WorldWideScience

Sample records for water vapor permeability

  1. Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; HU Jin-lian; YAN Hao-jing

    2002-01-01

    Solution-cast films of shape memory polyurethane have beea investigated. Differential scanning calorimetry,DMA, tensile test, water vapor permeability and the shape merry effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S- shaped curve, and increases abruptly at Tm of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D)are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below Tg. The crystalline state hardsegment is necessary for the good shape memory effect.

  2. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  3. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    Science.gov (United States)

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-07

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  4. Water vapor permeability, mechanical properties and antioxidant effect of Mexican oregano-soy based edible films.

    Science.gov (United States)

    Pruneda, E; Peralta-Hernández, J M; Esquivel, K; Lee, S Y; Godínez, L A; Mendoza, S

    2008-08-01

    Water-soluble extracts from Mexican oregano (Lippia graveolens) were incorporated into soy protein isolate (SPI) films. Water vapor permeability, mechanical properties, and antioxidant ability were evaluated. All the extracts were capable of scavenging DPPH radicals in a concentration-dependent fashion; the IC50 values were obtained. Oregano extracts were incorporated into SPI films plasticized with sorbitol, glycerol, and glycerol-sorbitol 1:1. The addition of the extracts resulted in an increase in the water vapor permeability values and provided a dark reddish film appearance. Changes in tensile strength as well as elongation values were observed. The oregano SPI films exhibited antioxidant properties in a concentration-dependent fashion.

  5. Water vapor permeability, mechanical, optical and sensorial properties of plasticized guar gumedible films

    Science.gov (United States)

    Edible films were prepared by casting method using guar gum and glycerol in different ratios. The concentration of guar gum was 1.0, 1.5 and 2.0% whereas glycerol concentration was 20, 30 and 40% (w/v). The water vapor permeability (WVP), mechanical properties (tensile strength and elongation), thic...

  6. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort.

    Science.gov (United States)

    Chen, Te-Hung; Chen, Wan-Ping; Wang, Mao-Jiun J

    2014-01-01

    The function of cleanroom clothing is to protect the product from contamination by people, and to dissipate electrostatic discharge. People in the cleanroom work environment often complain about the discomforts associated with the wearing of cleanroom clothing. The purpose of this study is to investigate the effect of air permeability and water vapor permeability of cleanroom clothing on the subject's physiological and subjective responses. Five male and five female subjects participated in this study. The experimental goal was to simulate the operator's regular tasks in a semiconductor manufacturing cleanroom. Each subject completed three treatment combinations with three different cleanroom clothing types. A three-factor experiment was designed (significance level p = 0.05). The independent variables included gender, cleanroom clothing, and duration. The dependent measures included heart rate, core temperature, skin temperature, micro-climate relative humidity, micro-climate temperature, and subjective responses. A total of 40 min was involved for each treatment condition. The results indicate that skin temperature, micro-climate temperature and micro-climate relative humidity were lower while wearing cleanroom clothing with high air permeability and high water vapor permeability. The significant gender difference was found in skin temperature. As the task time increased, the micro-climate temperature also increased but the micro-climate relative humidity decreased at first and then increased. In addition, the physiological responses showed significant positive correlations with the subjective perception of clothing comfort. The findings of this study may provide useful information for cleanroom clothing design and selection.

  7. Characterization of ionic permeability and water vapor transmission rate of polymers used for implantable electronics.

    Science.gov (United States)

    Kirsten, Sabine; Schubert, Martin; Uhlemann, Jürgen; Wolter, Klaus-Jurgen

    2014-01-01

    Biocompatible polymers used as encapsulation and packaging materials for implantable electronic devices have to comply with numerous requirements. Especially their barrier properties against water molecules and ions are of particular interest regarding the reliability of the encapsulation as well as functional integrity of the electronic components since water and ions on the circuit board may evoke corrosion, leakage current and finally the failure of the device. This paper describes a measurement setup to investigate the ionic permeability under in vitro conditions of polymeric membranes manufactured from various biocompatible polymers. Ionic permeability and water vapor transmission rate representing the barrier properties of these membranes were investigated. First results were obtained for polyimide, silicone, polyether ether ketone and polyamide, whereas polyimide evinced the best properties.

  8. Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane.

    Science.gov (United States)

    Bao, Yan; Yang, Yongqiang; Ma, Jianzhong

    2013-10-01

    Polystyrene/silica core-shell spheres were fabricated using polystyrene as templates by hydrolysis and condensation of tetraethyl orthosilicate through a sol-gel process, in which polystyrene was synthesized by emulsion polymerization. Then, hollow silica spheres were obtained after selective removal of the organic polystyrene core from the polystyrene/silica core-shell spheres by tetrahydrofuran etching. The effect of hollow silica spheres on water vapor permeability, mechanical property, and water uptake of polyacrylate membrane were investigated. The microstructure analysis shows that the mean size and wall thickness of hollow silica spheres are 170 nm and 20 nm, respectively. The silica shells consist of amorphous silica seed assembly with a broad size distribution, which roughen the surfaces of hollow silica spheres greatly. The specific surface area of hollow silica spheres is bigger than that of polystyrene/silica core-shell spheres. Hollow silica spheres can significantly improve water vapor permeability of polyacrylate membrane, but lead to the reduction in mechanical property.

  9. Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites.

    Science.gov (United States)

    Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing

    2016-12-10

    To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property.

  10. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  11. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    Science.gov (United States)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  12. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.

    Science.gov (United States)

    Aulin, Christian; Salazar-Alvarez, German; Lindström, Tom

    2012-10-21

    A novel, technically and economically benign procedure to combine vermiculite nanoplatelets with nanocellulose fibre dispersions into functional biohybrid films is presented. Nanocellulose fibres of 20 nm diameters and several micrometers in length are mixed with high aspect ratio exfoliated vermiculite nanoplatelets through high-pressure homogenization. The resulting hybrid films obtained after solvent evaporation are stiff (tensile modulus of 17.3 GPa), strong (strength up to 257 MPa), and transparent. Scanning electron microscopy (SEM) shows that the hybrid films consist of stratified nacre-like layers with a homogenous distribution of nanoplatelets within the nanocellulose matrix. The oxygen barrier properties of the biohybrid films outperform commercial packaging materials and pure nanocellulose films showing an oxygen permeability of 0.07 cm(3) μm m(-2) d(-1) kPa(-1) at 50% relative humidity. The oxygen permeability of the hybrid films can be tuned by adjusting the composition of the films. Furthermore, the water vapor barrier properties of the biohybrid films were also significantly improved by the addition of nanoclay. The unique combination of excellent oxygen barrier behavior and optical transparency suggests the potential of these biohybrid materials as an alternative in flexible packaging of oxygen sensitive devices such as thin-film transistors or organic light-emitting diode displays, gas storage applications and as barrier coatings/laminations in large volume packaging applications.

  13. Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics.

    Science.gov (United States)

    Péroval, Claudine; Debeaufort, Frédéric; Despré, Denis; Voilley, Andrée

    2002-07-01

    Arabinoxylans (AX) are natural fibers extracted from maize bran, an industrial byproduct. To promote this polymer as a food ingredient, development of edible coatings and films had been proposed. Indeed, composite arabinoxylan-based films were prepared by emulsifying a fat: palmitic acid, oleic acid, triolein, or a hydrogenated palm oil (OK35). Lipid effects on water vapor permeability (WVP), surface hydrophobicity (contact angles), lipid particle size, and mechanical properties were investigated. Results showed that OK35-AX emulsion films had the lowest WVP. Emulsified films presented a bimodal particle size distribution; however, the smallest particle mean diameter (0.54 microm) was observed in OK35-AX emulsion films. Contact angles of water comparable to those observed for LDPE films (>90 degrees ) are measured on the OK35-AX film surface. Finally, only triolein-AX emulsion films had elongation higher than films without lipid. These results suggest that OK35 enhances functional properties of AX-based films and should be retained for further research.

  14. Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films.

    Science.gov (United States)

    Pérez-Gago, M B; Krochta, J M

    2001-02-01

    Lipid particle size effects on water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI)/beeswax (BW) emulsion films were investigated. Emulsion films containing 20 and 60% BW (dry basis) and mean lipid particle sizes ranging from 0.5 to 2.0 microm were prepared. BW particle size effects on WVP and mechanical properties were observed only in films containing 60% BW. WVP of these films decreased as lipid particle size decreased. As drying temperature increased, film WVPs decreased significantly. Meanwhile, tensile strength and elongation increased as BW particle size decreased. However, for 20% BW emulsion films, properties were not affected by lipid particle size. Results suggest that increased protein-lipid interactions at the BW particle interfaces, as particle size decreased and resulting interfacial area increased, result in stronger films with lower WVPs. Observing this effect depends on a large lipid content within the protein matrix. At low lipid content, the effect of interactions at the protein-lipid interfaces is not observed, due to the presence of large protein-matrix regions of the film without lipid, which are not influenced by protein-lipid interactions.

  15. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Wang, A.H., E-mail: ahwang@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zheng, R.R. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Tang, H.Q.; Qi, X.Y.; Ye, B. [Wuhan Huagong Laser Engineering CO., Ltd, Wuhan, 430223 (China)

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  16. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-01

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  17. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  18. Methods to Measure Water Permeability.

    Science.gov (United States)

    Solenov, Evgeniy I; Baturina, Galina S; Katkova, Liubov E; Zarogiannis, Sotirios G

    2017-01-01

    Water permeability is a key feature of the cell plasma membranes and it has seminal importance for a number of cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels , the aquaporins, who have very important function in physiological and pathophysiological states. Due to the above the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the past three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells as well as in tissues with a focus in the first category.

  19. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  20. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  1. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  2. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  3. Influência da concentração e purificação da argila na estrutura e permeação ao vapor de água de nanocompósitos PEBDL/bentonita Effect of loading level and clay purification on the structure and water vapor permeability of LLDPE/bentonite nanocomposites

    Directory of Open Access Journals (Sweden)

    Eduardo M. Silva

    2012-01-01

    Full Text Available Este trabalho tem por objetivo a preparação, caracterização e avaliação da permeabilidade ao vapor de água de filmes nanocompósitos poliméricos. Um polietileno linear de baixa densidade linear (PEBDL foi utilizado como matriz e uma argila bentonita Paraibana na sua forma natural, purificada e organofilizada foi adicionada à matriz em concentrações de 1 a 2% em massa. As argilas e os nanocompósitos foram caracterizados por espectroscopia no infravermelho (FTIR e por difração de raios x (DRX. A permeação ao vapor de água dos filmes foi determinada em função do teor e modificação da carga mineral. Os resultados mostram que a purificação (remoção de matéria orgânica e que a organofilização da carga foram eficientes e que nanocompósitos com morfologia intercalada foram obtidos em todos os casos. A presença de carga aumentou significativamente a permeabilidade dos filmes ao vapor de água, mas os efeitos da purificação e/ou organofilização da argila, bem como do teor de carga, nesta propriedade, foram discretos.This work is concerned with the preparation, characterization and measurement of water vapor permeability of LLDPE/bentonite nanocomposite films, containing 1% and 2% of natural, purified, and organophilized clay. FTIR and XRD techniques were used to characterize the clay and the composites. The results pointed to an effective clay purification procedure (removal of organic matter. Mostly intercalated nanocomposites were obtained in all cases. The addition of clay significantly increased the permeability of the films to water vapor. However, purification and/or organophilization of the clay, as well as loading level, were found to have little effect on the permeability.

  4. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  5. Use of {gamma}-irradiation cross-linking to improve the water vapor permeability and the chemical stability of milk protein films

    Energy Technology Data Exchange (ETDEWEB)

    Ouattara, B.; Canh, L.T.; Vachon, C.; Mateescu, M.A.; Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca

    2002-03-01

    {gamma}-irradiation was used to produce free-standing cross-linked milk proteins. Film forming solutions were prepared according to a method previously developed in our laboratory using calcium caseinate (cas) with various proportions of whey protein isolate (wpi) or whey protein concentrate (wpc). The following caseinate-whey protein (cas:wp) ratio were prepared: 100:0, 75:25, 50:50, 25:75, and 0:100. The WVP of the films was determined gravimetrically at 23 deg. C using a modified ASTM procedure. Molecular properties characterization was performed by size exclusion chromatography (SEC). Results showed significant (p{<=}0.05) reduction of the WVP of protein films for the following formulations: cas:wpi or cas:wpc (100:0); cas:wpi (25:75); cas:wpc (25:75); and cas:wpc (0:100). Mixture of cas and wpi produced a synergistic effect. The strongest combined effect was obtained for cas:wpi (25:75) formulation with permeability values of 2.07 and 1.38 g mm/m{sup 2} d mm Hg for unirradiated and irradiated samples, respectively. {gamma}-irradiation also induced a substantial increase of high molecular weight protein components in film forming solutions. The predominant fraction was {>=}10x10{sup 6} Da for irradiated film forming solutions, compared to less than 0.2x10{sup 6} Da for native unirradiated solutions.

  6. Use of /γ-irradiation cross-linking to improve the water vapor permeability and the chemical stability of milk protein films

    Science.gov (United States)

    Ouattara, B.; Canh, L. T.; Vachon, C.; Mateescu, M. A.; Lacroix, M.

    2002-03-01

    γ-irradiation was used to produce free-standing cross-linked milk proteins. Film forming solutions were prepared according to a method previously developed in our laboratory using calcium caseinate (cas) with various proportions of whey protein isolate (wpi) or whey protein concentrate (wpc). The following caseinate-whey protein (cas:wp) ratio were prepared: 100:0, 75:25, 50:50, 25:75, and 0:100. The WVP of the films was determined gravimetrically at 23°C using a modified ASTM procedure. Molecular properties characterization was performed by size exclusion chromatography (SEC). Results showed significant ( p⩽0.05) reduction of the WVP of protein films for the following formulations: cas:wpi or cas:wpc (100:0); cas:wpi (25:75); cas:wpc (25:75); and cas:wpc (0:100). Mixture of cas and wpi produced a synergistic effect. The strongest combined effect was obtained for cas:wpi (25:75) formulation with permeability values of 2.07 and 1.38 g mm/m 2 d mm Hg for unirradiated and irradiated samples, respectively. γ-irradiation also induced a substantial increase of high molecular weight protein components in film forming solutions. The predominant fraction was ⩾10×10 6 Da for irradiated film forming solutions, compared to less than 0.2×10 6 Da for native unirradiated solutions.

  7. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model......, the predicted permeability of hydrating cement pastes is extremely sensitive to the particle size distribution of the cement and especially to the minimum size of the cement particles. Both in simulations and experiments, the permeability of cement pastes is mainly determined by the critical diameter...

  8. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  9. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  10. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, Niels; Raoof, A.

    2014-01-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxi

  11. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  12. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  13. Water vapor diffusion membrane development

    Science.gov (United States)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  14. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    Science.gov (United States)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  15. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074

    NARCIS (Netherlands)

    Potreck, Jens; Nijmeijer, Dorothea C.; Kosinski, Thomas; Wessling, Matthias

    2009-01-01

    This work investigates the transport behavior of a hydrophilic, highly permeable type of poly ethylene oxide (PEO)-based block copolymer (PEBAX® 1074) as membrane material for the removal of water vapor from light gases. Water vapor sorption isotherms in PEBAX® 1074 represent Flory–Huggins type of s

  16. Saturn's Stratospheric Water Vapor Distribution

    Science.gov (United States)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  17. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger;

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane...

  18. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible i

  19. Wet Permeability and Moisture Vapor Transmission Characteristics of Soybean Knitted Fabrics

    Institute of Scientific and Technical Information of China (English)

    王其; 冯勋伟

    2001-01-01

    Wet permeability of fibrous assembly is mainly influenced by the properties of liquid and the configurations of the fiber which consist of diameter of fiber, twist angle and fiber alignment in a yarn. It can be seen from experimental results that the knitted fabric made of soybean (SB) fiber has goodproperties both in wet permeability and vapor transmission so that the knitting technology and fabric characteristics can be improved.

  20. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. (Baxter Healthcare Corporation, Round Lake, IL (USA))

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  1. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  2. Water Vapor Forecasting for Chilean Sites

    Science.gov (United States)

    Marín, Julio C.; Cuevas, O.; Pozo, D.; Curé, M.

    2017-09-01

    "A number of observatories in Chile operate in the infrared region of the electromagnetic spectrum. Therefore, it is very important to them to accurately know the water vapor content of the atmosphere for a better observational planning. This talk provides an overview of the methods used to forecast water vapor over astronomical sites in Chile using observations and atmospheric numerical modeling."

  3. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th

  4. Water Vapor Corrosion in EBC Constituent Materials

    Science.gov (United States)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  5. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  6. An automated dynamic water vapor permeation test method

    Science.gov (United States)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  7. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  8. Refraction of microwave signals by water vapor

    Science.gov (United States)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  9. Water vapor release from biofuel combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-03-01

    Full Text Available We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  10. Water vapor release from biofuel combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-03-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  11. Water vapor release from biomass combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-10-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  12. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  13. Permeability of starch gel matrices and select films to solvent vapors.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick

    2006-05-03

    Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.

  14. Possible seasonal variability of mesospheric water vapor

    Science.gov (United States)

    Bevilacqua, R. M.; Schwartz, P. R.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz water vapor line in atmospheric emission were made at the Jet Propulsion Laboratory, which have been used to deduce the mesospheric water vapor profile. The measurements were made nearly continuously in the spring and early summer of 1984. The results indicate a temporal increase in the water vapor mixing ratio in the upper mesosphere from April through June. At 75 km, this increase is nearly by a factor of 2. Comparison of the present results with the results of a similar series of measurements made at the Haystack (radio astronomy) Observatory indicate that this temporal increase is part of a seasonal variation.

  15. Water vapor release from biomass combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the ...

  16. Water vapor release from biofuel combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 ...

  17. Factors Affecting Water Permeability of Aleurone Layer in Soybean Seeds

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1999-01-01

    The effect of the immersion condition of soybean seeds on the water permeability in aleurone layer was investigated to clarify the water permeability at the initial stage of water sorption. The amounts of water absorbed in seeds coated with only aleurone layer (embryos uncovered with seed coat) and untreated seeds (embryos covered with seed coat and aleurone layer; intact seeds) were compared under several conditions of temperature, pH, ion species, and salt concentration. The relative weight...

  18. Influence of decenylsuccinic Acid on water permeability of plant cells.

    Science.gov (United States)

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified.

  19. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  20. Water permeability of rat liver mitochondria: A biophysical study.

    Science.gov (United States)

    Calamita, Giuseppe; Gena, Patrizia; Meleleo, Daniela; Ferri, Domenico; Svelto, Maria

    2006-08-01

    The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.

  1. Distribution of Water Vapor in Molecular Clouds

    CERN Document Server

    Melnick, Gary J; Snell, Ronald L; Bergin, Edwin A; Hollenbach, David J; Kaufman, Michael J; Li, Di; Neufeld, David A

    2010-01-01

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J =5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to Av < 15 mag., the ratio of H2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large Av. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations...

  2. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    Science.gov (United States)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    2017-02-01

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1 m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20 years, even for vapor source concentrations up to 10 g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.

  3. Water vapor release from biomass combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-10-01

    Full Text Available We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  4. Regulation of AQP0 water permeability is enhanced by cooperativity.

    Science.gov (United States)

    Németh-Cahalan, Karin L; Clemens, Daniel M; Hall, James E

    2013-03-01

    Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.

  5. Water vapor retrieval from OMI visible spectra

    Directory of Open Access Journals (Sweden)

    H. Wang

    2014-01-01

    optimization of retrieval windows and parameters. The Air Mass Factor (AMF is calculated using look-up tables of scattering weights and monthly mean water vapor profiles from the GEOS-5 assimilation products. We convert from SCD to Vertical Column Density (VCD using the AMF and generate associated retrieval averaging kernels and shape factors. Our standard water vapor product has a median SCD of ~ 1.3 × 1023 molecule cm−2 and a median relative uncertainty of ~ 11% in the tropics, about a factor of 2 better than that from a similar OMI algorithm but using narrower retrieval window. The corresponding median VCD is ~ 1.2 × 1023 molecule cm−2. We have also explored the sensitivities to various parameters and compared our results with those from the Moderate-resolution Imaging Spectroradiometer (MODIS and the Aerosol Robotic NETwork (AERONET.

  6. Near-infrared spectroscopy for monitoring water permeability of optical coatings on plastics.

    Science.gov (United States)

    Schulz, U; Kaiser, N

    1997-02-01

    Near-infrared spectroscopy has been applied to determine the water content of plastic lenses. An analytical method is presented for monitoring the water permeability of thin layers on plastic optics by utilizing the reversible moisture absorption of organic polymers. As an example, scratch-resistant and antireflective layers on poly[diethylenglycol-bis(allylcarbonate)] lenses are investigated. The measurements demonstrate the relatively high water barrier of coatings deposited by plasma-ion-assisted deposition compared with classical physical vapor deposition coatings and polysiloxane dip coatings.

  7. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  8. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  9. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  10. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...... of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  11. High Resolution Additive Patterning of Nanoparticles and Polymers Enabled by Vapor Permeable Polymer Templates

    Science.gov (United States)

    Demko, Michael Thomas

    The structure and chemistry of nanoparticles and polymers are interesting for applications in electronics and sensors. However, because they are outside of the standard material set typically used for these applications, widespread use of these materials has not yet been realized. This is due in part to the limited ability of traditional manufacturing processes to adapt to these unique materials. As a result, several alternative manufacturing methods have been developed, including nanoimprint lithography, gravure printing, inkjet printing, and screen printing, among many others. However, these current processes are not able to simultaneously produce patterns with high resolution and high dimensional fidelity, rapidly, over large areas, and in a completely additive manner. In this work, high-resolution patterns of nanoparticles and polymers are created on a variety of substrates in a completely additive manner using a template-based microfluidic process. Permeation of solvent through a vapor-permeable polymer template is used to both drive the flow of ink and concentrate the solute inside of template features. This fluidic process is shown to allow gradual packing of solute inside the template features, enabling creation of three-dimensional features with low defect densities. Additionally, because the mechanical properties of the template material are found to significantly impact patterning resolution and fidelity, and a process for creating rigid, vapor permeable templates from poly(4-methyl-2-pentyne) is developed. These templates are used for creating patterning of nanoparticles and polymers with a minimum line width of smaller than 350 nm. The process is then applied to the creation of low temperature metallization for polymer electronics using metallic nanoparticles and a highly-sensitive ultraviolet light sensor from zinc oxide nanoparticles.

  12. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  13. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    Science.gov (United States)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  14. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed in the b...

  15. Lunar absorption spectrophotometer for measuring atmospheric water vapor.

    Science.gov (United States)

    Querel, Richard R; Naylor, David A

    2011-02-01

    A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

  16. Water vapor sorption hysteresis of ceramic bricks

    Science.gov (United States)

    Koronthalyova, Olga

    2016-07-01

    A quantification of the hysteretic effects and their thorough analysis was carried out for three types of ceramic bricks. Water vapor adsorption/desorption isotherms were measured by the standard desiccator method. The desorption measurements were carried out from capillary moisture content as well as from equilibrium moisture content corresponding to the relative humidity of 98 %. For all three tested types of bricks the hysteretic effects were present but their significance differed depending on the particular type of brick. Significant differences were noticed also in desorption curves determined from capillary moisture content and from equilibrium moisture content corresponding to the relative humidity of 98 %. Based on the measured data a possible correlation between pore structure parameters and noticed hysteretic effects as well as relevance of the open pore model are discussed. The obtained adsorption/desorption curves were approximated by an analytical relation.

  17. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch;

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  18. Water recovery by catalytic treatment of urine vapor

    Science.gov (United States)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  19. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  20. New mobile Raman lidar for measurement of tropospheric water vapor

    Institute of Scientific and Technical Information of China (English)

    XIE Chenbo; ZHOU Jun; YUE Guming; QI Fudi; FAN Aiyuan

    2007-01-01

    The content of water vapor in atmosphere is very little and the ratio of volume of moisture to air is about 0.1%-3%,but water vapor is the most active molecule in atmosphere.There are many absorption bands in infrared(IR)wavelength for water vapor,and water vapor is also an important factor in cloud formation and precipitation,therefore it takes a significant position in the global radiation budget and climatic changes.Because of the advantages of the high resolution,wide range,and highly automatic operation,the Raman lidar has become a new-style and useful tool to measure water vapor.In this paper,first,the new mobile Raman lidar's structure and specifications were introduced.Second,the process method of lidar data was described.Finally,the practical and comparative experiments were made over Hefei City in China.The results of measurement show that this lidar has the ability to gain profiles of ratio of water vapor mixing ratio from surface to a height of about 8 km at night.Mean-while,the measurement of water vapor in daytime has been taken,and the profiles of water vapor mixing ratio at ground level have been detected.

  1. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  2. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  3. An apparatus for determining water vapour permeability of fabrics

    Directory of Open Access Journals (Sweden)

    B. L. Saksena

    1955-04-01

    Full Text Available An apparatus for the determination of water vapour permeability (W.V.P. of fabrics is described. The fabric partitions a closed space into two compartments in which are circulated air streams having high and low water vapour pressure respectively, without any overall pressure or temperature difference. The transfer of moisture from the high to the low humidity side of the fabric is gravimetrically measured. Results of tests are given.

  4. Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2014-11-01

    Full Text Available This study investigates chemical grafting with fatty acid chlorides as a method for the surface modification of hydrophilic web materials. The resulting changes in the water repellence and barrier properties were studied. For this purpose, different grades of polyvinyl alcohol (PVOH were coated on regenerated cellulose films (“cellophane” and paper and then grafted with fatty acid chlorides. The PVOH grades varied in their degree of hydrolysis and average molecular weight. The surface was esterified with two fatty acid chlorides, palmitoyl (C16 and stearoyl chloride (C18, by chemical grafting. The chemical grafting resulted in water-repellent surfaces and reduced water vapor transmission rates by a factor of almost 19. The impact of the surface modification was greater for a higher degree of hydrolysis of the polyvinyl alcohol and for shorter fatty acid chains. Although the water vapor barrier for palmitoyl-grafted PVOH was higher than for stearoyl-grafted PVOH, the contact angle with water was lower. Additionally, it was shown that a higher degree of hydrolysis led to higher water vapor barrier improvement factors after grafting. Furthermore, the oxygen permeability decreased after grafting significantly, due to the fact that the grafting protects the PVOH against humidity when the humidity is applied on the grafted side. It can be concluded that the carbon chain length of the fatty acid chlorides is the limiting factor for water vapor adsorption, but the grafting density is the bottleneck for water diffusing in the polymer.

  5. Tracing water vapor and ice during dust growth

    CERN Document Server

    Krijt, Sebastiaan; Bergin, Edwin A

    2016-01-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ${\\sim}50$ in the disk atmosphere. In our isothermal column, this vapor depletion r...

  6. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  7. DSMC simulation of Europa water vapor plumes

    Science.gov (United States)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  8. Water vapor: An extraordinary terahertz wave source under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith [Massachusetts Institute of Technology, PO Box 380792, Cambridge, MA 02238-0792 (United States); HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada)], E-mail: kjohnson@mit.edu; Price-Gallagher, Matthew [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Mamer, Orval; Lesimple, Alain [Mass Spectroscopy Unit, 740 Dr. Penfield, Suite 5300, McGill University, Montreal, QC, H3A 1A4 (Canada); Fletcher, Clark [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Chen Yunqing; Lu Xiaofei; Yamaguchi, Masashi; Zhang, X.-C. [W.M. Keck Laboratory for Terahertz Science, Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2008-09-15

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H{sub 2}O vapor is significantly stronger than that from D{sub 2}O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  9. Raman lidar measurements of tropospheric water vapor over Hefei

    Institute of Scientific and Technical Information of China (English)

    Yonghua Wu(吴永华); Huanling Hu(胡欢陵); Shunxing Hu(胡顺星); Jun Zhou(周军)

    2003-01-01

    L625 Raman lidar has been developed for water vapor measurements over Hefei, China since September2000. By transmitting laser beam of frequency-tripled Nd:YAG laser, Raman scattering signals of watervapor and nitrogen molecules are simultaneously detected by the cooled photomultipliers with photoncounting mode. Water vapor mixing ratios measured by Raman lidar show the good agreements withradiosonde observations, which indicates this Raman lidar is reliable. Many observation cases show thataerosol optical parameters have the good correlation with water vapor distribution in the lower troposphere.

  10. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  11. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  12. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  13. Urban emissions of water vapor in winter

    Science.gov (United States)

    Salmon, Olivia E.; Shepson, Paul B.; Ren, Xinrong; Marquardt Collow, Allison B.; Miller, Mark A.; Carlton, Annmarie G.; Cambaliza, Maria O. L.; Heimburger, Alexie; Morgan, Kristan L.; Fuentes, Jose D.; Stirm, Brian H.; Grundman, Robert; Dickerson, Russell R.

    2017-09-01

    Elevated water vapor (H2Ov) mole fractions were occasionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emission estimates range between 1.6 × 104 and 1.7 × 105 kg s-1 and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1°C d-1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.

  14. A New Way to Study Water-Vapor Absorption Coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱ ozone monitor,water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.

  15. Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance

    Science.gov (United States)

    Hu, Mingke; Zhao, Bin; Ao, Xianze; Pei, Gang

    2017-05-01

    A radiative cooler based on aluminum-evaporated polyvinyl-fluoride surface was employed to investigate the effect of precipitable water vapor amount on its radiative cooling performance. A mathematic model of steady heat transfer that considers the spectral radiant distribution of the sky, the transparent cover and the collecting surface was established. The results indicate that the amount of precipitable water vapor shows a remarkable and negative effect on radiative cooling performance of the radiative cooler. Both the temperature difference between the cooler and surroundings and the net radiative cooling power decrease as the precipitable water vapor amount increases. The net radiative cooling power drops by about 41.0% as the the precipitable water vapor amount changes from 1.0 cm to 7.0 cm. Besides, the radiative cooler shows better cooling performance in winter than in summer. The net radiative cooling power in summer of Hefei is about 82.2% of that in winter.

  16. In-Situ Water Vapor Probe for a Robot Arm-Mounted, Compact Water Vapor Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to test a prototype water vapor sampling end-effector in the laboratory and in the field thatwill eventually be integrated with a small, infrared...

  17. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  18. Permeability recovery of damaged water sensitive core using ultrasonic waves.

    Science.gov (United States)

    Khan, Nasir; Pu, Chunsheng; Li, Xu; He, Yanlong; Zhang, Lei; Jing, Cheng

    2017-09-01

    It is imperative to recover the well productivity lose due to formation damage nearby wellbore during variant well operations. Some indispensable issues in conventional techniques make ultrasonic technology more attractive due to simple, reliable, favorable, cost-effective, and environment friendly nature. This study proposes the independent and combined use of ultrasonic waves and chemical agents for the treatment of already damaged core samples caused by exposure to distilled water. Results elucidate that ultrasonic waves with optimum (20kHz, 1000W) instead of maximum frequency and power worked well in the recovery owing to peristaltic transport caused by matching of natural frequency with acoustic waves frequency. In addition, hundred minutes was investigated as optimum irradiation time which provided ample time span to detach fine loosely suspended particles. However, further irradiation adversely affected the damaged permeability recovery. Moreover, permeability improvement attributes to cavitation due to ultrasonic waves propagation through fluid contained in porous medium and thermal energy generated by three different ways. Eventually, experimental outcomes indicated that maximum (25.3%) damaged permeability recovery was witnessed by applying ultrasonic waves with transducer #2 (20kHz and 1000W) and optimum irradiation timeframe (100min). This recovery was further increased to 45.8% by applying chemical agent and optimum ultrasonic waves simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

    Directory of Open Access Journals (Sweden)

    B. C. Kindel

    2014-10-01

    Full Text Available Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near infrared spectra acquired with the Solar Spectral Flux Radiometer during the first science phase of the NASA Airborne Tropical Tropopause EXperiment. From the 1400 and 1900 nm absorption bands, we infer water vapor amounts in the tropical tropopause layer and adjacent regions between 14 and 18 km altitude. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004. Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amount, 0.004 absorptance change at 1870 nm results in 5.5 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm and 44% (1870 nm differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2 and 7% (1367 nm and 12% (1870 nm differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2. A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere (TOA is discussed.

  20. Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films.

    Science.gov (United States)

    Chang, Chang; Nickerson, Michael T

    2015-01-01

    Biodegradable edible films prepared using proteins are both economically and environmentally important to the food packaging industry relative to traditional petroleum-derived synthetic materials. In the present study, the mechanical and water vapor barrier properties of casted canola protein isolate edible films were investigated as a function of protein (5.0% and 7.5%) and glycerol (30%, 35%, 40%, 45%, and 50%) content. Specifically, tensile strength and elongation, elastic modulus, puncture strength and deformation, opacity, and water vapor permeability were measured. Results indicated that tensile strength, puncture strength, and elastic modulus decreased, while tensile elongation and puncture deformation values increased as glycerol concentration increased for both 5.0% and 7.5% canola protein isolate films. Furthermore, tensile strength, puncture strength, and elastic modulus values were found to increase at higher protein concentrations within the canola protein isolate films, whereas puncture deformation values decreased. Tensile elongation was found to be similar for both canola protein isolate protein levels. Canola protein isolate films became more transparent with increasing of glycerol concentration and decreasing of canola protein isolate concentration. Water vapor permeability value was also found to increase with increasing glycerol and protein contents. Overall, results indicated that canola protein isolate films were less brittle, more malleable and transparent, and had greater water vapor permeability at higher glycerol levels. However, as protein level increased, canola protein isolate films were more brittle, less malleable and more opaque, and also had increased water vapor permeability.

  1. Rapid and fully automated Measurement of Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2014-01-01

    Eminent environmental challenges such as remediation of contaminated sites, the establishment and maintenance of nuclear waste repositories, or the design of surface landfill covers all require accurate quantification of the soil water characteristic at low water contents. Furthermore, several...... essential but difficult-to-measure soil properties such as clay content and specific surface area are intimately related to water vapor sorption. Until recently, it was a major challenge to accurately measure detailed water vapor sorption isotherms within an acceptable time frame. This priority...... and pesticide volatilization, toxic organic vapor sorption kinetics, and soil water repellency are illustrated. Several methods to quantify hysteresis effects and to derive soil clay content and specific surface area from VSA-measured isotherms are presented. Besides above mentioned applications, potential...

  2. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  3. Water vapor feedback in the tropics deduced from SSM/T-2 water vapor and MSU temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.W. [NASA Marshall Space Flight Center, Huntsville, AL (United States); Braswell, W.D. [Nichols Research Corp., Huntsville, AL (United States)

    1996-12-31

    In simulations of the atmospheric response to increases in surface temperature or radiative forcing by CO{sub 2}, water vapor is usually found to produce a large positive feedback. In studies using the NCAR Community Climate Model (CCM2), it was found that the dependence of clear sky outgoing longwave radiation on sea surface temperature (SST) was almost a factor of two less with water vapor feedback included. However, other studies have provided negative vapor feedback results. Because the outgoing longwave radiation can be computed given tropospheric temperature and water vapor profiles and surface temperature, it is proposed to use satellite measurements that are primarily sensitive to these quantities. This paper discusses the method and preliminary results obtains from four satellite instrument types used to gather data on tropical SSTs between 1992 and 1995. So far, evidence from the new microwave water vapor retrievals indicates that most of the tropical upper troposphere is quite dry, with the most frequently occurring relative humidity near 10%. The hypersensitivity of clear sky outgoing longwave radiation to humidity changes at low relative humidity suggests that the tropical subsidence zones could have a controlling influence on water vapor feedback. 16 refs., 3 figs.

  4. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  5. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  6. Carbon and water vapor fluxes of different ecosystems in Oklahoma

    Science.gov (United States)

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspira...

  7. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    Science.gov (United States)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  8. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  9. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  10. The Effect of Temperature and Rock Permeability on Oil-Water Relative Permeability Curves of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Liyuan Cao

    2016-04-01

    Full Text Available Wax deposition has always been a problem for the production of waxy crude oil. When the reservoir temperature is below the wax appearance temperature (WAT, wax would precipitate in the oil phase as wax crystals, which could increase the oil viscosity and decrease the permeability of the rock. In this study, a series of core flooding experiments under 5 different temperatures and using two groups of core samples with permeability liein300 md and 1000 md respectively were carried out to investigate the effect of temperature and rock permeability on waxy crude oil-water relative permeability curves under reservoir condition. The results revealed that temperature has a significant influence on relative permeability, especially when the temperature is below the WAT (70℃ in this study. The initial water decreased by 40% and the residual oil saturation increased to about 2.5 times when temperature decreased from 85℃ to 50℃ for experiments of both two groups in this study. Oil recovery decreased as the temperature dropped. There was not much difference between the oil recovery of cores with permeability of 1000 md and that with permeability of 300 md until the temperature dropped to 70℃, and the difference increased to 8% when temperature decreased to 50℃, which implies that reservoir with lower permeability is easier to be damaged by wax deposition only when the temperature drops to below WAT. According to this work, it is suggested that reservoir temperature should be better maintained higher than theWAT when extracting waxy crude oil of this reservoir, or at least above 60℃.

  11. Remote sensing of water vapor within the solar spectrum

    Science.gov (United States)

    Bartsch, Barbara; Bakan, Stephan; Fischer, Juergen

    1995-01-01

    Due to the great importance of atmospheric water vapor for weather and climate, much effort is devoted to remote sensing of atmospheric water vapor. The detection over water is well established, while the situation over land surface is worse. Therefore, a new method is developed to derive the total atmospheric water vapor content over land surfaces even for higher aerosol contents with the aid of backscattered solar radiances. Numerous radiative transfer simulations with a matrix operator code of vertically backscattered solar radiance were carried out for different vertically stratified atmospheres. The resolution of 1.7 nm in the wavelength range from 700 to 1050 nm was adopted to the resolution of our multichannel spectrometer OVID (Optical Visible and near Infrared Detector). Various atmospheric conditions were chosen, which were defined by variable input parameters of: (a) vertical profiles of temperature, pressure, and water vapor, (b) total water vapor content, (c) aerosols, (d) surface reflectance, and (e) sun zenith angle. Clouds were not taken into account. From the evaluation of these theoretical calculations it can be concluded that this technique allows the detection of total atmospheric water vapor content over land surfaces with an error of less than 10%. This result is important with regard to future measurements planed with the MERIS imaging spectrometer on board the european satellite ENVISAT, which will be launched in 1998. In addition to these theoretical calculations also various aircraft measurements of the backscattered radiances in the wavelength range from 600 to 1650 nm were carried out. These measurements are done with the above mentioned OVID, a new multichannel array spectrometer of the Universities of Hamburg and Berlin. First comparisons of these airborne CCD measurements with calculated spectra are shown.

  12. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  13. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    Science.gov (United States)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  14. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  15. Detection and Measurement of Charge in Water Vapor

    Science.gov (United States)

    Feng, C. L.

    2015-12-01

    Abstract: Positive charge is found in newly formed water vapor. Two detection and two measurement experiments are presented. The detection experiments are simple; their purpose is only to show the existence of charge in water vapor. The first of these experiments places one exposed end of an insulated wire in the vapor space of a flask, which holds boiling water. The other end of this wire is connected to the input high of an electrometer. The input low, in all of the presented experiments, is grounded. The second experiment detects charge by capacitive induction. It uses a beaker with gold leaves gilded on its outside surface. When water boils inside the beaker, the vapor charge is detected by the gold layer without contacting the water or vapor. The two measurement experiments have sensors made of conducting fabric. The fabric is used to cover the opening of a flask, which holds boiling water, to collect the charge in the escaping vapor. These two experiments differ by the number of fabric layers --- four in one and six in the other. The results obtained from these two experiments are essentially the same, within the margin of error, 0.734 & 0.733 nC per gram of vapor. Since the added two layers of the six-layer sensor do not collect more charge than the four-layer sensor, the four-layer sensor must have collected all available charge. The escaping vapor exits into a chamber, which has only a small area opening connecting to the atmosphere. This chamber prevents direct contact between the sensor and the ambient air, which is necessary because air is found to affect the readings from the sensor. Readings taken in the surrounding area in all four experiments show no accumulation of negative charge. These experiments identify a source for the atmospheric electricity in a laboratory environment other than that has been discussed in the literature. However, they also raise the question about the missing negative charge that would be predicted by charge balance or the

  16. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  17. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  18. Spectroscopy underlying microwave remote sensing of atmospheric water vapor

    Science.gov (United States)

    Tretyakov, M. Yu.

    2016-10-01

    The paper presents a spectroscopist's view on the problem of recovery of the atmosphere humidity profile using modern microwave radiometers. Fundamental equations, including the description of their limitations, related to modeling of atmospheric water vapor absorption are given. A review of all reported to date experimental studies aimed at obtaining corresponding numerical parameters is presented. Best estimates of these parameters related to the Voigt (Lorentz, Gross, Van Vleck - Weisskopf and other equivalent) profile based modeling of the 22- and 183-GHz water vapor diagnostic lines and to non-resonance absorption as well as corresponding uncertainties are made on the basis of their comparative analysis.

  19. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  20. Skin lipid structure controls water permeability in snake molts.

    Science.gov (United States)

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat.

  1. Universal One-Parametric Dependence of Dielectric Water and Water Steam Permeability on Density-Temperature Ratio

    OpenAIRE

    Yu. V. Mulev; K. M. Arefiev; O. V. Beliayeva; M. Yu. Mulev; T. A/ Zaiats

    2011-01-01

    Available experimental data on dielectric permeability of water and water steam have been analyzed in the paper. The paper presents an universal one-parametric dependence of dielectric water and water steam permeability in single-phase areas and also on boundary curves on density -temperature ratio.

  2. Universal One-Parametric Dependence of Dielectric Water and Water Steam Permeability on Density-Temperature Ratio

    Directory of Open Access Journals (Sweden)

    Yu. V. Mulev

    2011-01-01

    Full Text Available Available experimental data on dielectric permeability of water and water steam have been analyzed in the paper. The paper presents an universal one-parametric dependence of dielectric water and water steam permeability in single-phase areas and also on boundary curves on density -temperature ratio.

  3. Condensation of Water Vapor on Waterproof Breathable Fabrics

    Institute of Scientific and Technical Information of China (English)

    周小红; 王善元; 袁观洛

    2003-01-01

    Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20°C and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃. The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics,which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.

  4. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  5. Remote sensing of water vapor within the solar spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, B. [Univ. Hamburg (Germany). Meteorologisches Inst.; Bakan, S. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften

    1995-12-31

    Water vapor is the most important natural atmospheric greenhouse gas, influencing strongly solar and thermal infrared radiative transfer, and giving rise for clouds, which have strong influence on weather and climate. Therefore, much effort is devoted to remote sensing of atmospheric water vapor. The detection over water is well established, while the situation over land surfaces is worse. A new method is developed to derive the total atmospheric water vapor content over land surfaces even for higher aerosol contents with the aid of backscattered solar radiances. Numerous radiative transfer simulations with a matrix operator code of vertically backscattered solar radiance were carried out for different vertically stratified atmospheres. From the evaluation of these theoretical calculations it can be concluded that this technique allows the detection of total atmospheric water vapor content over land surfaces with an error of less than 10%. This result is important with regard to future measurements planned with the MERIS imaging spectrometer on board the European satellite ENVISAT, which will be launched in 1998. In addition to these theoretical calculations also various aircraft measurements of the backscattered radiances in the wavelength range from 600 to 1,650 nm were carried out. These measurements are done with the above mentioned OVID, a new multichannel array spectrometer of the Universities of Hamburg and Berlin. First comparisons of these airborne CCD measurements with calculated spectra are shown.

  6. Supersaturation in the spontaneous formation of nuclei in water vapor

    Science.gov (United States)

    Sander, Adolf; Damkohler, Gerhard

    1953-01-01

    According to experience, a certain supersaturation is required for condensation of water vapor in the homogeneous phase; that is, for inception of the condensation, at a prescribed temperature, the water vapor partial pressure must lie above the saturation pressure. The condensation starts on so-called condensation nuclei. Solid or liquid suspended particles may serve as nuclei; these particles may either a priori be present in the gas phase (dust, soot), or may spontaneously be formed from the vapor molecules to be condensed themselves. Only the second case will be considered. Gas ions which facilitate the spontaneous formation of nuclei may be present or absent. The supersaturations necessary for spontaneous nucleus formation are in general considerable higher than those in the presence of suspended particles.

  7. 智能防水透湿聚氨酯研究进展%Development of Shape Memory Polyurethane on Intelligent Waterproof and Water Vapour Permeable

    Institute of Scientific and Technical Information of China (English)

    王玮玲; 于伟东

    2014-01-01

    简要介绍了实现形状记忆聚氨酯( SMPU)的智能透湿机理,综述了SMPU在智能透湿性方面的研究进展及智能防水透湿膜和织物研究中存在的问题,提出了研究开发具有创新功能的智能防水透湿织物是未来纺织工业发展的趋势。%The mechanism of waterproof and water vapor permeable of shape memory polyurethane was brief in⁃troduced. The research progress of shape memory polyurethane(SMPU) in intelligent water vapor permeability and problem which existed in membrane and fabrics of smart waterproof breathable were summerized. The research of in⁃telligent water proof and breathable fabrics with innovation function was the trend of textiles in the future.

  8. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    Science.gov (United States)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  9. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.

  10. Diurnal variations in water vapor over Central and South America

    Science.gov (United States)

    Meza, Amalia; Mendoza, Luciano; Bianchi, Clara

    2016-07-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 73 GNSS tracking sites (GPS + GLONASS) which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, with different diurnal variations of the integrated total humidity content. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). The numerical tools, Singular Value Decomposition and classical Multidimensional Scaling methods, are used to study these variations, considering the measurements made at each stations, as sample in the analysis. The aim of this investigation is to identify the IWV variability with respect to the local time associated to the different climate regions. In order to improve our analysis, all available weather information, such as radiosondes measurements (which are few), measurements of pressure and temperature and Numerical Weather Models reanalysis data, are used. Reference: Dai, A., K. E. Trenberth, and T. R. Karl, 1999 a: Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate, 12, 2451-2473. Dai, A., F. Giorgi, and K. E. Trenberth, 1999 b: Observed and model simulated precipitation diurnal cycle over the contiguous United States.J. Geophys. Res., 104, 6377-6402. KEYWORDS: water vapor, diurnal cycle, GNSS

  11. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    Science.gov (United States)

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  12. Modeling water permeability in needle-punched nonwovens using finite element analysis

    CSIR Research Space (South Africa)

    Patanaik, A

    2008-03-01

    Full Text Available -punching process. The pore size in the nonwovens is measured by liquid extrusion porometry. Water permeability is measured by the water permeability tester. A finite element analysis is employed to predict the flow velocity through the nonwovens. A good correlation...

  13. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects

    Directory of Open Access Journals (Sweden)

    Wang Jiulong

    2017-08-01

    Full Text Available This paper presents a theoretical method to simulate gas-water relative permeability for nanoscale porous media utilizing fractal theory. The comparison between the calculation results and experimental data was performed to validate the present model. The result shows that the gas-water relative permeability would be underestimated significantly without interfacial effects. The thinner the liquid film thickness, the greater the liquid-phase relative permeability. In addition, both liquid surface diffusion and gas diffusion coefficient can promote gas-liquid two-phase flow. Increase of liquid surface diffusion prefer to increase liquid-phase permeability obviously as similar as increase of gas diffusion coefficient to increase gas-phase permeability. Moreover, the pore structure will become complicated with the increase of fractal dimension, which would reduce the gas-water relative permeability. This study has provided new insights for development of gas reservoirs with nanoscale pores such as shale.

  14. Vaporization of fault water during seismic slip

    NARCIS (Netherlands)

    Chen, Jianye|info:eu-repo/dai/nl/370819071; Niemeijer, André R.|info:eu-repo/dai/nl/370832132; Fokker, Peter A.|info:eu-repo/dai/nl/08711092X

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase

  15. Radiometric estimation of water vapor content over Brazil

    Science.gov (United States)

    Karmakar, P. K.; Maiti, M.; Sett, S.; Angelis, C. F.; Machado, L. A. T.

    2011-11-01

    A multi-channel microwave radiometre (make: Radiometrics Corporation) is installed at Instituto Nacional de Pesquisas Espaciais-INPE, Brazil (22°S). The radiometric output of two channels of the radiometer in the form of brightness temperature at 23.834 GHz and 30 GHz, initially, were used to find out the ambient water vapor content and the non-precipitable cloud liquid water content. The necessary algorithm was developed for the purpose. The best results were obtained using the hinge frequency 23.834 GHz and 30 GHz pair having an r.m.s. error of only 2.64. The same methodology was then adopted exploiting 23.034 GHz and 30 GHz pair. In that case the r.m.s. error was 3.42. These results were then compared with those obtained over Kolkata (22°N), India, by using 22.234 GHz and 31.4 GHz radiometric data. This work conclusively suggests the use of a frequency should not be at the water vapor resonance line. Instead, while measuring the vapor content for separation of vapor and cloud liquid, one of them should be a few GHz left or right from the resonance line i.e., at 23.834 GHz and the other one should be around 30 GHz.

  16. Serpentinization: Getting water into a low permeability peridotite

    Science.gov (United States)

    Ulven, Ole Ivar

    2017-04-01

    Fluid consuming rock transformation processes occur in a variety of settings in the Earth's crust. One such process is serpentinization, which involves hydration of ultramafic rock to form serpentine. With peridotite being one of the dominating rocks in the oceanic crust, this process changes physical and chemical properties of the crust at a large scale, increases the amount of water that enters subduction zones, and might even affect plate tectonics te{jamtveit}. A significant number of papers have studied serpentinization in different settings, from reaction fronts progressing over hundreds of meters te{rudge} to the interface scale fracture initiation te{pluemper}. However, the process represents a complicated multi-physics problem which couples external stress, mechanical deformation, volume change, fracture formation, fluid transport, the chemical reaction, heat production and heat flow. Even though it has been argued that fracture formation caused by the volume expansion allows fluid infiltration into the peridotite te{rudge}, it remains unclear how sufficient water can enter the initially low permeability peridotite to pervasively serpentinize the rock at kilometre scale. In this work, we study serpentinization numerically utilizing a thermo-hydro-mechanical model extended with a fluid consuming chemical reaction that increases the rock volume, reduces its density and strength, changes the permeability of the rock, and potentially induces fracture formation. The two-way coupled hydromechanical model is based on a discrete element model (DEM) previously used to study a volume expanding process te{ulven_1,ulven_2} combined with a fluid transport model based on poroelasticity te{ulven_sun}, which is here extended to include fluid unsaturated conditions. Finally, a new model for reactive heat production and heat flow is introduced, to make this probably the first ever fully coupled chemo-thermo-hydromechanical model describing serpentinization. With this model

  17. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  18. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  19. Water vapor toward starless cores: the Herschel view

    CERN Document Server

    Caselli, P; Pagani, L; Aikawa, Y; Yildiz, U A; van der Tak, F F S; Tafalla, M; Bergin, E A; Nisini, B; Codella, C; van Dishoeck, E F; Bachiller, R; Baudry, A; Benedettini, M; Benz, A O; Bjerkeli, P; Blake, G A; Bontemps, S; Braine, J; Bruderer, S; Cernicharo, J; Daniel, F; di Giorgio, A M; Dominik, C; Doty, S D; Encrenaz, P; Fich, M; Fuente, A; Gaier, T; Giannini, T; Goicoechea, J R; de Graauw, Th; Helmich, F; Herczeg, G J; Herpin, F; Hogerheijde, M R; Jackson, B; Jacq, T; Javadi, H; Johnstone, D; Jorgensen, J K; Kester, D; Kristensen, L E; Laauwen, W; Larsson, B; Lis, D; Liseau, R; Luinge, W; Marseille, M; McCoey, C; Megej, A; Melnick, G; Neufeld, D; Olberg, M; Parise, B; Pearson, J C; Plume, R; Risacher, C; Santiago-Garcia, J; Saraceno, P; Shipman, R; Siegel, P; van Kempen, T A; Visser, R; Wampfler, S F; Wyrowski, F

    2010-01-01

    SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) 7000 AU and ~2x10^-10 toward the center. The radiative trans fer analysis shows that this is consistent with a x(o-H2O) profile peaking at ~10^-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Herschel has provided the first measurement of water vapor in dark regions. Prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) are very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds.

  20. METHODOLOGY FOR CALCULATION OF HORIZONTAL WATER PERMEABILITY COEFFICIENT IN SOIL CAPILLARY BORDER

    Directory of Open Access Journals (Sweden)

    E. I. Michnevich

    2011-01-01

    Full Text Available The paper shows that for overall estimation of soil water permeability it is necessary to know a horizontal water permeability value of a soil capillary border in addition to coefficients of filtration and permeability. Relations allowing to determine soil permeability in the area of incomplete saturation, are given in the paper. For a fully developed capillary border some calculation formulae have been obtained in the form of algebraic polynomial versus soil grading (grain composition. These formulae allow to make more accurate calculations while designing and operating  reclamation works.

  1. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  2. Influence of Decenylsuccinic Acid on Water Permeability of Plant Cells 1

    Science.gov (United States)

    Lee, O. Y.; Stadelmann, Ed. J.; Weiser, C. J.

    1972-01-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid × minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury. At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule × minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm × minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm × minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. Images PMID:16658227

  3. Experimental investigation the effect of nanoparticles on the oil-water relative permeability

    Science.gov (United States)

    Amedi, Hamidreza; Ahmadi, Mohammad-Ali

    2016-05-01

    This paper presents the effects of the nanosilica particles on the water and oil relative permeability curves at reservoir conditions. Real reservoir crude oil sample was employed as an oil phase in relative permeability measurements. In addition, real carbonate reservoir rock samples were employed as a porous media in core displacement experiments. To determine relative permeability curves, the unsteady-state approach was employed in which Toth et al. method was applied to the recovery data points. By increasing the nanosilica content of the aqueous phase the oil relative permeability increased while the residual oil saturation decreased; however, by increasing the nanosilica concentration in the aqueous solution the water relative permeability decreased. The outcomes of this paper can provide a better understanding regarding chemically enhanced oil recovery (EOR) by nanoparticles. Moreover, relative permeability curves help us in the history matching section of reservoir simulation for any further EOR scenarios.

  4. Water-permeability measurement of high performance concrete using a high-pressure triaxial cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S. [Ain Shams Univ., Cairo (Egypt). Dept. of Civil Engineering; Hooton, R.D. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering

    1995-08-01

    Water permeability of concrete is used to indicate its durability. Accurate and reproducible measurement of water permeability is difficult and becomes more difficult as the quality of concrete increases. When high-performance concrete (HPC) is tested, these concerns become more pronounced. HPC is used widely to improve the durability and performance of structures but there are few test procedures able to evaluate its permeability-related properties. In this study the water permeabilities of concretes including HPC were measured using a high-pressure triaxial cell with a sensitive and automated measurement capability. Special analysis procedures were developed to obtain useful data from the extremely low volume of water being measured. This method was able to measure a wide range of permeability values from 10{sup {minus}12} m/s to 10{sup {minus}16} m/s, with reproducible measurements on replicates.

  5. A summary of meteorological requirements for water vapor data and possible space shuttle applications

    Science.gov (United States)

    1976-01-01

    The accuracy of water vapor measurement required by modelers and forecasters at a number of scales of motion is discussed. Direct and indirect methods for operational use in obtaining atmospheric water vapor data are reviewed along with meteorological applications of water vapor data obtained by a space shuttle laboratory lidar system.

  6. Effects of Satellite Spectral Resolution and Atmospheric Water Vapor on Retrieval of Near-Ground Temperatures

    Science.gov (United States)

    1993-04-28

    alternate low-level water vapor profile was considered. This " dry " water vapor profile (dashed in Fig. I) was specified to be equal to the "basic...the dry water vapor profile for the night situation. As expected, the unresolvable perturbations of surface temperature were smaller for the dry

  7. Evaluation of heat and water flow in porosity permeable horizons

    Science.gov (United States)

    Pasquale, Vincenzo; Verdoya, Massimo; Chiozzi, Paolo

    2010-05-01

    temperatures contain a discernible climatic signal, explainable with an increase of ground surface temperature over the past few decades. This could have caused a positive shift in the temperature-depth data. Thus, temperature data used in this study were preliminarily treated for such a climatic noise. Our approach assumes that water volumetric heat capacity and bulk thermal conductivity of the porosity permeable horizons are constant along the section of the borehole where groundwater movement occurs. Under natural conditions, this is not always the case, and curvatures in temperature profiles can be also explained by variation of such parameters. However, for the investigated boreholes, thermal conductivity measurements show a variation not larger than ten per cent about the average, thus excluding that distortion in temperature-depth curves is due to lithological change. This implies an uncertainty on the hydrothermal parameters of the same order of magnitude. Moreover, the temperature and pressure dependence of thermal parameters can be neglected, as the investigated depth range is relatively shallow.

  8. Water vapor analysis with use of sunphotometry and radiosoundings

    Science.gov (United States)

    Pakszys, Paulina; Zielinski, Tymon; Petelski, Tomek; Makuch, Przemyslaw; Strzalkowska, Agata; Markuszewski, Piotr; Kowalczyk, Jakub

    2014-05-01

    Information about vertically integrated content of water vapor in the atmosphere and type, composition and concentration of aerosols is relevant in many types of atmospheric studies. Such information is required to understand mechanisms of global climate and its further modeling (Smirnov et al., 2000). This work is devoted to the description of a basic technique of analysis and comparing the derivation of Columnar Water Vapor (CWV) from different instruments, such as a radiosonde and a sunphotometer. The measurements were carried out using Microtops II Ozone Monitor & Sunphotometer during the cruises onboard the R/V Oceania (13 cruises) and from one cruise onboard of the SY TASK in the southern Baltic Sea. Measurements were collected for the NASA program Maritime Aerosol Network. Data collected with the DiGICORA III Radiosonde (RS92) come from the webpage of the University of Wyoming, Department of Atmospheric Science. The first instrument, sunphotometer, allows us to collect data on days that are cloud-free. The Microtops II is capable of measuring the total ozone column, total precipitable water vapor and aerosol optical depth at 1020 nm (Morys et al. 2001; Ichoku et al., 2002). Each of these parameters is automatically derived. Data collected by Microtops have been processed with the pre- and post-field calibration and automatic cloud clearing. Precipitable water vapor in the column was derived from the 936nm channel. Detailed data description is available on the AERONET webpage. In radiousoundings the total precipitable water is the water that occurs in a vertical column of a unit cross-sectional area between any two specified levels, commonly expressed as from the earth's surface to the 'top' of the atmosphere. The Integrated Precipitable Water Vapor (IPWV) is the height of liquid water that would result from the condensation of all water vapor in a column. The study of one cruise (29 March - 20 April) shows that 241 Microtops measurements were made, each of

  9. Self-deactivation of water vapor - Role of the dimer

    Science.gov (United States)

    Zuckerwar, A. J.

    1984-01-01

    A phenomenological multiple-relaxation theory of the deactivation rate constant for the nu-2 (1 - 0) bending mode of water vapor is presented which incorporates the role not only of the excited monomer but also of the bound molecular complex, in particular the dimer. The deactivation takes place by means of three parallel processes: (1) collisional deexcitation of the excited monomer, (2) a two-step reaction involving association and spontaneous redissociation of an H2O collision complex, and (3) spontaneous dissociation of the stably bound H2O dimer. Oxygen, but not nitrogen or argon, serves as an effective chaperon for the formation of the activated complex. This observation explains the impurity dependence of the self-deactivation rate constant of water vapor. Analysis of an ultrasonic absorption peak based on the third process yields values for the standard entropy and enthalpy of dissociation of the stably bound H2O dimer.

  10. Error analysis of integrated water vapor measured by CIMEL photometer

    Science.gov (United States)

    Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.

    2017-01-01

    Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.

  11. A nonisothermal emissivity and absorptivity formulation for water vapor

    Science.gov (United States)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  12. Phoenix Water Vapor Measurements using the SSI Camera

    Science.gov (United States)

    Tamppari, Leslie; Lemmon, Mark T.

    2016-10-01

    The Phoenix and Mars Reconnaissance Orbiter (MRO) spacecraft participated together in an observation campaign that was a coordinated effort to study the Martian atmosphere. These coordinated observations were designed to provide near-simultaneous observations of the same column of atmosphere over the Phoenix lander. Seasonal coverage was obtained at Ls=5-10° resolution and diurnal coverage was obtained as often as possible and with as many times of day as possible. One key aspect of this observation set was the means to compare the amount of water measured in the whole column (via the MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) and the Phoenix Surface Stereo Imager (SSI) with that measured at the surface (via the Phoenix Thermal and Electrical Conductivity probe (TECP; Zent et al., 2008) which contained a humidity sensor). This comparison, along with the Phoenix LIDAR observations of the depth to which aerosols are mixed (Whiteway et al., 2008, 2009), provides clues to the water vapor mixing ratio profile. Tamppari et al. (2009) showed that examination of a subset of these coordinated observations indicate that the water vapor is not well mixed in the atmosphere up to a cloud condensation height at the Phoenix location during northern summer, and results indicated that a large amount of water must be confined to the lowest 0.5-1 km. This is contrary to the typical assumption that water vapor is "well-mixed."Following a similar approach to Titov et al. (2000), we use the Phoenix SSI camera [Lemmon et al., 2008] filters to detect water vapor: LA = 930.7 nm (broad), R4 = 935.5 nm (narrow), and R5 = 935.7 nm (narrow). We developed a hybrid DISORT-spherical model (DISORT model, Stamnes et al. 1988) to model the expected absorption due to a prescribed water vapor content and profile, to search for matches to the observations. Improvements to the model have been made and recent analysis using this model and comparisons to

  13. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  14. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  15. Modeling an integrated photoelectrolysis system sustained by water vapor

    OpenAIRE

    Xiang, Chengxiang; Chen, Yikai; Lewis, Nathan S.

    2013-01-01

    Two designs for an integrated photoelectrolysis system sustained by water vapor have been investigated using a multi-physics numerical model that accounts for charge and species conservation, electron and ion transport, and electrochemical processes. Both designs leverage the use of a proton-exchange membrane that provides conductive pathways for reactant/product transport and prevents product crossover. The resistive losses, product gas transport, and gas crossovers as a function of the geom...

  16. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  17. Adsorption characteristics of water vapor on honeycomb adsorbents

    Science.gov (United States)

    Wajima, Takaaki; Munakata, Kenzo; Takeishi, Toshiharu; Hara, Keisuke; Wada, Kouhei; Katekari, Kenichi; Inoue, Keita; Shinozaki, Yohei; Mochizuki, Kazuhiro; Tanaka, Masahiro; Uda, Tatsuhiko

    2011-10-01

    Recovery of tritium released into working areas in nuclear fusion plants is a key issue of safety. A large volume of air from tritium fuel cycle or vacuum vessel should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes high-pressure drop in catalyst and adsorbent beds. In this study, the applicability of honeycomb-type adsorbents, which offers a useful advantage in terms of their low-pressure drop, to ACS was examined, in comparison with conventional pebble-type adsorbent. Honeycomb-type adsorbent causes far less pressure drop than pebble-type adsorbent beds. Adsorption capacity of water vapor on a honeycomb-type adsorbent is slightly lower than that on a pebble-type adsorbent, while adsorption rate of water vapor on honeycomb-type adsorbent is much higher than that of pebble-type adsorbent.

  18. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  19. Water vapor intrusions into the High Arctic during winter

    Science.gov (United States)

    Doyle, J. G.; Lesins, G.; Thackray, C. P.; Perro, C.; Nott, G. J.; Duck, T. J.; Damoah, R.; Drummond, J. R.

    2011-06-01

    The meridional transport of water vapor into the High Arctic, accompanied by dry enthalpy and clouds, impacts the surface radiative forcing. The evolution of one such moist intrusion over 9-11 February 2010 is presented. The event is analyzed using a unique blend of measurements including a new pan-Arctic retrieval of column water vapor from the Microwave Humidity Sounders, water vapor profiles from a Raman lidar and a ground-based microwave radiometer at the Polar Environment Atmospheric Research Laboratory (PEARL), in Eureka (80°N, 86°W), on Ellesmere Island in the Canadian High Arctic. A radiation model reveals the intrusion is associated with a 17 W m-2 average increase in downwelling longwave irradiance. Optically thin clouds, as observed by the lidar, contribute a further 20 W m-2 to the downwelling longwave irradiance at their peak. Intrusion events are shown to be a regular occurrence in the Arctic winter with implications for the understanding of the mechanisms driving Arctic Amplification.

  20. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  1. New Isotopic Water Analyzer for Hydrological Measurements of Both Liquid Water and Water Vapor

    Science.gov (United States)

    Owano, T.; Gupta, M.; Berman, E.; Baer, D.

    2012-04-01

    Measurements of the stable isotope ratios of liquid water allow determination of water flowpaths, residence times in catchments, and groundwater migration. Previously, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of the first Isotopic Water Analyzer that simultaneously quantifies δ2H, δ17O and δ18O in liquid water or in water vapor from different natural water sources (e.g., rain, snow, streams and groundwater). In High-Throughput mode, the IWA can report measurements at the unprecedented rate of over 800 injections per day, which yields more than 140 total unknown and reference samples per day (still with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ2H, δ17O, δ18O) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift despite changes in ambient temperature (over the entire range from 0-45 degrees C). Measurements from recent field studies using the IWA will be presented.

  2. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  3. Molecular dynamics of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  4. Molecular dynamics of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  5. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  6. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  7. Relation between 183 GHz Water Vapor Line and Water Continuum Absorption Measured with FTS

    Science.gov (United States)

    Matsushita, S.; Matsuo, H.

    ve carried out Fourier Transform Spectrometer (FTS) measurements of the millimeter and submillimeter-wave (100-1500 GHz or 3 mm - 200 micron) atmospheric opacity at Pampa la Bola, 4800 m above sea level in northern Chile on September 1997 and June 1998. Correlations between 220 GHz opacities and those of the center of submillimeter-wave windows were obtained using the entire data set, and good correlations were obtained except for the periods affected by the liquid water opacity component. We succeeded to separate the total opacity to water vapor and liquid water opacity components. The separated water vapor opacity component shows good correlation with the 183 GHz pure water vapor line opacity, which is also covered in the measured spectra, but the liquid water opacity component shows no correlation. Since the submillimeter-wave opacity is merely affected by the liquid water component, it may be better to use the submillimeter-wave opacity for the phase correction.

  8. Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales

    CERN Document Server

    Makarieva, Anastassia M

    2010-01-01

    Basic physical principles are considered that are responsible for the origin of dynamic air flow upon condensation of water vapor, the partial pressure of which represents a store of potential energy in the atmosphere of Earth. Quantitative characteristics of such flow are presented for several spatial scales. It is shown that maximum condensation-induced velocities reach 160 m/s and are realized in compact circulation patterns like tornadoes.

  9. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vertical structure of water vapor in atmosphere is one of the initial information of numerical weather forecast model. Because of the strong variation of water vapor in atmosphere and limited spatio-temporal solutions of traditional observation technique, the initial water vapor field of numerical weather forecast model can not accurately be described. At present, using GPS slant observations to study water vapor profile is very popular in the world. Using slant water vapor(SWV) observations from Shanghai GPS network,we diagnose the three-dimensional(3D) water vapor structure over Shanghai area firstly in China. In water vapor tomography, Gauss weighted function is used as horizontal constraint, the output of numerical forecast is used as apriori information, and boundary condition is also considered. For the problem without exact apriori weights for observations, estimation of variance components is introduced firstly in water vapor tomography to determine posteriori weights. Robust estimation is chosen for reducing the effect of blunders on solutions. For the descending characteristic of water vapor with height increasing, non-equal weights are used along vertical direction. Comparisons between tomography results and the profile provided by numerical model (MM5) show that the forecasted moisture fields of MM5 can be improved obviously by GPS slant water vapor. Using GPS slant observations to study 3D structure of atmosphere in near real-time is very important for improving initial water vapor field of short-term weather forecast and enhancing the accuracy of numerical weather forecast.

  10. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  11. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol.

    Science.gov (United States)

    Tang, Yu Pan; Wang, Huan; Chung, Tai Shung

    2015-01-01

    The microstructural evolution of a series of triazine framework-based microporous (TFM) membranes under different conditions has been explored in this work. The pristine TFM membrane is in situ fabricated in the course of polymer synthesis via a facile Brønsted-acid-catalyzed cyclotrimerizaiton reaction. The as-synthesized polymer exhibits a microporous network with high thermal stability. The free volume size of the TFM membranes gradually evolved from a unimodal distribution to a bimodal distribution under annealing, as analyzed by positron annihilation lifetime spectroscopy (PALS). The emergence of the bimodal distribution is probably ascribed to the synergetic effect of quenching and thermal cyclization reaction. In addition, the fractional free volume (FFV) of the membranes presents a concave trend with increasing annealing temperature. Vapor sorption tests reveal that the mass transport properties are closely associated with the free volume evolution, which provides an optimal condition for dehydration of biofuels. A promising separation performance with extremely high water permeability has been attained for dehydration of an 85 wt % ethanol aqueous solution at 45 °C. The study on the free volume evolution of the TFM membranes may provide useful insights about the microstructure and mass transport behavior of the microporous polymeric materials.

  12. Water vapor diffusion into a nanostructured iron oxyhydroxide.

    Science.gov (United States)

    Song, Xiaowei; Boily, Jean-François

    2013-06-17

    Water diffusion through 0.4 nm × 0.4 nm wide tunnels of synthesized akaganéite (β-FeOOH) nanoparticles was studied by a coupled experimental-molecular modeling approach. A sorption isotherm model obtained from quartz crystal microbalance measurements suggests that the akaganéite bulk can accommodate a maximum of 22.4 mg of water/g (44% bulk site occupancy) when exposed to atmospheres of up to 16 Torr water vapor. Fourier transform infrared spectroscopy also showed that water molecules interact with (hydr)oxo groups on both the akaganéite bulk and surface. Diffusion reactions through the akaganéite bulk were confirmed through important changes in the hydrogen-bonding environment of bulk hydroxyl groups. Molecular dynamics simulations showed that water molecules are localized in cavities that are bound by eight hydroxyl groups, forming short-lived (water are three orders of magnitude lower than they are in liquid water (D = 0.0-11.1 × 10(-12) m(2)·s(-1)), whereas large integral rotational correlation times are 4 to 15 times higher (τr = 8.4-31.8 ps). Moreover, both of these properties are strongly loading-dependent. The simulations of the interface between the water vapor phase and the (010) surface plane of the akaganéite, where tunnel openings are exposed, revealed sluggish rates of incorporation between interfacial water species and their tunnel counterparts. The presence of defects in the synthesized particles are suspected to contribute to different diffusion rates in the laboratory when compared to those observed in pristine crystalline materials, as studied by molecular modeling.

  13. Electrical parameters and water permeability properties of monolayers formed by T84 cells cultured on permeable supports

    Directory of Open Access Journals (Sweden)

    Ozu M.

    2005-01-01

    Full Text Available T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM, hydraulic permeability (P HYDR and transport-associated net water fluxes (J W-transp, as well as short-circuit current (I SC, transepithelial resistance (R T, and potential difference (deltaV T were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO, a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1. No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.

  14. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    Science.gov (United States)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  15. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tanugi, David; Grossman, Jeffrey C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-08-21

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.

  16. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Science.gov (United States)

    Cohen-Tanugi, David; Grossman, Jeffrey C.

    2014-08-01

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000-2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m2-h-bar assuming a nanopore density of 1.7 × 1013 cm-2.

  17. Projections of Horizontal Water Vapor Transport across Europe

    Science.gov (United States)

    Lavers, D. A.

    2015-12-01

    With a warming Earth's atmosphere, the global water cycle is expected to intensify, a process that is likely to yield changes in the frequency and intensity of hydrological extremes. To quantify such changes over Europe, most previous research has been based upon precipitation scenarios. However, seldom has the horizontal water vapor transport (integrated vapor transport IVT) been investigated, a key variable responsible for heavy precipitation events and one that links water source and sink regions. It is hence the aim of this study to assess the projections of IVT across Europe. The Climate Model Intercomparison Project Phase 5 (CMIP5) is the source of the climate model projections. The historical simulations (1979-2005) and two emissions scenarios (2073-2099), or representative concentration pathways (RCP4.5 and RCP8.5) from 22 global circulation models were retrieved and evaluated. In particular, at model grid points across Europe the mean, standard deviation, and the 95th percentile of IVT were calculated for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean closely resembles the ECMWF ERA-Interim reanalysis. In the future under the two emissions scenarios, the IVT increases in magnitude, with the highest percentage changes occurring in the extreme emissions (RCP8.5) scenario; for example, multi-model mean IVT increases of 30% are found in the domain. An evaluation of the low-altitude moisture and winds indicates that higher atmospheric water vapor content is the primary cause of these projected changes.

  18. An optical water vapor sensor for unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  19. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies the mass transport properties for water vapor and nitrogen for a series of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) multi-block copolymers via: (a) the permeation of a water vapor/N2 mixture (b) the sorption of water vapor, (c) the diffusion of water vapor, (d

  20. FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola: III. Water Vapor, Liquid Water, and 183GHz Water Vapor Line Opacities

    Science.gov (United States)

    Matsushita, Satoki; Matsuo, Hiroshi

    2003-02-01

    Further analysis has been made on the millimeter- and submillimeter-wave (100-1600GHz or 3mm-188 μm) atmospheric opacity data taken with the Fourier Transform Spectrometer (FTS) at Pampa la Bola, 4800 m above the sea level in northern Chile, which is the site of the Atacama Large Millimeter/submillimeter Array (ALMA). Time-sequence plots of millimeter- and submillimeter-wave opacities show similar variations to each other, except for during the periods with liquid water (fog or clouds) in the atmosphere. Using millimeter- and submillimeter-wave opacity correlations under two conditions, which are affected and not affected by liquid water, we succeeded to separate the measured opacity into water vapor and liquid water opacity components. The water vapor opacity shows a good correlation with the 183GHz water vapor line opacity, which is also covered in the measured spectra. On the other hand, the liquid water opacity and the 183GHz line opacity show no correlation. S ince only the water vapor component is expected to affect the phase of interferometers significantly, and the submillimeter-wave opacity is less affected by the liquid water component, it may be possible to use the submillimeter-wave opacity for a phase correction of submillimeter interferometers.

  1. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    Energy Technology Data Exchange (ETDEWEB)

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  2. Oxidation of Carbon Fibers in Water Vapor Studied

    Science.gov (United States)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  3. Atmospheric Water Vapor: A Nemesis for Millimeter Wave Propagation

    Science.gov (United States)

    1980-01-01

    Sulphur dioxide, for example, nucleates with water vapor to form sulfuric acid primary particles in large numbers (as high as 1015 m- 3 ), which are...electro- polished stainless steel (SS 304) cavity (3440 cm3 and 1265 cm2 , S/V = 0.37 cm-1 ) evacuated for > 24 hours to 10-4 torr and subjected to... electropolished -1.50 30 150 400 HMDSa silanizing -1.35 27 190 750 Parylene C (Union Carbine) -1.60 32 140 580 Silicone SR240 (GE) -2.10 42 200 550 Teflon REPI20

  4. Observations of atmospheric water vapor with the SAGE 2 instrument

    Science.gov (United States)

    Larsen, Jack C.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.

    1988-01-01

    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition.

  5. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  6. Diurnal variations in water vapor over Central and South America

    Science.gov (United States)

    Meza, Amalia; Mendoza, Luciano; Clara, Bianchi

    2017-04-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 70 GNSS tracking sites (GPS + GLONASS) belonging to Central and South America, which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, and diverse relieves, therefore the patterns of IWV diurnal variations are very different for each station. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). Firstly, our work study the main characteristics of the IWV diurnal cycle (and for surface temperature, T) obtained for all stations together, using Principal Component Analysis (PCA). First and second PCA modes highlight the global main behaviors of IWV variability for all stations. The first mode on IWV represent the 70% of the variability and could be related to the surface evapotranspiration, while the second mode (27 % of the variability) is practically in counter phase to T variability (its first mode represent the 97% of the variability), therefore this mode could be related to breeze regime. Then, every station is separately analyzed and seasonal and local variations (relative to the relives) are detected, these results spotlight, among other characteristics, the sea and mountain breeze regime. This presentation shows the first analysis of IWV diurnal cycle performed over Central and South America and another original characteristic is PCA technique employed to infer the results. Reference: Dai, A., K. E. Trenberth, and T. R. Karl

  7. Titanium Dioxide Volatility in High Temperature Water Vapor

    Science.gov (United States)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  8. A new test method for measuring the water vapour permeability of fabrics

    Science.gov (United States)

    Huang, Jianhua; Qian, Xiaoming

    2007-09-01

    The water vapour permeability of textile fabrics is a critical determinant of wearer comfort. Existing test methods are either time consuming or require large amounts of material. A new test apparatus was developed for characterizing the water vapour permeability of fabrics. An aluminium cylinder covered with waterproof and vapour permeable PTFE laminate is used for generating water vapour source on one side of the sample. A dry nitrogen sweep gas stream is used to carry water vapour away. The calculation of the rate of water vapour transmission across the fabric is based on the measurement of the relative humidity of the outgoing nitrogen stream. This new measuring apparatus offers a short test time and calls for a small sample size. The comparison measurements show that the test results correlated well with those obtained from ISO 11092 and ASTM E96. Therefore, this test method provides a new technique to accurately and precisely characterize the water vapour transport properties of fabrics.

  9. Water-vapor source shift of Xinjiang region during the recent twenty years

    Institute of Scientific and Technical Information of China (English)

    Dai Xingang; Li Weijing; Ma Zhuguo; Wang Ping

    2007-01-01

    The aim of this paper is to investigate the climate water-vapor sources of Xinjiang region and their shifts during the past 20 years. First, the principle and steps are roughly regulated to seek the water-vapor sources. Second, the climate stationary water-vapor transport in troposphere is calculated to distinguish where the water vapor comes from by ERA-40 reanalysis. In addition, the collocation between the transport and the atmospheric column water vapor content is analyzed. The results show that the major vapor comes from the west side of Xinjiang for mid-month of seasons, apart from July while the water vapor comes from the north or northwest direction. The water vapor sources are different for different seasons, for example, the Caspian Sea and Mediterranean are the sources in January and April, the North Atlantic and the Arctic sea in July, and the Black Sea and Caspian Sea in October, respectively. In recent ten years more water vapor above Xinjiang comes from the high latitudes and the Arctic sea with global warming, and less from Mediterranean in comparison with the case of 1973-1986. In fact, the air over subtropics becomes dry and the anomalous water vapor transport direction turns to west or southwest during 1987-2000. By contrast, the air over middle and high latitudes is warmer and wetter than 14 years ago.

  10. Water Vapor Products from Differential-InSAR with Auxiliary Calibration Data: Accuracy and Statistics

    Science.gov (United States)

    Gong, W.; Meyer, F. J.; Webley, P.

    2014-12-01

    Although water vapor disturbance has been long term recognized as the major error source in differential Interferometric Synthetic Aperture Radar (d-InSAR) techniques for the ground deformation monitoring and topography reconstruction, it provides opportunities to extract the atmospheric water-vapor information from satellite SAR imageries that can be further used to support studies on earth energy budget, climate, the hydrological cycle, and meteorological forecasting, etc. The water vapor contribution in interferometric phases is normally referred as the atmospheric delay dominated by water vapor rather than condensed water (e.g. cloud). D-InSAR can produce maps of the column water vapor amounts (equivalent to integrated water vapor (IWV) or Precipitable Water Vapor (PWV) in other literatures) that are important parameters quantitatively describe the total amount of water vapor overlying a point on the earth surface. Similar products have been operationally produced in multi-spectrum remote sensing, e.g. Moderate-resolution Imaging Spectroradiometer (MODIS) with a spatial resolution in 500 m to 1km; Whereas, the PWV products derived by d-InSAR have remarkably high spatial resolution that can capture fine scale of water vapor variations in space as small as tens of meters or even less. In recent years, some efforts have been made to derive the water vapor products from interferogram and analyze the corresponding products quality, such as studies comparing integrated water vapor derived from interferometric phases to other measurements (e.g. MERIS, MODIS, GNSS), studies on deriving absolute water vapor products from d-InSAR, and studies on integrating d-InSAR water vapor products in meteorological numerical forecast. In this study, considering these limitation factors and based on previous studies, we discuss the accuracy and statistics of the water vapor products from satellite SAR, including (1) Accuracy of the differential water vapor products; (2) Sources of

  11. Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities

    Science.gov (United States)

    Charlang, G.; Horowitz, N. H.

    1974-01-01

    Neurospora crassa conidia incubating in buffer at low water activities release a germination-essential component as well as 260-nm absorbing and ninhydrin-positive materials, regardless of whether an electrolyte or nonelectrolyte is used to reduce water activity. Chloroform and antibiotics known to increase cell-membrane permeability have a similar effect. This suggests that membrane damage occurs in media of low water activity and that an increase in permeability is responsible for the release of cellular components. The damage caused in media of low water activity is nonlethal in most cases, and the conidia recover when transferred to nutrient medium.

  12. Ricor's Nanostar water vapor compact cryopump: applications and model overview

    Science.gov (United States)

    Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan

    2017-05-01

    Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.

  13. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  14. Water Vapor and the Dynamics of Climate Changes

    Science.gov (United States)

    Schneider, Tapio; O'Gorman, Paul A.; Levine, Xavier J.

    2010-07-01

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change nonmonotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circulation changes through simulations with an idealized general circulation model. This allows us to explore a continuum of climates, to constrain macroscopic laws governing this climatic continuum, and to place past and possible future climate changes in a broader context.

  15. Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments

    Science.gov (United States)

    Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.

    2014-12-01

    Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.

  16. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  17. Graphene oxide membranes with high permeability and selectivity for dehumidification of air

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit; Manandhar, Sandeep; Chase-Woods, Dylan G.; Engelhard, Mark H.; Devanathan, Ram; Fifield, Leonard S.; Bennett, Wendy D.; Ginovska-Pangovska, Bojana; Gotthold, David W.

    2016-09-01

    Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was below the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications

  18. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    Science.gov (United States)

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh

    2016-07-01

    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  19. The Water Vapor Abundance in Orion KL Outflows

    CERN Document Server

    Cernicharo, J; Daniel, F; Lerate, M R; Barlow, M J; Swinyard, B M; Van Dishoeck, E F; Lim, T L; Viti, S; Yates, J

    2006-01-01

    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O for...

  20. Water vapor in the protoplanetary disk of DG Tau

    CERN Document Server

    Podio, L; Codella, C; Cabrit, S; Nisini, B; Dougados, C; Sandell, G; Williams, J P; Testi, L; Thi, W -F; Woitke, P; Meijerink, R; Spaans, M; Aresu, G; Menard, F; Pinte, C

    2013-01-01

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K...

  1. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content......, cation exchange capacity) and engineering properties (e.g., swelling potential). Our objectives for this work were to: (i) evaluate the potential of several theoretical and empirical isotherm models to accurately describe measured moisture adsorption/desorption isotherms (aw range of 0.03 to 0.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...

  2. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  3. Nuclear Magnetic Resonance Measurements of Original Water Saturation and Mobile Water Saturation in Low Permeability Sandstone Gas

    Institute of Scientific and Technical Information of China (English)

    GAO Shu-Sheng; YE Li-You; XIONG Wei; GUO He-Kun; HU Zhi-Ming

    2010-01-01

    @@ We use nuclear magnetic resonance(NMR)and centrifugation to measure the original water saturation and mobile water saturation of cores from the Xujiahe low permeability sandstone gas reservoir,and compare the NMR results with the corresponding field data.It is shown that the NMR water saturation after 300 psi centrifugation effectively represents the original water saturation measured by weighing fresh cores.There is a good correlation between mobile water saturation and the water production performance of the corresponding gas wells.The critical mobile water saturation whether reservoir produces water of the Xujiahe low permeability sandstone gas is 6%.The higher the mobile water saturation,the greater the water production rate of gas well.This indicates that well's water production performance can be forecasted by mobile water saturation of cores.

  4. Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WEI Jie; LIN Zhao-Hui; XIA Jun; TAO Shi-Yan

    2005-01-01

    The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.

  5. Water Vapor Interference Correction in a Non Dispersive Infrared Multi-Gas Analyzer

    Institute of Scientific and Technical Information of China (English)

    SUN You-Wen; LIU Wen-Qing; ZENG Yi; WANG Shi-Mei; HUANG Shu-Hua; XIE Pin-Hua; YU Xiao-Man

    2011-01-01

    We demonstrate an effective method to eliminate the interfering effect of water vapor in a non-dispersive infrared multi-gas analyzer.The response coefficients of water vapor at each filter channel are measured from the humidity of the ambient air.Based on the proposed method,the water vapor interference is corrected with the measured response coefficients.By deducting the absorbance of each filter channel related to water vapor,the measuring precision of the analyzer is improved significantly and the concentration retrieval correlation accuracy of each target gas is more than 99%.

  6. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  7. Development of implantable hemodialysis system using PES membranes with high water-permeability.

    Science.gov (United States)

    To, N; Sanada, I; Ito, H; Morita, S; Kanno, Y; Miki, N

    2015-08-01

    This paper presents development of high water-permeable dialysis membranes. We proposed the system that does not use dialysis fluid for the implantable micro dialysis treatment and development of such membranes is crucial. We developed micro dialysis system composed by nanoporous membranes and microfluidic channels in our prior work. The membranes were made of nanoporous polyethersulfone (PES), which was not water-permeable. By not using dialysate, our device can be simplified because the pumps and storage tanks for the dialysis fluid are not necessary. This treatment is termed as hemofiltration. We measured the water permeability of PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. We could find the membranes with sufficiently high water permeability through in vitro experiments using a syringe pomp and whole cow blood, and the membrane had enough mechanical strength. We conducted experiments with multi-layered device in in vitro and in vivo using rats, where the system was connected to the vein and artery. We successfully collected the filtrate beyond target line, which was set by a medical doctor, without any leakage of blood from the device. The results verified that the filtration device can be scaled-up by increasing a number of the layer. We connected the device to a rat for 5h. It was verified the device maintained almost constant water permeability beyond our target line.

  8. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    Science.gov (United States)

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling.

  9. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water.

    Science.gov (United States)

    Calamita, Giuseppe; Ferri, Domenico; Gena, Patrizia; Liquori, Giuseppa E; Cavalier, Annie; Thomas, Daniel; Svelto, Maria

    2005-04-29

    Mitochondria are remarkably plastic organelles constantly changing their shape to fulfil their various functional activities. Although the osmotic movement of water into and out of the mitochondrion is central for its morphology and activity, the molecular mechanisms and the pathways for water transport across the inner mitochondrial membrane (IMM), the main barrier for molecules moving into and out of the organelle, are completely unknown. Here, we show the presence of a member of the aquaporin family of water channels, AQP8, and demonstrate the strikingly high water permeability (Pf) characterizing the rat liver IMM. Immunoblotting, electron microscopy, and biophysical studies show that the largest mitochondria feature the highest AQP8 expression and IMM Pf. AQP8 was also found in the mitochondria of other organs, whereas no other known aquaporins were seen. The osmotic water transport of liver IMM was partially inhibited by the aquaporin blocker Hg2+, while the related activation energy remained low, suggesting the presence of a Hg2+-insensitive facilitated pathway in addition to AQP8. It is suggested that AQP8-mediated water transport may be particularly important for rapid expansions of mitochondrial volume such as those occurring during active oxidative phosphorylation and those following apoptotic signals.

  10. Trends and variability in column-integrated atmospheric water vapor

    Science.gov (United States)

    Trenberth, Kevin E.; Fasullo, John; Smith, Lesley

    2005-06-01

    An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988 2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997 98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N 30°S of 7.8% K-1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture

  11. Using permeable membranes to produce hydrogen and oxygen from water

    Science.gov (United States)

    Sanders, A. P.; Williams, R. J.; Downs, W. R.; Mcbryar, H.

    1975-01-01

    Concept may make it profitable to obtain hydrogen fuel from water. Laboratory tests have demonstrated that method enables decomposition of water several orders of magnitude beyond equilibrium state where only small amounts of free hydrogen are present.

  12. Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentrations

    NARCIS (Netherlands)

    Landsberg, Janek

    2014-01-01

    The determination of the isotopic composition of water vapor is an important tool in atmospheric research. The isotopic composition of water in Antarctic or Arctic glacial ice can be used as a paleo-thermometer in the reconstruction of climate changes in the past. The isotope ratios of water vapor i

  13. Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentrations

    NARCIS (Netherlands)

    Landsberg, Janek

    2014-01-01

    The determination of the isotopic composition of water vapor is an important tool in atmospheric research. The isotopic composition of water in Antarctic or Arctic glacial ice can be used as a paleo-thermometer in the reconstruction of climate changes in the past. The isotope ratios of water vapor i

  14. Critical parameters of horizontal well influenced by semi-permeable barrier in bottom water reservoir

    Institute of Scientific and Technical Information of China (English)

    乐平; 杜志敏; 陈小凡; 朱苏阳; 贾虎

    2015-01-01

    It is well-known that barriers have a significant impact on the production performance of horizontal wells developed in a bottom water drive reservoir. In most cases, reservoir barriers are semi-permeable. Based on previous research on impermeable reservoir barrier, a mathematical flow model was derived for a horizontal well of a bottom water drive reservoir with a semi-permeable barrier. Besides, analytical equations were also presented to calculate critical parameters, such as production rate, pressure and potential difference. The effects of barrier, well and reservoir parameters on our model results were further investigated. The results show that the larger the barrier size is or the higher the barrier location is, the higher the critical production rate and potential difference of a horizontal well are. When the barrier permeability equals the formation permeability or the barrier width equals zero, the critical production rates converge to the values same to that of the case with no barrier. When the barrier permeability equals zero, the problem is regarded as a case of impermeable barrier. This model can be applied to predicting horizontal wells’ critical production parameters in reservoirs with semi-permeable barriers.

  15. A comparison of experimental methods for measuring water permeability of porous building rocks

    Directory of Open Access Journals (Sweden)

    Galvan, S.

    2014-09-01

    Full Text Available This paper compares different experimental methods for measuring water permeability in 17 different porous building rocks. Both commercial apparatus and specially made designed permeameters are used for characterising intrinsic permeability and hydraulic conductivity, k, of rocks in the range of 10−12 to 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD. We use both falling head and constant head permeameter methods including the triaxial and modified triaxial tests and a classical constant head permeameter. Results showed that for very low and low permeability samples (k−6 m/s, triaxial conditions were found the most accurate procedures and they provided similar or slightly lower permeability values than constant and falling head methods. The latter techniques were highly recommended for permeable and high permeable porous building materials. Water permeability values were also linked to effective porosity and interpreted in terms of interparticle and vugs porosity. Finally, some modifications in the apparatus and procedures were carried out in order to assess water permeability in soft materials, which involve the use of non-saturated samples.Se comparan diferentes métodos experimentales para la medida de la permeabilidad al agua en rocas porosas usadas como material de construcción. Se usaron diferentes permeabilímetros, (comerciales y desarrollados específicamente empleando los métodos triaxial, triaxial modificado, carga constante y carga variable. Se caracterizó la permeabilidad intrínseca y conductividad hidráulica, k, con valores que var.an desde 10−12 a 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD. Para muestras poco y muy poco permeables el ensayo con célula triaxial fue el mas reproducible. Los ensayos de carga constante son muy recomendables para rocas porosas de construcción permeables y muy permeables. Además, se definen los parámetros experimentales más apropiados para caracterizar la

  16. Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest.

    Science.gov (United States)

    Tress, Erika E; Clark, Robert S B; Foley, Lesley M; Alexander, Henry; Hickey, Robert W; Drabek, Tomas; Kochanek, Patrick M; Manole, Mioara D

    2014-08-22

    Pediatric asphyxial cardiac arrest (CA) results in unfavorable neurological outcome in most survivors. Development of neuroprotective therapies is contingent upon understanding the permeability of intravenously delivered medications through the blood brain barrier (BBB). In a model of pediatric CA we sought to characterize BBB permeability to small and large molecular weight substances. Additionally, we measured the percent brain water after CA. Asphyxia of 9 min was induced in 16-18 day-old rats. The rats were resuscitated and the BBB permeability to small (sodium fluorescein and gadoteridol) and large (immunoglobulin G, IgG) molecules was assessed at 1, 4, and 24 h after asphyxial CA or sham surgery. Percent brain water was measured post-CA and in shams using wet-to-dry brain weight. Fluorescence, gadoteridol uptake, or IgG staining at 1, 4h and over the entire 24 h post-CA did not differ from shams, suggesting absence of BBB permeability to these solutes. Cerebral water content was increased at 3h post-CA vs. sham. In conclusion, after 9 min of asphyxial CA there is no BBB permeability over 24h to conventional small or large molecule tracers despite the fact that cerebral water content is increased early post-CA indicating the development of brain edema. Evaluation of novel therapies targeting neuronal death after pediatric CA should include their capacity to cross the BBB. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Influence of Shrinkage on Air and Water Vapour Permeability of Double-Layered Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Asta BIVAINYTĖ

    2012-09-01

    Full Text Available Water vapour permeability and transport depends on the properties of the fibre and knitted fabric structure. It was designed double-layered fabrics knitted in plain plating pattern whose inner side was  made from synthetic fibres the PES, PA, PP, and Coolmax® (tetra-channel fibres by DuPont which do not absorb moisture and on the surface of the wear – natural cotton and bamboo fibres which have good absorption properties. In the present research it was established that the air permeability of all fabrics after washing and drying cycle decreased. It occurred because of the influence of shrinkage during washing and drying under the impact of moisture, heat, and mechanical action. After washing and drying cycle, the water vapour permeability of fabrics knitted from bamboo and synthetic yarns blend decreased predominantly and became similar to fabrics knitted from cotton and respective synthetic yarns blend. The water vapour permeability of fabrics knitted from cotton and synthetic yarns blend decreased significant less. Depending on the knitting structure, the most decrease of water vapour permeability was estimated to the plain plated fabrics.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2438

  18. Temporal variations of δ18O of atmospheric water vapor at Delingha

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Oxygen stable isotope of atmospheric water vapor is widely used to study the modern process of cli- mate. Atmospheric water vapor samples were collected at Dlingha, northeast of Tibetan Plateau during the period from July 2005 to February 2006. The variation of δ18O and the relationships between δ18O and both the temperature and specific humidity are analyzed in this paper. Results show that the sea- sonal variation of δ18O of atmospheric water vapor at Delingha is remarkable with higher δ18O in summer and lower δ18O in winter. The temporal variation of vapor δ18O shows obvious fluctuations, with magnitude of over 37‰. The daily variation of the δ18O is highly correlated with air temperature. The relationship between δ18O and atmospheric water vapor content is complex. Study shows that δ18O of atmospheric water vapor is positively correlated with specific humidity in winter in seasonal scale and inversely correlated with specific humidity in summer rainy period. The δ18O values of at- mospheric water vapor are lower than those of precipitation at Delingha, and the average difference is 10.7‰. Variations of δ18O of atmospheric water vapor is also found to be affected by precipitation events, The model results show that the precipitation effect could have caused the vapor δ18O in the raining season to lower by 7% in average in July and August.

  19. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.

    Science.gov (United States)

    Michalak, Zuzanna; Muzzio, Michelle; Milianta, Peter J; Giacomini, Rosario; Lee, Sunghee

    2013-12-23

    The process of water permeation across lipid membranes has significant implications for cellular physiology and homeostasis, and its study may lead to a greater understanding of the relationship between the structure of lipid bilayer and the role that lipid structure plays in water permeation. In this study, we formed a droplet interface bilayer (DIB) by contacting two aqueous droplets together in an immiscible solvent (squalane) containing bilayer-forming surfactant (monoglycerides). Using the DIB model, we present our results on osmotic water permeabilities and activation energy for water permeation of an associated series of unsaturated monoglycerides as the principal component of droplet bilayers, each having the same chain length but differing in the position and number of double bonds, in the absence and presence of a varying concentration of cholesterol. Our findings suggest that the tailgroup structure in a series of monoglyceride bilayers is seen to affect the permeability and activation energy for the water permeation process. Moreover, we have also established the insertion of cholesterol into the droplet bilayer, and have detected its presence via its effect on water permeability. The effect of cholesterol differs depending on the type of monoglyceride. We demonstrate that the DIB can be employed as a convenient model membrane to rapidly explore subtle structural effects on bilayer water permeability.

  20. PERMEABILITY OF STERLET SPERM MEMBRANES (ACIPENSER RUTHENUS L., 1758 FOR WATER MOLECULES

    Directory of Open Access Journals (Sweden)

    A. Puhovkin

    2016-03-01

    Full Text Available Purpose. The literature analysis of the results cryopreservation of different fish species highlights a variation of many parameters, in particular the sperm survival rate during the freezing and unfreezing process. The survival capability of spermatozoa may be called the main parameter, which indentifies the efficiency of the entire process of low temperature freezing of reproductive products. Therefore, the goal of this work was to investigate and find the causes of different degrees of fish sperm cryoimmunity, in particular that of starlet, which is a valuable of sturgeon (Acipenser species. We also studies the possibility to find the optimum ways to improve the efficiency of the survival rate of the defrosted spermatozoa of different fish species for their further use to produce viable offspring. Methodology. The determination of sterlet sperm membrane permeability was performed after carrying out all necessary manipulations with brood males which included: prespawning incubation, hormonal stimulation, determination of sperm maturity degree, obtaining the sperm by stripping. The measurement of sperm membrane permeability for water molecules was performed based on the technique, which had been used earlier to measure carp sperm permeability, but taking account the specific peculiarities inherent to sterlet sperm. Findings. Based on the performed measurements, we determined the sterlet sperm membrane permeability for water molecules with the use of photometric method. The received experimental data show the highest degree of sterlet sperm membrane permeability for water molecules as compared to carp sperm membrane permeability. Originality. As a result of this experiment, we determined for the first time the absolute value of sterlet sperm membrane permeability for water molecules with the use of photometric method as well as compared the results with those obtained during our work with the carp sperm. Practical value. The data obtained during

  1. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Braunstein, Thomas Hartig; Jørgensen, Anders;

    2006-01-01

    Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing......-CF spheroids and were not significantly influenced by hyperosmotic stress. The results suggest that hyperosmotic stress is an important activator of AQP-5 in human airway epithelium, leading to significantly increased transepithelial water permeability.......Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing...

  2. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    Science.gov (United States)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  3. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  4. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  5. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Science.gov (United States)

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  6. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  7. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor.

    Science.gov (United States)

    Soden, Brian J; Wetherald, Richard T; Stenchikov, Georgiy L; Robock, Alan

    2002-04-26

    The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in reproducing the observed drying after the volcanic eruption. Then, by comparing model simulations with and without water vapor feedback, we demonstrate the importance of the atmospheric drying in amplifying the temperature change and show that, without the strong positive feedback from water vapor, the model is unable to reproduce the observed cooling. These results provide quantitative evidence of the reliability of water vapor feedback in current climate models, which is crucial to their use for global warming projections.

  8. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  9. An interim reference model for the variability of the middle atmosphere water vapor distribution

    Science.gov (United States)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  10. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  11. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    Science.gov (United States)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  12. Water permeability in hydrate-bearing sediments: A pore-scale study

    Science.gov (United States)

    Dai, Sheng; Seol, Yongkoo

    2014-06-01

    Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.

  13. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  14. Effect of the Carbon-Nanotube Length on Water Permeability

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Yuan; YANG Zai-Xing; FANG Hai-Ping; ZHOU Ru-Hong; TANG Xiao-Wei

    2007-01-01

    Effect of the carbon nanotube (CNT) channel length on the water flow through the CNT is studied using molecular dynamics simulations. The water flow is found to decay with the channel length (~ 1/N2.3, N is the number of carbon rings along the nanotube axis), much faster than that predicted by a previous continuous-time random walk (CTRW) model (~ 1/N). This unexpected decay rate of flow is found to result from the weakening of the correlation of the concerted motion of the water molecules inside the CNT. An improved CTRW model is then proposed by taking into account of this effect. Meanwhile, the diffusion constant of water molecules inside CNTs with various lengths is found to be relatively invariant, which results in a relatively constant hopping rate.

  15. Identification of a wagging vibrational mode of water molecules at the water/vapor interface.

    Science.gov (United States)

    Perry, Angela; Neipert, Christine; Ridley, Christina; Space, Brian; Moore, Preston B

    2005-05-01

    An improved time correlation function description of sum frequency generation (SFG) spectroscopy was applied to theoretically describe the water/vapor interface. The resulting spectra compare favorably in shape and relative magnitude to extant experimental results in the O-H stretching region of water. Further, the SFG spectra show a well-defined intermolecular mode at 875 cm(-1) that has significant intensity. The resonance is due to a wagging mode localized on a single water molecule. It represents a well-defined population of water molecules at the interface that, along with the free O-H modes, represent the dominant interfacial species.

  16. Solubility and permeability of steroids in water in the presence of potassium halides.

    Science.gov (United States)

    Messner, M; Loftsson, T

    2010-02-01

    Water forms a network of hydrogen bonded water molecules that gives liquid water unique physicochemical properties. Ions that affect the network structure, e.g. potassium halides, are known to either increase or decrease aqueous solubilities of drugs. Most biological membranes consist of hydrophilic exterior and a lipophilic interior. Mathematically they can be treated as two-layer membranes, i.e. a hydrophilic water layer that is referred to as unstirred water layer (UWL) and a lipophilic membrane. The purpose of this study was to investigate if and then how ions affect drug permeation through the UWL. The effects of potassium halides on the solubility and permeability of dexamethasone and hydrocortisone was investigated. The potassium halides had either increasing or decreasing effect on their aqueous solubility but did not have any effect on their permeability through UWL.

  17. Relative water and gas permeability for gas production from hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Jang, Jaewon

    2014-06-01

    water and gas permeability equations are important for estimating gas and water production from hydrate-bearing sediments. However, experimental or numerical study to determine fitting parameters of those equations is not available in the literature. In this study, a pore-network model is developed to simulate gas expansion and calculate relative water and gas permeability. Based on the simulation results, fitting parameters for modified Stone equation are suggested for a distributed hydrate system where initial hydrate saturations range from Sh = 0.1 to 0.6. The suggested fitting parameter for relative water permeability is nw ≈ 2.4 regardless of initial hydrate saturation while the suggested fitting parameter for relative gas permeability is increased from ng = 1.8 for Sh = 0.1 to ng = 3.5 for Sh = 0.6. Results are relevant to other systems that experience gas exsolution such as pockmark formation due to sea level change, CO2 gas formation during geological CO2 sequestration, and gas bubble accumulation near the downstream of dams.

  18. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  19. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

    Science.gov (United States)

    Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon

    2016-08-01

    The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

  20. Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil

    Institute of Scientific and Technical Information of China (English)

    李向宾; 李楠; 王国玉; 张敏弟

    2016-01-01

    The supercavitation has attracted a growing interest because of its potential for high-speed vehicle maneuvering and drag reduction. To better understand the reverse flow characteristics of a water-vapor mixture in supercavitating flows around a hydrofoil, a numerical simulation is conducted using a unified supercavitation model, which combines a modified RNGk-e turbulence model and a cavitation one. By comparing the related experimental results, the reverse motion of the water-vapor mixture is found in the cavitation area in all supercavitation stages. The inverse pressure gradient leads to reverse pressure fluctuations in the cavity, followed by the reverse motion of the water-vapor two-phase interface. Compared with the water-vapor mixture area at the back of the cavity, the pressure in the vapor area is inversely and slowly reduced,a higher-pressure gradient occurs near the cavity boundary.

  1. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  2. Validation and update of OMI Total Column Water Vapor product

    Science.gov (United States)

    Wang, Huiqun; Gonzalez Abad, Gonzalo; Liu, Xiong; Chance, Kelly

    2016-09-01

    The collection 3 Ozone Monitoring Instrument (OMI) Total Column Water Vapor (TCWV) data generated by the Smithsonian Astrophysical Observatory's (SAO) algorithm version 1.0 and archived at the Aura Validation Data Center (AVDC) are compared with NCAR's ground-based GPS data, AERONET's sun-photometer data, and Remote Sensing System's (RSS) SSMIS data. Results show that the OMI data track the seasonal and interannual variability of TCWV for a wide range of climate regimes. During the period from 2005 to 2009, the mean OMI-GPS over land is -0.3 mm and the mean OMI-AERONET over land is 0 mm. For July 2005, the mean OMI-SSMIS over the ocean is -4.3 mm. The better agreement over land than over the ocean is corroborated by the smaller fitting residuals over land and suggests that liquid water is a key factor for the fitting quality over the ocean in the version 1.0 retrieval algorithm. We find that the influence of liquid water is reduced using a shorter optimized retrieval window of 427.7-465 nm. As a result, the TCWV retrieved with the new algorithm increases significantly over the ocean and only slightly over land. We have also made several updates to the air mass factor (AMF) calculation. The updated version 2.1 retrieval algorithm improves the land/ocean consistency and the overall quality of the OMI TCWV data set. The version 2.1 OMI data largely eliminate the low bias of the version 1.0 OMI data over the ocean and are 1.5 mm higher than RSS's "clear" sky SSMIS data in July 2005. Over the ocean, the mean of version 2.1 OMI-GlobVapour is 1 mm for July 2005 and 0 mm for January 2005. Over land, the version 2.1 OMI data are about 1 mm higher than GlobVapour when TCWV 15 mm.

  3. Carbon and water vapor balance in a subtropical pine plantation

    Directory of Open Access Journals (Sweden)

    Posse G

    2016-10-01

    Full Text Available Afforestation has been proposed as an effective tool for protecting primary and/or secondary forests and for mitigating atmospheric CO2. However, the dynamics of primary productivity differs between plantations and natural forests. The objective of this work was to evaluate the potential for carbon storage of a commercial pine plantation by determining its carbon balance. Measurements started when trees were aged 6 and ended when they were older than 8 years. We measured CO2 and water vapor concentrations using the Eddy covariance method. Gross primary productivity in 2010 and 2011 was 4290 ± 473 g C m-2 and 4015 ± 485 g C m-2, respectively. Ecosystem respiration ranged between 7 and 20 g C m-2 d-1, reaching peaks in all Februaries. Of the 30 months monitored, the plantation acted as carbon source for 21 months and as carbon sink for 6 months, while values close to neutrality were obtained during 3 months. The positive balance representing CO2 loss by the system was most likely due to the cut branches left on the ground following pruning activities. The plantation was subjected to pruning in January and September 2008 and to sanitary pruning in October 2010. In all cases, cut branches were not removed but remained on the ground. Residue management seems to have a very important impact on carbon balance.

  4. Water vapor variation and the effect of aerosols in China

    Science.gov (United States)

    Gui, Ke; Che, Huizheng; Chen, Quanliang; Zeng, Zhaoliang; Zheng, Yu; Long, Qichao; Sun, Tianze; Liu, Xinyu; Wang, Yaqiang; Liao, Tingting; Yu, Jie; Wang, Hong; Zhang, Xiaoye

    2017-09-01

    This study analyzes the annual and seasonal trends in precipitable water vapor (PWV) and surface temperature (Ts) over China from 1979 to 2015, and the relationships between PWV and Ts and between PWV and aerosol absorption optical depth (AAOD), using data from radiosonde stations, weather stations and multiple satellite observations. The results revealed a positive PWV trend between 1979 and 1999, and a negative PWV trend between 2000 and 2015. Analysis of the differences in the PWV trend among different stations types showed that the magnitude of the trends were in the order main urban stations > provincial capital stations > suburb stations, suggesting that anthropogenic activities have a strong influence on the PWV trend. The AAOD exhibited a significant positive trend in most regions of China from 2005 to 2015 (confidence level 95%). Using spatial correlation analysis, we showed that PWV trend derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations is correlated with Ts, with an annual correlation coefficient of 0.596. In addition, the spatial correlation between PWV and AAOD showed a negative relationship, with the highest correlation coefficients of -0.76 and -0.71 observed in mid-eastern China and central northwest China, respectively, suggesting that the increase in AAOD in recent years may be one of the reasons for the decrease in PWV since the 2000s in China.

  5. Water vapor in nearby infrared galaxies as probed by Herschel

    CERN Document Server

    Yang, Chentao; Omont, A; Liu, Daizhong; Isaak, K G; Downes, D; van der Werf, P P; Lu, Nanyao

    2013-01-01

    We report the first systematic study of the submillimeter water vapor rotational emission lines in infrared (IR) galaxies based on the Fourier Transform Spectrometer (FTS) data of {\\it Herschel} SPIRE. Among the 176 galaxies with publicly available FTS data, 45 have at least one H$_2$O emission line detected. The H$_2$O line luminosities range from $\\sim 1 \\times 10^5$ L$_{\\odot}$ to $\\sim 5 \\times 10^7$ L$_{\\odot}$ while the total IR luminosities (L$_\\mathrm{IR}$) have a similar spread ($\\sim$1-300 $\\times 10^{10}$ L$_{\\odot}$). In addition, emission lines of H$_2$O$^+$ and H$_2^{18}$O are also detected. H$_2$O is found, for most galaxies, to be the strongest molecular emitter after CO in FTS spectra. The luminosity of the five most important H$_2$O lines is near-linearly correlated with L$_\\mathrm{IR}$ no matter strong AGN signature is present or not. However, the luminosity of H$_2$O(2$_{11}-2_{02}$) and H$_2$O(2$_{20}-2_{11}$) appears to increase slightly faster than linear with L$_\\mathrm{IR}$. Although ...

  6. Remotely sensed water vapor variations during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Meischner, P.F. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kiemle, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Ehret, G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kaestner, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Schreiber, H.G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Evtushenko, A.V. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Kutuza, B.G. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Petrenko, B.Z. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Smirnov, M.T. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki

    1994-11-01

    Total atmospheric water vapor contents have been measured during CLEOPATRA `92 using different methods. A multifrequency microwave radiometer system from IRE, Moskow operated from ground and an airborne DIAL system, DLR, performed measurements above the radiometer site. The results compare well if the atmosphric conditions are sufficiently homogeneous in the mesoscale and complement in a high space resolution for the DIAL measurements and a high time resolution of the microwave system. Under these conditions both measurement results further agree with radiosoundings and aircraft in situ measurements within the estimated measurement errors. Coordinated observations by the different systems with high time and high space resolution open a good change to separate between transports caused by advection or convection. Microwave radiometer measurements from ground are best suited for monitoring long term trends as well as fast fluctuations, whereas the DIAL measurements give more detailed insight in the diffusion processes within the atmospheric boundary layer ABL. The measurements on May 29 very impressively show the moisture fluxes from local lakes into the ABL. The observations support the ABL to act as a flux-averaging medium, thus contributing naturally to an upscaling which improves the use of remote measurements from space for the estimation of area averaged moisture fluxes. (orig.)

  7. Experimental Investigation on Strength and Water Permeability of Mortar Incorporate with Rice Straw Ash

    Directory of Open Access Journals (Sweden)

    Surajit Munshi

    2016-01-01

    Full Text Available The utilization of various agricultural residue ash as a pozzolanic material has the potential to reduce both the environmental impact and cost associated with building materials. In this paper, the authors studied the strength and permeability of mortar using different percentages of rice straw ash (RSA as cement replacement and the possibilities of using RSA as a pozzolanic material. Locally available rice straws were burnt at a temperature of 600°C and ground to make RSA. The chemical and physical properties of RSA were studied and the outcome shows that the ash contains about 76% of silica in it. This investigation further focused the strength and water permeability of mortar using RSA, which demonstrates that up to 10% replacement both the strength and permeability have a better result than that of control specimen.

  8. Seasonal Trends in Stratospheric Water Vapor as Derived from SAGE II Data

    Science.gov (United States)

    Roell, Marilee M.; Fu, Rong

    2008-01-01

    Published analysis of HALOE and Boulder balloon measurements of water vapor have shown conflicting trends in stratospheric water vapor for the periods of 1981 through 2005. Analysis of the SAGE II monthly mean water vapor data filtered for large aerosol events for time periods from 1985-1991, 1995-1999, and 2000-2005 have shown a globally decreasing water vapor trend at 17.5km. Seasonal analysis for these three time periods show a decreasing trend in water vapor at 17.5km for the winter and spring seasons. The summer and autumn seasonal analysis show a decreasing trend from 1985-2005, however, there is a increasing trend in water vapor at 17.5km for these seasons during 1995-2005. Latitude vs height seasonal analysis show a decreasing trend in the lower stratosphere between 20S - 20N for the autumn season, while at the latitudes of 30-50S and 30-50N there is an increasing trend in water vapor at heights up to 15km for that season. Comparison with regions of monsoon activity (Asian and North American) show that the Asian monsoon region had some effect on the lower stratospheric moistening in 1995-1999, however, for the time period of 2000-2005, there was no change in the global trend analysis due to either monsoon region. This may be due to the limitations of the SAGE II data from 2000-2005.

  9. Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infiared radiative cooling by water vapor is a pivotal factor in niddle-lower stratospheric cooling. However. in the npper stratosphere (above 45 kn), infrared radiation is not a factor in cooling;there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However,ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric teinperature change.

  10. Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma

    Science.gov (United States)

    Wagle, P.; Gowda, P. H.; Northup, B. K.

    2016-12-01

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.

  11. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    OpenAIRE

    J. Lee; Worden, J.; D. Noone; K. Bowman; A. Eldering; A. LeGrande; Li, J.-L. F.; Schmidt, G; Sodemann, H.

    2010-01-01

    We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES) over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently...

  12. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System)satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented.A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information,which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.

  13. Development of Field-deployable Diode-laser-based Water Vapor Dial

    Directory of Open Access Journals (Sweden)

    Le Hoai Phong Pham

    2016-01-01

    Full Text Available In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  14. Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, Richard; Browell, E. V.; Ismail, S.; Barrick, J. D. W.; Diskin, G. S.; Sachse, G. W.; Kooi, S. A.; Brasseur, L. H.; Brackett, V. G.; Clayton, M. B.; Goldsmith, John E M.; Lesht, B. M.; Podolske, J. R.; Schmidlin, F. J.; Turner, David D.; Whiteman, D. N.; Demoz, B. B.; Tobin, D. C.; Revercomb, Henry E.; Miloshevich, Larry M.; di Girolamo, P.

    2004-12-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between November 27 and December 10, 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWV profiles were about 5-7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8-12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ Diode Laser Hygrometer (DLH) UTWV measurements generally agreed to within about 3 to 4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10-25% and 10-15%, respectively. Sippican (formerly VIZ manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with

  15. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    Science.gov (United States)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    Water vapor in the atmosphere plays an important role in radiative transfer and the process of radiative balance so critical for understanding global change. It is the principal ingredient in cloud formation, one of the most difficult atmospheric processes to model, and the most variable component of the Earth-atmosphere albedo. And as a free molecule, it is the most active infrared absorber and emitter, thus, the most important greenhouse gas. The radiative impact of water vapor is important at all levels of the atmosphere. Even though moisture decreases by several orders-of-magnitude from the Earth's surface to the tropopause, recent research has shown that, from a radiative standpoint, a small percentage change in water vapor at any level is nearly equivalent. Therefore accurate and precise measurements of this important atmospheric constituent are needed at all levels to evaluate the full radiative impact. The need for improved measurements in the upper troposphere is particularly important because of the generally hostile (very dry and cold) conditions encountered. Because of the importance of water vapor to the understanding of radiative transfer, the Department of Energy's Atmospheric Radiation Measurements (ARM) program initiated a series of measurement campaigns at the Cloud And Radiation Testbed (CART) site in Oklahoma, especially focused on atmospheric water vapor. Three water vapor intensive observation period (water vapor IOP) campaigns were planned. Two of the water vapor IOP campaigns have been completed: the first IOP was held during the fall of 1996 with a focus on boundary layer water vapor measurements, and the second was conducted during the fall of 1997 with a focus on both boundary layer moisture e and moisture in the upper troposphere. This paper presents a review of the intercomparisons of water vapor measurements in the upper troposphere aquired during the second water vapor IOP. Data to be presented include water vapor measurements ements

  16. Contributions of stratospheric water vapor to decadal changes in the rate of global warming.

    Science.gov (United States)

    Solomon, Susan; Rosenlof, Karen H; Portmann, Robert W; Daniel, John S; Davis, Sean M; Sanford, Todd J; Plattner, Gian-Kasper

    2010-03-01

    Stratospheric water vapor concentrations decreased by about 10% after the year 2000. Here we show that this acted to slow the rate of increase in global surface temperature over 2000-2009 by about 25% compared to that which would have occurred due only to carbon dioxide and other greenhouse gases. More limited data suggest that stratospheric water vapor probably increased between 1980 and 2000, which would have enhanced the decadal rate of surface warming during the 1990s by about 30% as compared to estimates neglecting this change. These findings show that stratospheric water vapor is an important driver of decadal global surface climate change.

  17. A direct measurement of the stable isotopes of transpired water vapor in a northern Michigan forest

    Science.gov (United States)

    Aron, P.; Poulsen, C. J.; Fiorella, R.

    2016-12-01

    The stable isotopes of oxygen and hydrogen in water vapor track hydrologic processes as phase changes of water preferentially partition heavy isotopes (18O and 2H) into the condensate and light isotopes (16O and 1H) into the vapor phase. As a result, the isotopic composition of water vapor can be used to identify water fluxes and cycling through natural environments. Forest water vapor is comprised of terrestrial (evaporation and transpiration) and atmospheric (tropospheric mixing, precipitation, and condensation) components. Within the isotopic record of forest water vapor, stable isotopes of transpired water (δT) comprise an important component but is typically either assumed to be non-fractionating or estimated indirectly. However, on small time scales (minutes to hours), non-steady state forest systems experience isotopic enrichment during early morning and late afternoon when transpiration rates are low. We deployed two Picarro Cavity Ring-Down spectrometers (L2120-i and L2130-i, respectively) in the University of Michigan Biological Station (UMBS) forest near Pellston, MI to measure the isotopic composition of near-surface ambient water vapor and the transpired vapor component directly. Both ambient and transpired water vapor were measured at three heights above the forest floor (2, 10, and 20 m) during August 2016. To measure species-specific water use, δT was measured on red maple (Acer rubrum) and northern red oak (Quercus rubra), two of the dominant tree types in the UMBS forest. This work represents the first direct measurement of δT in the UMBS forest and will help decouple local and species-specific hydrologic cycling. Beyond UMBS, this measurement will allow for a better understanding of species-specific plant hydraulics and help identify when the steady state approximation of transpiration is valid, which can be used to study water use and forest health.

  18. On the vertical distribution of water vapor in the Martian tropics

    Science.gov (United States)

    Haberle, Robert M.

    1988-01-01

    Although measurements of the column abundance of atmospheric water vapor on Mars have been made, measurements of its vertical distribution have not. How water is distributed in the vertical is fundamental to atmosphere-surface exchange processes, and especially to transport within the atmosphere. Several lines of evidence suggest that in the lowest several scale heights of the atmosphere, water vapor is nearly uniformly distributed. However, most of these arguments are suggestive rather than conclusive since they only demonstrate that the altitude to saturation is very high if the observed amount of water vapor is distributed uniformly. A simple argument is presented, independent of the saturation constraint, which suggests that in tropical regions, water vapor on Mars should be very nearly uniformly mixed on an annual and zonally averaged basis.

  19. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    Science.gov (United States)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  20. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  1. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  2. Isotopic Controls of Rainwater and Water Vapor on Mangrove Leaf Water and Lipid Biomarkers

    Science.gov (United States)

    Ladd, N.; Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Hydrogen isotope ratios (2H/1H or δ2H) of sedimentary mangrove lipid biomarkers can be used as a proxy of past salinity and water isotopes. This approach is based on the observation that apparent 2H/1H fractionation between surface water and mangrove lipids increases with surface water salinity in six species of mangroves with different salt management strategies growing at sites spanning a range of relative humidities throughout Australia and Micronesia. In order to more robustly apply mangrove lipid δ2H as a paleoclimate proxy, we investigated the cause of the correlation between apparent 2H fractionation and salinity. We present results from two related experiments that assessed controls on isotopes of mangrove leaf water, the direct source of hydrogen in lipids: (1) Measurements of natural δ2H in precipitation, surface water, and mangrove tissue water from a series of lakes with varying salinity and water isotope composition in Palau, and (2) measurements of mangrove tissue water and treatment water from a controlled simulation in which mangroves were treated with artificial rain of varying isotopic composition. Rainwater 2H/1H fluctuations of 30‰ over a one-month period explain up to 65% of the variance in leaf water δ2H for Bruguiera gymnorhiza mangroves from Palau despite lake water isotope differences among sites of up to 35‰. This indicates that in humid tropical settings, leaf water isotopes are more closely related to those of precipitation and water vapor than to those of lake surface water, explaining the observed change in apparent fractionation in B. gymnorhiza lipids with salinity. The relationship between leaf water and rainwater isotopes may be due to either equilibration of leaf water with water vapor in the nearly saturated air or direct foliar uptake of rain and/or dew. Foliar uptake is an important water source for many plants, but has not been documented in mangroves. We tested the capacity for mangroves to perform this function by

  3. The Mobility of Electrons in Ammonia, Methylamine, and Water Vapors.

    Science.gov (United States)

    Blanks, Daniel Kaye

    Measurements of the mobility (mu) of electrons photoinjected into ammonia, methylamine, and water vapors were carried out as a function of the gas density n (10('18) -10('20), 10('19)-10('20), and (TURN)10('19) cm('-3) for NH(,3), NeNH(,2), and H(,2)O, respectively). An anomalous drop in the normalized mobility n(mu) was observed as n was raised above 10('19) cm('-3) in the case of NH(,3) and MeNH(,2). It is proposed that the decrease in n(mu) is associated with the transition from free to localized states and possibly the solvation of the electrons into clusters of polar molecules similar to the solvating clusters observed for electrons in some polar liquids. A computerized data acquisition system was developed to measure the transient current of (TURN) 1 nanoamp and 1-1000 (mu)sec duration produced by the motion of electrons moving between two parallel plates in a constant electric field E. The electrons were injected into the gas by illuminating the cathode with a pulse of UV light provided by a xenon lamp or a dye laser. A computer program was developed to fit the transient curves to a theoretical equation and calculate the mobility (mu) and the longitudinal diffusion constant D(,L). This led to attempts to measure the electron temperature T(,e) = eD(,L)/k(mu) as a function of E, but distortions in the electric field were found to affect the diffusion constant too severely to produce reliable results.

  4. Aquaporin 1 Facilitated Hepatocellular Carcinoma SMMC7221 Cell Migration Associated with Water Permeability

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-li; LI Jiang; WANG Yan-qing; ZAKNROU Zohra; MA Tong-hui; LI Xiao-meng

    2011-01-01

    The authors investigated the regulation of human aquaporin l(hAQPl) and the involvement of aquaporin l(AQPl) in the migration of human hepatocellular carcinoma SMMC-7221 cells using RNA intereference technology.Firstly, two short hairpin RNA(shRNA) constructs in PBSU6 vector were reconstructed and their knockdown effects were identified in SMMC-7221 cells. Next, the involvement of endogenous hAQPl in regulating the migration of SMMC-7221 cells was investigated via siRNA technology. HAQPl-shRNA can specifically inhibit AQPl dependent osmotic water permeability. Meanwhile the migration of SMMC-7221 cells was inhibited remarkably after silencing AQPl by performing transwell cell migration assay and in vitro wound healing assay. Furthermore, in the presence of an inhibitor HgCl2, the water permeability of the cell membrane was remarkably decreased, the expression of AQPl was upregulated after HgCl2 treatment and the cell movement was decreased at the moment. Increased AQPl cannot attenuate cell migration ability when cell membrane loses its water permeability function. This demonstrates that the cell migration was remarkably related to the transporting water function of cell membrane.

  5. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    Science.gov (United States)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  6. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  7. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite evi...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  8. Fuel for cyclones: How the water vapor budget of a hurricane depends on its motion

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Chikunov, Alexander V; Sheil, Douglas; Nobre, Antonio D; Li, Bai-Lian

    2016-01-01

    Tropical cyclones are fueled by water vapor. Here we estimate the oceanic evaporation within an Atlantic hurricane to be less than one sixth of the total moisture flux precipitating over the same area. So how does the hurricane get the remaining water vapor? Our analysis of TRMM rainfall, MERRA atmospheric moisture and hurricane translation velocities suggests that access to water vapor relies on the hurricane's motion -- as it moves through the atmosphere, the hurricane consumes the water vapor it encounters. This depletion of atmospheric moisture by the hurricane leaves a "dry footprint" of suppressed rainfall in its wake. The thermodynamic efficiency of hurricanes -- defined as kinetic energy production divided by total latent heat release associated with the atmospheric moisture supply -- remains several times lower than Carnot efficiency even in the most intense hurricanes. Thus, maximum observed hurricane power cannot be explained by the thermodynamic Carnot limit.

  9. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  10. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  11. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  12. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  13. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    Directory of Open Access Journals (Sweden)

    KOHIO Niéssan

    2014-12-01

    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  14. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  15. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    Science.gov (United States)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  16. HIRDLS/Aura Level 3 Water Vapor (H2O) Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Water Vapor (H2O) Zonal Fourier Coefficients" version 7 data product (H3ZFCH2O) contains the entire mission (~3 years) of HIRDLS data...

  17. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  18. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  19. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene

    Science.gov (United States)

    Liang, Jin-Hu; Wang, Su; Zhang, Sheng-Tao; Yue, Lian-Jie; Fan, Bing-Cheng; Zhang, Xin-Yu; Cui, Ji-Ping

    2014-08-01

    In ground tests of hypersonic scramjet, the high-enthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when ϕ = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when ϕ = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at ϕ = 0.5, while no effect is found at ϕ = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.

  20. Effect of water vapor on the performance of glass RPCs in avalanche mode operation

    CERN Document Server

    Raveendrababu, K; Satyanarayana, B; Mukhopadhayay, S; Majumdar, N

    2016-01-01

    We studied the effect of water vapor on the performance of glass Resistive Plate Chambers (RPCs) in the avalanche mode operation. Controlled and calibrated amount of water vapor was added to the RPC gas mixture that has C$_2$H$_2$F$_4$ as the major component. The deterioration in the performance of RPC was observed while operating with wet gas and recovered after switching to standard gas.

  1. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying

    2016-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are studied numerically in this paper. The results show that the condensation process is a rapid variation of the vapor......-liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  2. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  3. Water-Permeable Dialysis Membranes for Multi-Layered Micro Dialysis System

    Directory of Open Access Journals (Sweden)

    Naoya eTo

    2015-06-01

    Full Text Available This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES, aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water-permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  4. Water-Permeable Dialysis Membranes for Multi-Layered Microdialysis System.

    Science.gov (United States)

    To, Naoya; Sanada, Ippei; Ito, Hikaru; Prihandana, Gunawan S; Morita, Shinya; Kanno, Yoshihiko; Miki, Norihisa

    2015-01-01

    This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES), aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently, water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  5. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  6. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    Science.gov (United States)

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food.

  7. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    Institute of Scientific and Technical Information of China (English)

    Su-wen Li; Wen-qing Liu; Pin-hua Xie; Yi-jun Yang; De-bao Chen; Zheng Li

    2008-01-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could he restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  8. Interaction of water vapor with clean and oxygen-covered uranium surfaces

    Science.gov (United States)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1987-04-01

    The interaction of water vapor with clean and oxygen-covered high-purity polycrystalline uranium surfaces was studied between 85 and 298 K with thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectroscopy (SIMS). Saturation of the uranium surface with oxygen or water vapor produced an asymmetric O1s photoelectron peak that consisted of a main oxide contribution and a small component assigned to strongly chemisorbed oxygen or hydroxyl ions, respectively. Saturation of the clean or oxygen-covered surface with water vapor at 85 K produced multilayer ice that was converted to oxide and adsorbed hydroxyl ions after warming to room temperature. A significant difference in binding energies was observed in the O1s spectra between water vapor adsorption on clean and oxygen-covered surfaces that lends support to the oxygen inhibition of the water vapor-uranium reaction by a surface mechanism. The initial oxidation mechanisms of uranium with oxygen and water vapor are discussed.

  9. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    Science.gov (United States)

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  10. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    Science.gov (United States)

    Li, Su-wen; Liu, Wen-qing; Xie, Pin-hua; Yang, Yi-jun; Chen, De-bao; Li, Zheng

    2008-10-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spec-troscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  11. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  12. Temporal evolution modeling of hydraulic and water quality performance of permeable pavements

    Science.gov (United States)

    Huang, Jian; He, Jianxun; Valeo, Caterina; Chu, Angus

    2016-02-01

    A mathematical model for predicting hydraulic and water quality performance in both the short- and long-term is proposed based on field measurements for three types of permeable pavements: porous asphalt (PA), porous concrete (PC), and permeable inter-locking concrete pavers (PICP). The model was applied to three field-scale test sites in Calgary, Alberta, Canada. The model performance was assessed in terms of hydraulic parameters including time to peak, peak flow and water balance and a water quality variable (the removal rate of total suspended solids). A total of 20 simulated storm events were used for model calibration and verification processes. The proposed model can simulate the outflow hydrographs with a coefficient of determination (R2) ranging from 0.762 to 0.907, and normalized root-mean-square deviation (NRMSD) ranging from 13.78% to 17.83%. Comparison of the time to peak flow, peak flow, runoff volume and TSS removal rates between the measured and modeled values in model verification phase had a maximum difference of 11%. The results demonstrate that the proposed model is capable of capturing the temporal dynamics of the pavement performance. Therefore, the model has great potential as a practical modeling tool for permeable pavement design and performance assessment.

  13. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.

    Science.gov (United States)

    Huang, Hua; Burghardt, Markus; Schuster, Ann-Christin; Leide, Jana; Lara, Isabel; Riederer, Markus

    2017-10-03

    The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm(-2) and 630.5 μg cm(-2)) and the cuticular waxes (201.6 μg cm(-2) and 320.4 μg cm(-2)) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10(-5) m s(-1)) in comparison to all three fruit stages (9.5 × 10(-5) m s(-1)). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.

  14. Water permeabilities of pulverized fuel ash; Bifuntan sekitanbai no tosui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Nagataki, S. [Niigata University, Niigata (Japan); Hosoda, N. [Kumagai Gumi Co. Ltd., Tokyo (Japan); Utsuki, T. [The Coal Mining Research Center, Japan, Tokyo (Japan); Kubo, H. [Obayashi Corp., Tokyo (Japan)

    1996-09-01

    It is intended to establish a technology to utilize coal ash in bulk to deal with its increasing production. In order to expand its use into earth engineering materials, two kinds of combustion ashes produced from dust coal burning power plants were used for studies using different kinds of tests. The tests were carried out on strength properties, water permeability, and characteristics of dissolving trace amounts of chemical constituents, with regard to addition effects of cement into compacted and slurry-state dust coal burned ashes. The derived findings may be summarized as follows: as the strength properties, the strength for both of the compacted and slurry-state ashes increases as the cement addition ratio is increased; growth of the strength due to the cement addition ratio and material age varies depending on the kinds of dust coal burned ash; comparison of strengths of the compacted and the slurry-state ashes indicates the strength of the latter ash is about one-third to quarter of that of the former ash; water permeability of the ashes decreases both in the compacted and slurry- state ashes as the cement addition ratio is increased; and the cement addition ratio gives greater impact to the water permeability than the density of the ashes. 28 figs., 5 tabs.

  15. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles

    Science.gov (United States)

    Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo

    2016-01-01

    Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements

  16. The water to solute permeability ratio governs the osmotic volume dynamics in beetroot vacuoles

    Directory of Open Access Journals (Sweden)

    Victoria Vitali

    2016-09-01

    Full Text Available Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modelling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps, which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons or stems that perform extensive rhythmic

  17. Remotely sensed water vapor variations during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Meischner, P.F. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Kiemle, C. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Ehret, G. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Kaestner, M. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Schreiber, H.G. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Evtushenko, A.V. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Kutuza, B.G. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Petrenko, B.Z. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Smirnov, M.T. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation)

    1994-11-01

    Total atmospheric water vapor contents have been measured during CLEOPATRA `92 using different methods. A multifrequency microwave radiometer system from IRE, Moskow operated from ground and an airborne DIAL system, DLR, performed measurements above the radiometer site. The results compare well if the atmospheric conditions are sufficiently homogeneous in the mesoscale and complement in a high space resolution for the DIAL measurements and a high time resolution of the microwave system. Under these conditions both measurement results further agree with radiosoundings and aircraft in situ measurements within the estimated measurement errors. Coordinated observations by the different systems with high time and high space resolution open a good chance to separate between transports caused by advection or convection. Microwave radiometer measurements from ground are best suited for monitoring long term trends as well as fast fluctuations, whereas the DIAL measurements give more detailed insight in the diffusion processes within the atmospheric boundary layer ABL. The measurement on May 29 very impressively show the moisture fluxes from local lakes into the ABL. The observations support the ABL to act as a flux-averaging medium, thus contributing naturally to an upscaling which improves the use of remote measurements from space for the estimation of area averaged moisture fluxes. (orig.) [Deutsch] Der Gesamtsaeulenwassergehalt der Atmosphaere wurde waehrend CLEOPATRA `92 aus verschiedenen Messmethoden bestimmt. Ein Mehrfrequenz-Mikrowellenradiometersystem des IRE, Moskau hat vom Boden aus gemessen, waehrend mit einem flugzeuggetragenen DIAL System der DLR ueber dem Mikrowellensystem nach unten gemessen wurde. Die Messergebnisse sind gut vergleichbar bei mesoskalig homogenen Bedingungen und ergaenzen sich gut, was die hohe zeitliche Aufloesung der Radiometer und die hohe raeumliche Aufloesung des DIALs betrifft. Auch mit den Ergebnissen von Radiosondenmessungen und den

  18. Field campaign LINEX 96/1 - possibilities of water vapor observation in the free atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Dier, H.; Engelbart, D.; Goersdorf, U.; Lehmann, V.; Leiterer, U.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium; Bakan, S. [Hamburg Univ. (Germany). Meteorologisches Inst.; Boesenberg, J.; Jansen, F.; Wulfmeyer, V. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Gendt, G. [GeoForschungsZentrum Potsdam (Germany); Gueldner, J. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    1998-12-01

    LINEX 96/1 was a field experiment to assess information content, accuracy, and availability for different remote sensing techniques measuring water vapor. An important goal of LINEX 96/1 was the test of a new differential absorption lidar (DIAL) developed by the MPI fuer meteorologie Hamburg. Comparisons of DIAL with rawinsonde and tethersonde measurements showed an excellent accuracy of the DIAL method in the determination of water vapor with high vertical and temporal resolution. The operation of the microwave radiometer WVR-1100 showed a high availability of water vapor and liquid water column content measurements except during rain. Microwave radiometers are reliable systems to measure the precipitable water vapor and liquid water content under unattended operational conditions with high accuracy and temporal resolution. Measurements of the water vapor column content by ground-based GPS receivers proved highly reliable. Comparisons with corresponding values of the microwave radiometer showed a bias less than 0.6 mm and a standard deviation less than 0.9 mm. The main problem of an operational use of this new information is that the evaluated data are not available in real-time because, at present, the data have to be postprocessed in a ground control center. During LINEX 96/1, possibilities for estimation of water vapor column content from sun and star photometer measurements were also demonstrated. The comparison of the precipitable water vapor content measurements of sun and star photometers, microwave radiometer, and rawinsondes RS 80 showed a good agreement. Unfortunately, the use of optical methods like sun and star photometers is restricted by cloudy conditions. 28 refs.

  19. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol.

  20. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  1. SEPARATION OF WATER VAPORS FROM AIR BY SORPTION ON SOME COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    OANA HAUTĂ

    2014-01-01

    Full Text Available This work presents an experimental investigation of the kinetics of water vapor sorption on two composites synthesized by impregnating activated carbon and activated alumina respectively with lithium bromide (named as MCA2 and MCC2 respectively. The obtained results showed an increase in water amount adsorbed on both composite materials. Due to different chemical natures of the host matrices, the water sorption kinetics on MCC2 is faster compared to that of MCA2. The presence of calcium chloride instead of lithium bromide in alumina pores will determine a shorter breakthrough time and a higher adsorption rate of water vapors.

  2. Waste storage in the vadose zone affected by water vapor condensation and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  3. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    Science.gov (United States)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  4. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  5. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  6. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-03-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  7. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  8. Characteristics of water vapor fluctuations by the use of GNSS signal delays

    Science.gov (United States)

    Gregorič, Asta; Škrlec, Samo; Mole, Maruška; Bergant, Klemen; Vučković, Marko; Stanič, Samo

    2017-04-01

    Water vapor plays a crucial role in a number of atmospheric processes related to the water cycle. It is also the Earth's most abundant greenhouse gas, thus influencing global climate as well as micrometeorology. Since the phase change of water is associated with large latent heat, water vapor plays an important role in the vertical atmospheric stability. It also influences aerosol aging and removal from the atmosphere. As the temporal and spatial distribution of water vapor is in general highly variable, continuous monitoring at several locations is required to be able to describe the situation in a given terrain configuration. In-situ meteorological measurements provide the information on water vapor concentration at the surface only, while the radiosonde data suffers from poor temporal and spatial (horizontal) resolution. Integrated water vapor content above a certain location on the surface can also be monitored in real time, exploiting the wet delay of GNSS signals, however, it does not yield absolute humidity. In this contribution we present a measurement of average absolute humidity within the Vipava valley (Slovenia), between February 2015 and October 2016. It is based on differential measurement of integrated water vapor content at two adjacent stations, using stationary GNSS receivers, which are horizontally displaced for 6 km, and vertically displaced for 826 m. The integrated water vapor values were derived using the GIPSY-OASIS II software. One of the receivers is located at the valley floor (125 m a.s.l.) and the other on the top of the adjacent mountain ridge (951 m a.s.l.). Visual data from both stations was also stored to evaluate the reliability of the remote sensing results in different weather conditions. Based on the dataset covering 20 consecutive months, we investigated temporal evolution of the water vapor content within the valley. The results show typical seasonal pattern and are strongly correlated to weather phenomena. Comparison to the

  9. Effect of the permeability of the porous shell on the vapor film thickness during boiling of superfluid helium in microgravity

    Science.gov (United States)

    Korolev, P. V.; Kryukov, A. P.; Puzina, Yu. Yu.

    2015-07-01

    This paper presents a theoretically study of the boiling of superfluid helium on a cylindrical heater placed in a coaxial porous shell in microgravity. Steady-state transfer processes at the interface are studied using molecular-kinetic methods. The Boltzmann transport equation is solved by the moment method based on the four-moment approximation in the form of a two-sided Maxwellian. The obtained solution is used to calculate the heat flux density in film boiling on a cylindrical heating surface in the case where the film thickness is comparable to the diameter of the heater. The motion of the normal component of the superfluid liquid in pores is described by equations that take into account heat and mass transfer in superfluid helium. The relation between the vapor film thickness and the structural characteristics and geometrical dimensions of the porous shell is obtained. Analysis of the results of the calculations is given.

  10. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  11. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms.

    Science.gov (United States)

    Hachez, Charles; Veselov, Dmitry; Ye, Qing; Reinhardt, Hagen; Knipfer, Thorsten; Fricke, Wieland; Chaumont, François

    2012-01-01

    Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.

  12. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; ZHOU Dong-ping; LU Yi-yu; KANG Yong; ZHAO Yu; WANG Xiao-chuan

    2009-01-01

    Mine gas extraction in China is difficult due to the characteristics such as mi-cro-porosity, low-permeability and high adsorption of coal seams. The pulsed mechanism of a high-pressure pulsed water jet was studied through theoretical analysis, experiment and field measurement. The results show that high-pressure pulsed water jet has three dynamic properties. What's more, the three dynamic effects can be found in low-perme-ability coal seams. A new pulsed water jet with 200-1 000 Hz oscillation frequency and peak pressure 2.5 times than average pressure was introduced. During bubble collapsing, sound vibration and instantaneous high pressures over 100 MPa enhanced the cutting ability of the high-pressure jet. Through high-pressure pulsed water jet drilling and slotting, the exposure area of coal bodies was greatly enlarged and pressure of the coal seams rapidly decreased. Therefore, the permeability of coal seams was improved and gas ab-sorption rate also decreased. Application results show that gas adsorption rate decreased by 30%-40% and the penetrability coefficient increased 100 times. This proves that high-pressure pulsed water is more efficient than other conventional methods.

  13. Experimental and numerical study of liquefied natural gas (LNG) pool spreading and vaporization on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Kakosimos, Konstantinos; Zhang, Bin; Liu, Yi; Mentzer, R; Mannan, M Sam

    2017-07-15

    The investigation of pool spreading and vaporization phenomenon is an essential part of consequence analysis to determine the severity of LNG spills on water. In this study, release of LNG on water during marine operations is studied through experimental and numerical methods The study involves emulation of an LNG leak from transfer arms during side by side loading operations. The experimental part involves flow of LNG in a narrow trench filled with water and subsequent measurement of pool spreading and vaporization parameters. The numerical part involves CFD simulation using a three dimensional hybrid homogenous Eulerian multiphase solver to model the pool spreading and vaporization phenomenon. In this method, LNG is modeled as dispersed phase droplets which can interact with continuous phases - water and air through interphase models. The numerical study also employs a novel user-defined routine for capturing the LNG vaporization process. The CFD solver was capable of capturing the salient features of LNG pool spreading and vaporization phenomena. It was observed from experiment and CFD simulation that wind influenced both pool spreading and vaporization phenomenon through entrainment and convection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A high pressure triaxial cell with improved measurement sensitivity for saturated water permeability of high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S.; Hooton, R.D. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)

    1994-01-01

    The measurement of the saturated water permeability of concrete is of great interest, but with the rapid improvements in properties of high performance concretes, the most common problem is the ability and accuracy of measuring the very small flow volumes. A high pressure triaxial cell with improved measurement sensitivity, capable of continuously measuring saturated water permeability of the order of < 10[sup [minus]15] m/s, is presented in this paper.

  15. Indirect radiative forcing of aerosols via water vapor above non-precipitating maritime cumulus clouds

    Directory of Open Access Journals (Sweden)

    M. A. Pfeffer

    2011-10-01

    Full Text Available Aerosol-cloud-water vapor interactions in clean maritime air have been described for different aerosol sources using the WRF-Chem atmospheric model. The simulations were made over the Lesser Antilles in the region of the RICO measurement campaign where the clouds are low, patchy, typical trade-wind cumuli. In this very clean air, sea salt and DMS are found to have greater effects than anthropogenic pollution on the cloud droplets' effective radii and longwave and shortwave outgoing top of atmosphere radiation. The changes in radiation due to each aerosol source are a function of how each source influences aerosol concentration, cloud droplet number concentration, cloud droplet sizes, and water vapor concentration. Changes in outgoing shortwave radiation are due predominantly to changes in the clouds, followed by the direct aerosol effect which is about 2/3 as important, followed by the effects of water vapor which is in turn about 2/3 as important as the direct effect. Changes in outgoing longwave radiation are due predominantly to changes in the clouds, with changes in water vapor being about 1/10 as important. The simulated changes in water vapor concentration are due to the competing effects of aerosol particles being able to both enhance condensation of available water vapor and enhance evaporation of smaller droplets. These changes are independent of precipitation effects as there is essentially no drizzle in the domain. It is expected that the indirect radiative forcing of aerosols via water vapor may be stronger in dirtier and more strongly convective conditions.

  16. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    Science.gov (United States)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  17. Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.

    Science.gov (United States)

    Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-10-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources.

  18. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    Science.gov (United States)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  19. A novel, optimized approach of voxel division for water vapor tomography

    Science.gov (United States)

    Yao, Yibin; Zhao, Qingzhi

    2017-02-01

    Water vapor information with highly spatial and temporal resolution can be acquired using Global Navigation Satellite System (GNSS) water vapor tomography technique. Usually, the targeted tomographic area is discretized into a number of voxels and the water vapor distribution can be reconstructed using a large number of GNSS signals which penetrate the entire tomographic area. Due to the influence of geographic distribution of receivers and geometric location of satellite constellation, many voxels located at the bottom and the side of research area are not crossed by signals, which would undermine the quality of tomographic result. To alleviate this problem, a novel, optimized approach of voxel division is here proposed which increases the number of voxels crossed by signals. On the vertical axis, a 3D water vapor profile is utilized, which is derived from radiosonde data for many years, to identify the maximum height of tomography space. On the horizontal axis, the total number of voxel crossed by signal is enhanced, based on the concept of non-uniform symmetrical division of horizontal voxels. In this study, tomographic experiments are implemented using GPS data from Hong Kong Satellite Positioning Reference Station Network, and tomographic result is compared with water vapor derived from radiosonde and European Center for Medium-Range Weather Forecasting (ECMWF). The result shows that the Integrated Water Vapour (IWV), RMS, and error distribution of the proposed approach are better than that of traditional method.

  20. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  1. Water permeability parameters of dermal fibroblast employed in tissue engineering in subzero temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG; Xin; CHENG; Qikang; GAO; Cai; YANG; Pengfei; HUA; Tse

    2005-01-01

    Fibroblast is a crucial kind of cell in the construction of the tissue engineered dermal equivalent. In order to optimize the cryopreservation protocols of the tissue- engineered dermis, the characteristics of dermal fibroblast in subzero temperatures are required, which include the water permeability of the cell membrane and the apparent activation energy. Using the differential scanning calorimeter (DSC), the volumetric shrinkage during freezing of human dermal fibroblast suspensions was obtained at the cooling rate of 5℃·min-1 in the presence of extracellular ice. To ensure the presence of extracellular ice, a small quantity of ice nucleation bacteria (INA bacteria), pseudomonas syringae was added in the samples. And based on the Karlsson's model, a nonlinear- least-squares curve fitting technique was implemented to calculate the cryogenic parameters. At the reference temperature TR (= 0℃), the water permeability of membrane Lpg = 0.578μm·min-1·atm-1 and the apparent activation energy ELP = 308.8 kJ·mol-1. These parameters were then used to simulate water transport of fibroblast during constant cooling at rates between 0.01―50℃·min-1. The simulation results were analyzed to predict the amount of water left in the cell after dehydration and the "optimal cooling rate" for fibroblast cryopreservation. For the dermal fibroblast with DMEM solution, a cooling rate of 4.6℃·min-1 was optimal.

  2. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    Science.gov (United States)

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  3. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.

    Science.gov (United States)

    Saito, Hiroaki; Shinoda, Wataru

    2011-12-29

    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol.

  4. Determination of water-lock critical value of low-permeability sandstones based on digital core

    Directory of Open Access Journals (Sweden)

    Honglin Zhu

    2016-05-01

    Full Text Available Research and development of water lock inhibiting measures is very crucial in verifying the link mechanism between the internal factors of water lock and its extent of damage. Based on conventional water-lock physics experiments, however, only the consequence of macro water lock damage can be investigated, while the microscopic mechanism cannot be studied. In this paper, 3D digital cores of low-permeability sandstones were prepared by means of high-resolution micro-CT scan, and their equivalent pore network model was built as well. Virtual “imbibition” experiments controlled by capillary force were carried out by using pore-scale flow simulation. Then the link mechanism between the microscopic internal factors (e.g. wettability, water saturation and pore–throat structure parameters and the water-lock damage degree was discussed. It is shown that the damage degree of water lock reduces gradually as the wettability transits from water wet to gas wet. Therefore, the water lock damage can be reduced effectively and gas-well productivity can be improved so long as the capillary environment is changed from strong water wettability to weak gas wettability. The more different the initial water saturation is from the irreducible water saturation, the more serious the water lock damage is. The damage degree of water lock is in a negative correlation with the coordinate number, but a positive correlation with the pore–throat ratio. Based on the existing research results, water lock tends to form in the formations composed of medium-sized throats. It is concluded that there is a critical throat radius, at which the water lock is the most serious.

  5. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    DEFF Research Database (Denmark)

    Massman, W.J.; Ibrom, Andreas

    2008-01-01

    Recent studies with closed-path eddy covariance (EC) systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies...... of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines...... the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent...

  6. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  7. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  8. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairliquid based on thermodynamic calculations, the liquid cavitated at pressures Pvapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude

  9. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    Science.gov (United States)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  10. [Study on large-scale regional laser detection methods for water vapor concentration].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Wang, Li-Ming; You, Kun; Zhou, Yi; Sun, Xiao-Min; Liu, Zhen-Min

    2013-03-01

    Water vapor is an important meteorological parameter in the atmosphere, TDLAS direct absorption technology combined with open-path monitoring was used in order to achieve large-scale regional atmospheric water vapor concentration detection with high sensitivity, high accuracy and fast response, and to correct the remote sensing data. The large-scale regional laser detection system for water vapor was designed and the absorption line of water vapor molecules near 1.27 microm was chosen as the goal line. The system performance was verified in conjunction with a multiple reflection cell, that the system limit sensitivity was 14.803 mmol.mol-1 in optical path of 40 m. The continuous field experiment in 1,420 m optical path at the Yucheng Integrated Experimental Station, CAS was completed with this system which worked stably. Then the measured data was compared with the data of a gas analyzer LI-7500 in eddy correlation observation system at the same site, and the data consistency was good. A new method for water vapor concentration monitoring in the complex field of non-uniform underlying surface was provided.

  11. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    Energy Technology Data Exchange (ETDEWEB)

    FERRARE,R.A.

    2000-01-09

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  12. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  13. Characterization of merged AIRS and MLS water vapor sensitivity through integration of averaging kernels and retrievals

    Directory of Open Access Journals (Sweden)

    C. K. Liang

    2010-07-01

    Full Text Available In this paper, we analyze averaging kernels to assess the sensitivity of the Aqua Atmospheric Infrared Sounder (AIRS and Aura Microwave Limb Sounder (MLS to water vapor. The averaging kernels, in the tropical and extra-tropical upper tropospheric and lower stratospheric region of the atmosphere, indicate that AIRS is primarily sensitive to water vapor concentrations typical of tropospheric values up to a level around 260 hPa. At lower pressures AIRS retrievals lose sensitivity to water vapor, though not completely as indicated by the non-zero verticalities at pressures less than 260 hPa. The MLS is able to provide high quality retrievals, with verticalities ~1 for all pressure levels, down to the same level for where AIRS begins to lose sensitivity. Previous analyses have estimated both instruments to have overlapping sensitivity to water vapor over a half temperature scale height layer, within the upper troposphere, for concentrations between ~30–400 ppmv. Thus, we implement a method using the averaging kernel information to join the AIRS and MLS profiles into an merged set of water vapor profiles. The final combined profiles are not only smooth functions with height but preserve the atmospheric state as interpreted by both the AIRS and MLS instruments.

  14. The Aging Study on Polyethylene Terephthalate with Surface Modification by Water Vapor Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aging effects of the contact angle and surface energy on polyethylene tereph thalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and sur face energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.

  15. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  16. Water vapor and gas transport through a poly (butylene terephthalate) poly (ethylene oxide) block copolymer

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    In this paper the transport behavior of water vapor and nitrogen in a poly(butylene terephthalate) poly (ethylene oxide) block copolymer is discussed. This polymer has a high solubility for water (300 cm3 (STP)/cm3 polymer at activity 0.9). A new permeation set up has been built to determine the wat

  17. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  18. The Influence of Antimicrobial Treatment on Air Permeability and Water Absorption of Knits

    Directory of Open Access Journals (Sweden)

    Agne Mickeviciene

    2015-03-01

    Full Text Available Antimicrobialfinishing is increasingly used for various purposes in textile products.Therefore, it is important to determine whether the antimicrobial finishchanging comfort properties (air permeability, water absorption, etc. ofknits. The objective of this research was to establish the influence ofantimicrobial treatment conditions on air permeability and water absorptionproperties of plain plated knits. The investigations were carried out with threegroups of single plain plated knits. The ground and plating yarns of I group ofknits is pure fiber cotton, man-made bamboo, polyester. The ground yarns of IIand III groups of knits are accordingly polyamide and elastane threads. Theplating yarns in mentioned groups are the same as in I group – cotton, man-madebamboo, polyester yarns. Part of the knits of all groups were treated in anantimicrobial solution of iSys AG and organic-inorganic binder iSys MTX (CHT,Germany as well as the other part of the knits were treated in the sameconditions as treated in antimicrobial solution, however, an antimicrobialmaterial and binder weren’t used.Itwas established that air permeability of investigated knits changedinsignificant regardless of whether reagents providing an antimicrobial effectwere used or not used in finishing process. This means that the chemicalsubstance used for antimicrobial finishing do not worsens an air permeabilityof knits. Meanwhile, the water absorption of antimicrobial treated knits wassignificantly lower than of blank treated knits because the organic-inorganicbinder, used in antimicrobial treatment, forms the sol-gel layer on the surfaceof fiber.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5503

  19. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    Science.gov (United States)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  20. The permeability of red blood cells to chloride, urea and water

    DEFF Research Database (Denmark)

    Brahm, Jesper

    2013-01-01

    -1000 mmol l(-1), Michaelis-Menten-like kinetics; K½=127, 173 and 345 mmol l(-1)), and values at [urea]=1 mmol l(-1) are 29.5×10(-6), 467×10(-6) and 260×10(-6) cm s(-1), respectively. Diffusional water permeability, Pd, was 0.84×10(-3) (chick), 5.95×10(-3) (duck), 0.39×10(-3) (Amphiuma), 3.13×10(-3) (dog...

  1. A plate reader-based method for cell water permeability measurement

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, H B; Nielsen, S

    2010-01-01

    Cell volume and water permeability measurements in cultured mammalian cells are typically conducted under a light microscope. Many of the employed approaches are time consuming and not applicable to a study of confluent epithelial cell monolayers. We present here an adaptation of a calcein-quenching-based......-mannitol concentrations. Similarly, according average cell volumes have been measured in suspension in a Coulter counter (particle-sizing device). Based on these measurements, we have derived an equation that facilitates the modeling of cell volume changes based on fluorescence intensity changes. We have utilized...

  2. Establishment of HEK293 cell line expressing GFPAQP1 to determine water osmotic permeability

    Institute of Scientific and Technical Information of China (English)

    Jun-weiGAO; He-mingYU; Qian-liuSONG; Shu-xinLI; Xue-junLI

    2004-01-01

    AIM: To develop an osmotic water permeability assay.METHODS: We subcloned the rat AQP1 cDNA into pEGFPC3 vector. HEK293 cells were transfected with pEGFP-C3/AQP 1 or pEGFP-C3 and selected by G418. The expression of AQP1was detected by RT-PCR and Western blot. Confocal laser fluorescence microscopy was used to record the change of fluorescent density corresponding to the volume change of the cells

  3. Passive water and urea permeability of a human Na(+)-glutamate cotransporter expressed in Xenopus oocytes

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Gether, Ulrik; Klærke, Dan Arne

    2002-01-01

    with mannitol. Apparently, the properties of the pore are not uniform along its length. The outer section may accommodate urea and glycerol in an osmotically active form, giving rise to larger water fluxes. The physiological role of EAAT1 for water homeostasis in the central nervous system is discussed....... to the K(0.5) value for glutamate activation of transport. The specific inhibitor DL-threo-beta-benzyloxyaspartate (TBOA) reduced the EAAT1-specific L(p) to 72 %. EAAT1 supported passive fluxes of [(14)C]urea and [(14)C]glycerol. The [(14)C]urea flux was increased in the presence of glutamate. The data...... suggest that the permeability depends on the conformational equilibrium of the EAAT1. At positive potentials and in the presence of Na(+) and glutamate, the pore is enlarged and water and urea penetrate more readily. The L(p) was larger when measured with urea or glycerol as osmolytes as compared...

  4. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    CERN Document Server

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

  5. Analysis Technique on Water Permeability in Concrete with Cold Joint considering Micro Pore Structure and Mineral Admixture

    Directory of Open Access Journals (Sweden)

    Se-Jin Choi

    2015-01-01

    Full Text Available Cold joint in concrete due to delayed concrete placing may cause a reduced shear resistance and increased water permeation. This study presents an analytical model based on the concept of REV (Representative Element Volume to assess the effect of water permeability in cold joint concrete. Here, OPC (Ordinary Portland Cement concrete samples with cold joint are prepared and WPT (Water Permeability Test is performed on the samples cured for 91 days. In order to account for the effect of GGBFS (Granulated Ground Blast Furnace Slag on water permeability, concrete samples with the same W/B (Water to Binder ratio and 40% replacement ratio of GGBFS are tested as well. Utilizing the previous models handling porosity and saturation, the analysis technique for equivalent water permeability with effective cold joint width is proposed. Water permeability in cold joint increases to 140.7% in control case but it decreases to 120.7% through GGBFS replacement. Simulation results agree reasonably well with experimental data gathered for sound and cold joint concrete.

  6. Toward high permeability, selectivity and controllability of water desalination with FePc nanopores.

    Science.gov (United States)

    Deng, Qingming; Pan, Jun; Yin, Xiaohui; Wang, Xiaofeng; Zhao, Lina; Kang, Seung-gu; Jimenez-Cruz, Camilo A; Zhou, Ruhong; Li, Jingyuan

    2016-03-21

    Nanoporous materials exhibit promising potential in water transportation applications, especially in ocean water desalination. It is highly desired to have great permeability, selectivity and controllability in the desalination performance of these nanopores. However, it is still a challenge to achieve all three features in one material or device. Here, we demonstrate efficient and controllable water desalination with a nanoporous 2D Fe phthalocyanine (FePc) membrane using molecular dynamics simulations. We find the FePc membrane not only conducts fast water flow, but it also suppresses ion permeation. The selectivity is attributed to a mechanism distinct from the traditional steric exclusion: cations are excluded due to electrostatic repulsion, whereas anions can be trapped in the nanopore and induce the reorganization of ions in the vicinity of the nanopore, which in turn creates a tendency for the trapped anions to move back into the saline reservoir. More interestingly, we find such mechanism is largely due to the sufficiently strong electrostatic interaction of the charged nanopore region with ions and is not restricted to the FePc nanopore. In addition, the number of protonated nitrogen atoms in FePc pores can be modulated by adjusting the pH value of the solution. The extent of the anion occupancy can thus be regulated, giving rise to control of the water flow. Taken together, great permeability, selectivity and controllability can be achieved with this nanosheet system. Moreover, our study suggests there is an alternative mechanism of water desalination which may be realized by intrinsically nanoporous materials such as FePc membranes.

  7. What does the Unexpected Detection of Water Vapor in Arcturus' Atmosphere Tell us?

    CERN Document Server

    Ryde, N; Richter, M J; Lacy, J H; Greathouse, T K; Ryde, Nils; Lambert, David L.; Richter, Matthew J.; Lacy, John H.; Greathouse, Thomas K.

    2002-01-01

    In this talk I presented and discussed our unexpected detection of water vapor in the disk-averaged spectrum of the K2IIIp red giant Arcturus [for details, see Ryde et al. (2002)]. Arcturus, or alpha Bootes is, with its effective temperature of 4300 K, the hottest star yet to show water vapor features. We argue that the water vapor is photospheric and that its detection provides us with new insights into the outer parts of the photosphere. We are not able to model the vater vapor with a standard, one-component, 1D, radiative-equilibrium, LTE model photosphere, which probably means we are lacking essential physics in such models. However, we are able to model several OH lines of different excitation and the water-vapor lines satisfactorily after lowering the temperature structure of the very outer parts of the photosphere at log tau_500=-3.8 and beyond compared to a flux-constant, hydrostatic, standard marcs model photosphere. Our new semi-empirical model is consistently calculated from the given temperature s...

  8. The Infrared Astronomical Characteristics of Roque de los Muchachos Observatory: precipitable water vapor statistics

    CERN Document Server

    Garcia-Lorenzo, B; Castro-Almazan, J; Pinilla-Alonso, N; Muñoz-Tuñon, C; Rodriguez-Espinosa, J M

    2010-01-01

    The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical analysis of GPS measurements points to ORM as an observing site with suitable conditions for infrared (IR) observations, with a median column of precipitable water vapor (PWV) of 3.8 mm. PWV presents a clear seasonal behavior, being Winter and Spring the best seasons for IR observations. The percentage of nighttime showing PWV values smaller than 3 mm is over 60% in February, March and April. We have also estimated the temporal variability of water vapor content at the ORM. A summary of PWV statistical results at different astronomical sites is presented, recalling that these values are not directly comparable as a result of the differences in the techniques used to recorded the data.

  9. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    GAOHuasheng; YEYunchun; 等

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  10. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  11. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    Science.gov (United States)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  12. Details and Consequences of Water Vapor Diffusion In The Pore Space of Snow

    Science.gov (United States)

    Sokratov, S. A.; Bartelt, P.; Schneebeli, M.; Lehning, M.

    Despite a long history of extensive experimental and theoretical studies on the process of water vapor diffusion in snow, no quantitative explanation for the observed diffu- sion characteristics such as mass-transfer rates and snow density change is available at present. Results of a detailed investigatation of the process are presented. The pro- posed description of water vapor flux in snow now includes thermal diffusion, grav- itation, convective air flow, and volumetric mass-production. The relative importance of the components in the overall mass-transfer is analyzed. Although experimental data of sufficient detail concerning the individual components are not available, the results of our analysis provide an improved understanding of the sources of discrepan- cies in published experimental results. The consequences of the water vapor transport description for heat transfer and metamorphism are also discussed.

  13. Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME

    Directory of Open Access Journals (Sweden)

    R. Lang

    2002-07-01

    Full Text Available We use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP in order to retrieve total water vapor columns (WVC from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME. SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but slower, Optical Absorption Coefficient Spectroscopy (OACS.

  14. Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME

    Directory of Open Access Journals (Sweden)

    R. Lang

    2003-01-01

    Full Text Available We use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP in order to retrieve total water vapor columns (WVC from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME. SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly-scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but more computationally expensive, Optical Absorption Coefficient Spectroscopy (OACS.

  15. The Effect of Water Vapor on Flame Velocity in Equivalent Carbon Monoxide and Oxygen Mixtures

    Science.gov (United States)

    Fiock, Ernest F; King, H Kendall

    1936-01-01

    This report presents the results of an investigation to study the effect of water vapor upon the spatial speed of flame in equivalent mixtures of carbon monoxide and oxygen at various total pressures from 100 to 780 mm.hg. These results show that, within this pressure range, an increase in flame speed is produced by increasing the mole fraction of water vapor at least as far as saturation at 25 degrees c., and that the rate of this increase is greater the higher the pressure. It is evident that water vapor plays an important part in the explosive oxidation of carbon monoxide; the need for further experimental evidence as to the nature of its action is indicated.

  16. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch

    CERN Document Server

    Collette, S; Reniers, F

    2016-01-01

    The reactivity of water vapor introduced in the flowing post-discharge of an RF atmospheric plasma torch is investigated through electrical characterization, optical emission spectroscopy and mass spectrometry measurements. Due to the technical features of the plasma torch, the post-discharge can be considered as divided into two regions: an inner region (inside the plasma torch device) where the water vapor is injected and an outer region which directly interacts with the ambient air. The main reactions induced by the injection of water vapor are identified as well as those indicative of the influence of the ambient air. Plausible pathways allowing the production of H, OH, O radicals and H2O2 are discussed as well as reactions potentially responsible for inhomogeneities and for a low DC current measured in the flowing post-discharge. Keywords: atmospheric post-discharge, H2O plasma reactivity, RF plasma torch

  17. Vaporization order and burning efficiency of crude oils during in-situ burning on water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus M.V.; Jomaas, Grunde

    2017-01-01

    of multicomponent fuels. The alkanes were tested as benchmark fuels with a uniform vaporization order, for which all components evaporate simultaneously. As expected, these pure fuels showed a steady state burning with a near-constant surface temperature, flame height and burning rate. The alkane mixture showed...... similar steady state results but became dominated by the heaviest component towards the end of the burning. These results indicate that the lightest components had been depleted from the mixture. A near-uniform vaporization order in which the lighter components evaporate preferably best matched......In order to improve the understanding of the burning efficiency and its observed size dependency of in-situ burning of crude oil on water, the vaporization order of the components in crude oils was studied. The vaporization order of such multicomponent fuels was assessed by studying the surface...

  18. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    Science.gov (United States)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity

  19. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  20. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  1. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, J.; Mulder, M.H.V.; Wessling, M.

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol ab

  2. Beeswax-chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    Science.gov (United States)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-05-01

    For lipid-hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax-chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax-chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated.

  3. Continuous Time Series of Water Vapor Profiles from a Combination of Raman Lidar and Microwave Radiometer

    Directory of Open Access Journals (Sweden)

    Foth Andreas

    2016-01-01

    Full Text Available In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination can be well compensated by the application of a two–step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.

  4. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    Science.gov (United States)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  5. A scanning Raman lidar for observing the spatio-temporal distribution of water vapor

    Science.gov (United States)

    Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka

    2016-12-01

    We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site

  6. Triple-beam negative hydrogen-ion source based on water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Parkomchuk, V.V.; Kot, N.K.

    1985-07-01

    A Penning three-beam source of negative hydrogen-ions has been devised, which works with water vapor. The steady negative hydrogen-ion current in each beam is less than 4 microamps, but the negative hydrogen-ions constitute 92% of the beam current, while the water vapor consumption is 2.5 cm/sup 3//h and the distance between the beams is 20 mm. The source has been set up on an EG-1.5 accelerator, where it has worked without fail for over 400 h at 1 MeV.

  7. A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall

    Institute of Scientific and Technical Information of China (English)

    PAN Yang; YU Rucong; LI Jian; XU Youping

    2008-01-01

    Based on the observation data analysis and numerical simulation, the development of an eastward- moving vortex generated in Southwest China during the period 25-27 June 2003 is studied. The water vapor budget analysis indicates that water vapor in the lower troposphere over Southwest China is transported downstream to the Yangtze and Huaihe River valleys by the southwesterly winds south of the vortex center. A potential vorticity (PV) budget analysis reveals that a positive feedback between latent heat release and low-level positive vorticity plays a vital role in the sudden development and eastward movement of the vortex. Numerical simulations are consistent with these results.

  8. Redox Characteristics of Thiol Compounds Using Radicals Produced by Water Vapor Radio Frequency Discharge

    Science.gov (United States)

    Hayashi, Nobuya; Nakahigashi, Akari; Goto, Masaaki; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-08-01

    The redox reaction between cystein and cystine is observed using radicals produced in water vapor plasma for the control of plant growth. Cystein is oxidized to cystine using the OH radical in the higher-pressure regime and cystine is reduced to cystein by the H radical generated in the lower-pressure regime. Also, the oxidative stress reaction of plants is observed when water vapor plasma is irradiated onto seeds of plants such as radish sprouts. The mechanism of the control of plant growth is explained by the change in thiol compound quantity of the plant cells induced by the radical reaction.

  9. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Troyan, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  10. The effect of tropospheric fluctuations on the accuracy of water vapor radiometry

    Science.gov (United States)

    Wilcox, J. Z.

    1992-08-01

    Line-of-sight path delay calibration accuracies of 1 mm are needed to improve both angular and Doppler tracking capabilities. Fluctuations in the refractivity of tropospheric water vapor limit the present accuracies to about 1 nrad for the angular position and to a delay rate of 3x10(exp -13) sec/sec over a 100-sec time interval for Doppler tracking. This article describes progress in evaluating the limitations of the technique of water vapor radiometry at the 1-mm level. The two effects evaluated here are: (1) errors arising from tip-curve calibration of WVR's in the presence of tropospheric fluctuations and (2) errors due to the use of nonzero beamwidths for water vapor radiometer (WVR) horns. The error caused by tropospheric water vapor fluctuations during instrument calibration from a single tip curve is 0.26 percent in the estimated gain for a tip-curve duration of several minutes or less. This gain error causes a 3-mm bias and a 1-mm scale factor error in the estimated path delay at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor column density present in the troposphere during the astrometric observation. The error caused by WVR beam averaging of tropospheric fluctuations is 3 mm at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor (and is proportionally higher for higher water vapor content) for current WVR beamwidths (full width at half maximum of approximately 6 deg). This is a stochastic error (which cannot be calibrated) and which can be reduced to about half of its instantaneous value by time averaging the radio signal over several minutes. The results presented here suggest two improvements to WVR design: first, the gain of the instruments should be stabilized to 4 parts in 10(exp 4) over a calibration period lasting 5 hours, and second, the WVR antenna beamwidth should be reduced to about 0.2 deg. This will reduce the error induced by water vapor fluctuations in the estimated path delays to less than 1 mm for the elevation range

  11. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  12. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  13. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  14. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    Science.gov (United States)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water

  15. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle

    2006-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper...... an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...

  16. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  17. A new technique for monitoring the water vapor in the atmosphere

    Science.gov (United States)

    Black, H. D.; Eisner, A.

    1984-01-01

    In the correction of satellite Doppler data for tropospheric effects the precipitable water vapor (PWV) is inferred at the tracking site. The technique depends on: (1) an ephemeris for the satellite; (2) an analytic model for the refraction range effect that is good to a few centimeters; (3) Doppler data with noise level below 10 centimeters; and (4) a surface pressure/temperature measurement at the tracking site. The PWV is a by product of the computation necessary to correct the Doppler data for tropospheric effects. A formulation of the refraction integral minimizes the necessity for explicit water vapor, temperature and pressure profiles.

  18. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  19. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  20. Rules for confidence intervals of permeability coefficients for water flow in over-broken rock mass

    Institute of Scientific and Technical Information of China (English)

    Liu Weiqun; Fei Xiaodong; Fang Jingnian

    2012-01-01

    Based on the steady-state seepage method,we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples.Three methods of confidence interval in describing permeability coefficients are presented:the secure interval,the calculated interval and the systemic interval.The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity.For the calculated interval,as the axial pressure increases,the length of confidence interval is shortened and the upper and lower bounds are reduced.For the systemic interval,the length of its confidence interval,as well as the upper and lower bounds,clearly vary under low axial pressure but are fairly similar under high axial pressure.These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.

  1. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  2. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  3. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice

    OpenAIRE

    Eric S. Klein; J. E. Cherry; Young, J.; D. Noone; A. J. Leffler; Welker, J.M.

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help expla...

  4. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    Science.gov (United States)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    Global Navigation Satellite Systems (GNSS) have recently proved to be one of the crucial tools for determining continuous and precise precipitable water vapor (GNSS-MET networks). GNSS, especially CORS networks such as CORS-TR (the Turkish Network-RTK), provide high temporal and spatial accuracy for the wet tropospheric zenith delays which are then converted to the precipitable water vapor due to the fact that they can operate in all weather conditions continuously and economically. The accuracy of wet tropospheric zenith delay highly depends on the accuracy of precipitable water vapor content in the troposphere. Therefore, the precipitable water vapor is an important element of the tropospheric zenith delay. A number of studies can be found in the literature on the determination of the precipitable water vapor from the tropospheric zenith delay. Studies of Hogg showed that when the precipitable water vapor is known, the tropospheric zenith delay can be computed. Askne and Nodius have developed fundamental equations between the wet tropospheric zenith delay and the precipitable water vapor from the equation of the index of refraction in the troposphere. Furthermore, Bevis have developed a linear regression model to determine the weighted mean temperature (Tm) depending on the surface temperature (Ts) in Askne and Nodius studies. For this reason, nearly 9000 radiosonde profiles in USA were analyzed and the coefficients calculated. Similarly, there are other studies on the calculation of those coefficients for different regions: Solbrig for Germany, Liou for Taiwan, Jihyun for South Korea, Dongseob for North Korea, Suresh Raju for India, Boutiouta and Lahcene for Algeria, Bokoye for Canada, Baltink for Netherlands and Baltic, Bock for Africa. It is stated that the weighted mean temperature can be found with a root mean square error of ±2-5 K. In addition, there are studies on the calculation of the coefficients globally. Another model for the determination of

  5. UTLS water vapor trends as observed by the Boulder balloon series

    Science.gov (United States)

    Kunz, A.; Mueller, R.; Homonnai, V.; Janosi, I. M.; Rohrer, F.; Spelten, N.; Hurst, D. F.; Forster, P.

    2012-12-01

    Thirty years of high resolution balloon-borne measurements over Boulder, Colorado, are used to investigate the water vapor trend in the tropopause region. This analysis extents already existing Boulder sonde trend statistics, usually focusing on altitudes above 16km, to lower altitudes in the UTLS. This is achieved using two new concepts: 1) Trends are presented in a tropopause (TP) referenced coordinate system from -2km below to 10km above the TP. 2) The sonde profiles are characterized according to tropical and midlatitude TP heights, since the sonde location at 40°N is affected by dynamics and seasonality of the local jet stream. A data selection according to branches with z_TP>14km (B1) and z_TPwater vapor reservoirs. An analysis based on these concepts reduces the dynamically-induced water vapor variability at the TP and allows trend studies in the UTLS. The analysis shows that trends in branch B1 have a better significance -2 to 4km around the TP compared with trends in branch B2. At higher altitudes trends are comparable with published trends, suggesting that a TP based trend calculation is not necessary there. Nevertheless, a decrease in water vapor beginning in 2001 is not visible in both branches between -2 to 4km around the TP. At higher altitudes, this decrease is flattened for the two branches compared with a third branch (B3) with TP heights between 12 and 14km. Branch B3 is characterized by a sharp slope of TP heights across the jet stream. We discuss the hypothesis that the decrease in water vapor beginning in 2001 above Boulder may also be linked with dynamics above the jet stream. These results are also revealed by HALOE based analyses. Using radiative transfer calculations based on a fixed dynamical heating assumption we will study the possible impact of observed water vapor trends around the TP on radiative forcing of surface temperatures.

  6. Evaluating the relative air permeability of porous media from their water retention curves

    Science.gov (United States)

    Assouline, S.; Tuli, A.; Hopmans, J. W.

    2016-05-01

    Accurate modeling of water and air flow in porous media requires the definition of the relevant hydraulic properties, namely, the water retention curve (WRC) and the relative hydraulic conductivity function (RHC), as well as the definition of the relative air permeability function (RAP). Capitalizing on the approach developed previously to represent the RHC, a new model allowing the prediction of RAP based on information resulting from the WRC is proposed. The power value ηa in the model is a decreasing exponential function of the coefficient of variation, ɛ, characterizing the pore size distribution of the porous medium, and derived from its WRC. The model was calibrated using data from 22 disturbed and undisturbed soil samples and was validated using data from eight soil types ranging from quartz sand to silty clay loam. The proposed model provided accurate prediction of the soil RAP and performed in some cases (sandy loam and silty clay loam soils) better than available alternative models.

  7. The effect of titanium nanoparticles on Na–water vapor reaction at 105 °C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Korea Institute of Nuclear Safety, Yuseong, Daejeon 305-338 (Korea, Republic of)

    2015-11-15

    Highlights: • Na based Titanium Nanofluid (NaTiNF) has been produced. • We experimentally investigate the suppressed reactivity of NaTiNF. • We conduct NaTiNF–water vapor reaction experiment with visualization. • We demonstrate a lower temperature increment of NaTiNF than Na. • We observe a stable surface behavior of NaTiNF while vigorous surface reaction of Na. - Abstract: We investigated the suppressing effect of Sodium-based Titanium Nanofluid (NaTiNF) on the Sodium–water Vapor Reaction (SVR). The increases in temperature during the reaction of pure sodium (Na) and NaTiNF with water vapor were measured, and surface reaction phenomena were recorded using a high-speed camera. The temperature increase in the reaction of NaTiNF with water vapor was slower than that of Na. From the visualization view, the surface of NaTiNF remained stable whereas the surface of Na reacted vigorously during the reaction. This difference in behavior demonstrates that titanium nanoparticles (Ti NPs) of NaTiNF impede the contact between Na and water, and thereby suppress the chemical reactivity of the SVR.

  8. Permeation of oxygen, water vapor, and limonene through printed and unprinted biaxially oriented polypropylene films.

    Science.gov (United States)

    Rubino, M; Tung, M A; Yada, S; Britt, I J

    2001-06-01

    Oriented polypropylene (OPP) and coated OPP (acrylic/OPP/PVDC) films were printed with two commercially available inks to investigate the influence of inks on water vapor and oxygen transmission rates. The permeation of an aroma compound (d-limonene) through coated OPP film printed with these inks was also evaluated at 35 degrees C and 100% relative humidity. The water vapor transmission rate increased significantly through OPP film printed with nitrocellulose-based ink. The oxygen transmission rate was significantly lower through both OPP and coated OPP films printed with the nitrocellulose ink. The effect of inks on limonene permeation was minor compared to the marked increase in permeation measured when the PVDC side of the coated film was exposed to the aroma, compared to the acrylic side. Scanning electron micrographs of coated film cross sections revealed changes in film structure upon exposure to limonene vapors, which were most pronounced when the PVDC side was exposed to limonene.

  9. An experimental study on the solubility of copper bichloride in water vapor

    Institute of Scientific and Technical Information of China (English)

    SHANG LinBo; BI XianWu; HU RuiZhong; FAN WenLing

    2007-01-01

    Using the solubility method, the solubility of CuCl2 in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 330-370℃ and pressures of 4.2-10 MPa. The results have shown that hydration could significantly enhance copper solubility and the concentrations of copper were positively correlated with PH2O. The solubility of copper in vapor phase increased with increasing PH2O at the constant temperature. CuCl2 was transported as hydrated species CuCl2(H2O)ngas in water vapor. The formation of complexes is proposed to be the result of the following reaction:CuCl2solid + nH2Ogas = CuCl2 (H2O)ngas The hydration number n decreased slightly with increasing temperature. Statistical hydration numbers are 4.0, 3.6 and 3.3 at 330, 350 and 370℃, respectively.

  10. Energy balance between vaporization and heating in the absorption of CO2 laser radiation by water

    Science.gov (United States)

    Mueller, Robert E.; Yam, Henry; Duley, Walter W.

    1997-03-01

    The use of lasers in industrial and medical procedures continues to increase. A fundamental question in many laser- material interactions is how is the incident laser power transferred to the target material, and how is the power distributed among the phases (solid, liquid, vapor) of the material. This paper describes the results of a fundamental calorimetry experiment to determine the fraction of incident carbon-dioxide laser energy which is used to vaporize water from a target volume, and the fraction of power used to simply heat the remaining liquid. The experiment was performed over a range of incident laser powers from 60 to 300 W. Over most of the range of incident power, the fraction used to vaporize water is 30 to 35 percent. This fraction increases at the lowest powers.

  11. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    Science.gov (United States)

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  12. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei [Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3 (Canada); State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3 (Canada); Qian, Liying [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2014-05-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated.

  13. A Satellite-Derived Upper-Tropospheric Water Vapor Transport Index for Climate Studies

    Science.gov (United States)

    Jedlovec, Gray J.; Lerner, Jeffrey A.; Atkinson, Robert J.

    1998-01-01

    A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly

  14. Microwave Radiometer Networks for Measurement of the Spatio-Temporal Variability of Water Vapor

    Science.gov (United States)

    Reising, S. C.; Iturbide-Sanchez, F.; Padmanabhan, S.

    2006-12-01

    Tropospheric water vapor plays a key role in the prediction of convective storm initiation, precipitation and extreme weather events. Conventionally, water vapor profiles are derived from dewpoint and temperature measurements using instrumented weather balloons, including radiosondes. These balloons take approximately one hour to measure from surface to tropopause, and transmitter-sensor packages cannot be reused. Such in-situ measurements provide profiles with very high vertical resolution but with severe limitations in temporal and spatial coverage. Raman lidars use active optical techniques to provide comparable vertical resolution and measurement accuracy to radiosondes. However, these lidars are bulky and expensive, and their operation is limited to clear-sky conditions due to the high optical opacity of clouds. Microwave radiometers provide path-integrated water vapor and liquid water with high temporal resolution during nearly all weather conditions. If multiple frequencies are measured near the water vapor resonance, coarse vertical profiles can be obtained using statistical inversion. Motivated by the need for improved temporal and spatial resolutions, a network of elevation and azimuth scanning radiometers is being developed to provide coordinated volumetric measurements of tropospheric water vapor. To realize this network, two Miniaturized Water Vapor profiling Radiometers (MVWR) have been designed and fabricated at Colorado State University. MWVR is small, light-weight, consumes little power and is highly stable. To reduce the mass, volume, cost and power consumption as compared to traditional waveguide techniques, MWVR was designed based on monolithic microwave integrated-circuit technology developed for the wireless communication and defense industries. It was designed for network operation, in which each radiometer will perform a complete volumetric scan within a few minutes, and overlapping scans from multiple sensors will be combined

  15. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  16. Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-03-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  17. Cavity-ring-down spectroscopy on water vapor in the range 555-604 nm

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.M.G.; Levelt, P.F.; Polyansky, O.L.; Zobov, N.F.; Tennyson, J.

    2001-01-01

    The method of pulsed cavity-ring-down spectroscopy was employed to record the water vapor absorption spectrum in the wavelength range 555-604 nm. The spectrum consists of 1830 lines, calibrated against the iodine standard with an accuracy of 0.01 cm(-1); 800 of these lines are not obtained in the HI

  18. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Water vapor sorption can be used to study important properties of porous materials including specific surface area and pore size distribution (PSD). However, the data analysis is somewhat inconsistent in literature. In this work, the important factors influencing the analyzed results using sorpti...

  19. Comparison of Columnar Water Vapor Measurements During The Fall 1997 ARM Intensive Observation Period: Optical Methods

    Science.gov (United States)

    Schmid, Beat; Michalsky, J.; Slater, D.; Barnard, J.; Halthore, R.; Liljegren, J.; Holben, B.; Eck, T.; Livingston, J.; Russell, P.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    In the fall of 1997 the Atmospheric Radiation Measurement (ARM program conducted an intensive Observation Period (IOP) to study water vapor at its Southern Great Plains (SGP) site. Among the large number of instruments, four sun-tracking radiometers were present to measure the columnar water vapor (CWV). All four solar radiometers retrieve CWV by measuring solar transmittance in the 0.94-micrometer water vapor absorption band. As one of the steps in the CWV retrievals the aerosol component is subtracted from the total transmittance, in the 0.94-micrometer band. The aerosol optical depth comparisons among the same four radiometers are presented elsewhere. We have used three different methods to retrieve CWV. Without attempting to standardize on the same radiative transfer model and its underlying water vapor spectroscopy we found the CWV to agree within 0.13 cm (rms) for CWV values ranging from 1 to 5 cm. Preliminary results obtained when using the same updated radiative transfer model with updated spectroscopy for all instruments will also be shown. Comparisons to the microwave radiometer results will be included in the comparisons.

  20. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  1. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  2. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2010-07-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become more dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  3. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  4. The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China

    Institute of Scientific and Technical Information of China (English)

    SUN Bo; ZHU Yali; WANG Huijun

    2011-01-01

    The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.

  5. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  6. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    Science.gov (United States)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  7. LASE measurements of water vapor, aerosol, and cloud distribution in hurricane environments and their role in hurricane development

    Science.gov (United States)

    Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.; Halverson, J.; Rizvi, S.; Krishn, T. N.

    2002-01-01

    LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.

  8. Compressive Strength and Water Permeability Performance of Micronised Biomass Silica Concrete

    Directory of Open Access Journals (Sweden)

    S.H. Adnan

    2009-12-01

    Full Text Available Concrete is a common material that is widely used in construction industry. Cement is the main material component for producing concrete but its production has lead into CO2 emission. This work presents a study on Micronised Biomass Silica (MBS that can be used as pozzolan material which can enhance the quality of concrete. The material can be produced from a by-product of biomass agricultural waste but for this study rice husk has been used. From the chemical analysis, MBS has a chemical composition that is fulfill the standard requirement for becoming pozzolan material. The result of MBS concrete shows that the MBS material can enhance the performance of concrete by increasing the compressive strength development and reducing the water permeability. The drawback of MBS is the workability of fresh concrete but can be rectify by using superplasticizer. By replacing up to 12% of cement, MBS material gives the highest performance in term of strength and permeability of the concrete.

  9. Auxin Does Not Alter the Permeability of Pea Segments to Tritium-labeled Water.

    Science.gov (United States)

    Dowler, M J; Rayle, D L

    1974-02-01

    The possibility of an auxin effect on the permeability of pea (Pisum sativum L. ev. Alaska) segments to tritium-labeled water has been investigated by three separate laboratories, and the combined results are presented. We were unable to obtain any indication of a rapid effect of indoleacetic acid on the efflux of (3)HHO when pea segments previously "loaded" for 90 minutes with (3)HHO were transferred to unlabeled aqueous medium with indoleacetic acid. We were able to confirm that segments pretreated with (3)HHO plus indoleacetic acid for 60 to 90 minutes can show an enhanced (3)HHO release as compared with minus indoleacetic acid controls. However, this phenomenon appears to be due to an increased uptake of (3)HHO during the prolonged indoleacetic acid pretreatment, and therefore we conclude that auxin does not alter the permeability of pea segments to (3)HHO in either short term or long term tests. We confirm previous reports that the uptake of (3)HHO in pea segments proceeds largely through the cut surfaces, and that the cuticle is a potent barrier to (3)HHO flux.

  10. Geomechanical and water vapor absorption characteristics of clay-bearing soft rocks at great depth

    Institute of Scientific and Technical Information of China (English)

    Zhang Na; Liu Longbiao; Hou Dongwen; He Manchao; Liu Yilei

    2014-01-01

    The geological and physico-mechanical properties characterization of deep soft rocks is one of the critical scientific issues for deep soft rock engineering. In the present study, X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and mercury intrusion porosimetry experiments were carried out to investigate the mineral compositions, microstructure and porosity characteristics of the 13 clay-bearing soft rock samples collected from a deep coal mine in China. Water vapor absorption and uniaxial compressive experiments were also performed to examine water absorption characteristics and water-induced strength degradation effect of the investigated deep soft rock samples. The results show that the dominant mineral components in mudstone, coarse sandstone and fine sandstone samples were calcite, quartz and clay respectively. The contents of clay minerals in all samples were relatively high and ranged from 12.3% (N-4) to 56.5% (XS-1). Water vapor absorption processes of all the soft rock samples follow an exponential law which is very similar to the water vapor absorption behavior of conglomerate samples reported in our earlier study. Correlation analyses also suggested that there were good positive correlation relationships between water absorptivity and clay minerals for both mudstone and sandstone samples. Furthermore, it was found that vapor absorption was not correlated with the porosity for mudstone, however, positive correlation relationship was found between them for sand-stone. Correlation analysis between UCS, modulus of elasticity and water content demonstrated that both of them tend to decrease with the increase of their water content due to water absorption.

  11. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Majid Hassanizadeh, S.; van Genuchten, Martinus Th.

    2017-01-01

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass cylinder filled with pure volatile organic compound (VOC). Results showed that air phase concentrations of both TCE and toluene increased relatively quickly to their maximum values and then became constant. We considered subsequent dissolution into both stirred and unstirred water reservoirs. Results of the stirred experiments showed a quick increase in the VOC concentrations with time up to their solubility limit in water. VOC vapor dissolution was found to be independent of pH. In contrast, salinity had a significant effect on the solubility of TCE and toluene vapors. VOC evaporation and vapor dissolution in the stirred water reservoirs followed first-order rate processes. Observed data could be described well using both simplified analytical solutions, which decoupled the VOC dynamics in the air and water phases, as well as using more complete coupled solutions. However, the estimated evaporation (ke) and dissolution (kd) rate constants differed by up to 70% between the coupled and uncoupled formulations. We also numerically investigated the effects of fluid withdrawal from the small water reservoir due to sampling. While decoupling the VOC air and water phase mass transfer processes produced unreliable estimates of kd, the effects of fluid withdrawal on the estimated rate constants were found to be less important. The unstirred experiments showed a much slower increase in the dissolved VOC concentrations versus time. Molecular diffusion of the VOCs within the aqueous phase became then the limiting factor for mass transfer from air to water. Fluid withdrawal during sampling likely caused some minor convection within the reservoir, which was simulated by increasing the

  12. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  13. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2008-02-01

    Full Text Available Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres and tropical lower stratospheric (TLS water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux, and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation. After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006. The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde temperatures (up to 2005 with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor

  14. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  15. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    Science.gov (United States)

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  16. "Phantom ion effect" and the contact potential of the water-vapor interface.

    Science.gov (United States)

    Levin, Yan

    2008-09-28

    The contact (junction) potential between water-vapor and water-oil interfaces is studied theoretically. Unlike the previous studies, we show that ionic contribution to the contact potential vanishes when the concentration of aqueous electrolyte goes to zero. The incorrect prediction of a large ionic contribution to the junction potential in the infinite dilution limit, obtained in the earlier studies, is traced back to the inappropriate use of the grand-canonical ensemble for strongly inhomogeneous Coulomb systems. It is shown that for these systems, the thermodynamic limit is not reached even when the number of particles is astronomically large, on the order of 10(24). There is, therefore, no equivalence between statistical ensembles. For realistic, finite size systems, canonical calculation predicts a vanishing ionic contribution to the junction potentials of water-vapor and water-oil interfaces even for very concentrated electrolyte solutions.

  17. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.;

    2002-01-01

    . FLUXNETs goals are to understand the mechanisms controlling the exchanges of CO2, water vapor and energy across a spectrum of time and space scales, and to provide information for modeling of carbon and water cycling across regions and the globe. At a subset of sites, net carbon uptake (net ecosystem......The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables...... associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes. except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes = 3.4 g CO2/kg H2O...

  18. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations - Method, validation, and data characteristics

    Science.gov (United States)

    Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1993-01-01

    Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.

  19. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    Science.gov (United States)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  20. What does the Unexpected Detection of Water Vapor in Arcturus' Atmosphere Tell us?

    Science.gov (United States)

    Ryde, N.; Lambert, D. L.; Richter, M. J.; Lacy, J. H.; Greathouse, T. K.

    In this talk we presented and discussed our unexpected detection of water vapor in the disk-averaged spectrum of the K2IIIp red giant Arcturus [for details, see Ryde et al. (2002)]. Arcturus, or alpha Bootes is, with its effective temperature of 4300 K, the hottest star yet to show water vapor features. We argue that the water vapor is photospheric and that its detection provides us with new insights into the outer parts of the photosphere. We are not able to model the water vapor with a standard, one-component, 1D, radiative-equilibrium, LTE model photosphere, which probably means we are lacking essential physics in such models. However, we are able to model several OH lines of different excitation and the water-vapor lines satisfactorily after lowering the temperature structure of the very outer parts of the photosphere at log tau(500)=-3.8 and beyond compared to a flux-constant, hydrostatic, standard marcs model photosphere. Our new semi-empirical model is consistently calculated from the given temperature structure. We will discuss some possible reasons for a temperature decrease in the outer-most parts of the photosphere and the assumed break-down of the assumptions made in classical model-atmosphere codes. In order to understand the outer photospheres of these objects properly, we will, most likely, need 3D hydrodynamical models of red giants also taking into account full non-LTE and including time-dependent effects of, for example, acoustic wave heating sensitive to thermal instabilities.

  1. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying;

    2016-01-01

    -liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation.......The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic conditions using the nucleation and droplet growth...

  2. Behavior and Stability of Ground Ice on Ceres: Modeling Water Vapor Production

    Science.gov (United States)

    Landis, M. E.; Byrne, S.; Schorghofer, N.; Schmidt, B. E.; Raymond, C. A.; Russell, C.

    2016-12-01

    Telescopic observations of Ceres in 2014 suggest the existence of a transient water vapor exosphere [1] being produced at a rate of 6kg/s. With the arrival of the Dawn spacecraft at Ceres, additional data is available to constrain sources of the detection. Our models are described in [2] and are based on the work of [3]. We model three scenarios: pore-filling ground ice, excess ground ice, and exposed surface ice. We calculate the surface temperature of Ceres over one year, based on current orbital parameters, for input to the vapor production model based on [4,5]. We assume that ground ice has been present on Ceres over the lifetime of the solar system. For pore-filling ground ice, we assume a 50% volume fraction of ice within the regolith and an overlying sublimation lag that grows from an initially near-zero thickness 4.5 Gyr ago. Vapor produced currently by Ceres-wide ice-table retreat is on the order of 0.1 kg/s. It is unlikely the 6 kg/s exosphere is produced by sublimation of pore-filling ground ice. Massive ground ice results in thinner sublimation lags over the course of solar system history. To match the 6kg/s whole-Ceres vapor production, we require enough ice such that the current sublimation lag accumulated over 4.5 Gyr would be 1m at low latitudes. Sublimation of a layer that would match the results of [6] would be currently producing a factor of 10 less water vapor that observed by [1]. Exposed surface ice at the equator could produce up to 1kg/s/km2 of water given the correct season [2]. A few km2 of surface ice, if close to the equator and observed at the right time of year, could produce the vapor observation of [1]. However, bright spots (possibly exposed surface ice) occur at high latitudes and within craters a few km in diameter. Crater wall shadowing can quickly compound the latitudinal variation in water vapor production, reducing vapor production to a few percent of the shadow-free case. Our results suggest the exosphere observed in [1] was

  3. Modeling of Fischer-Tropsch Synthesis in a Slurry Reactor with Water Permeable Membrane

    Institute of Scientific and Technical Information of China (English)

    Fabiano A. N. Fernandes

    2007-01-01

    Fischer-Tropsch synthesis is an important chemical process for the production of liquid fuels and olefins. In recent years, the abundant availability of natural gas and the increasing demand of olefins, diesel, and waxes have led to a high interest to further develop this process. A mathematical model of a slurry membrane reactor used for syngas polymerization was developed to simulate and compare the maximum yields and operating conditions in the reactor with that in a conventional slurry reactor.The carbon polymerization was studied from a modeling point of view in a slurry reactor with a water permeable membrane and a conventional slurry reactor. Simulation results show that different parameters affect syngas conversion and carbon product distribution, such as the hydrogen to carbon monoxide ratio,and the membrane parameters such as membrane permeance.

  4. Carbon dioxide transport in alligator blood and its erythrocyte permeability to anions and water

    DEFF Research Database (Denmark)

    Jensen, F B; Wang, T; Jones, D R

    1998-01-01

    Deoxygenation of alligator red blood cells (RBCs) caused binding of two HCO3- equivalents per hemoglobin (Hb) tetramer at physiological pH. At lowered pH, some HCO3- binding also occurred to oxygenated Hb. The erythrocytic total CO2 content was large, and Hb-bound HCO3-, free HCO3-, and carbamate......+ binding. Erythrocyte volume, plasma pH, and plasma HCO3- concentration also varied little with the degree of oxygenation. Diffusional water permeability was higher in oxygenated than deoxygenated RBCs. The RBCs have rapid band 3-mediated Cl- and HCO3- transport, which was not affected by degree...... of oxygenation, but net fluxes of Cl- and HCO3- via the anion exchanger are small during blood circulation at rest. Most of the CO2 taken up into the blood as it flows through tissue capillaries is carried within the erythrocytes as Hb-bound HCO3- until CO2 is excreted when blood flows through pulmonary...

  5. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  6. Effect of ethanol on the water permeability of controlled release films composed of ethyl cellulose and hydroxypropyl cellulose.

    Science.gov (United States)

    Larsson, Mikael; Hjärtstam, Johan; Berndtsson, Jolina; Stading, Mats; Larsson, Anette

    2010-11-01

    The robustness of controlled release formulations when co-ingested with alcohol is a current concern expressed by regulatory authorities, especially with regard to dose dumping. One such controlled release formulation commonly used is film coating composed of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC). The aim of this study was to investigate how the presence of ethanol in the dissolution medium affects the water permeability of such films. Film samples were prepared in various EC-HPC compositions, and the effect of different ethanol concentrations in the dissolution medium on the permeability was studied using a modified Ussing chamber and tritiated water. It was found that the effect of ethanol on the film permeability varied depending on the composition of the films. The results were interpreted in terms of swelling of the EC in the films, where the swelling increased with increasing ethanol concentration. Thus, for films with low HPC content (non-interconnected pores), the water permeability of the films increased with increasing ethanol concentration as the diffusion through the ethyl cellulose increased due to swelling. However, for films with higher HPC content (having interconnected pores through the films), the permeability decreased, likely due to the swelling of the ethyl cellulose blocking the pores. The interpretation of the results was supported by dynamic mechanic analysis and SEM analysis.

  7. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  8. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  9. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  10. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer

    Science.gov (United States)

    Critchley, K.; Rudolph, D. L.; Devlin, J. F.; Schillig, P. C.

    2014-12-01

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5 m/day. NO3-15N and NO3-18O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer.

  11. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior.

  12. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?

    Science.gov (United States)

    Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava

    2015-03-01

    Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.

  13. Energy and water vapor transport across a simplified cloud-clear air interface

    CERN Document Server

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  14. Obliquity-Controlled Water Vapor/Trace Gas Feedback in the Martian Greenhouse Cycle

    Science.gov (United States)

    Mischna, M. A.; Baker, V. R.; Milliken, R.; Richardson, M. I.; Lee, C.

    2013-12-01

    We have explored possible mechanisms for the generation of warm, wet climates on early Mars as a result of greenhouse warming by both water vapor and periodic volcanic trace gas emissions, using the Mars Weather Research and Forecasting (MarsWRF) general circulation model. The presence of both water vapor (a strong greenhouse gas) and other trace greenhouse gases (such as SO2) in a predominantly CO2 atmosphere may act, under certain conditions, to elevate surface temperatures above the freezing point of liquid water, at least episodically. The levels of warming obtained in our simulations do not reach the values seen in Johnson et al., (2008, JGR, 113, E08005), nor are they widespread for extended periods. Rather, warming above 273 K is found in more localized environments and for geologically brief periods of time. Such periodic episodes are controlled by two factors. First is the obliquity of the planet, which plays a significant role is ';activating' extant surface water ice reservoirs, allowing levels of atmospheric water vapor to rise when obliquity is high, and fall precipitously when the obliquity is low. During these low-obliquity periods, the atmosphere is all but incapable of supporting warm surface temperatures except for brief episodes localized wholly in the tropics; thus, there is a natural regulator in the obliquity cycle for maintaining periodic warming. Second is the presence of a secondary trace gas 'trigger', like volcanically released SO2, in the atmosphere. In the absence of such a trace gas, water vapor alone appears incapable of raising temperatures above the melting point; however, by temporarily raising the baseline global temperatures (in the absence of warming by water vapor) by 10-15 K, as with SO2, the trigger gas keeps atmospheric temperatures sufficiently warm, especially during nighttime, to maintain levels of water vapor in the atmosphere that provide the needed warming. Furthermore, we find that global warming can be achieved more

  15. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  16. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    Science.gov (United States)

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  17. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron

    OpenAIRE

    1993-01-01

    The sites of water transport along the nephron are well characterized, but the molecular basis of renal water transport remains poorly understood. CHIP28 is a 28-kD integral protein which was proposed to mediate transmembrane water movement in red cells and kidney (Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. 1992. Science [Wash. DC]. 256:385-387). To determine whether CHIP28 could account for renal epithelial water transport, we used specific polyclonal antibodies to quantitate...

  18. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  19. Solar geoengineering, atmospheric water vapor transport, and land plants

    Science.gov (United States)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  20. Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model

    Science.gov (United States)

    Duan, Z.; Thomas, N. L.

    2014-02-01

    The water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial poly(lactic acid) (PLA) were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0% to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38 °C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0% to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the "Tortuous Path Model." The model was also successfully used to explain published data on water permeability of polyethylene terephthalate.

  1. Comparison of Columnar Water-Vapor Measurements from Solar Transmittance Methods

    Science.gov (United States)

    Schmid, Beat; Michalsky, J.; Slater, Donald W.; Barnard, James C.; Halthore, Rangasayi N.; Liljegren, James C.; Holben, Brent N.; Eck, Thomas F.; Livingston, John M.; Russell, Philp B.

    2001-01-01

    The Atmospheric Radiation Measurement program studied water vapor abundance measurement at its southern Great Plains site in the fall of 1997. The program used a large number of instruments, including four solar radiometers. By measuring solar transmittance in the 0.94 micrometer water apor absorption band, they were able to measure columnar water vapor (CWV). In the second round of comparison we used the same radiative transfer model, and the same line-by-line code (which includes recently corrected H2O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8 - 13 %. The model was not responsible for the 8 % spread in CWV which remained.

  2. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  3. Comparison of columnar water vapor over northern China derived from ground-based measurements and MODIS

    Science.gov (United States)

    Liu, Chaoshun; Shi, Runhe; Gao, Wei; Bai, Kaixu

    2011-09-01

    Water vapor represents a small but environmentally significant constituent of the atmosphere. This study retrieved columnar water vapor (CWV) with the 939.3 nm band of a Multi-filter Rotating Shadowband Radiometer (MFRSR) using the modified Langley technique from September 23, 2004 to June 20, 2005 at the XiangHe site.To improve the credibility, the MFRSR results were compared with those obtained from the AERONET (AErosol RObotic NETwork) CIMEL sun-photometer measurements, co-located at the XiangHe site, and the Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Total Precipitable Water Product (MOD05), respectively. These comparisons show a good agreement in terms of correlation coefficients, slopes, and offsets, revealing that the accuracy of CWV estimation using the MFRSR instrument is reliable and suitable for extended studies in northern China.

  4. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    Science.gov (United States)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  5. First detection of water vapor in a pre-stellar core

    CERN Document Server

    Caselli, Paola; Bergin, Edwin A; Tafalla, Mario; Aikawa, Yuri; Douglas, Thomas; Pagani, Laurent; Yildiz, Umut A; van der Tak, Floris F S; Walmsley, C Malcolm; Codella, Claudio; Nisini, Brunella; Kristensen, Lars E; van Dishoeck, Ewine F

    2012-01-01

    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than Helium are expected to freeze-out onto dust grains, and the ortho:para H2 ratio has to be around 1:1 or larger. The observed amount of water vapor wi...

  6. Addressing water vaporization in the vicinity of an exploding wire

    Science.gov (United States)

    Grinenko, A.; Gurovich, V. Tz.; Krasik, Ya. E.; Dolinsky, Yu.

    2006-12-01

    The phase state of thin (˜1μm) layer of water adjacent to the surface of rapidly heated thin wire 100±50μm in radius is analyzed by computer hydrodynamic calculation. It is shown that when heating of a wire to a temperature of 420°C is achieved in less than ˜500ns, the trajectory of the phase state is contained in the liquid part of the phase diagram. This suggests additional proof of and an explanation for the absence of shunting plasma discharge in fast underwater electrical wire explosions.

  7. Morphology and water permeability of red blood cells from green sea turtle (Chelonia mydas).

    Science.gov (United States)

    Benga, Gheorghe; Chapman, Bogdan E; Romeo, Tony; Cox, Guy C; Kuchel, Philip W

    2015-07-01

    The morphology and diffusional water permeability (P d) of red blood cells (RBCs) from green sea turtle (GST) (Chelonia mydas) are presented for the first time. The RBCs had an ellipsoidal shape with full-axis lengths (diameters): D = 14.4 μm; d = 10.2 μm; h = 2.8 μm. The values of P d (cm s(-1)) were 5.1 × 10(-3) at 15 °C, 5.7 × 10(-3) at 20 °C, 6.3 × 10(-3) at 25 °C, 6.8 × 10(-3) at 30 °C, and 7.9 × 10(-3) at 37 °C (i.e., significantly higher than in human RBCs in which it was measured to be 4.2 × 10(-3) at 25 °C, 5.0 × 10(-3) at 30 °C, and 6.2 × 10(-3) at 37 °C). There was a lack of inhibition of P d of GST RBCs by p-chloromercuribenzoate (PCMB), a well-known inhibitor of the RBC water channel proteins (WCPs). The activation energy of water diffusion (E a,d) in GST RBCs was 15.0 ± 1.6 kJ mol(-1) which is lower than the E a,d for human RBCs (~25 kJ mol(-1)). These results indicate that in the membrane of GST RBCs, there were no WCPs that were inhibited by the mercurial reagent, while the lipid bilayer of this membrane is unusually permeable to water. This is likely to be a phylogenetically old trait, like that found in amphibians and even the later birds, all of which have nucleated erythrocytes; and it is also likely to be a result of the animal's adaptation to a herbivorous diet (algae and seagrasses).

  8. Ionomer-Membrane Water Processing Apparatus

    Science.gov (United States)

    MacCallum, Taber K. (Inventor); Kelsey, Laura Katrina (Inventor)

    2017-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion.RTM., over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  9. Ionomer-Membrane Water Processing Apparatus

    Science.gov (United States)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  10. Water Vapor Radiometer-Global Positioning System Comparison Measurements and Calibration of the 20 to 32 Gigahertz Tropospheric Water Vapor Absorption Model

    Science.gov (United States)

    Keihm, S. J.; Bar-Sever, Y.; Liljegren, J.

    2000-10-01

    Collocated measurements of opacity (from water vapor radiometer (WVR) brightness temperatures) and wet path delay (from ground-based tracking of Global Positions System (GPS) satellites) are used to constrain the model of atmospheric water vapor absorption in the 20 to 32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately 5 months of data were obtained from two experiment sites. At the Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma, three independent WVRs provided near-continuous opacity measurements over the interval from July through September 1998. At NASA's Goldstone tracking station in the California desert, two WVRs obtained opacity data over the September through October 1997 interval. At both sites, a GPS receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of three candidate absorption models referenced in the recent literature. With one exception, all three models provide agreement within approximately 5 percent of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2 to 3 percent level. This accuracy is sufficient to meet the requirements of the tropospheric calibration system now being deployed at Goldstone to support the Cassini Gravitational Wave Experiment.

  11. Calculation of Clay Permeability Using a Rectangular Particle-Water Film Model by the Double-Scale Asymptotic Expansion Method

    Directory of Open Access Journals (Sweden)

    Xiaowu Tang

    2016-01-01

    Full Text Available Permeability of soil plays an important role in geotechnical engineering and is commonly determined by methods combining measurements with theory. Using the double-scale asymptotic expansion method, the Navier-Stokes equation is numerically solved to calculate the permeability, based on the homogenization method and the assumption that the homogeneous microstructure of the relevant porous media is represented accurately as the Representative Elemental Volume (REV. In this study, the commonly used square model is tested in the calculation of sea clay permeability. The results show large deviations. It is suspected that the square model could not represent the flattened shape of the clay particles and the bound water film wrapping around them. Hence, the Rectangle Particle-Water Film Model (i.e., the R-W model is proposed. After determining the horizontal and vertical characteristic length of the unit cell using two pairs of initial data, the permeabilities of other different void ratios could be inversely calculated. The results of three types of clay obtained using the R-W model agree well with the experimental data. This shows the efficient feasibility and accuracy of the R-W model by providing a good representation of the clay particles when using the double-scale asymptotic expansion method to calculate clay permeability.

  12. Water Vapor Diffusion and Adsorption of Sandstones: Influence of Rock Texture and Composition

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2016-01-01

    Full Text Available The term sandstone is used for wide range of rocks containing quartz clasts which can be cemented by secondary precipitated quartz or calcite; moreover the space between clasts can be filled by matrix. These facts result in existence of numerous rocks having highly various properties. Sandstones have been used as construction materials due to their good accessibility and workability. Since most of sandstones are porous, water vapor can penetrate through sandstone constructions. The rate of water vapor diffusion, as well as the vapor sorption isotherm, was determined for range of sandstone types. The diffusion resistance factor was found to be dependent on the total porosity of sandstone but the sorption behavior was strongly influenced by nature of the particular sandstone; the specific surface area of stone and presence of clay matrix are determining its sorption isotherm. The published data enable estimating (i diffusion resistance factor of a sandstone via knowledge of its total porosity and (ii the sorption isotherm via knowledge of the stone’s nature and specific surface area. This approach can significantly reduce the time necessary to acquire vapor-related properties of a sandstone.

  13. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Directory of Open Access Journals (Sweden)

    D. W. Fahey

    2014-04-01

    Full Text Available The AquaVIT-1 Intercomparison of Atmospheric Water Vapor Measurement Techniques was conducted at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere where water vapor reaches its lowest atmospheric values (less than 10 ppm. With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, either by extracting air into instrument flow systems, locating instruments inside the chamber, or sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm. In the absence of an accepted reference instrument, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ. In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ. The upper limit of precision was also derived for each instrument from the reported data. These results indicate that the core instruments, in general, have intrinsic skill to determine unknown water vapor mixing ratios with an accuracy of at least ±20%. The implication for atmospheric

  14. Airborne Lidar Observations of Water Vapor Variability in the Northern Atlantic Trades

    Science.gov (United States)

    Kiemle, Christoph; Groß, Silke; Wirth, Martin; Bugliaro, Luca

    2017-04-01

    During the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiments in December 2013 and August 2016 the DLR lidar WALES (Water vapor Lidar Experiment in Space) was operated on board the German research aircraft HALO. The lidar simultaneously provided two-dimensional curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution, in order to help improve our knowledge on the coupling between water vapor, clouds, and circulation in the trades. The variability of water vapor, ubiquitous in our measurements, poses challenges to climate models because it acts on the small-scale low-cloud cover. Aloft, the very dry free troposphere in the subsiding branch of the Hadley cell acts as an open window in a greenhouse, efficiently cooling the lower troposphere. Secondary circulations between radiatively heated and cooled regions are supposed to occur, adding complexity to the situation. After recently having identified them to be mainly responsible for the uncertainty in global climate sensitivity, such interactions between shallow convection, circulation and radiation are at the heart of present scientific debate, endorsed by the WCRP (World Climate Research Programme) "Grand Challenge on Clouds, Circulation and Climate Sensitivity". Out of the wealth of about 30 winter and 60 summer flight hours totaling 75000 km of data over the Tropical Atlantic Ocean east of Barbados, several representative lidar segments from different flights are presented, together with Meteosat Second Generation (MSG) images and dropsonde profiles. All observations indicate high heterogeneity of the humidity in the lowest 5 km, as well as high variability of the depth of the cloud layer (1 - 2 km thick) and of the sub-cloud boundary layer ( 1 km thick). Layer depths and partial water vapor columns within the layers may vary by up to a factor of 2, and on a large range of horizontal scales. Occasionally, very dry, up

  15. Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups.

    Science.gov (United States)

    Passaglia, Elisa; Bertoldo, Monica; Ceriegi, Silvia; Sulcis, Roberta; Narducci, Piero; Conzatti, Lucia

    2008-04-01

    LDPE, EPM and their derivatives containing a moderate amount (0.08-1.8 by mol) of diethylsuccinate or succinic anhydryde groups were used as matrices in blending with different amount of organophilic montmorillonites and the resulting composite morphology and structure (by XRD, SEM, TEM microscopy, DSC analysis and selective solvent extraction) were studied with reference to the polar groups/MMT ratio. Exfoliated, intercalated and mixed morphologies were achieved. High concentrations of polar groups grafted to the polyolefin and montmorillonite loading not larger than 5% wt were favourable for obtaining high exfoliation degree. Particularly in the exfoliated MMT composite LDPE had lower crystallinity degree, while EPM showed increased glass transition temperature and reduced solubility in hot toluene. Moreover, oxygen and water vapor barrier property improvement was observed in films where MMT exhibits either exfoliated or intercalated morphologies. Strong interactions with the montmorillonite particle surface through the polar groups grafted to the polyolefin seems to be the basic effect responsible for the morphology and peculiar properties. A model based on the reduced mobility of the polymer located near the particle surface or inside the MMT gallery (confined phase) was proposed to explain the observed oxygen permeability reduction, the T(g) increase and solubility of poly(ethylene-ran-propylene)/MMT nanocomposites.

  16. The Tianjin geothermal field (north-eastern China): Water chemistry and possible reservoir permeability reduction phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, Angelo; Montegrossi, Giordano; Orlando, Andrea [Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence (Italy); Borrini, Daniele; Tassi, Franco [Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy); Vaselli, Orlando [Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence (Italy); Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy); Huertas, Antonio Delgado [Estacion Experimental de Zaidin (CSIC), Prof. Albareda 1, 18008 Granada (Spain); Yang, Jincheng; Cheng, Wanquing [Aode Renewable Energy Research Institute, 90 Weijin South Road, Nankai District, 300381 Tianjin (China); Tedesco, Dario [Department of Environmental Sciences, Second University of Naples, Via Vivaldi 43, Caserta 81100 (Italy); Institute of Environmental Geology and Geo Engineering (CNR), Piazzale A. Moro 5, Roma 00100 (Italy); Poreda, Robert [Department of Earth and Environmental Sciences, University of Rochester, 227 Hutchison Hall, Rochester, NY 14627 (United States)

    2008-08-15

    Injection of spent (cooled) thermal fluids began in the Tianjin geothermal district, north-eastern China, at the end of the 1990s. Well injectivities declined after 3-4 years because of self-sealing processes that reduced reservoir permeability. The study focuses on the factors that may have caused the observed decrease in permeability, using chemical and isotopic data on fluids (water and gas) and mineral phases collected from production and injection wells. The results of data processing and interpretation indicate that (1) it is very unlikely that calcite and silica precipitation is taking place in the reservoir; (2) the Fe- and Zn-rich mineral phases (e.g. sulfides, hydroxides and silicates) show positive saturation indexes; (3) SEM and XRD analyses of filtered material reveal that the latter mineral phases are common; (4) visual observation of casings and surface installations, and of corrosion products, suggests that a poor quality steel was used in their manufacture; (5) significant quantities of solids (e.g. quartz and feldspar crystals) are carried by the geothermal fluid; (6) seasonal changes in fluid composition lead to a reduction in casing corrosion during the summer. It was concluded that the decrease in injectivity in the Tianjin wells is caused only in part by the oxidation of casings, downhole pumps, and surface installations, triggered by free oxygen in the injected fluids; the utilization of better quality steels should drastically reduce this type of corrosion. Self-sealing of pores and fractures by reservoir formation solids and by the Fe-corrosion products suspended in the injected fluids seems to be a more important phenomenon, whose effect could be greatly reduced by installing filtering devices at all sites. (author)

  17. Effects of acetazolamide and anordiol on osmotic water permeability in AQPI-cRNA injected Xenopus oocyte

    Institute of Scientific and Technical Information of China (English)

    BingMA; YangXIANG; Sheng-meiMU; TaoLI; He-mingYU; Xue-junLI

    2004-01-01

    AIM: To study the effects of acetazolamide and anordiol on osmotic water permeability in aquaporin 1 (AQP1)-cRNA injected Xenopus oocyte and their mechanisms. METHODS: AQP1 gene constructed in pBluescript was transcripted into cRNA in vitro and then the cRNA was injected in Xenopus oocytes. The effects of acetazolamide and anordiol on the water transport function of AQP1 were observed by assaying the osmotic swelling of oocytes.In addition, their effects on protein expression of AQP1 were quantitatively investigated by Western blotting method.RESULTS: After incubation for 15 min or 72 h, acetazolamide, a carbonic anhydrase inhibitor, equally reduced the water permeability of AQPI-cRNA injected oocyte in a dose-dependent manner. After incubation for 72 h, anordiol,an antiestrogen with partial estrogenic activity, reduced the osmotic water permeability dose dependently as well;however, no discernable action was observed after incubation with anordiol for 15 min. The Western blotting analysis showed that acetazolamide did not influence the protein expression of AQP1. However, after incubation for 72 h with anordiol (10 μmol/L), the quantity of AQP1 in the oocyte membrane was decreased dramatically(P<0.05). CONCLUSION: Both acetazolamide and anordiol inhibited the osmotic water permeability of AQP1-cRNA injected oocyte, but their mechanisms were different. Acetazolamide functionally inhibited the osmotic water permeability of AQP1, whereas anordiol primarily decreased the amount of AQP1 protein in the oocyte membrane.

  18. Population Shift between the Open and Closed States Changes the Water Permeability of an Aquaporin Z Mutant

    DEFF Research Database (Denmark)

    Xin, Lin; Helix Nielsen, Claus; Su, Haibin;

    2012-01-01

    gate in the triple mutant with R189 as the primary steric gate in both mutant and WT AqpZ. The double gates (R189 and W43-F183) result in a high population of the closed conformation in the mutant. Occasionally an open state, with diffusive water permeability very close to that of WT AqpZ, was observed...

  19. Isotopic composition of atmospheric water vapor before and after the monsoon's end in the Nagqu River Basin

    Institute of Scientific and Technical Information of China (English)

    YU Wusheng; YAO Tandong; TIAN Lide; WANG Yu; YIN Changliang

    2005-01-01

    Atmospheric water vapor samples were collected in the Nagqu River Basin in the middle of Tibetan Plateau between August and October in 2004. Results show that there exist some fluctuations of the δ18O of atmospheric water vapor, especially before and after the monsoon's end. Moreover, the variety trend of the δ 18O of atmospheric water vapor inverse correlates with that of dew point. Precipitation events make an important effect upon the variation of δ18O of atmospheric water vapor. During the whole sampling period, the δ18O values of atmospheric water vapor are low while precipitation events occurred. The moisture origins also contribute to the variation of δ18O of atmospheric water vapor. The oceanic moisture transported by the southwest monsoon results in lower δ18O of atmospheric water vapor in the Nagqu River Basin. Compared with the influence of the oceanic moisture, the δ18O values, however, appear high resulting from the effect of the continental air mass in this region.

  20. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States); Lesht, B.M.

    1996-06-01

    The operation and calibration of the ARM microwave radiometers is summarized. Measured radiometric brightness temperatures are compared with calculations based on the model using co-located radiosondes. Comparisons of perceptible water vapor retrieved from the radiometer with integrated soundings and co-located GPS retrievals are presented. The three water vapor sensing systems are shown to agree to within about 1 mm.

  1. Detecting shifts in tropical moisture imbalances with satellite-derived isotope ratios in water vapor

    Science.gov (United States)

    Bailey, A.; Blossey, P. N.; Noone, D.; Nusbaumer, J.; Wood, R.

    2017-06-01

    As global temperatures rise, regional differences in evaporation (E) and precipitation (P) are likely to become more disparate, causing the drier E-dominated regions of the tropics to become drier and the wetter P-dominated regions to become wetter. Models suggest that such intensification of the water cycle should already be taking place; however, quantitatively verifying these changes is complicated by inherent difficulties in measuring E and P with sufficient spatial coverage and resolution. This paper presents a new metric for tracking changes in regional moisture imbalances (e.g., E-P) by defining δDq—the isotope ratio normalized to a reference water vapor concentration of 4 mmol mol-1—and evaluates its efficacy using both remote sensing retrievals and climate model simulations in the tropics. By normalizing the isotope ratio with respect to water vapor concentration, δDq isolates the portion of isotopic variability most closely associated with shifts between E- and P-dominated regimes. Composite differences in δDq between cold and warm phases of El Niño-Southern Oscillation (ENSO) verify that δDq effectively tracks changes in the hydrological cycle when large-scale convective reorganization takes place. Simulated δDq also demonstrates sensitivity to shorter-term variability in E-P at most tropical locations. Since the isotopic signal of E-P in free tropospheric water vapor transfers to the isotope ratios of precipitation, multidecadal observations of both water vapor and precipitation isotope ratios should provide key evidence of changes in regional moisture imbalances now and in the future.

  2. Carbon and chlorine isotopologue fractionation of chlorinated hydrocarbons during diffusion in water and low permeability sediments

    Science.gov (United States)

    Wanner, Philipp; Hunkeler, Daniel

    2015-05-01

    To identify reactive processes in diffusion dominated water-saturated systems using compound-specific isotope analysis (CSIA), the effect of the diffusive transport process on isotope ratios needs to be known. This study aims to quantify the magnitude of carbon and chlorine isotopologue fractionation of two chlorinated hydrocarbons (trichloroethene (TCE) and 1,2-dichloroethane (1,2-DCA)) during diffusion in the aqueous phase and to relate for the first time laboratory with field results. Diffusion coefficient ratios in the aqueous phase were experimentally quantified with a modified Stokes diffusion cell. The experiment revealed a significant shift of carbon and chlorine isotopologue ratios of TCE and 1,2-DCA during diffusion. For both TCE and 1,2-DCA, the magnitude of the shift of chlorine isotopologue ratios was larger (TCE: D132/D130 = 0.99963 ± 0.00003; 1,2-DCA: D102/D100 = 0.99939 ± 0.00003) in comparison to carbon isotopologue ratios (TCE: D131/D130 = 0.99978 ± 0.00006; 1,2-DCA: D101/D100 = 0.99977 ± 0.00004), which is consistent with the larger mass difference between stable chlorine compared to carbon isotopes. Determined diffusion coefficients for carbon and chlorine isotopologues of TCE and 1,2-DCA follow an inverse power law form (D ∝m-β) with β < 0.5 revealing that the magnitude of isotopologue fractionation of TCE and 1,2-DCA is lower than in the previously postulated kinetic theory (D ∝m-0.5). To relate laboratory with field results, a water-saturated clay core from a VOC contaminated site was retrieved and subsampled as a function of depth to assess possible shifts in isotopologue ratios during downward diffusion of VOCs into the low permeable clay. Observed small shifts of TCE carbon and chlorine isotopologue ratio profiles were consistent with laboratory determined diffusion coefficient ratios, demonstrated by a 1D-diffusion model. Further 1D-simulations for shorter diffusion periods (5-10 years) than observed in the retrieved clay core

  3. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry; Al-Jassim, Mowafak M.; Zhu, Kai; Zhou, Weilie; Berry, J. J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  4. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry G.; Al-Jassim, Mowafak; Zhu, Kai; Zhou, Weilie; Berry, Joseph J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  5. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  6. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  7. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  8. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments

    Science.gov (United States)

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  9. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  10. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  11. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  12. Total Water Vapor Transport Observed in Twelve Atmospheric Rivers over the Northeastern Pacific Ocean Using Dropsondes

    Science.gov (United States)

    Ralph, F. M.; Iacobellis, S.; Neiman, P. J.; Cordeira, J. M.; Spackman, J. R.; Waliser, D. E.; Wick, G. A.; White, A. B.; Fairall, C. W.

    2014-12-01

    Demory et al (2013) recently showed that the global water cycle in climate models, including the magnitude of water vapor transport, is strongly influenced by the model's spatial resolution. The lack of offshore observations is noted as a serious limitation in determining the correct amount of transport. Due to the key role of atmospheric rivers (ARs) in determining the global distribution of water vapor, quantifying transport from ARs is a high priority. This forms a foundation of the CalWater-2 experiment aimed at sampling many ARs during 2014-2018. In February 2014, an "early-start" deployment of the NOAA G-IV research aircraft sampled 10 ARs over the northeast Pacific Ocean. On six of these flights, dropsondes were deployed in a line crossing the AR so as to robustly sample the total water vapor transport (TVT). The TVT is defined here as the sum of the vertically integrated horizontal water vapor transport (IVT) in the AR using a baseline that stretches from its warm southern (or eastern) edge to its cool northern (or western) edge. TVT includes both AR-parallel and AR-perpendicular transport. These data double the overall number of such cross-AR airborne samples suitable for calculating TVT. Analysis of TVT for these six new samples, in combination with the six previous samples from the preceding 16 years (from CalJet, WISPAR, and a Hawaii-based campaign), will be shown. A comparison will be made of the AR width and TVT determined using the well-established integrated water vapor (IWV) threshold of 2 cm, versus an IVT threshold of 250 kg m-1 s-1. Finally, the data from a well sampled case on 13 February 2014 (23 sondes with 75-100 km spacing) will be used to assess the sensitivity of TVT to dropsonde horizontal spacing and vertical resolution. This sensitivity analysis is of practical importance for the upcoming CalWater-2 field campaign where the G-IV will be used to sample many additional AR events, due to the relatively high cost of the dropsondes.

  13. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    Science.gov (United States)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  14. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

    Science.gov (United States)

    Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.

    2016-12-01

    The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

  15. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  16. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  17. Effects on evaporation rates from different water-permeable pavement designs.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2011-01-01

    The urban water balance can be attenuated to the natural by water-permeable pavements (WPPs). Furthermore, WPPs have a 16% higher evaporation rate than impermeable pavements, which can lead to a better urban climate. Evaporation rates from pavements are influenced by the pavement surface and by the deeper layers. By a compared evaporation measurement between different WPP designs, the grain size distribution of the sub-base shows no influence on the evaporation rates in a significant way. On the contrary, a sub-base made of a twin-layer decreases the evaporation by 16% compared to a homogeneous sub-base. By a change in the colour of the paving stone, 19% higher evaporation rates could be achieved. A further comparison shows that the transpiration-effect of the grass in grass pavers increases the evaporation rates more than threefold to pervious concrete pavements. These high evapotranspiration rates can not be achieved with a pervious concrete paving stone. In spite of this, the broad field of application of the pervious concrete paving stone increases the importance in regard to the urban climate.

  18. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  19. Measuring the osmotic water permeability coefficient (Pf) of spherical cells: isolated plant protoplasts as an example.

    Science.gov (United States)

    Shatil-Cohen, Arava; Sibony, Hadas; Draye, Xavier; Chaumont, François; Moran, Nava; Moshelion, Menachem

    2014-10-08

    Studying AQP regulation mechanisms is crucial for the understanding of water relations at both the cellular and the whole plant levels. Presented here is a simple and very efficient method for the determination of the osmotic water permeability coefficient (P(f)) in plant protoplasts, applicable in principle also to other spherical cells such as frog oocytes. The first step of the assay is the isolation of protoplasts from the plant tissue of interest by enzymatic digestion into a chamber with an appropriate isotonic solution. The second step consists of an osmotic challenge assay: protoplasts immobilized on the bottom of the chamber are submitted to a constant perfusion starting with an isotonic solution and followed by a hypotonic solution. The cell swelling is video recorded. In the third step, the images are processed offline to yield volume changes, and the time course of the volume changes is correlated with the time course of the change in osmolarity of the chamber perfusion medium, using a curve fitting procedure written in Matlab (the 'PfFit'), to yield P(f).

  20. Water Quality Improvement Performance of Geotextiles Within Permeable Pavement Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2013-04-01

    Full Text Available Sustainable drainage systems (SuDS; or best management practices are increasingly being used as ecological engineering techniques to prevent the contamination of receiving watercourses and groundwater. Permeable paving is a SuDS technique, which is commonplace in car parks, driveways and minor roads where one of their functions is to improve the quality of urban runoff. However, little is known about the water quality benefits of incorporating an upper geotextile within the paving structure. The review focuses on five different categories of pollutants: organic matter, nutrients, heavy metals, motor oils, suspended solids originating from street dust, and chloride. The paper critically assesses results from previous international tests and draws conclusions on the scientific rigour and significance of the data. Findings indicate that only very few studies have been undertaken to address the role of geotextiles directly. All indications are that the presence of a geotextile leads only to minor water quality improvements. For example, suspended solids are being held back by the geotextile and these solids sometimes contain organic matter, nutrients and heavy metals. However, most studies were inconclusive and data were often unsuitable for further statistical analysis. Further long-term research on industry-relevant, and statistically and scientifically sound, experimental set-ups is recommended.

  1. New halogenated disinfection byproducts in swimming pool water and their permeability across skin.

    Science.gov (United States)

    Xiao, Feng; Zhang, Xiangru; Zhai, Hongyan; Lo, Irene M C; Tipoe, George L; Yang, Mengting; Pan, Yang; Chen, Guanghao

    2012-07-01

    Chlorine is widely used for disinfecting public swimming pool water. The disinfectant chlorine, protecting swimmers from pathogenic infection in swimming, may be responsible for some adverse effects on swimmers' skin and health. In this study, numerous new halogenated disinfection byproducts (DBPs) in chlorinated pool water were detected with a powerful precursor ion scan method using electrospray ionization triple quadrupole mass spectrometry, with or without preseparation with ultra performance liquid chromatography. These new pool DBPs were demonstrated to be mainly halo(nitro)phenols, resulting from chlorination of human body substances (such as urine) in the presence of bromide. Among these new DBPs, 2,4-dibromophenol, 2,4-dichlorophenol, 2-bromophenol, 2,6-dibromo-4-nitrophenol, 2-bromo-6-chloro-4-nitrophenol, and 2,6-dichloro-4-nitrophenol were fully identified or confirmed. For 2,4-dibromophenol, 2,4-dichlorophenol and 2-bromophenol with pure standard compounds available, their permeability values across human skin were measured to be 0.031, 0.021, and 0.023 cm/h, respectively. The effects of chlorine on human skin were also investigated. The interaction of chlorine with epidermis was found to generate many new halogenated DBPs as well as common DBPs; the corneous layer was observed to become rough and even form larger pores after chlorine interaction. It is recommended that swimmers should avoid urinating in pools, and avoid prolonged swimming to reduce chlorine contact and prevent accelerated permeation of DBPs across skin.

  2. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  3. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  4. Altitude and Latitude Distribution of Atmospheric Aerosol and Water Vapor from the Narrow-Band Lunar Eclipse Photometry

    CERN Document Server

    Ugolnikov, Oleg S

    2007-01-01

    The work contains the description of two narrow IR-bands obser