon Fibers in Water Vapor Studied

    Science.gov (United States)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  3. Atmospheric Water Vapor: A Nemesis for Millimeter Wave Propagation

    Science.gov (United States)

    1980-01-01

    Sulphur dioxide, for example, nucleates with water vapor to form sulfuric acid primary particles in large numbers (as high as 1015 m- 3 ), which are...electro- polished stainless steel (SS 304) cavity (3440 cm3 and 1265 cm2 , S/V = 0.37 cm-1 ) evacuated for > 24 hours to 10-4 torr and subjected to... electropolished -1.50 30 150 400 HMDSa silanizing -1.35 27 190 750 Parylene C (Union Carbine) -1.60 32 140 580 Silicone SR240 (GE) -2.10 42 200 550 Teflon REPI20

  4. Observations of atmospheric water vapor with the SAGE 2 instrument

    Science.gov (United States)

    Larsen, Jack C.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.

    1988-01-01

    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition.

  5. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  6. Diurnal variations in water vapor over Central and South America

    Science.gov (United States)

    Meza, Amalia; Mendoza, Luciano; Clara, Bianchi

    2017-04-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 70 GNSS tracking sites (GPS + GLONASS) belonging to Central and South America, which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, and diverse relieves, therefore the patterns of IWV diurnal variations are very different for each station. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). Firstly, our work study the main characteristics of the IWV diurnal cycle (and for surface temperature, T) obtained for all stations together, using Principal Component Analysis (PCA). First and second PCA modes highlight the global main behaviors of IWV variability for all stations. The first mode on IWV represent the 70% of the variability and could be related to the surface evapotranspiration, while the second mode (27 % of the variability) is practically in counter phase to T variability (its first mode represent the 97% of the variability), therefore this mode could be related to breeze regime. Then, every station is separately analyzed and seasonal and local variations (relative to the relives) are detected, these results spotlight, among other characteristics, the sea and mountain breeze regime. This presentation shows the first analysis of IWV diurnal cycle performed over Central and South America and another original characteristic is PCA technique employed to infer the results. Reference: Dai, A., K. E. Trenberth, and T. R. Karl

  7. Titanium Dioxide Volatility in High Temperature Water Vapor

    Science.gov (United States)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  8. Molecular dynamics of phenol at the liquid-vapor interface of water

    Science.gov (United States)

    Pohorille, Andrew; Benjamin, Ilan

    1991-01-01

    Results of molecular dynamics calculations on phenol at the water liquid-vapor interface are presented. The density profile of the center of mass of phenol exhibits a maximum 1 A from the Gibbs surface toward the vapor phase, indicating that the molecule is surface-active. Changes in the profile caused by the interface extend 6 A from the Gibbs surface into the liquid, significantly more than change in the density profile of water. The most probable orientation of the solute at the surface is such that its symmetry axis is perpendicular to the interface with the OH substituent pointing toward the liquid. An additional simulation with benzene shows that this molecule at the surface most often adopts orientations parallel to the interface. Deeper in the liquid all the solutes are preferentially ordered perpendicular to the surface. In the interfacial region the orientational preferences of the solute are primarily determined by cavity formation needed to accommodate the hydrophobic portion of the dissolved molecule.

  9. Molecular dynamics of phenol at the liquid-vapor interface of water

    Science.gov (United States)

    Pohorille, Andrew; Benjamin, Ilan

    1991-01-01

    Results of molecular dynamics calculations on phenol at the water liquid-vapor interface are presented. The density profile of the center of mass of phenol exhibits a maximum 1 A from the Gibbs surface toward the vapor phase, indicating that the molecule is surface-active. Changes in the profile caused by the interface extend 6 A from the Gibbs surface into the liquid, significantly more than change in the density profile of water. The most probable orientation of the solute at the surface is such that its symmetry axis is perpendicular to the interface with the OH substituent pointing toward the liquid. An additional simulation with benzene shows that this molecule at the surface most often adopts orientations parallel to the interface. Deeper in the liquid all the solutes are preferentially ordered perpendicular to the surface. In the interfacial region the orientational preferences of the solute are primarily determined by cavity formation needed to accommodate the hydrophobic portion of the dissolved molecule.

  10. Water Vapor Variability in the Tropical Western Pacific from 20-year Radiosonde Data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The 20-year (1976-1995) daily radiosonde data at 17 stations in the tropical western Pacific was ana lyzed. The analysis shows that the atmosphere is more humid in a warmer climate on seasonal, inter-annual and long-term (20-year) time scales, implying a positive water vapor feedback. The vertical structure of the long-term trends in relative humidity (RH) is distinct from that on short-term (seasonal and inter-annual) time scales, suggesting that observed water vapor changes on short time scales could not be considered as a surrogate of long-term climate change. The increasing trend of RH (3%-5%/decade) in the upper troposphere is stronger than that in the lower troposphere (1%-2% / decade). Such vertical structure would amplify positive water vapor feedback in comparison to the common assumption of constant RH changes vertically. The empirical orthogonal function (EOF) analysis of vertical structure of RH variations shows distinct features of the vertical structure of the first three EOFs. The first three EOFs are optimal for repre sentation of water vapor profiles and provide some hints on physical mechanisms responsible for observed humidity variability. Vaisala radiosondes were used at nine stations, and VIZ radiosondes used at other eight stations. The Vaisala data are corrected for temperature-dependence error using the correction scheme developed by NCAR / ATD and Vaisala. The comparison of Vaisala and VIZ data shows that the VIZ-measured RHs after October 1993 have a moist bias of ~ 10% at RHs < 20%. During 1976-1995, several changes in cluding both instruments and reporting practice have been made at Vaisala stations and introduce errors to long-term RH variations.

  11. Mesospheric water vapor sounding using earth-limb pure-rotational emission in the LWIR

    Science.gov (United States)

    Adler-Golden, Steven; de, Piali; Smith, Donald; D'Agati, Anthony

    1993-08-01

    Limb sounding of mesospheric water vapor using pure rotational emission in the long-wavelength IR region has been demonstrated using data from the ELC-1 rocket experiment, launched in October, 1983. By simultaneously analyzing H2O emission at 23-29 microns and CO2 emission in the nu2 band region, effects due to uncertainties in the atmospheric temperature and instrument calibration are minimized. The H2O profile obtained from ELC-1 is consistent with other fall to early-winter measurements. Given accurate line-of-sight pointing information, this approach will be feasible for global mesospheric H2O sounding from limb-viewing satellites.

  12. IASI temperature and water vapor retrievals – error assessment and validation

    Directory of Open Access Journals (Sweden)

    N. Pougatchev

    2009-03-01

    Full Text Available The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The error covariance matrices and biases of the most recent version (4.3.1 of the L2 data were assessed, and the assessment was validated using radiosonde data for reference. The radiosonde data set includes dedicated and synoptic time launches at the Lindenberg station in Germany. For optimal validation, the linear statistical Validation Assessment Model (VAM was used. The VAM uses radiosonde profiles as input and provides optimal estimate of the nominal IASI retrieval by utilizing IASI averaging kernels and statistical characteristics of the ensembles of the reference radiosondes. For temperature temperatures above 900 mb and water retrievals above 700 mb, level expected and assessed errors are in good agreement. Below those levels, noticeable excess in assessed error is observed, possibly due to inaccurate surface parameters and undetected clouds/haze.

  13. Water-vapor source shift of Xinjiang region during the recent twenty years

    Institute of Scientific and Technical Information of China (English)

    Dai Xingang; Li Weijing; Ma Zhuguo; Wang Ping

    2007-01-01

    The aim of this paper is to investigate the climate water-vapor sources of Xinjiang region and their shifts during the past 20 years. First, the principle and steps are roughly regulated to seek the water-vapor sources. Second, the climate stationary water-vapor transport in troposphere is calculated to distinguish where the water vapor comes from by ERA-40 reanalysis. In addition, the collocation between the transport and the atmospheric column water vapor content is analyzed. The results show that the major vapor comes from the west side of Xinjiang for mid-month of seasons, apart from July while the water vapor comes from the north or northwest direction. The water vapor sources are different for different seasons, for example, the Caspian Sea and Mediterranean are the sources in January and April, the North Atlantic and the Arctic sea in July, and the Black Sea and Caspian Sea in October, respectively. In recent ten years more water vapor above Xinjiang comes from the high latitudes and the Arctic sea with global warming, and less from Mediterranean in comparison with the case of 1973-1986. In fact, the air over subtropics becomes dry and the anomalous water vapor transport direction turns to west or southwest during 1987-2000. By contrast, the air over middle and high latitudes is warmer and wetter than 14 years ago.

  14. Water Vapor Products from Differential-InSAR with Auxiliary Calibration Data: Accuracy and Statistics

    Science.gov (United States)

    Gong, W.; Meyer, F. J.; Webley, P.

    2014-12-01

    Although water vapor disturbance has been long term recognized as the major error source in differential Interferometric Synthetic Aperture Radar (d-InSAR) techniques for the ground deformation monitoring and topography reconstruction, it provides opportunities to extract the atmospheric water-vapor information from satellite SAR imageries that can be further used to support studies on earth energy budget, climate, the hydrological cycle, and meteorological forecasting, etc. The water vapor contribution in interferometric phases is normally referred as the atmospheric delay dominated by water vapor rather than condensed water (e.g. cloud). D-InSAR can produce maps of the column water vapor amounts (equivalent to integrated water vapor (IWV) or Precipitable Water Vapor (PWV) in other literatures) that are important parameters quantitatively describe the total amount of water vapor overlying a point on the earth surface. Similar products have been operationally produced in multi-spectrum remote sensing, e.g. Moderate-resolution Imaging Spectroradiometer (MODIS) with a spatial resolution in 500 m to 1km; Whereas, the PWV products derived by d-InSAR have remarkably high spatial resolution that can capture fine scale of water vapor variations in space as small as tens of meters or even less. In recent years, some efforts have been made to derive the water vapor products from interferogram and analyze the corresponding products quality, such as studies comparing integrated water vapor derived from interferometric phases to other measurements (e.g. MERIS, MODIS, GNSS), studies on deriving absolute water vapor products from d-InSAR, and studies on integrating d-InSAR water vapor products in meteorological numerical forecast. In this study, considering these limitation factors and based on previous studies, we discuss the accuracy and statistics of the water vapor products from satellite SAR, including (1) Accuracy of the differential water vapor products; (2) Sources of

  15. Ricor's Nanostar water vapor compact cryopump: applications and model overview

    Science.gov (United States)

    Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan

    2017-05-01

    Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.

  16. Water Vapor and the Dynamics of Climate Changes

    Science.gov (United States)

    Schneider, Tapio; O'Gorman, Paul A.; Levine, Xavier J.

    2010-07-01

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change nonmonotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circulation changes through simulations with an idealized general circulation model. This allows us to explore a continuum of climates, to constrain macroscopic laws governing this climatic continuum, and to place past and possible future climate changes in a broader context.

  17. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  18. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content......, cation exchange capacity) and engineering properties (e.g., swelling potential). Our objectives for this work were to: (i) evaluate the potential of several theoretical and empirical isotherm models to accurately describe measured moisture adsorption/desorption isotherms (aw range of 0.03 to 0.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...

  19. Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WEI Jie; LIN Zhao-Hui; XIA Jun; TAO Shi-Yan

    2005-01-01

    The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.

  20. Water Vapor Interference Correction in a Non Dispersive Infrared Multi-Gas Analyzer

    Institute of Scientific and Technical Information of China (English)

    SUN You-Wen; LIU Wen-Qing; ZENG Yi; WANG Shi-Mei; HUANG Shu-Hua; XIE Pin-Hua; YU Xiao-Man

    2011-01-01

    We demonstrate an effective method to eliminate the interfering effect of water vapor in a non-dispersive infrared multi-gas analyzer.The response coefficients of water vapor at each filter channel are measured from the humidity of the ambient air.Based on the proposed method,the water vapor interference is corrected with the measured response coefficients.By deducting the absorbance of each filter channel related to water vapor,the measuring precision of the analyzer is improved significantly and the concentration retrieval correlation accuracy of each target gas is more than 99%.

  1. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. (Baxter Healthcare Corporation, Round Lake, IL (USA))

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  2. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  3. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    Science.gov (United States)

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling.

  4. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  5. Mean-Field Approximation to the Hydrophobic Hydration in the Liquid-Vapor Interface of Water.

    Science.gov (United States)

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2016-03-03

    A mean-field approximation to the solvation of nonpolar solutes in the liquid-vapor interface of aqueous solutions is proposed. It is first remarked with a numerical illustration that the solvation of a methane-like solute in bulk liquid water is accurately described by the mean-field theory of liquids, the main idea of which is that the probability (Pcav) of finding a cavity in the solvent that can accommodate the solute molecule and the attractive interaction energy (uatt) that the solute would feel if it is inserted in such a cavity are both functions of the solvent density alone. It is then assumed that the basic idea is still valid in the liquid-vapor interface, but Pcav and uatt are separately functions of different coarse-grained local densities, not functions of a common local density. Validity of the assumptions is confirmed for the solvation of the methane-like particle in the interface of model water at temperatures between 253 and 613 K. With the mean-field approximation extended to the inhomogeneous system the local solubility profiles across the interface at various temperatures are calculated from Pcav and uatt obtained at a single temperature. The predicted profiles are in excellent agreement with those obtained by the direct calculation of the excess chemical potential over an interfacial region where the solvent local density varies most rapidly.

  6. Trends and variability in column-integrated atmospheric water vapor

    Science.gov (United States)

    Trenberth, Kevin E.; Fasullo, John; Smith, Lesley

    2005-06-01

    An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988 2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997 98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N 30°S of 7.8% K-1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture

  7. Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentrations

    NARCIS (Netherlands)

    Landsberg, Janek

    2014-01-01

    The determination of the isotopic composition of water vapor is an important tool in atmospheric research. The isotopic composition of water in Antarctic or Arctic glacial ice can be used as a paleo-thermometer in the reconstruction of climate changes in the past. The isotope ratios of water vapor i

  8. Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentrations

    NARCIS (Netherlands)

    Landsberg, Janek

    2014-01-01

    The determination of the isotopic composition of water vapor is an important tool in atmospheric research. The isotopic composition of water in Antarctic or Arctic glacial ice can be used as a paleo-thermometer in the reconstruction of climate changes in the past. The isotope ratios of water vapor i

  9. Temporal variations of δ18O of atmospheric water vapor at Delingha

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Oxygen stable isotope of atmospheric water vapor is widely used to study the modern process of cli- mate. Atmospheric water vapor samples were collected at Dlingha, northeast of Tibetan Plateau during the period from July 2005 to February 2006. The variation of δ18O and the relationships between δ18O and both the temperature and specific humidity are analyzed in this paper. Results show that the sea- sonal variation of δ18O of atmospheric water vapor at Delingha is remarkable with higher δ18O in summer and lower δ18O in winter. The temporal variation of vapor δ18O shows obvious fluctuations, with magnitude of over 37‰. The daily variation of the δ18O is highly correlated with air temperature. The relationship between δ18O and atmospheric water vapor content is complex. Study shows that δ18O of atmospheric water vapor is positively correlated with specific humidity in winter in seasonal scale and inversely correlated with specific humidity in summer rainy period. The δ18O values of at- mospheric water vapor are lower than those of precipitation at Delingha, and the average difference is 10.7‰. Variations of δ18O of atmospheric water vapor is also found to be affected by precipitation events, The model results show that the precipitation effect could have caused the vapor δ18O in the raining season to lower by 7% in average in July and August.

  10. MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns

    Directory of Open Access Journals (Sweden)

    C. Straub

    2010-09-01

    Full Text Available In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.

  11. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    Science.gov (United States)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  12. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  13. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  14. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  15. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Science.gov (United States)

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  16. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  17. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074

    NARCIS (Netherlands)

    Potreck, Jens; Nijmeijer, Dorothea C.; Kosinski, Thomas; Wessling, Matthias

    2009-01-01

    This work investigates the transport behavior of a hydrophilic, highly permeable type of poly ethylene oxide (PEO)-based block copolymer (PEBAX® 1074) as membrane material for the removal of water vapor from light gases. Water vapor sorption isotherms in PEBAX® 1074 represent Flory–Huggins type of s

  18. Availability of MCNP & MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    Institute of Scientific and Technical Information of China (English)

    FENG Qixi; FENG Quanke; TAKESHI Kawai

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI.

  19. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor.

    Science.gov (United States)

    Soden, Brian J; Wetherald, Richard T; Stenchikov, Georgiy L; Robock, Alan

    2002-04-26

    The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in reproducing the observed drying after the volcanic eruption. Then, by comparing model simulations with and without water vapor feedback, we demonstrate the importance of the atmospheric drying in amplifying the temperature change and show that, without the strong positive feedback from water vapor, the model is unable to reproduce the observed cooling. These results provide quantitative evidence of the reliability of water vapor feedback in current climate models, which is crucial to their use for global warming projections.

  20. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  1. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    Science.gov (United States)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  2. Identification of a wagging vibrational mode of water molecules at the water/vapor interface.

    Science.gov (United States)

    Perry, Angela; Neipert, Christine; Ridley, Christina; Space, Brian; Moore, Preston B

    2005-05-01

    An improved time correlation function description of sum frequency generation (SFG) spectroscopy was applied to theoretically describe the water/vapor interface. The resulting spectra compare favorably in shape and relative magnitude to extant experimental results in the O-H stretching region of water. Further, the SFG spectra show a well-defined intermolecular mode at 875 cm(-1) that has significant intensity. The resonance is due to a wagging mode localized on a single water molecule. It represents a well-defined population of water molecules at the interface that, along with the free O-H modes, represent the dominant interfacial species.

  3. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  4. Long-Term Measurement for Low-Tropospheric Water Vapor and Aerosol by Raman Lidar in Wuhan

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-04-01

    Full Text Available A Raman Lidar (RL system is developed to measure the water vapor mixing ratio (WVMR and aerosol optical property in Wuhan with high temporal-spatial resolution during rainless nights. The principle of the self-developed lidar system and data processing method are discussed. WVMR profiles of a representative case retrieved by RL, Radiosonde (RS, and microwave radiometer (MR are in good agreement. The relationship of WVMR and aerosol optical depth (AOD indicates that water vapor dramatically reduces with the decline of the AOD. Moreover, the mean relative difference of mean WVMRs at low-troposphere obtained by RL and RS (MR is about 5.17% (9.47% during the analyzed year. The agreement certifies that the self-developed RL system can stably provide accurate and high temporal-spatial resolution data for the fundamental physical studies on water vapor. Furthermore, the maximum AOD from 0.5 km to 3 km is 0.41 at night in spring, which indicates that the air quality in Wuhan is heavily influenced by aerosols that are transported by air mass from the north during this time. Moreover, abundant rainfall led to relatively low AOD in summer (0.22, which demonstrates that water vapor is crucial for air purification.

  5. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    Science.gov (United States)

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings.

  6. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  7. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  8. Some results of water vapor, ozone and aerosol balloon borne measurements during EASOE

    Science.gov (United States)

    Khattatov, V.; Yushkov, V.; Khaplanov, M.; Zaitzev, I.; Rosen, J.; Kjome, N.

    As part of the European Arctic Stratospheric Ozone Experiment (EASOE) in the northern winter of 1991/92, regular measurements of the vertical distribution of ozone and aerosols were carried out from two Russian polar stations, Heiss Island (81N, 58E) and Dikson Island (73N, 81E). In addition measurements of the vertical distribution of water vapor and aerosols were made from Esrange (68N, 21E), near Kiruna in Sweden. The instruments used were electrochemical ozone sondes (ECC-4A), a fluorescence hygrometer, and the University of Wyoming backscattersonde. Following the eruption of Mt.Pinatubo, in the Philippines, in June 1991, volcanic aerosol had reached Arctic latitudes at altitudes below 19 km by September. At all three sites it was observed on every flight. Polar stratospheric clouds were encountered above the volcanic aerosol on two flights from Esrange. There were no indications of dehydration in the Arctic stratosphere. On all flights the minimum mixing ratio of water vapor was observed 2 to 3 km above the tropopause. Total ozone was much lower than the climatological mean, over Dikson Island from the January 27, and over Heiss Island from mid-February, until the end of EASOE. Ozone profiles over these stations showed rapid increases in partial pressure immediately above the peak values of backscatter ratio when the volcanic aerosol was especially dense.

  9. Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil

    Institute of Scientific and Technical Information of China (English)

    李向宾; 李楠; 王国玉; 张敏弟

    2016-01-01

    The supercavitation has attracted a growing interest because of its potential for high-speed vehicle maneuvering and drag reduction. To better understand the reverse flow characteristics of a water-vapor mixture in supercavitating flows around a hydrofoil, a numerical simulation is conducted using a unified supercavitation model, which combines a modified RNGk-e turbulence model and a cavitation one. By comparing the related experimental results, the reverse motion of the water-vapor mixture is found in the cavitation area in all supercavitation stages. The inverse pressure gradient leads to reverse pressure fluctuations in the cavity, followed by the reverse motion of the water-vapor two-phase interface. Compared with the water-vapor mixture area at the back of the cavity, the pressure in the vapor area is inversely and slowly reduced,a higher-pressure gradient occurs near the cavity boundary.

  10. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  11. Validation and update of OMI Total Column Water Vapor product

    Science.gov (United States)

    Wang, Huiqun; Gonzalez Abad, Gonzalo; Liu, Xiong; Chance, Kelly

    2016-09-01

    The collection 3 Ozone Monitoring Instrument (OMI) Total Column Water Vapor (TCWV) data generated by the Smithsonian Astrophysical Observatory's (SAO) algorithm version 1.0 and archived at the Aura Validation Data Center (AVDC) are compared with NCAR's ground-based GPS data, AERONET's sun-photometer data, and Remote Sensing System's (RSS) SSMIS data. Results show that the OMI data track the seasonal and interannual variability of TCWV for a wide range of climate regimes. During the period from 2005 to 2009, the mean OMI-GPS over land is -0.3 mm and the mean OMI-AERONET over land is 0 mm. For July 2005, the mean OMI-SSMIS over the ocean is -4.3 mm. The better agreement over land than over the ocean is corroborated by the smaller fitting residuals over land and suggests that liquid water is a key factor for the fitting quality over the ocean in the version 1.0 retrieval algorithm. We find that the influence of liquid water is reduced using a shorter optimized retrieval window of 427.7-465 nm. As a result, the TCWV retrieved with the new algorithm increases significantly over the ocean and only slightly over land. We have also made several updates to the air mass factor (AMF) calculation. The updated version 2.1 retrieval algorithm improves the land/ocean consistency and the overall quality of the OMI TCWV data set. The version 2.1 OMI data largely eliminate the low bias of the version 1.0 OMI data over the ocean and are 1.5 mm higher than RSS's "clear" sky SSMIS data in July 2005. Over the ocean, the mean of version 2.1 OMI-GlobVapour is 1 mm for July 2005 and 0 mm for January 2005. Over land, the version 2.1 OMI data are about 1 mm higher than GlobVapour when TCWV 15 mm.

  12. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    Science.gov (United States)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal

  13. Water Vapor in Titan’s Stratosphere from Cassini CIRS Far-infrared Spectra

    Science.gov (United States)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Bézard, B.; de Kok, R.; Lellouch, E.; Irwin, P. G. J.; Flasar, F. M.; Bampasidis, G.

    2012-10-01

    We will report the measurement of water vapor in Titan’s stratosphere (Cottini et al. 2012), using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al. 2004). CIRS senses water emissions in the far infrared spectral region near 50 microns, which we have modeled using a radiative transfer code (NEMESIS, Irwin et al. 2008). From the analysis of nadir spectra we have derived a mixing ratio of 0.14 ± 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7±1.3 × 1014 molecules/cm2. In the latitude range 80°S to 30°N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13 ± 0.04 ppb at an altitude of 115 km and 0.45 ± 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by previous photochemical models. We have also fitted our data using scaling factors of 0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan’s lower stratosphere. Valeria Cottini is supported by the NASA Postdoctoral Program. References Cottini V. et al., 2012. Detection of water vapor in Titan’s atmosphere from Cassini/CIRS infrared spectra. Icarus, 220, 2, 855-862 Flasar, F.M., and 44 colleagues, 2004. Exploring the Saturn system in the thermal infrared: The Composite Infrared Spectrometer. Space Sci. Rev., 115, 169-297 Irwin, P.G.J., et al., 2008. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Trans., 109, 1136-1150.

  14. Carbon and water vapor balance in a subtropical pine plantation

    Directory of Open Access Journals (Sweden)

    Posse G

    2016-10-01

    Full Text Available Afforestation has been proposed as an effective tool for protecting primary and/or secondary forests and for mitigating atmospheric CO2. However, the dynamics of primary productivity differs between plantations and natural forests. The objective of this work was to evaluate the potential for carbon storage of a commercial pine plantation by determining its carbon balance. Measurements started when trees were aged 6 and ended when they were older than 8 years. We measured CO2 and water vapor concentrations using the Eddy covariance method. Gross primary productivity in 2010 and 2011 was 4290 ± 473 g C m-2 and 4015 ± 485 g C m-2, respectively. Ecosystem respiration ranged between 7 and 20 g C m-2 d-1, reaching peaks in all Februaries. Of the 30 months monitored, the plantation acted as carbon source for 21 months and as carbon sink for 6 months, while values close to neutrality were obtained during 3 months. The positive balance representing CO2 loss by the system was most likely due to the cut branches left on the ground following pruning activities. The plantation was subjected to pruning in January and September 2008 and to sanitary pruning in October 2010. In all cases, cut branches were not removed but remained on the ground. Residue management seems to have a very important impact on carbon balance.

  15. Water vapor variation and the effect of aerosols in China

    Science.gov (United States)

    Gui, Ke; Che, Huizheng; Chen, Quanliang; Zeng, Zhaoliang; Zheng, Yu; Long, Qichao; Sun, Tianze; Liu, Xinyu; Wang, Yaqiang; Liao, Tingting; Yu, Jie; Wang, Hong; Zhang, Xiaoye

    2017-09-01

    This study analyzes the annual and seasonal trends in precipitable water vapor (PWV) and surface temperature (Ts) over China from 1979 to 2015, and the relationships between PWV and Ts and between PWV and aerosol absorption optical depth (AAOD), using data from radiosonde stations, weather stations and multiple satellite observations. The results revealed a positive PWV trend between 1979 and 1999, and a negative PWV trend between 2000 and 2015. Analysis of the differences in the PWV trend among different stations types showed that the magnitude of the trends were in the order main urban stations > provincial capital stations > suburb stations, suggesting that anthropogenic activities have a strong influence on the PWV trend. The AAOD exhibited a significant positive trend in most regions of China from 2005 to 2015 (confidence level 95%). Using spatial correlation analysis, we showed that PWV trend derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations is correlated with Ts, with an annual correlation coefficient of 0.596. In addition, the spatial correlation between PWV and AAOD showed a negative relationship, with the highest correlation coefficients of -0.76 and -0.71 observed in mid-eastern China and central northwest China, respectively, suggesting that the increase in AAOD in recent years may be one of the reasons for the decrease in PWV since the 2000s in China.

  16. Water vapor in nearby infrared galaxies as probed by Herschel

    CERN Document Server

    Yang, Chentao; Omont, A; Liu, Daizhong; Isaak, K G; Downes, D; van der Werf, P P; Lu, Nanyao

    2013-01-01

    We report the first systematic study of the submillimeter water vapor rotational emission lines in infrared (IR) galaxies based on the Fourier Transform Spectrometer (FTS) data of {\\it Herschel} SPIRE. Among the 176 galaxies with publicly available FTS data, 45 have at least one H$_2$O emission line detected. The H$_2$O line luminosities range from $\\sim 1 \\times 10^5$ L$_{\\odot}$ to $\\sim 5 \\times 10^7$ L$_{\\odot}$ while the total IR luminosities (L$_\\mathrm{IR}$) have a similar spread ($\\sim$1-300 $\\times 10^{10}$ L$_{\\odot}$). In addition, emission lines of H$_2$O$^+$ and H$_2^{18}$O are also detected. H$_2$O is found, for most galaxies, to be the strongest molecular emitter after CO in FTS spectra. The luminosity of the five most important H$_2$O lines is near-linearly correlated with L$_\\mathrm{IR}$ no matter strong AGN signature is present or not. However, the luminosity of H$_2$O(2$_{11}-2_{02}$) and H$_2$O(2$_{20}-2_{11}$) appears to increase slightly faster than linear with L$_\\mathrm{IR}$. Although ...

  17. Remotely sensed water vapor variations during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Meischner, P.F. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kiemle, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Ehret, G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kaestner, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Schreiber, H.G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Evtushenko, A.V. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Kutuza, B.G. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Petrenko, B.Z. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Smirnov, M.T. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki

    1994-11-01

    Total atmospheric water vapor contents have been measured during CLEOPATRA `92 using different methods. A multifrequency microwave radiometer system from IRE, Moskow operated from ground and an airborne DIAL system, DLR, performed measurements above the radiometer site. The results compare well if the atmosphric conditions are sufficiently homogeneous in the mesoscale and complement in a high space resolution for the DIAL measurements and a high time resolution of the microwave system. Under these conditions both measurement results further agree with radiosoundings and aircraft in situ measurements within the estimated measurement errors. Coordinated observations by the different systems with high time and high space resolution open a good change to separate between transports caused by advection or convection. Microwave radiometer measurements from ground are best suited for monitoring long term trends as well as fast fluctuations, whereas the DIAL measurements give more detailed insight in the diffusion processes within the atmospheric boundary layer ABL. The measurements on May 29 very impressively show the moisture fluxes from local lakes into the ABL. The observations support the ABL to act as a flux-averaging medium, thus contributing naturally to an upscaling which improves the use of remote measurements from space for the estimation of area averaged moisture fluxes. (orig.)

  18. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Science.gov (United States)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Voemel, H.

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  19. Seasonal Trends in Stratospheric Water Vapor as Derived from SAGE II Data

    Science.gov (United States)

    Roell, Marilee M.; Fu, Rong

    2008-01-01

    Published analysis of HALOE and Boulder balloon measurements of water vapor have shown conflicting trends in stratospheric water vapor for the periods of 1981 through 2005. Analysis of the SAGE II monthly mean water vapor data filtered for large aerosol events for time periods from 1985-1991, 1995-1999, and 2000-2005 have shown a globally decreasing water vapor trend at 17.5km. Seasonal analysis for these three time periods show a decreasing trend in water vapor at 17.5km for the winter and spring seasons. The summer and autumn seasonal analysis show a decreasing trend from 1985-2005, however, there is a increasing trend in water vapor at 17.5km for these seasons during 1995-2005. Latitude vs height seasonal analysis show a decreasing trend in the lower stratosphere between 20S - 20N for the autumn season, while at the latitudes of 30-50S and 30-50N there is an increasing trend in water vapor at heights up to 15km for that season. Comparison with regions of monsoon activity (Asian and North American) show that the Asian monsoon region had some effect on the lower stratospheric moistening in 1995-1999, however, for the time period of 2000-2005, there was no change in the global trend analysis due to either monsoon region. This may be due to the limitations of the SAGE II data from 2000-2005.

  20. Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infiared radiative cooling by water vapor is a pivotal factor in niddle-lower stratospheric cooling. However. in the npper stratosphere (above 45 kn), infrared radiation is not a factor in cooling;there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However,ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric teinperature change.

  1. Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma

    Science.gov (United States)

    Wagle, P.; Gowda, P. H.; Northup, B. K.

    2016-12-01

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.

  2. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    OpenAIRE

    J. Lee; Worden, J.; D. Noone; K. Bowman; A. Eldering; A. LeGrande; Li, J.-L. F.; Schmidt, G; Sodemann, H.

    2010-01-01

    We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES) over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently...

  3. Recent lidar technology developments and their influence on measurements of tropospheric water vapor

    Science.gov (United States)

    Ismail, Syed; Browell, Edward V.

    1994-01-01

    In this paper the influences of recent technology developments in the areas of lasers, detectors, andoptical filters of a differential absorption lidar (DIAL) system on the measurenent of tropospheric water vapor (H2O) profiles are discussed. The lidar parameters selected are based upon a diode-seeded Ti:sapphire laser that is locked to an H2O line in the 820- or 930-nm band of H2O. To assess the influence of the mode of deployment on the measurement of tropospheric H2O, DIAL performance is evaluated for operation from a medium-altitude (12 km) aircraft, the ground, and space-based systems. It is found that incorporation of these developments could greatly enhance DIAL measurement capability.

  4. Geostationary satellite-based 6.7 μm band best water vapor information layer analysis over the Tibetan Plateau

    Science.gov (United States)

    Di, Di; Ai, Yufei; Li, Jun; Shi, Wenjing; Lu, Naimeng

    2016-05-01

    The best water vapor information layer (BWIL) of the 6.7 μm water vapor absorption infrared (IR) band for the FengYun-2E is investigated over the Tibetan Plateau with standard atmospheric profile and European Centre for Medium-Range Weather Forecasts (ECMWF) operational model analysis data. The sensitivity tests show that surface characteristics over the Tibetan Plateau have a significant influence on the BWIL. To be specific, topographic elevation, colder skin temperature, and lower emissivity tend to lift the altitude of the BWIL, decrease its magnitude, and narrow the half-width range. The results from statistical analysis indicate that the altitude of the BWIL reaches the highest in summer and the lowest in winter. Meanwhile, the altitude of the BWIL is highly correlated with the water vapor amount above 500 hPa over the Tibetan Plateau and above 300 hPa over the East China Plain, respectively. The diurnal variation in the BWIL is synchronous with the diurnal variation in the surface skin temperature. It can be concluded from the study that surface characteristics over high terrain in dry and cold atmospheres have more significant impacts on the BWIL. With multiple water vapor absorption IR bands, the imagers on board the new generation of geostationary satellites will provide crucial improvement in water vapor remote sensing over the current single water vapor band on board the FY-2 series according to the analysis in this study.

  5. High-resolution seismic profiling on water

    OpenAIRE

    McGee, T.M.

    2000-01-01

    Herein is presented an overview of high-resolution seismic profiling on water. Included are basic concepts and terminology as well as discussions of types of sources and receivers, field practice, data recording and data processing. Emphasis is on digital single-channel profiling for engineering and environmental purposes.

  6. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    Science.gov (United States)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    Water vapor in the atmosphere plays an important role in radiative transfer and the process of radiative balance so critical for understanding global change. It is the principal ingredient in cloud formation, one of the most difficult atmospheric processes to model, and the most variable component of the Earth-atmosphere albedo. And as a free molecule, it is the most active infrared absorber and emitter, thus, the most important greenhouse gas. The radiative impact of water vapor is important at all levels of the atmosphere. Even though moisture decreases by several orders-of-magnitude from the Earth's surface to the tropopause, recent research has shown that, from a radiative standpoint, a small percentage change in water vapor at any level is nearly equivalent. Therefore accurate and precise measurements of this important atmospheric constituent are needed at all levels to evaluate the full radiative impact. The need for improved measurements in the upper troposphere is particularly important because of the generally hostile (very dry and cold) conditions encountered. Because of the importance of water vapor to the understanding of radiative transfer, the Department of Energy's Atmospheric Radiation Measurements (ARM) program initiated a series of measurement campaigns at the Cloud And Radiation Testbed (CART) site in Oklahoma, especially focused on atmospheric water vapor. Three water vapor intensive observation period (water vapor IOP) campaigns were planned. Two of the water vapor IOP campaigns have been completed: the first IOP was held during the fall of 1996 with a focus on boundary layer water vapor measurements, and the second was conducted during the fall of 1997 with a focus on both boundary layer moisture e and moisture in the upper troposphere. This paper presents a review of the intercomparisons of water vapor measurements in the upper troposphere aquired during the second water vapor IOP. Data to be presented include water vapor measurements ements

  7. Contributions of stratospheric water vapor to decadal changes in the rate of global warming.

    Science.gov (United States)

    Solomon, Susan; Rosenlof, Karen H; Portmann, Robert W; Daniel, John S; Davis, Sean M; Sanford, Todd J; Plattner, Gian-Kasper

    2010-03-01

    Stratospheric water vapor concentrations decreased by about 10% after the year 2000. Here we show that this acted to slow the rate of increase in global surface temperature over 2000-2009 by about 25% compared to that which would have occurred due only to carbon dioxide and other greenhouse gases. More limited data suggest that stratospheric water vapor probably increased between 1980 and 2000, which would have enhanced the decadal rate of surface warming during the 1990s by about 30% as compared to estimates neglecting this change. These findings show that stratospheric water vapor is an important driver of decadal global surface climate change.

  8. A direct measurement of the stable isotopes of transpired water vapor in a northern Michigan forest

    Science.gov (United States)

    Aron, P.; Poulsen, C. J.; Fiorella, R.

    2016-12-01

    The stable isotopes of oxygen and hydrogen in water vapor track hydrologic processes as phase changes of water preferentially partition heavy isotopes (18O and 2H) into the condensate and light isotopes (16O and 1H) into the vapor phase. As a result, the isotopic composition of water vapor can be used to identify water fluxes and cycling through natural environments. Forest water vapor is comprised of terrestrial (evaporation and transpiration) and atmospheric (tropospheric mixing, precipitation, and condensation) components. Within the isotopic record of forest water vapor, stable isotopes of transpired water (δT) comprise an important component but is typically either assumed to be non-fractionating or estimated indirectly. However, on small time scales (minutes to hours), non-steady state forest systems experience isotopic enrichment during early morning and late afternoon when transpiration rates are low. We deployed two Picarro Cavity Ring-Down spectrometers (L2120-i and L2130-i, respectively) in the University of Michigan Biological Station (UMBS) forest near Pellston, MI to measure the isotopic composition of near-surface ambient water vapor and the transpired vapor component directly. Both ambient and transpired water vapor were measured at three heights above the forest floor (2, 10, and 20 m) during August 2016. To measure species-specific water use, δT was measured on red maple (Acer rubrum) and northern red oak (Quercus rubra), two of the dominant tree types in the UMBS forest. This work represents the first direct measurement of δT in the UMBS forest and will help decouple local and species-specific hydrologic cycling. Beyond UMBS, this measurement will allow for a better understanding of species-specific plant hydraulics and help identify when the steady state approximation of transpiration is valid, which can be used to study water use and forest health.

  9. On the vertical distribution of water vapor in the Martian tropics

    Science.gov (United States)

    Haberle, Robert M.

    1988-01-01

    Although measurements of the column abundance of atmospheric water vapor on Mars have been made, measurements of its vertical distribution have not. How water is distributed in the vertical is fundamental to atmosphere-surface exchange processes, and especially to transport within the atmosphere. Several lines of evidence suggest that in the lowest several scale heights of the atmosphere, water vapor is nearly uniformly distributed. However, most of these arguments are suggestive rather than conclusive since they only demonstrate that the altitude to saturation is very high if the observed amount of water vapor is distributed uniformly. A simple argument is presented, independent of the saturation constraint, which suggests that in tropical regions, water vapor on Mars should be very nearly uniformly mixed on an annual and zonally averaged basis.

  10. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    Science.gov (United States)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  11. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  12. Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

    Science.gov (United States)

    Lainer, Martin; Hocke, Klemens; Kämpfer, Niklaus

    2016-06-01

    Many studies investigated solar-terrestrial responses (thermal state, O3, OH, H2O) with emphasis on the tropical upper atmosphere. In this paper the focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88 ° N / 7.46 ° E) are investigated to study oscillations with the focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼ 64 km) during the rising sunspot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing the similarity of their temporal oscillations. The H2O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to - 0.3 to - 0.4, and the phase lag is 6-10 days at 0.04 hPa. The confidence level of the correlation is ≥ 99 %. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photodissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC) complete our study. More periods of high common wavelet power of H2O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level) correlations occur intermittently in the 27 and 13-day band with variable phase lock behavior. Large Lyman-α oscillations appeared after the solar superstorm in July 2012 and the H2O oscillations show a well pronounced anti-correlation. The competition between advective transport and photodissociation loss of mesospheric water vapor may explain the sometimes variable phase relationship of mesospheric H2

  13. Isotopic Controls of Rainwater and Water Vapor on Mangrove Leaf Water and Lipid Biomarkers

    Science.gov (United States)

    Ladd, N.; Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Hydrogen isotope ratios (2H/1H or δ2H) of sedimentary mangrove lipid biomarkers can be used as a proxy of past salinity and water isotopes. This approach is based on the observation that apparent 2H/1H fractionation between surface water and mangrove lipids increases with surface water salinity in six species of mangroves with different salt management strategies growing at sites spanning a range of relative humidities throughout Australia and Micronesia. In order to more robustly apply mangrove lipid δ2H as a paleoclimate proxy, we investigated the cause of the correlation between apparent 2H fractionation and salinity. We present results from two related experiments that assessed controls on isotopes of mangrove leaf water, the direct source of hydrogen in lipids: (1) Measurements of natural δ2H in precipitation, surface water, and mangrove tissue water from a series of lakes with varying salinity and water isotope composition in Palau, and (2) measurements of mangrove tissue water and treatment water from a controlled simulation in which mangroves were treated with artificial rain of varying isotopic composition. Rainwater 2H/1H fluctuations of 30‰ over a one-month period explain up to 65% of the variance in leaf water δ2H for Bruguiera gymnorhiza mangroves from Palau despite lake water isotope differences among sites of up to 35‰. This indicates that in humid tropical settings, leaf water isotopes are more closely related to those of precipitation and water vapor than to those of lake surface water, explaining the observed change in apparent fractionation in B. gymnorhiza lipids with salinity. The relationship between leaf water and rainwater isotopes may be due to either equilibration of leaf water with water vapor in the nearly saturated air or direct foliar uptake of rain and/or dew. Foliar uptake is an important water source for many plants, but has not been documented in mangroves. We tested the capacity for mangroves to perform this function by

  14. The Mobility of Electrons in Ammonia, Methylamine, and Water Vapors.

    Science.gov (United States)

    Blanks, Daniel Kaye

    Measurements of the mobility (mu) of electrons photoinjected into ammonia, methylamine, and water vapors were carried out as a function of the gas density n (10('18) -10('20), 10('19)-10('20), and (TURN)10('19) cm('-3) for NH(,3), NeNH(,2), and H(,2)O, respectively). An anomalous drop in the normalized mobility n(mu) was observed as n was raised above 10('19) cm('-3) in the case of NH(,3) and MeNH(,2). It is proposed that the decrease in n(mu) is associated with the transition from free to localized states and possibly the solvation of the electrons into clusters of polar molecules similar to the solvating clusters observed for electrons in some polar liquids. A computerized data acquisition system was developed to measure the transient current of (TURN) 1 nanoamp and 1-1000 (mu)sec duration produced by the motion of electrons moving between two parallel plates in a constant electric field E. The electrons were injected into the gas by illuminating the cathode with a pulse of UV light provided by a xenon lamp or a dye laser. A computer program was developed to fit the transient curves to a theoretical equation and calculate the mobility (mu) and the longitudinal diffusion constant D(,L). This led to attempts to measure the electron temperature T(,e) = eD(,L)/k(mu) as a function of E, but distortions in the electric field were found to affect the diffusion constant too severely to produce reliable results.

  15. Water Vapor in Titan's Stratosphere from Cassini CIRS Far-Infrared Spectra

    Science.gov (United States)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Bezard, B.; deKok, R,; Lellouch, E.; Irwin, P. G. J.; Flasar, F. M.; Bampasidis, G.

    2012-01-01

    Here we report the measurement of water vapor in Titan's stratosphere using the Cassini Composite Infrared Spectrometer (CIRS). CIRS senses water emissions in the far infrared spectral region near 50 micron, which we have modeled using two independent radiative transfer codes. From the analysis of nadir spectra we have derived a mixing ratio of 0.14 +/- 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7 +/- 1.3 1014 molecules/cm2. In the latitude range 80S to 30N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13 +/- 0.04 ppb at an altitude of 115 km and 0.45 +/- 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. We have also fitted our data using scaling factors of 0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan's lower stratosphere.

  16. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    Science.gov (United States)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  17. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  18. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    Science.gov (United States)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  19. Fuel for cyclones: How the water vapor budget of a hurricane depends on its motion

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Chikunov, Alexander V; Sheil, Douglas; Nobre, Antonio D; Li, Bai-Lian

    2016-01-01

    Tropical cyclones are fueled by water vapor. Here we estimate the oceanic evaporation within an Atlantic hurricane to be less than one sixth of the total moisture flux precipitating over the same area. So how does the hurricane get the remaining water vapor? Our analysis of TRMM rainfall, MERRA atmospheric moisture and hurricane translation velocities suggests that access to water vapor relies on the hurricane's motion -- as it moves through the atmosphere, the hurricane consumes the water vapor it encounters. This depletion of atmospheric moisture by the hurricane leaves a "dry footprint" of suppressed rainfall in its wake. The thermodynamic efficiency of hurricanes -- defined as kinetic energy production divided by total latent heat release associated with the atmospheric moisture supply -- remains several times lower than Carnot efficiency even in the most intense hurricanes. Thus, maximum observed hurricane power cannot be explained by the thermodynamic Carnot limit.

  20. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  1. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  2. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  3. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  4. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    Directory of Open Access Journals (Sweden)

    KOHIO Niéssan

    2014-12-01

    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  5. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  6. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    Science.gov (United States)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  7. HIRDLS/Aura Level 3 Water Vapor (H2O) Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Water Vapor (H2O) Zonal Fourier Coefficients" version 7 data product (H3ZFCH2O) contains the entire mission (~3 years) of HIRDLS data...

  8. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  9. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  10. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    Science.gov (United States)

    Sussmann, Ralf; Reichert, Andreas; Rettinger, Markus

    2016-09-01

    Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.) a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm-1 (1.28-25 µm). As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum = 0.1 mm, median = 2.3 mm) and very low aerosol optical depth (AOD = 0.0024-0.0032 at 7800 cm-1 at air mass 1). All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR) continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR). Uncertainty contributions to near-infrared (NIR) radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR) calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an increasing and dominant contribution towards higher NIR wavenumbers

  11. Effect of water vapor on the performance of glass RPCs in avalanche mode operation

    CERN Document Server

    Raveendrababu, K; Satyanarayana, B; Mukhopadhayay, S; Majumdar, N

    2016-01-01

    We studied the effect of water vapor on the performance of glass Resistive Plate Chambers (RPCs) in the avalanche mode operation. Controlled and calibrated amount of water vapor was added to the RPC gas mixture that has C$_2$H$_2$F$_4$ as the major component. The deterioration in the performance of RPC was observed while operating with wet gas and recovered after switching to standard gas.

  12. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying

    2016-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are studied numerically in this paper. The results show that the condensation process is a rapid variation of the vapor......-liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  13. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  14. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    Science.gov (United States)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  15. A Parameterized yet Accurate Model of Ozone and Water Vapor Transmittance in the Solar-to-near-infrared Spectrum

    Institute of Scientific and Technical Information of China (English)

    LIU Weiyi; QIU Jinhuan

    2012-01-01

    A parameterized transmittance model (PTR) for ozone and water vapor monochromatic transmittance calculation in the solar-to-near-infrared spectrum 0.3-4 μm with a spectral resolution of 5 cm-1 was developed based on the transmittance data calculated by Moderate-resolution Transmittance model (MODTRAN).Polynomial equations were derived to represent the transmittance as functions of path length and airmass for every wavelength based on the least-squares method.Comparisons between the transmittances calculated using PTR and MODTRAN were made,using the results of MODTRAN as a reference.Relative root-mean-square error (RMSre) was 0.823% for ozone transmittance.RMSre values were 8.84% and 3.48% for water vapor transmittance ranges of 1-1 × 10-18and 1-1× 10-3,respectively.In addition,the Stratospheric Aerosol and Gas Experiment II (SAGEII) ozone profiles and University of Wyoming (UWYO)water vapor profiles were applied to validate the applicability of PTR model.RMSre was 0.437% for ozone transmittance.RMSre values were 8.89% and 2.43% for water vapor transmittance ranges of 1-1 × 10-18and 1-1 × 10-6,respectively.Furthermore,the optical depth profiles calculated using the PTR model were compared to the results of MODTRAN.Absolute RMS errors (RMSab) for ozone optical depths were within 0.0055 and 0.0523 for water vapor at all of the tested altitudes.Finally,the comparison between the solar heating rate calculated from the transmittance of PTR and Line-by-Line radiative transfer model (LBLRTM) was performed,showing a maximum deviation of 0.238 K d-1 (6% of the corresponding solar heating rate calculated using LBLRTM).In the troposphere all of the deviations were within 0.08 K d-1.The computational speed of PTR model is nearly two orders of magnitude faster than that of MODTRAN.

  16. Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

    2003-08-28

    Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

  17. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  18. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    Institute of Scientific and Technical Information of China (English)

    Su-wen Li; Wen-qing Liu; Pin-hua Xie; Yi-jun Yang; De-bao Chen; Zheng Li

    2008-01-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could he restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  19. Interaction of water vapor with clean and oxygen-covered uranium surfaces

    Science.gov (United States)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1987-04-01

    The interaction of water vapor with clean and oxygen-covered high-purity polycrystalline uranium surfaces was studied between 85 and 298 K with thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectroscopy (SIMS). Saturation of the uranium surface with oxygen or water vapor produced an asymmetric O1s photoelectron peak that consisted of a main oxide contribution and a small component assigned to strongly chemisorbed oxygen or hydroxyl ions, respectively. Saturation of the clean or oxygen-covered surface with water vapor at 85 K produced multilayer ice that was converted to oxide and adsorbed hydroxyl ions after warming to room temperature. A significant difference in binding energies was observed in the O1s spectra between water vapor adsorption on clean and oxygen-covered surfaces that lends support to the oxygen inhibition of the water vapor-uranium reaction by a surface mechanism. The initial oxidation mechanisms of uranium with oxygen and water vapor are discussed.

  20. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    Science.gov (United States)

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  1. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    Science.gov (United States)

    Li, Su-wen; Liu, Wen-qing; Xie, Pin-hua; Yang, Yi-jun; Chen, De-bao; Li, Zheng

    2008-10-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spec-troscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  2. Remotely sensed water vapor variations during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Meischner, P.F. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Kiemle, C. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Ehret, G. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Kaestner, M. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Schreiber, H.G. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Evtushenko, A.V. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Kutuza, B.G. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Petrenko, B.Z. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Smirnov, M.T. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation)

    1994-11-01

    Total atmospheric water vapor contents have been measured during CLEOPATRA `92 using different methods. A multifrequency microwave radiometer system from IRE, Moskow operated from ground and an airborne DIAL system, DLR, performed measurements above the radiometer site. The results compare well if the atmospheric conditions are sufficiently homogeneous in the mesoscale and complement in a high space resolution for the DIAL measurements and a high time resolution of the microwave system. Under these conditions both measurement results further agree with radiosoundings and aircraft in situ measurements within the estimated measurement errors. Coordinated observations by the different systems with high time and high space resolution open a good chance to separate between transports caused by advection or convection. Microwave radiometer measurements from ground are best suited for monitoring long term trends as well as fast fluctuations, whereas the DIAL measurements give more detailed insight in the diffusion processes within the atmospheric boundary layer ABL. The measurement on May 29 very impressively show the moisture fluxes from local lakes into the ABL. The observations support the ABL to act as a flux-averaging medium, thus contributing naturally to an upscaling which improves the use of remote measurements from space for the estimation of area averaged moisture fluxes. (orig.) [Deutsch] Der Gesamtsaeulenwassergehalt der Atmosphaere wurde waehrend CLEOPATRA `92 aus verschiedenen Messmethoden bestimmt. Ein Mehrfrequenz-Mikrowellenradiometersystem des IRE, Moskau hat vom Boden aus gemessen, waehrend mit einem flugzeuggetragenen DIAL System der DLR ueber dem Mikrowellensystem nach unten gemessen wurde. Die Messergebnisse sind gut vergleichbar bei mesoskalig homogenen Bedingungen und ergaenzen sich gut, was die hohe zeitliche Aufloesung der Radiometer und die hohe raeumliche Aufloesung des DIALs betrifft. Auch mit den Ergebnissen von Radiosondenmessungen und den

  3. Field campaign LINEX 96/1 - possibilities of water vapor observation in the free atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Dier, H.; Engelbart, D.; Goersdorf, U.; Lehmann, V.; Leiterer, U.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium; Bakan, S. [Hamburg Univ. (Germany). Meteorologisches Inst.; Boesenberg, J.; Jansen, F.; Wulfmeyer, V. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Gendt, G. [GeoForschungsZentrum Potsdam (Germany); Gueldner, J. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    1998-12-01

    LINEX 96/1 was a field experiment to assess information content, accuracy, and availability for different remote sensing techniques measuring water vapor. An important goal of LINEX 96/1 was the test of a new differential absorption lidar (DIAL) developed by the MPI fuer meteorologie Hamburg. Comparisons of DIAL with rawinsonde and tethersonde measurements showed an excellent accuracy of the DIAL method in the determination of water vapor with high vertical and temporal resolution. The operation of the microwave radiometer WVR-1100 showed a high availability of water vapor and liquid water column content measurements except during rain. Microwave radiometers are reliable systems to measure the precipitable water vapor and liquid water content under unattended operational conditions with high accuracy and temporal resolution. Measurements of the water vapor column content by ground-based GPS receivers proved highly reliable. Comparisons with corresponding values of the microwave radiometer showed a bias less than 0.6 mm and a standard deviation less than 0.9 mm. The main problem of an operational use of this new information is that the evaluated data are not available in real-time because, at present, the data have to be postprocessed in a ground control center. During LINEX 96/1, possibilities for estimation of water vapor column content from sun and star photometer measurements were also demonstrated. The comparison of the precipitable water vapor content measurements of sun and star photometers, microwave radiometer, and rawinsondes RS 80 showed a good agreement. Unfortunately, the use of optical methods like sun and star photometers is restricted by cloudy conditions. 28 refs.

  4. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1997-01-01

    The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.

  5. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1997-01-01

    The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.

  6. Surface Reactivity of Iron Oxide Pigmentary Powders toward Atmospheric Components: XPS and Gravimetry of Oxygen and Water Vapor Adsorption

    Science.gov (United States)

    Ismail; Cadenhead; Zaki

    1996-11-10

    The adsorption of oxygen and water vapor on a number of specially prepared alpha-Fe2O3 samples was measured gravimetrically at 25°C. The samples themselves were prepared from a steel-pickling chemical waste (97 wt% FeSO4·7H2O) by roasting the original material at 700°C for 5 h in air, oxygen, and nitrogen. Estimated surface coverages by the adsorbed oxygen and water vapor were made on the basis of nitrogen-adsorption-based surface areas, while the nature of the sample surfaces was investigated by both X-ray photoelectron spectroscopy (XPS) and field emission SEM (FESEM) techniques. In addition a depth profiling study utilizing a sputtering argon beam and XPS was undertaken. Morphological studies using FESEM showed that, while the surface areas were essentially the same (27-29 m2/g) for all three samples, the sample prepared in nitrogen had a significantly larger particle size than the other two. These studies also indicated that neither oxygen nor water vapor adsorption caused any significant structural changes. The differing sample preparations resulted in differing oxygenated surfaces for the alpha-Fe2O3 samples, with the degree of oxygenation decreasing in the order of preparatory gases: oxygen, (wet) air, nitrogen. The amounts of both oxygen and water vapor adsorbed were in inverse proportion to the original degree of surface oxygenation, though the amounts of both represented fractional coverage at best. While the water vapor adsorption was always greater than that of oxygen, the former was more weakly adsorbed, as was indicated by the ease of desorption. Depth profiling failed to indicate any bulk diffusion of oxygen but could not be considered reliable since even the attenuated argon beam used here still brought about reduction of surface iron. Both oxygen and dissociative water adsorption are thought to involve surface sites of high coordination unsaturation. Oxygen is postulated to adsorb on such poorly oxygenated sites primarily as O-2; however, O2

  7. SEPARATION OF WATER VAPORS FROM AIR BY SORPTION ON SOME COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    OANA HAUTĂ

    2014-01-01

    Full Text Available This work presents an experimental investigation of the kinetics of water vapor sorption on two composites synthesized by impregnating activated carbon and activated alumina respectively with lithium bromide (named as MCA2 and MCC2 respectively. The obtained results showed an increase in water amount adsorbed on both composite materials. Due to different chemical natures of the host matrices, the water sorption kinetics on MCC2 is faster compared to that of MCA2. The presence of calcium chloride instead of lithium bromide in alumina pores will determine a shorter breakthrough time and a higher adsorption rate of water vapors.

  8. Waste storage in the vadose zone affected by water vapor condensation and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  9. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    Science.gov (United States)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  10. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  11. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  12. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-03-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  13. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  14. Characteristics of water vapor fluctuations by the use of GNSS signal delays

    Science.gov (United States)

    Gregorič, Asta; Škrlec, Samo; Mole, Maruška; Bergant, Klemen; Vučković, Marko; Stanič, Samo

    2017-04-01

    Water vapor plays a crucial role in a number of atmospheric processes related to the water cycle. It is also the Earth's most abundant greenhouse gas, thus influencing global climate as well as micrometeorology. Since the phase change of water is associated with large latent heat, water vapor plays an important role in the vertical atmospheric stability. It also influences aerosol aging and removal from the atmosphere. As the temporal and spatial distribution of water vapor is in general highly variable, continuous monitoring at several locations is required to be able to describe the situation in a given terrain configuration. In-situ meteorological measurements provide the information on water vapor concentration at the surface only, while the radiosonde data suffers from poor temporal and spatial (horizontal) resolution. Integrated water vapor content above a certain location on the surface can also be monitored in real time, exploiting the wet delay of GNSS signals, however, it does not yield absolute humidity. In this contribution we present a measurement of average absolute humidity within the Vipava valley (Slovenia), between February 2015 and October 2016. It is based on differential measurement of integrated water vapor content at two adjacent stations, using stationary GNSS receivers, which are horizontally displaced for 6 km, and vertically displaced for 826 m. The integrated water vapor values were derived using the GIPSY-OASIS II software. One of the receivers is located at the valley floor (125 m a.s.l.) and the other on the top of the adjacent mountain ridge (951 m a.s.l.). Visual data from both stations was also stored to evaluate the reliability of the remote sensing results in different weather conditions. Based on the dataset covering 20 consecutive months, we investigated temporal evolution of the water vapor content within the valley. The results show typical seasonal pattern and are strongly correlated to weather phenomena. Comparison to the

  15. The global distribution of water vapor in the middle atmosphere of Venus

    Science.gov (United States)

    Schofield, J. T.; Taylor, F. W.; Mccleese, D. J.

    1982-01-01

    Near-IR measurements are presented of the mean vertical and horizontal distribution of water vapor in the Venus clouds as measured by the Pioneer Venus Orbiter IR radiometer, and comparisons are made with previous data. Six thermal channels were used to generate several hundred thousand readings for determination of the mean mixing ratio. Averaging was performed as a function of the solar zenith angle, with profiles retrieved with a relaxation method applied to radiance data at 45 microns. Consideration was given to mean cloud models and temperature profiles obtained from the five temperature sounding channels scanning from 11.5-15 microns. Laboratory tests were effected to validate the transmission functions. The results included a maximum column abundances above the cloud optical depth in the early afternoon in the equatorial regions. Mixing ratio enhancement was highest on the dayside and at high altitudes, with a mean ratio of 0.0001 at a 40% uncertainty level. Day-to-day fluctuations in the pressure level at 11.5 microns was larger than 10%, far below the factors of 2-3 determined by other investigators.

  16. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  17. Experimental and numerical study of liquefied natural gas (LNG) pool spreading and vaporization on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Kakosimos, Konstantinos; Zhang, Bin; Liu, Yi; Mentzer, R; Mannan, M Sam

    2017-07-15

    The investigation of pool spreading and vaporization phenomenon is an essential part of consequence analysis to determine the severity of LNG spills on water. In this study, release of LNG on water during marine operations is studied through experimental and numerical methods The study involves emulation of an LNG leak from transfer arms during side by side loading operations. The experimental part involves flow of LNG in a narrow trench filled with water and subsequent measurement of pool spreading and vaporization parameters. The numerical part involves CFD simulation using a three dimensional hybrid homogenous Eulerian multiphase solver to model the pool spreading and vaporization phenomenon. In this method, LNG is modeled as dispersed phase droplets which can interact with continuous phases - water and air through interphase models. The numerical study also employs a novel user-defined routine for capturing the LNG vaporization process. The CFD solver was capable of capturing the salient features of LNG pool spreading and vaporization phenomena. It was observed from experiment and CFD simulation that wind influenced both pool spreading and vaporization phenomenon through entrainment and convection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder

    Science.gov (United States)

    Hurst, Dale F.; Read, William G.; Vömel, Holger; Selkirk, Henry B.; Rosenlof, Karen H.; Davis, Sean M.; Hall, Emrys G.; Jordan, Allen F.; Oltmans, Samuel J.

    2016-09-01

    Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1 % between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10 % at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year-1 (0.6 to 1.5 % year-1) from ˜ 2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor ( ˜ 1 % year-1) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.

  19. Indirect radiative forcing of aerosols via water vapor above non-precipitating maritime cumulus clouds

    Directory of Open Access Journals (Sweden)

    M. A. Pfeffer

    2011-10-01

    Full Text Available Aerosol-cloud-water vapor interactions in clean maritime air have been described for different aerosol sources using the WRF-Chem atmospheric model. The simulations were made over the Lesser Antilles in the region of the RICO measurement campaign where the clouds are low, patchy, typical trade-wind cumuli. In this very clean air, sea salt and DMS are found to have greater effects than anthropogenic pollution on the cloud droplets' effective radii and longwave and shortwave outgoing top of atmosphere radiation. The changes in radiation due to each aerosol source are a function of how each source influences aerosol concentration, cloud droplet number concentration, cloud droplet sizes, and water vapor concentration. Changes in outgoing shortwave radiation are due predominantly to changes in the clouds, followed by the direct aerosol effect which is about 2/3 as important, followed by the effects of water vapor which is in turn about 2/3 as important as the direct effect. Changes in outgoing longwave radiation are due predominantly to changes in the clouds, with changes in water vapor being about 1/10 as important. The simulated changes in water vapor concentration are due to the competing effects of aerosol particles being able to both enhance condensation of available water vapor and enhance evaporation of smaller droplets. These changes are independent of precipitation effects as there is essentially no drizzle in the domain. It is expected that the indirect radiative forcing of aerosols via water vapor may be stronger in dirtier and more strongly convective conditions.

  20. Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.

    Science.gov (United States)

    Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-10-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources.

  1. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    Science.gov (United States)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  2. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Science.gov (United States)

    Djenadic, Ruzica; Winterer, Markus

    2017-02-01

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  3. Retrieval of Vertical Profiles of Liquid Water and Ice Content in Mixed Clouds from Doppler Radar and Microwave Radiometer Measurements.

    Science.gov (United States)

    Sauvageot, Henri

    1996-01-01

    A new method to retrieve vertical profiles of liquid water content Mw(z), ice water content Mi(z), and ice particle size distribution Ni(D, z), (where D is the ice particle size and z the vertical coordinate) in mixed nonprecipitating clouds using the observations of a zenith-viewing Doppler radar and of a microwave radiometer is proposed. In this method, the profile of the vertical air velocity deduced from Doppler radar measurements is used to describe the rate of production by the updrafts of water. vapor in excess of saturation with respect to ice. Using a Zi Mi power-law relation with an unknown linear parameter (let i, be this parameter) and initially assuming that Zw is negligible with respect to Zi, (where Zw and Zi are the radar reflectivity factors of liquid water and ice particles respectively), the measured radar reflectivity factor profile Zm ( Zi) is inverted to estimate Ni(D, z). From Ni(D, z), the profile of the rate of water vapor that can be consumed by pure deposition on ice particles is calculated. The difference between the rate of production of the exam water vapor and the rate of deposited water vapor is an expression of the rate of liquid water generation at each level. By writing that the integral of the liquid water along the profile has to be equal to the total liquid water deduced from the microwave radiometer measurement, an estimation of the i parameter is obtained. From i, an estimation of the profiles Mw(z), Mi(z), Zw(z), Zi(z) (=Zm Zw), and Ni(D, z) is calculated. If Zw is effectively negligible with respect to Zi, the computation of the retrieved profiles is ended. If not, Zi(z) is corrected and a new estimation of the profiles is computed. The results of the numerical simulation of the algorithm are presented.

  4. Modeling of tropospheric integrated water vapor content using GPS, radiosonde, radiometer, rain gauge, and surface meteorological data in a tropical region (French Polynesia)

    Science.gov (United States)

    Serafini, Jonathan; Barriot, Jean-Pierre; Hopuare, Marania; Sichoix, Lydie; Fadil, Abdelali

    2012-11-01

    The integrated precipitable water vapor (IPW) is characterized by strong spatial and temporal variability, especially over tropical regions where the troposhere is not purely in hydrostatic equilibrium (convection). As an evidence, the survey of water vapor distibution as permanently as possible is an important issue and should serve as inputs for tropical climate modelling. In this paper, we present an estimation of the IPV from ground­ ba,.sed GPS receivers, which we compare to radiosondes and microwave radiometer. The data used here were collected in the vicinity of French Polynesia University site, during eight years from 2001 to 2008. In addition, we also include the IPW calculated using Era-Interim reanalyses (ECMWF). The main purpose of this paper is to highlight precision, qualities and limitations of each method available on the Island of Tahiti. During wet periods, the radiosondes vertical profiles of water vapor show an efficient mixing of water vapor between the the boundary layer (below trade winds inversion at Tahiti) and the free troposphere. Thus the rainy event detection allows to better constrain the validity range of a model of the vertical distribution of water vapor, which is based on a pseudo-adiabatic saturated evolution of the temperature.

  5. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  6. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  7. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  8. Water vapor permeability, mechanical properties and antioxidant effect of Mexican oregano-soy based edible films.

    Science.gov (United States)

    Pruneda, E; Peralta-Hernández, J M; Esquivel, K; Lee, S Y; Godínez, L A; Mendoza, S

    2008-08-01

    Water-soluble extracts from Mexican oregano (Lippia graveolens) were incorporated into soy protein isolate (SPI) films. Water vapor permeability, mechanical properties, and antioxidant ability were evaluated. All the extracts were capable of scavenging DPPH radicals in a concentration-dependent fashion; the IC50 values were obtained. Oregano extracts were incorporated into SPI films plasticized with sorbitol, glycerol, and glycerol-sorbitol 1:1. The addition of the extracts resulted in an increase in the water vapor permeability values and provided a dark reddish film appearance. Changes in tensile strength as well as elongation values were observed. The oregano SPI films exhibited antioxidant properties in a concentration-dependent fashion.

  9. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    Science.gov (United States)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  10. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairliquid based on thermodynamic calculations, the liquid cavitated at pressures Pvapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude

  11. [Study on large-scale regional laser detection methods for water vapor concentration].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Wang, Li-Ming; You, Kun; Zhou, Yi; Sun, Xiao-Min; Liu, Zhen-Min

    2013-03-01

    Water vapor is an important meteorological parameter in the atmosphere, TDLAS direct absorption technology combined with open-path monitoring was used in order to achieve large-scale regional atmospheric water vapor concentration detection with high sensitivity, high accuracy and fast response, and to correct the remote sensing data. The large-scale regional laser detection system for water vapor was designed and the absorption line of water vapor molecules near 1.27 microm was chosen as the goal line. The system performance was verified in conjunction with a multiple reflection cell, that the system limit sensitivity was 14.803 mmol.mol-1 in optical path of 40 m. The continuous field experiment in 1,420 m optical path at the Yucheng Integrated Experimental Station, CAS was completed with this system which worked stably. Then the measured data was compared with the data of a gas analyzer LI-7500 in eddy correlation observation system at the same site, and the data consistency was good. A new method for water vapor concentration monitoring in the complex field of non-uniform underlying surface was provided.

  12. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    Science.gov (United States)

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-07

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  13. The Aging Study on Polyethylene Terephthalate with Surface Modification by Water Vapor Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aging effects of the contact angle and surface energy on polyethylene tereph thalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and sur face energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.

  14. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  15. Water vapor and gas transport through a poly (butylene terephthalate) poly (ethylene oxide) block copolymer

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    In this paper the transport behavior of water vapor and nitrogen in a poly(butylene terephthalate) poly (ethylene oxide) block copolymer is discussed. This polymer has a high solubility for water (300 cm3 (STP)/cm3 polymer at activity 0.9). A new permeation set up has been built to determine the wat

  16. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  17. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    Science.gov (United States)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  18. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    CERN Document Server

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

  19. What does the Unexpected Detection of Water Vapor in Arcturus' Atmosphere Tell us?

    CERN Document Server

    Ryde, N; Richter, M J; Lacy, J H; Greathouse, T K; Ryde, Nils; Lambert, David L.; Richter, Matthew J.; Lacy, John H.; Greathouse, Thomas K.

    2002-01-01

    In this talk I presented and discussed our unexpected detection of water vapor in the disk-averaged spectrum of the K2IIIp red giant Arcturus [for details, see Ryde et al. (2002)]. Arcturus, or alpha Bootes is, with its effective temperature of 4300 K, the hottest star yet to show water vapor features. We argue that the water vapor is photospheric and that its detection provides us with new insights into the outer parts of the photosphere. We are not able to model the vater vapor with a standard, one-component, 1D, radiative-equilibrium, LTE model photosphere, which probably means we are lacking essential physics in such models. However, we are able to model several OH lines of different excitation and the water-vapor lines satisfactorily after lowering the temperature structure of the very outer parts of the photosphere at log tau_500=-3.8 and beyond compared to a flux-constant, hydrostatic, standard marcs model photosphere. Our new semi-empirical model is consistently calculated from the given temperature s...

  20. The Infrared Astronomical Characteristics of Roque de los Muchachos Observatory: precipitable water vapor statistics

    CERN Document Server

    Garcia-Lorenzo, B; Castro-Almazan, J; Pinilla-Alonso, N; Muñoz-Tuñon, C; Rodriguez-Espinosa, J M

    2010-01-01

    The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical analysis of GPS measurements points to ORM as an observing site with suitable conditions for infrared (IR) observations, with a median column of precipitable water vapor (PWV) of 3.8 mm. PWV presents a clear seasonal behavior, being Winter and Spring the best seasons for IR observations. The percentage of nighttime showing PWV values smaller than 3 mm is over 60% in February, March and April. We have also estimated the temporal variability of water vapor content at the ORM. A summary of PWV statistical results at different astronomical sites is presented, recalling that these values are not directly comparable as a result of the differences in the techniques used to recorded the data.

  1. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    GAOHuasheng; YEYunchun; 等

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  2. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  3. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    Science.gov (United States)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  4. Details and Consequences of Water Vapor Diffusion In The Pore Space of Snow

    Science.gov (United States)

    Sokratov, S. A.; Bartelt, P.; Schneebeli, M.; Lehning, M.

    Despite a long history of extensive experimental and theoretical studies on the process of water vapor diffusion in snow, no quantitative explanation for the observed diffu- sion characteristics such as mass-transfer rates and snow density change is available at present. Results of a detailed investigatation of the process are presented. The pro- posed description of water vapor flux in snow now includes thermal diffusion, grav- itation, convective air flow, and volumetric mass-production. The relative importance of the components in the overall mass-transfer is analyzed. Although experimental data of sufficient detail concerning the individual components are not available, the results of our analysis provide an improved understanding of the sources of discrepan- cies in published experimental results. The consequences of the water vapor transport description for heat transfer and metamorphism are also discussed.

  5. Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME

    Directory of Open Access Journals (Sweden)

    R. Lang

    2002-07-01

    Full Text Available We use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP in order to retrieve total water vapor columns (WVC from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME. SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but slower, Optical Absorption Coefficient Spectroscopy (OACS.

  6. Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME

    Directory of Open Access Journals (Sweden)

    R. Lang

    2003-01-01

    Full Text Available We use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP in order to retrieve total water vapor columns (WVC from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME. SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly-scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but more computationally expensive, Optical Absorption Coefficient Spectroscopy (OACS.

  7. The Effect of Water Vapor on Flame Velocity in Equivalent Carbon Monoxide and Oxygen Mixtures

    Science.gov (United States)

    Fiock, Ernest F; King, H Kendall

    1936-01-01

    This report presents the results of an investigation to study the effect of water vapor upon the spatial speed of flame in equivalent mixtures of carbon monoxide and oxygen at various total pressures from 100 to 780 mm.hg. These results show that, within this pressure range, an increase in flame speed is produced by increasing the mole fraction of water vapor at least as far as saturation at 25 degrees c., and that the rate of this increase is greater the higher the pressure. It is evident that water vapor plays an important part in the explosive oxidation of carbon monoxide; the need for further experimental evidence as to the nature of its action is indicated.

  8. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch

    CERN Document Server

    Collette, S; Reniers, F

    2016-01-01

    The reactivity of water vapor introduced in the flowing post-discharge of an RF atmospheric plasma torch is investigated through electrical characterization, optical emission spectroscopy and mass spectrometry measurements. Due to the technical features of the plasma torch, the post-discharge can be considered as divided into two regions: an inner region (inside the plasma torch device) where the water vapor is injected and an outer region which directly interacts with the ambient air. The main reactions induced by the injection of water vapor are identified as well as those indicative of the influence of the ambient air. Plausible pathways allowing the production of H, OH, O radicals and H2O2 are discussed as well as reactions potentially responsible for inhomogeneities and for a low DC current measured in the flowing post-discharge. Keywords: atmospheric post-discharge, H2O plasma reactivity, RF plasma torch

  9. Vaporization order and burning efficiency of crude oils during in-situ burning on water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus M.V.; Jomaas, Grunde

    2017-01-01

    of multicomponent fuels. The alkanes were tested as benchmark fuels with a uniform vaporization order, for which all components evaporate simultaneously. As expected, these pure fuels showed a steady state burning with a near-constant surface temperature, flame height and burning rate. The alkane mixture showed...... similar steady state results but became dominated by the heaviest component towards the end of the burning. These results indicate that the lightest components had been depleted from the mixture. A near-uniform vaporization order in which the lighter components evaporate preferably best matched......In order to improve the understanding of the burning efficiency and its observed size dependency of in-situ burning of crude oil on water, the vaporization order of the components in crude oils was studied. The vaporization order of such multicomponent fuels was assessed by studying the surface...

  10. Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2014-11-01

    Full Text Available This study investigates chemical grafting with fatty acid chlorides as a method for the surface modification of hydrophilic web materials. The resulting changes in the water repellence and barrier properties were studied. For this purpose, different grades of polyvinyl alcohol (PVOH were coated on regenerated cellulose films (“cellophane” and paper and then grafted with fatty acid chlorides. The PVOH grades varied in their degree of hydrolysis and average molecular weight. The surface was esterified with two fatty acid chlorides, palmitoyl (C16 and stearoyl chloride (C18, by chemical grafting. The chemical grafting resulted in water-repellent surfaces and reduced water vapor transmission rates by a factor of almost 19. The impact of the surface modification was greater for a higher degree of hydrolysis of the polyvinyl alcohol and for shorter fatty acid chains. Although the water vapor barrier for palmitoyl-grafted PVOH was higher than for stearoyl-grafted PVOH, the contact angle with water was lower. Additionally, it was shown that a higher degree of hydrolysis led to higher water vapor barrier improvement factors after grafting. Furthermore, the oxygen permeability decreased after grafting significantly, due to the fact that the grafting protects the PVOH against humidity when the humidity is applied on the grafted side. It can be concluded that the carbon chain length of the fatty acid chlorides is the limiting factor for water vapor adsorption, but the grafting density is the bottleneck for water diffusing in the polymer.

  11. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    Science.gov (United States)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity

  12. A Note on the Relationship between Temperature and Water Vapor in Quasi-Equilibrium and Climate States

    Science.gov (United States)

    Shie, C.-L.; Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2005-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, q (mm), and temperature, T (K), fields obtained from a series of quasi-equilibrium (long-term) simulations for the Tropics using the two-dimensional Goddard Cumulus Ensemble (GCE) model. Earlier model work showed that the forced maintenance of two different wind profiles in the Tropics leads to two different equilibrium states. Investigating this finding required investigation of the slope of the moisture-temperature relations, which turns out to be linear in the Tropics. The extra-tropical climate equilibriums become more complex, but insight on modeling sensitivity can be obtained by linear stepwise regression of the integrated temperature and humidity. A globally curvilinear moisture-temperature distribution, similar to the famous Clausius-Clapeyron curve (i.e., saturated water vapor pressure versus temperature), is then found in this study. Such a genuine finding clarifies that the dynamics are crucial to the climate (shown in the earlier work) but the thermodynamics adjust. The range of validity of this result is further examined herein. The GCE-modeled tropical domain-averaged q and T fields form a linearly-regressed "q-T" slope that genuinely resides within an ideal range of slopes obtained from the aforementioned formulation. A quantity (denoted as dC2/dC1) representing the derivative between the static energy densities due to temperature (C2) and water vapor (C1) for various quasi-equilibrium states can also be obtained. A dC2/dC1 value near unity obtained for the GCE-modeled tropical simulations implies that the static energy densities due to moisture and temperature only differ by a pure constant for various equilibrium states. An overall q-T relation also including extra-tropical regions is, however, found to have a curvilinear relationship. Accordingly, warm/moist regions favor change in water vapor

  13. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, J.; Mulder, M.H.V.; Wessling, M.

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol ab

  14. Beeswax-chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    Science.gov (United States)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-05-01

    For lipid-hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax-chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax-chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated.

  15. A scanning Raman lidar for observing the spatio-temporal distribution of water vapor

    Science.gov (United States)

    Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka

    2016-12-01

    We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site

  16. Triple-beam negative hydrogen-ion source based on water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Parkomchuk, V.V.; Kot, N.K.

    1985-07-01

    A Penning three-beam source of negative hydrogen-ions has been devised, which works with water vapor. The steady negative hydrogen-ion current in each beam is less than 4 microamps, but the negative hydrogen-ions constitute 92% of the beam current, while the water vapor consumption is 2.5 cm/sup 3//h and the distance between the beams is 20 mm. The source has been set up on an EG-1.5 accelerator, where it has worked without fail for over 400 h at 1 MeV.

  17. A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall

    Institute of Scientific and Technical Information of China (English)

    PAN Yang; YU Rucong; LI Jian; XU Youping

    2008-01-01

    Based on the observation data analysis and numerical simulation, the development of an eastward- moving vortex generated in Southwest China during the period 25-27 June 2003 is studied. The water vapor budget analysis indicates that water vapor in the lower troposphere over Southwest China is transported downstream to the Yangtze and Huaihe River valleys by the southwesterly winds south of the vortex center. A potential vorticity (PV) budget analysis reveals that a positive feedback between latent heat release and low-level positive vorticity plays a vital role in the sudden development and eastward movement of the vortex. Numerical simulations are consistent with these results.

  18. Redox Characteristics of Thiol Compounds Using Radicals Produced by Water Vapor Radio Frequency Discharge

    Science.gov (United States)

    Hayashi, Nobuya; Nakahigashi, Akari; Goto, Masaaki; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-08-01

    The redox reaction between cystein and cystine is observed using radicals produced in water vapor plasma for the control of plant growth. Cystein is oxidized to cystine using the OH radical in the higher-pressure regime and cystine is reduced to cystein by the H radical generated in the lower-pressure regime. Also, the oxidative stress reaction of plants is observed when water vapor plasma is irradiated onto seeds of plants such as radish sprouts. The mechanism of the control of plant growth is explained by the change in thiol compound quantity of the plant cells induced by the radical reaction.

  19. The effect of tropospheric fluctuations on the accuracy of water vapor radiometry

    Science.gov (United States)

    Wilcox, J. Z.

    1992-08-01

    Line-of-sight path delay calibration accuracies of 1 mm are needed to improve both angular and Doppler tracking capabilities. Fluctuations in the refractivity of tropospheric water vapor limit the present accuracies to about 1 nrad for the angular position and to a delay rate of 3x10(exp -13) sec/sec over a 100-sec time interval for Doppler tracking. This article describes progress in evaluating the limitations of the technique of water vapor radiometry at the 1-mm level. The two effects evaluated here are: (1) errors arising from tip-curve calibration of WVR's in the presence of tropospheric fluctuations and (2) errors due to the use of nonzero beamwidths for water vapor radiometer (WVR) horns. The error caused by tropospheric water vapor fluctuations during instrument calibration from a single tip curve is 0.26 percent in the estimated gain for a tip-curve duration of several minutes or less. This gain error causes a 3-mm bias and a 1-mm scale factor error in the estimated path delay at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor column density present in the troposphere during the astrometric observation. The error caused by WVR beam averaging of tropospheric fluctuations is 3 mm at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor (and is proportionally higher for higher water vapor content) for current WVR beamwidths (full width at half maximum of approximately 6 deg). This is a stochastic error (which cannot be calibrated) and which can be reduced to about half of its instantaneous value by time averaging the radio signal over several minutes. The results presented here suggest two improvements to WVR design: first, the gain of the instruments should be stabilized to 4 parts in 10(exp 4) over a calibration period lasting 5 hours, and second, the WVR antenna beamwidth should be reduced to about 0.2 deg. This will reduce the error induced by water vapor fluctuations in the estimated path delays to less than 1 mm for the elevation range

  20. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  1. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  2. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  3. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    Science.gov (United States)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water

  4. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle

    2006-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper...... an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...

  5. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  6. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  7. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  8. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  9. Spatial Correlations of Anomalies of Tropospheric Temperature and Water Vapor, Cloud Cover, and OLR with the El Nino Index

    Science.gov (United States)

    Susskind, Joel; Iredell, Lena; Lee, Jae N.

    2014-01-01

    In this presentation, we will show AIRS Version-6 area weighted anomaly time series over the time period September 2002 through August 2014 of atmospheric temperature and water vapor profiles as a function of height. These anomaly time series show very different behaviors in the stratosphere and in the troposphere. Tropical mean stratospheric temperature anomaly time series are very strongly influenced by the Quasi-Biennial Oscillation (QBO) with large anomalies that propagate downward from 1 mb to 100 mb with a period of about two years. AIRS stratospheric temperature anomalies are in good agreement with those obtained by MLS over a common period. Tropical mean tropospheric temperature profile anomalies appear to be totally disconnected from those of the stratosphere and closely follow El Nino La Nina activity.

  10. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice

    OpenAIRE

    Eric S. Klein; J. E. Cherry; Young, J.; D. Noone; A. J. Leffler; Welker, J.M.

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help expla...

  11. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  12. The effect of titanium nanoparticles on Na–water vapor reaction at 105 °C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Korea Institute of Nuclear Safety, Yuseong, Daejeon 305-338 (Korea, Republic of)

    2015-11-15

    Highlights: • Na based Titanium Nanofluid (NaTiNF) has been produced. • We experimentally investigate the suppressed reactivity of NaTiNF. • We conduct NaTiNF–water vapor reaction experiment with visualization. • We demonstrate a lower temperature increment of NaTiNF than Na. • We observe a stable surface behavior of NaTiNF while vigorous surface reaction of Na. - Abstract: We investigated the suppressing effect of Sodium-based Titanium Nanofluid (NaTiNF) on the Sodium–water Vapor Reaction (SVR). The increases in temperature during the reaction of pure sodium (Na) and NaTiNF with water vapor were measured, and surface reaction phenomena were recorded using a high-speed camera. The temperature increase in the reaction of NaTiNF with water vapor was slower than that of Na. From the visualization view, the surface of NaTiNF remained stable whereas the surface of Na reacted vigorously during the reaction. This difference in behavior demonstrates that titanium nanoparticles (Ti NPs) of NaTiNF impede the contact between Na and water, and thereby suppress the chemical reactivity of the SVR.

  13. Permeation of oxygen, water vapor, and limonene through printed and unprinted biaxially oriented polypropylene films.

    Science.gov (United States)

    Rubino, M; Tung, M A; Yada, S; Britt, I J

    2001-06-01

    Oriented polypropylene (OPP) and coated OPP (acrylic/OPP/PVDC) films were printed with two commercially available inks to investigate the influence of inks on water vapor and oxygen transmission rates. The permeation of an aroma compound (d-limonene) through coated OPP film printed with these inks was also evaluated at 35 degrees C and 100% relative humidity. The water vapor transmission rate increased significantly through OPP film printed with nitrocellulose-based ink. The oxygen transmission rate was significantly lower through both OPP and coated OPP films printed with the nitrocellulose ink. The effect of inks on limonene permeation was minor compared to the marked increase in permeation measured when the PVDC side of the coated film was exposed to the aroma, compared to the acrylic side. Scanning electron micrographs of coated film cross sections revealed changes in film structure upon exposure to limonene vapors, which were most pronounced when the PVDC side was exposed to limonene.

  14. An experimental study on the solubility of copper bichloride in water vapor

    Institute of Scientific and Technical Information of China (English)

    SHANG LinBo; BI XianWu; HU RuiZhong; FAN WenLing

    2007-01-01

    Using the solubility method, the solubility of CuCl2 in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 330-370℃ and pressures of 4.2-10 MPa. The results have shown that hydration could significantly enhance copper solubility and the concentrations of copper were positively correlated with PH2O. The solubility of copper in vapor phase increased with increasing PH2O at the constant temperature. CuCl2 was transported as hydrated species CuCl2(H2O)ngas in water vapor. The formation of complexes is proposed to be the result of the following reaction:CuCl2solid + nH2Ogas = CuCl2 (H2O)ngas The hydration number n decreased slightly with increasing temperature. Statistical hydration numbers are 4.0, 3.6 and 3.3 at 330, 350 and 370℃, respectively.

  15. Energy balance between vaporization and heating in the absorption of CO2 laser radiation by water

    Science.gov (United States)

    Mueller, Robert E.; Yam, Henry; Duley, Walter W.

    1997-03-01

    The use of lasers in industrial and medical procedures continues to increase. A fundamental question in many laser- material interactions is how is the incident laser power transferred to the target material, and how is the power distributed among the phases (solid, liquid, vapor) of the material. This paper describes the results of a fundamental calorimetry experiment to determine the fraction of incident carbon-dioxide laser energy which is used to vaporize water from a target volume, and the fraction of power used to simply heat the remaining liquid. The experiment was performed over a range of incident laser powers from 60 to 300 W. Over most of the range of incident power, the fraction used to vaporize water is 30 to 35 percent. This fraction increases at the lowest powers.

  16. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei [Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3 (Canada); State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3 (Canada); Qian, Liying [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2014-05-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated.

  17. A Satellite-Derived Upper-Tropospheric Water Vapor Transport Index for Climate Studies

    Science.gov (United States)

    Jedlovec, Gray J.; Lerner, Jeffrey A.; Atkinson, Robert J.

    1998-01-01

    A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly

  18. An Excel(®)-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft(®) Excel(®) using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  19. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  20. Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-03-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  1. Cavity-ring-down spectroscopy on water vapor in the range 555-604 nm

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.M.G.; Levelt, P.F.; Polyansky, O.L.; Zobov, N.F.; Tennyson, J.

    2001-01-01

    The method of pulsed cavity-ring-down spectroscopy was employed to record the water vapor absorption spectrum in the wavelength range 555-604 nm. The spectrum consists of 1830 lines, calibrated against the iodine standard with an accuracy of 0.01 cm(-1); 800 of these lines are not obtained in the HI

  2. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Water vapor sorption can be used to study important properties of porous materials including specific surface area and pore size distribution (PSD). However, the data analysis is somewhat inconsistent in literature. In this work, the important factors influencing the analyzed results using sorpti...

  3. Comparison of Columnar Water Vapor Measurements During The Fall 1997 ARM Intensive Observation Period: Optical Methods

    Science.gov (United States)

    Schmid, Beat; Michalsky, J.; Slater, D.; Barnard, J.; Halthore, R.; Liljegren, J.; Holben, B.; Eck, T.; Livingston, J.; Russell, P.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    In the fall of 1997 the Atmospheric Radiation Measurement (ARM program conducted an intensive Observation Period (IOP) to study water vapor at its Southern Great Plains (SGP) site. Among the large number of instruments, four sun-tracking radiometers were present to measure the columnar water vapor (CWV). All four solar radiometers retrieve CWV by measuring solar transmittance in the 0.94-micrometer water vapor absorption band. As one of the steps in the CWV retrievals the aerosol component is subtracted from the total transmittance, in the 0.94-micrometer band. The aerosol optical depth comparisons among the same four radiometers are presented elsewhere. We have used three different methods to retrieve CWV. Without attempting to standardize on the same radiative transfer model and its underlying water vapor spectroscopy we found the CWV to agree within 0.13 cm (rms) for CWV values ranging from 1 to 5 cm. Preliminary results obtained when using the same updated radiative transfer model with updated spectroscopy for all instruments will also be shown. Comparisons to the microwave radiometer results will be included in the comparisons.

  4. Water vapor permeability, mechanical, optical and sensorial properties of plasticized guar gumedible films

    Science.gov (United States)

    Edible films were prepared by casting method using guar gum and glycerol in different ratios. The concentration of guar gum was 1.0, 1.5 and 2.0% whereas glycerol concentration was 20, 30 and 40% (w/v). The water vapor permeability (WVP), mechanical properties (tensile strength and elongation), thic...

  5. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  6. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  7. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2010-07-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become more dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  8. The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China

    Institute of Scientific and Technical Information of China (English)

    SUN Bo; ZHU Yali; WANG Huijun

    2011-01-01

    The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.

  9. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  10. LASE measurements of water vapor, aerosol, and cloud distribution in hurricane environments and their role in hurricane development

    Science.gov (United States)

    Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.; Halverson, J.; Rizvi, S.; Krishn, T. N.

    2002-01-01

    LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.

  11. Geomechanical and water vapor absorption characteristics of clay-bearing soft rocks at great depth

    Institute of Scientific and Technical Information of China (English)

    Zhang Na; Liu Longbiao; Hou Dongwen; He Manchao; Liu Yilei

    2014-01-01

    The geological and physico-mechanical properties characterization of deep soft rocks is one of the critical scientific issues for deep soft rock engineering. In the present study, X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and mercury intrusion porosimetry experiments were carried out to investigate the mineral compositions, microstructure and porosity characteristics of the 13 clay-bearing soft rock samples collected from a deep coal mine in China. Water vapor absorption and uniaxial compressive experiments were also performed to examine water absorption characteristics and water-induced strength degradation effect of the investigated deep soft rock samples. The results show that the dominant mineral components in mudstone, coarse sandstone and fine sandstone samples were calcite, quartz and clay respectively. The contents of clay minerals in all samples were relatively high and ranged from 12.3% (N-4) to 56.5% (XS-1). Water vapor absorption processes of all the soft rock samples follow an exponential law which is very similar to the water vapor absorption behavior of conglomerate samples reported in our earlier study. Correlation analyses also suggested that there were good positive correlation relationships between water absorptivity and clay minerals for both mudstone and sandstone samples. Furthermore, it was found that vapor absorption was not correlated with the porosity for mudstone, however, positive correlation relationship was found between them for sand-stone. Correlation analysis between UCS, modulus of elasticity and water content demonstrated that both of them tend to decrease with the increase of their water content due to water absorption.

  12. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Majid Hassanizadeh, S.; van Genuchten, Martinus Th.

    2017-01-01

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass cylinder filled with pure volatile organic compound (VOC). Results showed that air phase concentrations of both TCE and toluene increased relatively quickly to their maximum values and then became constant. We considered subsequent dissolution into both stirred and unstirred water reservoirs. Results of the stirred experiments showed a quick increase in the VOC concentrations with time up to their solubility limit in water. VOC vapor dissolution was found to be independent of pH. In contrast, salinity had a significant effect on the solubility of TCE and toluene vapors. VOC evaporation and vapor dissolution in the stirred water reservoirs followed first-order rate processes. Observed data could be described well using both simplified analytical solutions, which decoupled the VOC dynamics in the air and water phases, as well as using more complete coupled solutions. However, the estimated evaporation (ke) and dissolution (kd) rate constants differed by up to 70% between the coupled and uncoupled formulations. We also numerically investigated the effects of fluid withdrawal from the small water reservoir due to sampling. While decoupling the VOC air and water phase mass transfer processes produced unreliable estimates of kd, the effects of fluid withdrawal on the estimated rate constants were found to be less important. The unstirred experiments showed a much slower increase in the dissolved VOC concentrations versus time. Molecular diffusion of the VOCs within the aqueous phase became then the limiting factor for mass transfer from air to water. Fluid withdrawal during sampling likely caused some minor convection within the reservoir, which was simulated by increasing the

  13. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  14. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2008-02-01

    Full Text Available Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres and tropical lower stratospheric (TLS water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux, and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation. After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006. The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde temperatures (up to 2005 with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor

  15. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  16. Titan's atmosphere from ISO observations: Temperature, composition and detection of water vapor

    Science.gov (United States)

    Coustenis, A.; Salama, A.; Lellouch, E.; Encrenaz, Th.; de Graauw, Th.; Bjoraker, G. L.; Samuelson, R. E.; Gautier, D.; Feuchtgruber, H.; Kessler, M. F.; Orton, G. S.

    1998-09-01

    Observations of Titan in the thermal infrared (2.36-45.2 mu m) were performed by ISO, in Jan. and Dec. 1997, with resolving powers between 1500 and 3000 in the Grating mode and up to 30000 in the Fabry-Perot mode. Two pure rotational water lines were observed using the ISO/SWS/Grating (R=2000) at 39.4 and 43.9 mu m, with fluxes of about 2 Jy over a continuum of 60 Jy [1], with S/N ~ 8. The flux observed can be reproduced with a constant abundance of ~ 4 x 10(-10) , or with a recent photochemical profile [2] multiplied by a factor of 0.4. This yields a H_2O vapor mole fraction of about 10(-8) at the 400 km altitude level (column density of 2.5 x 10(14) mol cm(-2) ). The inferred water influx at Titan at 700 km of altitude is : (0.8-2.8) x 10(6) mol cm(-2) s(-1) , compatible with the CO2 observed abundance and similar to that found at Saturn [3]. This suggests that infalling material from Saturn rings may not be the dominant source of Saturn's water. The analysis of the 233-1500 cm(-1) spectrum of ISO/SWS has provided the thermal and compositional structure of Titan on a disk-average [4]. In particular, observations of the CH_3D band at 1150 cm(-1) significantly improved the determination of the D/H ratio in Titan's stratosphere. The new value of 7.5 x 10(-5) , is four times lower than in comets and suggests that Titan's atmosphere is not of cometary origin, but rather formed by outgassing from the interior. We have also tested available vertical profiles and inferred upper limits for a few likely candidates in Titan's stratosphere (such as benzene and allene) [4]. References [1] COUSTENIS, A., et al. 1998a. Astron. Astrophys. 336, L85. [2] LARA, L. M., et al. 1996. J. Geophys. Res.-Planets 101, 23261-23283. [3] FEUCHTGRUBER, H., et al. 1997. Nature 389, 159-162. [4] COUSTENIS, A., et al. 1998b. Submitted for publication.

  17. Mean ozone and water vapour height profiles for Southern hemisphere region using radiosonde or ozonesonde and haloe satelite data

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-01-01

    Full Text Available The aim of this work is to construct a model (mean) profile for ozone and water vapor in Southern hemisphere latitude using 14 years (1993-2006) of Halogen Occultation Experiment (HALOE) satellite data and about 10 years (1998-2007) of the Southern...

  18. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    Science.gov (United States)

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  19. "Phantom ion effect" and the contact potential of the water-vapor interface.

    Science.gov (United States)

    Levin, Yan

    2008-09-28

    The contact (junction) potential between water-vapor and water-oil interfaces is studied theoretically. Unlike the previous studies, we show that ionic contribution to the contact potential vanishes when the concentration of aqueous electrolyte goes to zero. The incorrect prediction of a large ionic contribution to the junction potential in the infinite dilution limit, obtained in the earlier studies, is traced back to the inappropriate use of the grand-canonical ensemble for strongly inhomogeneous Coulomb systems. It is shown that for these systems, the thermodynamic limit is not reached even when the number of particles is astronomically large, on the order of 10(24). There is, therefore, no equivalence between statistical ensembles. For realistic, finite size systems, canonical calculation predicts a vanishing ionic contribution to the junction potentials of water-vapor and water-oil interfaces even for very concentrated electrolyte solutions.

  20. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.;

    2002-01-01

    . FLUXNETs goals are to understand the mechanisms controlling the exchanges of CO2, water vapor and energy across a spectrum of time and space scales, and to provide information for modeling of carbon and water cycling across regions and the globe. At a subset of sites, net carbon uptake (net ecosystem......The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables...... associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes. except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes = 3.4 g CO2/kg H2O...

  1. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    Science.gov (United States)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  2. What does the Unexpected Detection of Water Vapor in Arcturus' Atmosphere Tell us?

    Science.gov (United States)

    Ryde, N.; Lambert, D. L.; Richter, M. J.; Lacy, J. H.; Greathouse, T. K.

    In this talk we presented and discussed our unexpected detection of water vapor in the disk-averaged spectrum of the K2IIIp red giant Arcturus [for details, see Ryde et al. (2002)]. Arcturus, or alpha Bootes is, with its effective temperature of 4300 K, the hottest star yet to show water vapor features. We argue that the water vapor is photospheric and that its detection provides us with new insights into the outer parts of the photosphere. We are not able to model the water vapor with a standard, one-component, 1D, radiative-equilibrium, LTE model photosphere, which probably means we are lacking essential physics in such models. However, we are able to model several OH lines of different excitation and the water-vapor lines satisfactorily after lowering the temperature structure of the very outer parts of the photosphere at log tau(500)=-3.8 and beyond compared to a flux-constant, hydrostatic, standard marcs model photosphere. Our new semi-empirical model is consistently calculated from the given temperature structure. We will discuss some possible reasons for a temperature decrease in the outer-most parts of the photosphere and the assumed break-down of the assumptions made in classical model-atmosphere codes. In order to understand the outer photospheres of these objects properly, we will, most likely, need 3D hydrodynamical models of red giants also taking into account full non-LTE and including time-dependent effects of, for example, acoustic wave heating sensitive to thermal instabilities.

  3. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying;

    2016-01-01

    -liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation.......The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic conditions using the nucleation and droplet growth...

  4. Behavior and Stability of Ground Ice on Ceres: Modeling Water Vapor Production

    Science.gov (United States)

    Landis, M. E.; Byrne, S.; Schorghofer, N.; Schmidt, B. E.; Raymond, C. A.; Russell, C.

    2016-12-01

    Telescopic observations of Ceres in 2014 suggest the existence of a transient water vapor exosphere [1] being produced at a rate of 6kg/s. With the arrival of the Dawn spacecraft at Ceres, additional data is available to constrain sources of the detection. Our models are described in [2] and are based on the work of [3]. We model three scenarios: pore-filling ground ice, excess ground ice, and exposed surface ice. We calculate the surface temperature of Ceres over one year, based on current orbital parameters, for input to the vapor production model based on [4,5]. We assume that ground ice has been present on Ceres over the lifetime of the solar system. For pore-filling ground ice, we assume a 50% volume fraction of ice within the regolith and an overlying sublimation lag that grows from an initially near-zero thickness 4.5 Gyr ago. Vapor produced currently by Ceres-wide ice-table retreat is on the order of 0.1 kg/s. It is unlikely the 6 kg/s exosphere is produced by sublimation of pore-filling ground ice. Massive ground ice results in thinner sublimation lags over the course of solar system history. To match the 6kg/s whole-Ceres vapor production, we require enough ice such that the current sublimation lag accumulated over 4.5 Gyr would be 1m at low latitudes. Sublimation of a layer that would match the results of [6] would be currently producing a factor of 10 less water vapor that observed by [1]. Exposed surface ice at the equator could produce up to 1kg/s/km2 of water given the correct season [2]. A few km2 of surface ice, if close to the equator and observed at the right time of year, could produce the vapor observation of [1]. However, bright spots (possibly exposed surface ice) occur at high latitudes and within craters a few km in diameter. Crater wall shadowing can quickly compound the latitudinal variation in water vapor production, reducing vapor production to a few percent of the shadow-free case. Our results suggest the exosphere observed in [1] was

  5. Impact of typhoons on the UTLS ozone and water vapor distribution within the Asian summer monsoon anticyclone during the SWOP campaign in Lhasa 2013

    Science.gov (United States)

    Li, Dan; Vogel, Bärbel; Bian, Jianchun; Müller, Rolf

    2016-04-01

    During the sounding water vapor, ozone, and particle (SWOP) campaign during the Asian Summer Monsoon (ASM) organized by the Institute of Atmospheric Physics, Chinese Academy of Sciences, ozone and water vapor profiles were measured by balloon-borne sensors in Lhasa (29.66°N, 91.14°E, elevation 3,650 m), China in August 2013. Totally, 23 soundings were launched, half of which show some deviations from the typical relationship between ozone and water vapor in the tracer-tracer correlation in the upper troposphere and lower stratosphere (UTLS). 20-day backward trajectories of each sounding were calculated using the trajectory module of the Chemical Lagrangian Model of the Stratosphere (CLaMS) to analyse these deviations. Our results demonstrate that during this period three typhoons (Jebi, Utor, and Trami) occurred over the Northwest Pacific Ocean, which have impacts on the vertical structure of ozone and water vapor by transporting the maritime airmasses from the boundary layer. These airmasses with poor ozone were transported to the UTLS by the strong uplift associated with the typhoons, and then entered the ASM anticyclone. Thereafter, air parcels arrived at the observation site through two main pathways: first rotational subsidence, during which air parcels decend slowly along a circle following the anticyclone flow with a timescale of one week, and second direct horizontal transport from the location of the typhoon to the station, where air parcels are transported directly towards the station within approximately three days.

  6. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  7. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  8. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  9. Energy and water vapor transport across a simplified cloud-clear air interface

    CERN Document Server

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  10. Obliquity-Controlled Water Vapor/Trace Gas Feedback in the Martian Greenhouse Cycle

    Science.gov (United States)

    Mischna, M. A.; Baker, V. R.; Milliken, R.; Richardson, M. I.; Lee, C.

    2013-12-01

    We have explored possible mechanisms for the generation of warm, wet climates on early Mars as a result of greenhouse warming by both water vapor and periodic volcanic trace gas emissions, using the Mars Weather Research and Forecasting (MarsWRF) general circulation model. The presence of both water vapor (a strong greenhouse gas) and other trace greenhouse gases (such as SO2) in a predominantly CO2 atmosphere may act, under certain conditions, to elevate surface temperatures above the freezing point of liquid water, at least episodically. The levels of warming obtained in our simulations do not reach the values seen in Johnson et al., (2008, JGR, 113, E08005), nor are they widespread for extended periods. Rather, warming above 273 K is found in more localized environments and for geologically brief periods of time. Such periodic episodes are controlled by two factors. First is the obliquity of the planet, which plays a significant role is ';activating' extant surface water ice reservoirs, allowing levels of atmospheric water vapor to rise when obliquity is high, and fall precipitously when the obliquity is low. During these low-obliquity periods, the atmosphere is all but incapable of supporting warm surface temperatures except for brief episodes localized wholly in the tropics; thus, there is a natural regulator in the obliquity cycle for maintaining periodic warming. Second is the presence of a secondary trace gas 'trigger', like volcanically released SO2, in the atmosphere. In the absence of such a trace gas, water vapor alone appears incapable of raising temperatures above the melting point; however, by temporarily raising the baseline global temperatures (in the absence of warming by water vapor) by 10-15 K, as with SO2, the trigger gas keeps atmospheric temperatures sufficiently warm, especially during nighttime, to maintain levels of water vapor in the atmosphere that provide the needed warming. Furthermore, we find that global warming can be achieved more

  11. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  12. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    Science.gov (United States)

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  13. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  14. Solar geoengineering, atmospheric water vapor transport, and land plants

    Science.gov (United States)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  15. Comparison of Columnar Water-Vapor Measurements from Solar Transmittance Methods

    Science.gov (United States)

    Schmid, Beat; Michalsky, J.; Slater, Donald W.; Barnard, James C.; Halthore, Rangasayi N.; Liljegren, James C.; Holben, Brent N.; Eck, Thomas F.; Livingston, John M.; Russell, Philp B.

    2001-01-01

    The Atmospheric Radiation Measurement program studied water vapor abundance measurement at its southern Great Plains site in the fall of 1997. The program used a large number of instruments, including four solar radiometers. By measuring solar transmittance in the 0.94 micrometer water apor absorption band, they were able to measure columnar water vapor (CWV). In the second round of comparison we used the same radiative transfer model, and the same line-by-line code (which includes recently corrected H2O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8 - 13 %. The model was not responsible for the 8 % spread in CWV which remained.

  16. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  17. Comparison of columnar water vapor over northern China derived from ground-based measurements and MODIS

    Science.gov (United States)

    Liu, Chaoshun; Shi, Runhe; Gao, Wei; Bai, Kaixu

    2011-09-01

    Water vapor represents a small but environmentally significant constituent of the atmosphere. This study retrieved columnar water vapor (CWV) with the 939.3 nm band of a Multi-filter Rotating Shadowband Radiometer (MFRSR) using the modified Langley technique from September 23, 2004 to June 20, 2005 at the XiangHe site.To improve the credibility, the MFRSR results were compared with those obtained from the AERONET (AErosol RObotic NETwork) CIMEL sun-photometer measurements, co-located at the XiangHe site, and the Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Total Precipitable Water Product (MOD05), respectively. These comparisons show a good agreement in terms of correlation coefficients, slopes, and offsets, revealing that the accuracy of CWV estimation using the MFRSR instrument is reliable and suitable for extended studies in northern China.

  18. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    Science.gov (United States)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  19. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    Science.gov (United States)

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble

  20. Addressing water vaporization in the vicinity of an exploding wire

    Science.gov (United States)

    Grinenko, A.; Gurovich, V. Tz.; Krasik, Ya. E.; Dolinsky, Yu.

    2006-12-01

    The phase state of thin (˜1μm) layer of water adjacent to the surface of rapidly heated thin wire 100±50μm in radius is analyzed by computer hydrodynamic calculation. It is shown that when heating of a wire to a temperature of 420°C is achieved in less than ˜500ns, the trajectory of the phase state is contained in the liquid part of the phase diagram. This suggests additional proof of and an explanation for the absence of shunting plasma discharge in fast underwater electrical wire explosions.

  1. Comparison of Water Vapor Measurements by Airborne Sun photometer and Near-Coincident In Situ and Satellite Sensors during INTEX-ITCT 2004

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, J.; Schmid, Beat; Redemann, Jens; Russell, P. B.; Ramirez, Samuel; Eilers, J.; Gore, W.; Howard, Samuel; Pommier, J.; Fetzer, E. J.; Seemann, S. W.; Borbas, E.; Wolfe, Daniel; Thompson, Anne M.

    2007-06-06

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes, and with water vapor profiles retrieved from AIRS measurements during 8 Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during 5 Aqua and 5 Terra overpasses. For 35 J31 vertical profiles mean (bias) and rms AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1% and 8.8%, respectively. For 22 aircraft profiles within 1 h and 130 km of radiosonde soundings, AATS-minus-sonde bias and rms LWV differences are -5.4% and 8.8%, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3% and 8.4%, respectively. AIRS LWV retrievals within 80 km of J31 profiles yield lower bias and rms differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8% to 5.8%, and the rms difference decreases from 21.5% to 16.4%. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2% to +6% and rms differences of ~20% below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5-km at nadir) are biased wet by 10.4% compared to AATS over-ocean near surface retrievals. The MODIS Aqua subset (79 grid cells) exhibits a wet bias of 5.1%, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2%.

  2. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    Science.gov (United States)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near

  3. Water Vapor Radiometer-Global Positioning System Comparison Measurements and Calibration of the 20 to 32 Gigahertz Tropospheric Water Vapor Absorption Model

    Science.gov (United States)

    Keihm, S. J.; Bar-Sever, Y.; Liljegren, J.

    2000-10-01

    Collocated measurements of opacity (from water vapor radiometer (WVR) brightness temperatures) and wet path delay (from ground-based tracking of Global Positions System (GPS) satellites) are used to constrain the model of atmospheric water vapor absorption in the 20 to 32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately 5 months of data were obtained from two experiment sites. At the Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma, three independent WVRs provided near-continuous opacity measurements over the interval from July through September 1998. At NASA's Goldstone tracking station in the California desert, two WVRs obtained opacity data over the September through October 1997 interval. At both sites, a GPS receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of three candidate absorption models referenced in the recent literature. With one exception, all three models provide agreement within approximately 5 percent of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2 to 3 percent level. This accuracy is sufficient to meet the requirements of the tropospheric calibration system now being deployed at Goldstone to support the Cassini Gravitational Wave Experiment.

  4. Water Vapor Diffusion and Adsorption of Sandstones: Influence of Rock Texture and Composition

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2016-01-01

    Full Text Available The term sandstone is used for wide range of rocks containing quartz clasts which can be cemented by secondary precipitated quartz or calcite; moreover the space between clasts can be filled by matrix. These facts result in existence of numerous rocks having highly various properties. Sandstones have been used as construction materials due to their good accessibility and workability. Since most of sandstones are porous, water vapor can penetrate through sandstone constructions. The rate of water vapor diffusion, as well as the vapor sorption isotherm, was determined for range of sandstone types. The diffusion resistance factor was found to be dependent on the total porosity of sandstone but the sorption behavior was strongly influenced by nature of the particular sandstone; the specific surface area of stone and presence of clay matrix are determining its sorption isotherm. The published data enable estimating (i diffusion resistance factor of a sandstone via knowledge of its total porosity and (ii the sorption isotherm via knowledge of the stone’s nature and specific surface area. This approach can significantly reduce the time necessary to acquire vapor-related properties of a sandstone.

  5. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Directory of Open Access Journals (Sweden)

    D. W. Fahey

    2014-04-01

    Full Text Available The AquaVIT-1 Intercomparison of Atmospheric Water Vapor Measurement Techniques was conducted at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere where water vapor reaches its lowest atmospheric values (less than 10 ppm. With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, either by extracting air into instrument flow systems, locating instruments inside the chamber, or sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm. In the absence of an accepted reference instrument, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ. In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ. The upper limit of precision was also derived for each instrument from the reported data. These results indicate that the core instruments, in general, have intrinsic skill to determine unknown water vapor mixing ratios with an accuracy of at least ±20%. The implication for atmospheric

  6. The abundance and distribution of water vapor in Jupiter's atmosphere

    Science.gov (United States)

    Bjoraker, Gordon L.; Larson, Harold P.; Kunde, Virgil G.

    1986-01-01

    The atmospheric transmission window between 1800 and 2250/cm in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory and by the IR spectrometer (IRIS) on Voyager. The vertical distribution of H2O was derived for the 1-6 bar portion of Jupiter's troposphere. The spatial variation of H2O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts (NEB, SEB) and the Equatorial Zone and for an average of the North and South Tropical Zones. The H2O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm amagats. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 and +40 deg latitude, the H2O mole fraction, qH2O, is saturated for P less than 2 bars, qH2O = 4 millionths in the 2-4 bar range, and it increases to 3/100,000 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H2O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. A massive H2O cloud at 5 bars, T = 273 K is inconsistent with the observations. Instead, a thin H2O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H2O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the sun.

  7. Isotopic composition of atmospheric water vapor before and after the monsoon's end in the Nagqu River Basin

    Institute of Scientific and Technical Information of China (English)

    YU Wusheng; YAO Tandong; TIAN Lide; WANG Yu; YIN Changliang

    2005-01-01

    Atmospheric water vapor samples were collected in the Nagqu River Basin in the middle of Tibetan Plateau between August and October in 2004. Results show that there exist some fluctuations of the δ18O of atmospheric water vapor, especially before and after the monsoon's end. Moreover, the variety trend of the δ 18O of atmospheric water vapor inverse correlates with that of dew point. Precipitation events make an important effect upon the variation of δ18O of atmospheric water vapor. During the whole sampling period, the δ18O values of atmospheric water vapor are low while precipitation events occurred. The moisture origins also contribute to the variation of δ18O of atmospheric water vapor. The oceanic moisture transported by the southwest monsoon results in lower δ18O of atmospheric water vapor in the Nagqu River Basin. Compared with the influence of the oceanic moisture, the δ18O values, however, appear high resulting from the effect of the continental air mass in this region.

  8. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States); Lesht, B.M.

    1996-06-01

    The operation and calibration of the ARM microwave radiometers is summarized. Measured radiometric brightness temperatures are compared with calculations based on the model using co-located radiosondes. Comparisons of perceptible water vapor retrieved from the radiometer with integrated soundings and co-located GPS retrievals are presented. The three water vapor sensing systems are shown to agree to within about 1 mm.

  9. Detecting shifts in tropical moisture imbalances with satellite-derived isotope ratios in water vapor

    Science.gov (United States)

    Bailey, A.; Blossey, P. N.; Noone, D.; Nusbaumer, J.; Wood, R.

    2017-06-01

    As global temperatures rise, regional differences in evaporation (E) and precipitation (P) are likely to become more disparate, causing the drier E-dominated regions of the tropics to become drier and the wetter P-dominated regions to become wetter. Models suggest that such intensification of the water cycle should already be taking place; however, quantitatively verifying these changes is complicated by inherent difficulties in measuring E and P with sufficient spatial coverage and resolution. This paper presents a new metric for tracking changes in regional moisture imbalances (e.g., E-P) by defining δDq—the isotope ratio normalized to a reference water vapor concentration of 4 mmol mol-1—and evaluates its efficacy using both remote sensing retrievals and climate model simulations in the tropics. By normalizing the isotope ratio with respect to water vapor concentration, δDq isolates the portion of isotopic variability most closely associated with shifts between E- and P-dominated regimes. Composite differences in δDq between cold and warm phases of El Niño-Southern Oscillation (ENSO) verify that δDq effectively tracks changes in the hydrological cycle when large-scale convective reorganization takes place. Simulated δDq also demonstrates sensitivity to shorter-term variability in E-P at most tropical locations. Since the isotopic signal of E-P in free tropospheric water vapor transfers to the isotope ratios of precipitation, multidecadal observations of both water vapor and precipitation isotope ratios should provide key evidence of changes in regional moisture imbalances now and in the future.

  10. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry; Al-Jassim, Mowafak M.; Zhu, Kai; Zhou, Weilie; Berry, J. J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  11. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry G.; Al-Jassim, Mowafak; Zhu, Kai; Zhou, Weilie; Berry, Joseph J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  12. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  13. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  14. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  15. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    Science.gov (United States)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  16. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  17. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  18. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  19. Total Water Vapor Transport Observed in Twelve Atmospheric Rivers over the Northeastern Pacific Ocean Using Dropsondes

    Science.gov (United States)

    Ralph, F. M.; Iacobellis, S.; Neiman, P. J.; Cordeira, J. M.; Spackman, J. R.; Waliser, D. E.; Wick, G. A.; White, A. B.; Fairall, C. W.

    2014-12-01

    Demory et al (2013) recently showed that the global water cycle in climate models, including the magnitude of water vapor transport, is strongly influenced by the model's spatial resolution. The lack of offshore observations is noted as a serious limitation in determining the correct amount of transport. Due to the key role of atmospheric rivers (ARs) in determining the global distribution of water vapor, quantifying transport from ARs is a high priority. This forms a foundation of the CalWater-2 experiment aimed at sampling many ARs during 2014-2018. In February 2014, an "early-start" deployment of the NOAA G-IV research aircraft sampled 10 ARs over the northeast Pacific Ocean. On six of these flights, dropsondes were deployed in a line crossing the AR so as to robustly sample the total water vapor transport (TVT). The TVT is defined here as the sum of the vertically integrated horizontal water vapor transport (IVT) in the AR using a baseline that stretches from its warm southern (or eastern) edge to its cool northern (or western) edge. TVT includes both AR-parallel and AR-perpendicular transport. These data double the overall number of such cross-AR airborne samples suitable for calculating TVT. Analysis of TVT for these six new samples, in combination with the six previous samples from the preceding 16 years (from CalJet, WISPAR, and a Hawaii-based campaign), will be shown. A comparison will be made of the AR width and TVT determined using the well-established integrated water vapor (IWV) threshold of 2 cm, versus an IVT threshold of 250 kg m-1 s-1. Finally, the data from a well sampled case on 13 February 2014 (23 sondes with 75-100 km spacing) will be used to assess the sensitivity of TVT to dropsonde horizontal spacing and vertical resolution. This sensitivity analysis is of practical importance for the upcoming CalWater-2 field campaign where the G-IV will be used to sample many additional AR events, due to the relatively high cost of the dropsondes.

  20. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    Science.gov (United States)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  1. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

    Science.gov (United States)

    Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.

    2016-12-01

    The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

  2. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  3. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  4. Altitude and Latitude Distribution of Atmospheric Aerosol and Water Vapor from the Narrow-Band Lunar Eclipse Photometry

    CERN Document Server

    Ugolnikov, Oleg S

    2007-01-01

    The work contains the description of two narrow IR-bands observational data of total lunar eclipse of March, 3, 2007, one- and two-dimensional procedures of radiative transfer equation solution. The results of the procedure are the extinction values for atmospheric aerosol and water vapor at different altitudes in the troposphere along the Earth's terminator crossing North America, Arctic, Siberia and South-Eastern Asia. The altitude range and possible latitude and altitude resoltion of atmosphere remote sensing by the lunar eclipses observation are fixed. The results of water vapor retrieval are compared with data of space experiment, the scale of vertical water vapor distribution is found.

  5. Water Vapor Adsorption Capacity of Thermally Fluorinated Carbon Molecular Sieves for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Jin-Young Jung

    2013-01-01

    Full Text Available The surfaces of carbon molecular sieves (CMSs were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C to investigate the effects of the fluorine gas (F2 content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.

  6. Global Distribution of Water Vapor and Cloud Cover--Sites for High Performance THz Applications

    CERN Document Server

    Suen, Jonathan Y; Lubin, Philip M

    2014-01-01

    Absorption of terahertz radiation by atmospheric water vapor is a serious impediment for radio astronomy and for long-distance communications. Transmission in the THz regime is dependent almost exclusively on atmospheric precipitable water vapor (PWV). Though much of the Earth has PWV that is too high for good transmission above 200 GHz, there are a number of dry sites with very low attenuation. We performed a global analysis of PWV with high-resolution measurements from the Moderate Resolution Imaging Spectrometer (MODIS) on two NASA Earth Observing System (EOS) satellites over the year of 2011. We determined PWV and cloud cover distributions and then developed a model to find transmission and atmospheric radiance as well as necessary integration times in the various windows. We produced global maps over the common THz windows for astronomical and satellite communications scenarios. Notably, we show that up through 1 THz, systems could be built in excellent sites of Chile, Greenland and the Tibetan Plateau, ...

  7. Considering Organic Carbon for Improved Predictions of Clay Content from Water Vapor Sorption

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2014-01-01

    to water vapor sorption isotherms that can be rapidly measured with a fully automated vapor sorption analyzer are a viable alternative. In this presentation we evaluate the performance of recently developed regression models based on comparison with standard CF measurements for soils with high organic...... carbon (OC) content and propose a modification to improve prediction accuracy. Evaluation of the CF prediction accuracy for 29 soils with clay contents ranging from 6 to 25% and with OC contents from 2.0 to 8.4% showed that the models worked reasonably well for all soils when the OC content was below 2.......4%. For soils with OC>2.4% and CFcontent. Based on 20 soils with CF between 3 and 15% and OC between 2.6 and 8.4%, we propose correction factors to account for the sorbed water content associated with OC. Evaluation of the OC...

  8. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    Energy Technology Data Exchange (ETDEWEB)

    Maerzke, K A; McGrath, M J; Kuo, I W; Tabacchi, G; Siepmann, J I; Mundy, C J

    2009-03-16

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature that are significantly under- and over-estimated, respectively.

  9. Tropical cirrus and water vapor: an effective Earth infrared iris feedback?

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2001-09-01

    Full Text Available We revisit a model of feedback processes proposed by Lindzen et al. (2001, in which an assumed 22% reduction in the area of tropical high clouds per degree of sea surface temperature increase produces negative feedbacks associated with upper tropospheric water vapor and cloud radiative effects. We argue that the water vapor feedback is overestimated in Lindzen et al. (2001 by at least 60%, and that the high cloud feedback should be small. Although not mentioned by Lindzen et al, tropical low clouds make a significant contribution to their negative feedback, which is also overestimated. Using more realistic parameters in the model of Lindzen et al., we obtain a feedback factor in the range of −0.15 to −0.51, compared to their larger negative feedback factor of −0.45 to −1.03.

  10. Identification of atmospheric fronts over the ocean with microwave measurements of water vapor and rain

    Science.gov (United States)

    Katsaros, Kristina B.; Bhatti, Iftekhar; Mcmurdie, Lynn A.; Patty, Grant W.

    1989-01-01

    This paper describes some basic research techniques and algorithms developed to diagnose fronts in cyclonic storms over the ocean with data from satellite-borne microwave radiometers. Methods are developed for flagging strong gradients in integrated atmospheric water vapor and the presence of rain by using data from the SSMR on board the polar orbiting Seasat and Nimbus-7 satellites. Examination of 65 frontal systems showed that the water vapor gradient flag correctly identified 86 percent of the fronts, while the precipitation flagged 91 percent. The two types of flags emphasize different portions of the cyclone and are therefore complementary. Ultimately, these techniques are intended for operational use with data from the Special Sensor Microwave Imager which was launched in June 1987 on a satellite in the Defense Meteorological Satellite Program (DMSP).

  11. Theoretical study of adsorption of water vapor on surface of metallic uranium

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH2 wich C2v configuration is obtained in the state of 5A1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.474 7 kJ.mol-1, which indicates a typical chemical adsorption.

  12. The vertical distribution of water vapor in the atmosphere of Mars

    Science.gov (United States)

    Hess, S. L.

    1976-01-01

    Calculations are performed of the vertical distribution of water vapor and condensate in an adiabatic atmosphere on Mars taking into account turbulent diffusion and terminal velocity. The distributions are found to be substantially different when terminal velocity is included. The eddy-diffusion coefficient in the troposphere cannot be much greater than 100,000 sq cm/sec if optical depths are to be kept low enough to be consistent with observations. Processes in the boundary layer are also discussed. It is concluded that virtually all the water vapor is to be found in the lowest 6-10 km and that the lowest 2 km should have a greater concentration than the rest of that layer. Some observational tests of these ideas and conclusion can be performed by the Viking missions to Mars.

  13. Stratospheric areal distribution of water vapor burden and the jet stream

    Science.gov (United States)

    Kuhn, P. M.; Magaziner, E.; Stearns, L. P.

    1976-01-01

    Radiometrically inferred areal observations of the atmospheric water vapor burden have been made in the 270 to 520 per cm spectral band over western U.S. and the extreme eastern Pacific from the NASA C-141 Kuiper Airborne Observatory. Before this, very few observations from the upper troposphere and lower stratosphere over such a broad area have been made. A total of 30,600 individual observations from eight separate synoptic situations involving eight jet maxima were computer-averaged over 2-deg latitude x 2-deg longitude boxes and related to the polar continental jet. Mean water vapor burdens ranged from 0.00046 to 0.00143 g per sq cm at 13.4 km with a striking peak just north of the jet wind maximum over a region of strong upward vertical motion.

  14. Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Fox, Dennis S.; Opila, Elizabeth J.; Nguyen, QuynhGiao; Humphrey, Donald L.; Lewton, Susan M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Three silicon nitride materials were exposed to dry oxygen flowing at 0.44 cm/s at temperatures between 1200 and 1400 C. Reaction kinetics were measured with a continuously recording microbalance. Parabolic kinetics were observed. When the same materials were exposed to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s, all three types exhibited paralinear kinetics. The material is oxidized by water vapor to form solid silica. The protective silica is in turn volatilized by water vapor to form primarily gaseous Si(OH)4. Nonlinear least squares analysis and a paralinear kinetic model were used to determine both parabolic and linear rate constants from the kinetic data. Volatilization of the protective silica scale can result in accelerated consumption of Si3N4. Recession rates under conditions more representative of actual combustors are compared to the furnace data.

  15. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium

    Science.gov (United States)

    Kiss, Péter T.; Baranyai, András

    2012-11-01

    We studied the vapor-liquid coexistence region of seven molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004), 10.1063/1.1805516], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003), 10.1063/1.1598191], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006), 10.1016/j.cplett.2005.10.135], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012), 10.1063/1.3692602] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011), 10.1063/1.3670962], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 194102 (2012), 10.1063/1.4767063]. We calculated the second virial coefficient, the heat of vaporization, equilibrium vapor pressure, the vapor-liquid coexistence curve, and the surface tension in terms of the temperature. We determined and compared the critical temperatures, densities, and pressures of the models. We concluded that the high temperature slope of the (T-ρ) curve accurately predicts the critical temperature. We found that Gaussian charge distributions have clear advantages over the point charges describing the critical region. It is impossible to describe the vapor-liquid coexistence properties consistently with nonpolarizable models, even if their critical temperature is correct.

  16. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium.

    Science.gov (United States)

    Kiss, Péter T; Baranyai, András

    2012-11-21

    We studied the vapor-liquid coexistence region of seven molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS∕G2, COS∕G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003)], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006)], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 194102 (2012)]. We calculated the second virial coefficient, the heat of vaporization, equilibrium vapor pressure, the vapor-liquid coexistence curve, and the surface tension in terms of the temperature. We determined and compared the critical temperatures, densities, and pressures of the models. We concluded that the high temperature slope of the (T-ρ) curve accurately predicts the critical temperature. We found that Gaussian charge distributions have clear advantages over the point charges describing the critical region. It is impossible to describe the vapor-liquid coexistence properties consistently with nonpolarizable models, even if their critical temperature is correct.

  17. The Influence of Summertime Convection Over Southeast Asia on Water Vapor in the Tropical Stratosphere

    Science.gov (United States)

    Wright, J. S.; Fu, R.; Fueglistaler, S.; Liu, Y. S.; Zhang, Y.

    2011-01-01

    The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small 0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity.

  18. Parameterization of Middle Atmospheric Water Vapor Photochemistry for High-Altitude NWP and Data Assimilation

    Science.gov (United States)

    2008-01-01

    develop fast, accurate parameterizations of strato - spheric ozone photochemistry (McCormack et al., 2004, 2006). MacKenzie and Harwood (2004...effect of the CHEM2D-H2O and ECMWF photochemistry parameterizations on strato - spheric water vapor, where the relevant photochemical time scales are much...conditions that lead to the formation of polar mesospheric clouds. The role of addi- tional physical processes such as molecular diffusion, which is not

  19. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  20. Satellite derived integrated water vapor and rain intensity patterns - Indicators of rapid cyclogenesis

    Science.gov (United States)

    Mcmurdie, Lynn; Katsaros, Kristina

    1992-01-01

    We examine integrated water vapor fields and rain intensity patterns derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) for several rapidly deepening and non-rapidly deepening midlatitude cyclones in the North Atlantic. Our goal is to identify features in the satellite data unique to the rapidly deepening cases, and to explore how these data can potentially be used in the analysis and forecasting of these events.

  1. Satellite derived integrated water vapor and rain intensity patterns: Indicators of rapid cyclogenesis

    Science.gov (United States)

    Mcmurdie, Lynn; Katsaros, Kristina

    1992-01-01

    We examine integrated water vapor fields and rain intensity patterns derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) for several rapidly deepening and non-rapidly deepening midlatitude cyclones in the North Atlantic. Our goal is to identify features in the satellite data unique to the rapidly deepening cases, and to explore how these data can potentially be used in the analysis and forecasting of these events.

  2. Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement

    OpenAIRE

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; U. Pöschl

    2004-01-01

    The interaction of aerosol particles composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa). BSA was chosen as a well-defined model substance for proteins and other macromolecular compoun...

  3. Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement

    OpenAIRE

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; U. Pöschl

    2004-01-01

    The interaction of aerosol particles in the 100–200 nm size range composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor at ambient temperature and pressure (25°C, 1 atm) has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations. BSA was chosen as a well-defined model subs...

  4. Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk

    NARCIS (Netherlands)

    Bergin, E.A.; Hogerheijde, M.R.; Brinch, C.; Fogel, J.; Yıldız, U.A.; Kristensen, L.E.; van Dishoeck, E.F.; Bell, T.A.; Blake, G.A.; Cernicharo, J.; Dominik, C.; Lis, D.; Melnick, G.; Neufeld, D.; Panić, O.; Pearson, J.C.; Bachiller, R.; Baudry, A.; Benedettini, M.; Benz, A.O.; Bjerkeli, P.; Bontemps, S.; Braine, J.; Bruderer, S.; Caselli, P.; Codella, C.; Daniel, F.; Di Giorgio, A.M.; Doty, S.D.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J.R.; de Graauw, T.; Helmich, F.; Herczeg, G.J.; Herpin, F.; Jacq, T.; Johnstone, D.; Jørgensen, J.K.; Larsson, B.; Liseau, R.; Marseille, M.; McCoey, C.; Nisini, B.; Olberg, M.; Parise, B.; Plume, R.; Risacher, C.; Santiago-García, J.; Saraceno, P.; Shipman, R.; Tafalla, M.; van Kempen, T.A.; Visser, R.; Wampfler, S.F.; Wyrowski, F.; van der Tak, F.; Jellema, W.; Tielens, A.G.G.M.; Hartogh, P.; Stützki, J.; Szczerba, R.

    2010-01-01

    We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the

  5. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  6. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  7. A Satellite Survey of Cloud Cover and Water Vapor in the Southwestern USA and Northern Mexico

    Science.gov (United States)

    Carrasco, E.; Avila, R.; Erasmus, A.; Djorgovski, S. G.; Walker, A. R.; Blum, R.

    2017-03-01

    Cloud cover and water vapor conditions in the southwestern USA and northern Mexico were surveyed as a preparatory work for the Thirty Meter Telescope (TMT) in situ site testing program. Although the telescope site is already selected, the TMT site testing team decided to make public these results for its usefulness for the community. Using 58 months of meteorological satellite observations between 1993 July and 1999 September, different atmospheric parameters were quantified from data of the 10.7 μm and of 6.7 μm windows. In particular, cloud cover and water vapor conditions were identified in preferred areas. As a result of the aerial analysis, 15 sites of existing and potential telescope were selected, compared, and ranked in terms of their observing quality. The clearest sites are located along the spine of the Baja peninsula and into southern California on mountain peaks above the temperature inversion layer. A steep gradient of cloudiness was observed along the coast where coastal cloud and fog are trapped below the inversion layer. Moving from west to east over the continent, a significant increase in cloudiness was observed. The analysis shows that San Pedro Mártir, San Gorgonio Mountain and San Jacinto Peak have the largest fraction of clear sky conditions (∼74%). The site with the optimal combination of clear skies and low precipitable water vapor is Boundary Peak, Nevada. An approach based in satellite data provided a reliable method for sites comparison.

  8. Atmospheric water vapor monitoring from local GNSS networks: comparisons of GNSS data adjustment strategies

    Science.gov (United States)

    Capponi, Martina; Fermi, Alessandro; Monti Guarnieri, Andrea; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    Since many years GNSS has been regarded by the meteorological community as one of the systems for atmospheric water vapor remote sensing. Time series of GNSS wet delays are estimated as by-products of accurate positioning. Their assimilation into numerical weather prediction (NWP) models is being investigated at both research and operational levels, although typically at coarse space resolutions (e.g. few tens of km). A dedicated use of this system for water vapor monitoring at higher resolutions is still under investigation. Ad hoc networks have been designed and implemented to collect data at a high spatial resolution (station inter-distances of 1-10 km), to have an insight into the spatial distribution of GNSS derived wet delays and/or into the impact of such information on high resolution NWP models. Within this research framework the paper reports the comparisons carried out between ZWD time series obtained from the data collected by an Italian and a Japanese dense networks of permanent geodetic GNSS receivers. Tropospheric delays have been estimated by applying different data adjustment strategies: relative positioning and PPP (precise point positioning). For this last strategy two different solutions have been analyzed and compared: the Bernese software batch solution, and the RTNet software Kalman filter solution. Assessment of the results were performed against IGS GNSS delays as well as by comparison with radiosonde-derived precipitable water vapor (PWV).

  9. Hydration or dehydration: competing effects of upper tropospheric cloud radiation on the TTL water vapor

    Directory of Open Access Journals (Sweden)

    L. Wu

    2012-02-01

    Full Text Available A tropical channel version of the Weather Research and Forecasting (WRF model is used to investigate the radiative impacts of upper tropospheric clouds on water vapor in the tropical tropopause layer (TTL. The WRF simulations of cloud radiative effects and water vapor in the upper troposphere and lower stratosphere show reasonable agreement with observations, including approximate reproduction of the water vapor "tape recorder" signal. By turning on and off the upper tropospheric cloud radiative effect (UTCRE above 200 hPa, we find that the UTCRE induces a warming of 0.76 K and a moistening of 9% in the upper troposphere at 215 hPa. However, the UTCRE cools and dehydrates the TTL, with a cooling of 0.82 K and a dehydration of 16% at 100 hPa. The enhanced vertical ascent due to the UTCRE contributes substantially to mass transport and the dehydration in the TTL. The hydration due to the enhanced vertical transport is counteracted by the dehydration from adiabatic cooling associated with the enhanced vertical motion. The UTCRE also substantially changes the horizontal winds in the TTL, resulting in shifts of the strongest dehydration away from the lowest temperature anomalies in the TTL. The UTCRE increases in-situ cloud formation in the TTL. A seasonal variation is shown in the simulated UTCRE, with stronger impact in the moist phase from June to November than in the dry phase from December to May.

  10. Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method.

    Science.gov (United States)

    Hsieh, Cheng-I; Lai, Mei-Chun; Hsia, Yue-Joe; Chang, Tsang-Jung

    2008-07-01

    This study investigated the flux-variance relationships of temperature, humidity, and CO(2), and examined the performance of using this method for predicting sensible heat (H), water vapor (LE), and CO(2) fluxes (F(CO2)) with eddy-covariance measured flux data at three different ecosystems: grassland, paddy rice field, and forest. The H and LE estimations were found to be in good agreement with the measurements over the three fields. The prediction accuracy of LE could be improved by around 15% if the predictions were obtained by the flux-variance method in conjunction with measured sensible heat fluxes. Moreover, the paddy rice field was found to be a special case where water vapor follows flux-variance relation better than heat does. However, the CO(2) flux predictions were found to vary from poor to fair among the three sites. This is attributed to the complicated CO(2) sources and sinks distribution. Our results also showed that heat and water vapor were transported with the same efficiency above the grassland and rice paddy. For the forest, heat was transported 20% more efficiently than evapotranspiration.

  11. Analysis of heavy particle processes in low current dc discharge in water vapor

    Science.gov (United States)

    Sivos, Jelena; Maric, Dragana; Skoro, Nikola; Malovic, Gordana; Petrovic, Zoran Lj

    2016-09-01

    Results presented in our recent paper show that heavy particles - positive ions and fast neutrals (created in charge transfer processes) - can have significant contribution to the processes of excitation at moderate and high reduced electric fields (E / N) . In the case of water vapor, hydrogen ions and fast atoms are the most probable candidates, as the lightest products in water vapor discharges. In order to identify dominant heavy species in water vapor discharge, we analyzed discharge parameters in low current Townsend regime. Based on the model developed by Phelps and coworkers in 1993. we were able to estimate transit time of ions from experimentally determined frequency of damped oscillations and parameters of electrical circuit. Furthermore, we compared calculated transit times with transit times of hydrogen ions (H+, H2+,H3+).Initial analysis indicates that H2+is dominant ion in the range of moderate E / N ( 2 kTd). Calculations were done for the discharge initiated at electrode gap of 1.1 cm and pressure (p) x gap (d) of 0.6 Torrcm, which corresponds to the conditions of the minimum of Paschen curve. In the next step we will extend the analysis to wider range operating conditions. This work is supported by the Serbian MESTD under project numbers ON 171037 and III 41011.

  12. Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide

    Science.gov (United States)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.

    2009-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.

  13. Simulation and design of solar-blind Raman Lidar for water vapor measurement

    Science.gov (United States)

    Shi, Dongchen; Hua, Dengxin; Gao, Fei; Lei, Ning; Wang, Li

    2017-02-01

    A novel water vapor Raman Lidar is developed at a solar-blind wavelength of 266nm. To obtain signals of Mie-Rayleigh scattering spectra and Raman scattering spectra of H2O, N2 and O2 with fine separation and high efficient extraction, a newly high-efficiency Raman polychromatic system is designed using the combination of dichroic mirrors and narrow- band interference filters. Using the standard atmospheric scattering models and aerosol extinction coefficients, the rejection rate of Mie-Rayleigh scattering signals and the signal-to-noise ratio of atmospheric water vapor measurement are simulated. The optimal parameters of Lidar system are obtained based on the detailed analysis and the discussion of the SNR of echo signals. Lidar emission wavelength and Raman scattering echo wavelengths are all in the ultraviolet range below 300nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of detecting water vapor in the daytime without the influence of solar background radiation in the system. Through the comparison between the Raman Lidars at the wavelengths of 266nm and 355nm respectively, it is concluded that the detection performance of the designed system at 266nm is better than the Raman Lidar system at 355nm during the daytime measurement, and the measurement height can be up to the 4 km.

  14. The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like.

    Science.gov (United States)

    Willard, Adam P; Chandler, David

    2014-11-14

    With molecular simulation for water and a tunable hydrophobic substrate, we apply the instantaneous interface construction [A. P. Willard and D. Chandler, "Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010)] to examine the similarity between a water-vapor interface and a water-hydrophobic surface interface. We show that attractive interactions between a hydrophobic surface and water affect capillary wave fluctuations of the instantaneous liquid interface, but these attractive interactions have essentially no effect on the intrinsic interface. The intrinsic interface refers to molecular structure in terms of distances from the instantaneous interface. Further, the intrinsic interface of liquid water and a hydrophobic substrate differs little from that of water and its vapor. The same is not true, we show, for an interface between water and a hydrophilic substrate. In that case, strong directional substrate-water interactions disrupt the liquid-vapor-like interfacial hydrogen bonding network.

  15. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System.

    Science.gov (United States)

    Wulfmeyer, V; Walther, C

    2001-10-20

    Taking into account Poisson, background, amplifier, and speckle noise, we can simulate the precision of water-vapor measurements by using a 10-W average-power differential absorption lidar (DIAL) system. This system is currently under development at Hohenheim University, Germany, and at the American National Center for Atmospheric Research. For operation in the 940-nm region, a large set of measurement situations is described, including configurations that are considered for the first time to the authors' knowledge. They include ultrahigh-resolution measurements in the surface layer (resolutions, 1.5 m and 0.1 s) and vertically pointing measurements (resolutions, 30 m and 1 s) from the ground to 2 km in the atmospheric boundary layer. Even during daytime, the DIAL system will have a measurement range from the ground to the upper troposphere (300 m, 10 min) that can be extended from a mountain site to the lower stratosphere. From the ground, for the first time of which the authors are aware, three-dimensional fields of water vapor in the boundary layer can be investigated within a range of the order of 15 km and with an averaging time of 10 min. From an aircraft, measurements of the atmospheric boundary layer (60 m, 1 s) can be performed from a height of 4 km to the ground. At higher altitudes, up to 18 km, water-vapor profiles can still be obtained from aircraft height level to the ground. When it is being flown either in the free troposphere or in the stratosphere, the system will measure horizontal water-vapor profiles up to 12 km. We are not aware of another remote-sensing technique that provides, simultaneously, such high resolution and accuracy.

  16. Sampling tritiated water vapor from the atmosphere by an active system using silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Alegria, N., E-mail: natalia.alegria@ehu.es [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Idoeta, R.; Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain)

    2011-11-15

    Among the different methods used to collect the tritiated water vapor (HTO) contained in the atmosphere, one of the most worldwide used is its collection using an air pump, which forces the air to pass through a dry silica gel trap. The silica gel is then distilled to remove the water collected, which is measured in a liquid scintillation counting system. In this paper, an analysis of the water collection efficiency of the silica gel has been done as a function of the temperatures involved, the dimensions of the pipe driving the air into the silica gel traps, the air volume passing through the trap and the flow rates used. Among the obtained conclusions, it can be pointed out that placing the traps inside a cooled container, the amount of silica gel needed to collect all the water contained in the air passing through these traps can be estimated using a weather forecast and a psychometric chart. To do this, and as thermal equilibrium between incoming and open air should be established, a suitable design of the sampling system is proposed. - Highlights: > To recollect the atmosphere air tritiated water vapor, an active system was used. > The system is an air pump and three traps with silica gel connected by a rubber pipe. > The silica gel retention depends on the meteorological conditions and the flow rate. > The amount of water collected and the mass of silica gel need were calculated, F.

  17. Desalination of water by vapor-phase transport through hydrophobic nanopores

    Science.gov (United States)

    Lee, Jongho; Karnik, Rohit

    2010-08-01

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport of water through a nanopore with saline water on one side and pure water on the other side under a pressure difference was theoretically analyzed under the rarefied gas assumption using a probabilistic framework that accounts for diffuse scattering from the pore walls as well as reflection from the menisci. The analysis revealed that in addition to salinity, temperature, and pressure difference, the nanopore aspect ratio and the probability of condensation of a water molecule incident on a meniscus from the vapor phase, known as the condensation coefficient, are key determinants of flux. The effect of condensation coefficient on mass flux becomes critical when the aspect ratio is small. However, the mass flux becomes independent of the condensation coefficient as the pore aspect ratio increases, converging to the Knudsen flux for long nanopores. For design of a nanopore membrane that can trap vapor, a minimum aspect ratio is derived for which coalescence of the two interfaces on either side of the nanopore remains energetically unfavorable. Based on this design criterion, the analysis suggests that mass flux in the range of 20-70 g/m2 s may be feasible if the system is operated at temperatures in the range of 30-50 °C. The proposed approach further decouples transport properties from material properties of the membrane, which opens the possibility of engineering membranes with appropriate materials that may lead to reverse osmosis membranes with improved flux, better selectivity, and high chlorine resistance.

  18. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  19. The Atmospheric Water Vapor Content in Fennoscandia Measured by GPS 1996- 2006

    Science.gov (United States)

    Elgered, G.; Nilsson, T.; Ning, T.; Johansson, J.

    2008-12-01

    We have used 10 years of ground-based GPS data to estimate time series of the water vapor content above each one of 33 GPS receiver sites in Finland and Sweden. Although a 10 year period is much too short to search for climate change we use the data set to assess the stability and consistency of the linear trend of the water vapor content that can be estimated from the data. The linear trends in the integrated water vapor content range from -0.2 to +1.0 kg m-2 decade-1. As one may expect we find different systematic patterns for summer and winter data. The formal uncertainty of these trends, taking the temporal correlation of the variability about the estimated model into account, are of the order of 0.4 kg m-2 decade-1. Mostly, this uncertainty is due to the natural short-term variability in the water vapor content, while the formal uncertainties in the GPS measurements have only a small impact on the trend errors. The overall goal for the possible use of GPS data in climate research is to determine to which extent these independent data can be used to discriminate between different climate models --- both in terms of absolute values as well as long term trends --- thereby improving the quality of the models and increasing the probability to produce realistic scenarios of the future climate. It seems reasonable to assume that such applications will require uncertainties of less than 0.1 kg m-2 decade-1. In addition to GPS also additional global navigational satellite systems (GNSS), such as the European Galileo and the finalization of the Russian GLONASS, can be used in the future. This will significantly improve the spatial sampling of the atmosphere, and also reduce the relative influence of orbit errors for individual satellites. On the other hand such changes can introduce new systematic effects in the estimated water vapor time series and care must be taken in order to understand and correct for such effects.

  20. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  1. Atmospheric water vapor as driver of litter decomposition during rainless seasons

    Science.gov (United States)

    Dirks, I.; Navon, Y.; Kanas, D.; Dumbur, R.; Grünzweig, José

    2010-05-01

    Litter production in many drought-affected ecosystems coincides with the beginning of an extended season of no or limited rainfall. Because of lack of moisture litter decomposition during such periods has been largely ignored so far, despite potential importance for the overall decay process in such ecosystems. To determine drivers and extent of litter decay in rainless periods a litterbag study was conducted in Mediterranean shrublands, dwarf shrublands and grasslands. Heterogeneous local and common straw litter was left to decompose in open and shaded patches of various field sites in two study regions. Fresh local litter lost 4-18% of its initial mass over about 4 months without rainfall, which amounted to 15-50% of total annual decomposition. Lab incubations and changes in chemical composition suggested that litter was degraded by microbial activity, enabled by absorption of water vapor from the atmosphere. High mean relative humidity of 85% was measured during 8-9 h of most nights, but the possibility of fog deposition or dew formation at the soil surface was excluded. Over 95% of the variation in mass loss and changes in litter nitrogen were explained by characteristics of water-vapor uptake by litter. Photodegradation induced by the intense solar radiation was an additional mechanism of litter decomposition as indicated by lignin dynamics. Lignin loss from litter increased with exposure to ultraviolet radiation and with initial lignin concentration, together explaining 90-97% of the variation in lignin mass change. Results indicate that water vapor is a driver of litter decay which has been ignored so far. Water-vapor absorption presumably enables microbial degradation, which, together with solar radiation and litter quality, controls decomposition and changes in litter chemistry during rainless seasons. Warmer and drier conditions as a consequence of climate change will result in enhanced drying of litter layers also outside currently classified drylands

  2. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  3. MODIS/Terra Total Precipitable Water Vapor 5-Min L2 Swath 1km and 5km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 data collection contains derived precipitable column water vapor amounts, during daytime using a near-infrared over clear land areas and above clouds...

  4. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  5. Step-type thermoacoustic system saturated with water vapor: Study for stabilization of low-temperature driving

    Science.gov (United States)

    Kawaminami, Sho; Sakamoto, Shin-ichi; Fukuda, Seiya; Watanabe, Yoshiaki

    2017-07-01

    To lower the oscillation temperature of a thermoacoustic system, a method of supplying water vapor into a tube was previously presented. However, this method has a problem, that is, the oscillation becomes unstable. In this study, to resolve the instability of the oscillation due to the use of water vapor, the system supplied with water vapor is replaced with a step-type one. The step-type system using water vapor oscillated at a temperature lower than that of the straight-tube-type system by 170 K in air at atmospheric pressure, and it is expected that the sound wave output of the step-type system can be as much as 6.53 times that of the straight-tube-type system. It was confirmed that, by using this system, a high-power-output thermoacoustic system and a stable low-temperature driving can be realized.

  6. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    Science.gov (United States)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  7. Water vapor absorption in arthropods by accumulation of myoinositol and glucose

    DEFF Research Database (Denmark)

    Bayley, Mark; Holmstrup

    1999-01-01

    Hydrophilic soil arthropods have been thought to respond to soil desiccation exclusively by migrating to deeper soil layers. Numerous studies have shown that their survival below 90 percent relative humidity dry weight, is limited to hours. However, little attention has been paid to physiological....... A reevaluation of the water physiology of this widespread and diverse animal group is required....... adaptations to more realistic desiccation regimes, such as at the permanent wilting point of plants (98.9 percent relative humidity). A water vapor absorption mechanism is described that allows a common soil collembolan, Folsomia candida, to remain active down to below the permanent wilting point...

  8. The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells

    Science.gov (United States)

    Hauch, Jens A.; Schilinsky, Pavel; Choulis, Stelios A.; Rajoelson, Sambatra; Brabec, Christoph J.

    2008-09-01

    In this paper we perform accelerated lifetime testing on high efficiency flexible poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) solar cells encapsulated with food package quality barrier films with a water vapor transmission rate of 0.2 g/(m2 day) at 65 °C/85% relative humidity. We show that lifetimes exceeding 1250 h, even at high temperature/high humidity conditions, may be reached, proving that organic solar cells are significantly less sensitive against the environmental effects of water and oxygen than previously expected.

  9. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  10. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 1: Instrument development, optimization, and validation

    Directory of Open Access Journals (Sweden)

    I. S. McDermid

    2011-08-01

    Full Text Available Recognizing the importance of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements, JPL began the development of a powerful Raman lidar in 2005 to try to meet these needs. This development was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review the stages in the instrumental development of the lidar and the conclusions from three validation campaigns: MOHAVE, MOHAVE-II, and MOHAVE 2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The data analysis, profile retrieval and calibration procedures, as well as additional results from MOHAVE-2009 are presented in detail in a companion paper (Leblanc et al., 2011a. Ultimately the lidar has demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere, reaching 14 km for 1-h integrated profiles and 21 km for 6-h integrated profiles, with a precision of 10 % or better near 13 km and below, and an estimated accuracy of 5 %.

  11. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 2: Data analysis and calibration for long-term monitoring

    Directory of Open Access Journals (Sweden)

    T. Leblanc

    2011-08-01

    Full Text Available The well-recognized, key role of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements triggered the development by JPL of a powerful Raman lidar to try to meet these needs. This development started in 2005 and was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review all the stages of the instrument data acquisition, data analysis, profile retrieval and calibration procedures, as well as selected results from the recent validation campaign MOHAVE-2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The stages in the instrumental development and the conclusions from three validation campaigns (including MOHAVE-2009 are presented in details in a companion paper (McDermid et al., 2011. In its current configuration, the lidar demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere with an estimated accuracy of 5 %. Since 2005, nearly 1000 profiles have been routinely measured with a precision of 10 % or better near 13 km. Since 2009, the profiles have typically reached 14 km for 1 h integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions.

  12. Molecular Simulations of the Vapor-Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

    Science.gov (United States)

    Vinš, Václav; Celný, David; Planková, Barbora; Němec, Tomáš; Duška, Michal; Hrubý, Jan

    2016-03-01

    In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualit