WorldWideScience

Sample records for water vapor measurements

  1. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  2. Lunar absorption spectrophotometer for measuring atmospheric water vapor.

    Science.gov (United States)

    Querel, Richard R; Naylor, David A

    2011-02-01

    A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

  3. New mobile Raman lidar for measurement of tropospheric water vapor

    Institute of Scientific and Technical Information of China (English)

    XIE Chenbo; ZHOU Jun; YUE Guming; QI Fudi; FAN Aiyuan

    2007-01-01

    The content of water vapor in atmosphere is very little and the ratio of volume of moisture to air is about 0.1%-3%,but water vapor is the most active molecule in atmosphere.There are many absorption bands in infrared(IR)wavelength for water vapor,and water vapor is also an important factor in cloud formation and precipitation,therefore it takes a significant position in the global radiation budget and climatic changes.Because of the advantages of the high resolution,wide range,and highly automatic operation,the Raman lidar has become a new-style and useful tool to measure water vapor.In this paper,first,the new mobile Raman lidar's structure and specifications were introduced.Second,the process method of lidar data was described.Finally,the practical and comparative experiments were made over Hefei City in China.The results of measurement show that this lidar has the ability to gain profiles of ratio of water vapor mixing ratio from surface to a height of about 8 km at night.Mean-while,the measurement of water vapor in daytime has been taken,and the profiles of water vapor mixing ratio at ground level have been detected.

  4. Raman lidar measurements of tropospheric water vapor over Hefei

    Institute of Scientific and Technical Information of China (English)

    Yonghua Wu(吴永华); Huanling Hu(胡欢陵); Shunxing Hu(胡顺星); Jun Zhou(周军)

    2003-01-01

    L625 Raman lidar has been developed for water vapor measurements over Hefei, China since September2000. By transmitting laser beam of frequency-tripled Nd:YAG laser, Raman scattering signals of watervapor and nitrogen molecules are simultaneously detected by the cooled photomultipliers with photoncounting mode. Water vapor mixing ratios measured by Raman lidar show the good agreements withradiosonde observations, which indicates this Raman lidar is reliable. Many observation cases show thataerosol optical parameters have the good correlation with water vapor distribution in the lower troposphere.

  5. Rapid and fully automated Measurement of Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2014-01-01

    Eminent environmental challenges such as remediation of contaminated sites, the establishment and maintenance of nuclear waste repositories, or the design of surface landfill covers all require accurate quantification of the soil water characteristic at low water contents. Furthermore, several...... essential but difficult-to-measure soil properties such as clay content and specific surface area are intimately related to water vapor sorption. Until recently, it was a major challenge to accurately measure detailed water vapor sorption isotherms within an acceptable time frame. This priority...... and pesticide volatilization, toxic organic vapor sorption kinetics, and soil water repellency are illustrated. Several methods to quantify hysteresis effects and to derive soil clay content and specific surface area from VSA-measured isotherms are presented. Besides above mentioned applications, potential...

  6. Detection and Measurement of Charge in Water Vapor

    Science.gov (United States)

    Feng, C. L.

    2015-12-01

    Abstract: Positive charge is found in newly formed water vapor. Two detection and two measurement experiments are presented. The detection experiments are simple; their purpose is only to show the existence of charge in water vapor. The first of these experiments places one exposed end of an insulated wire in the vapor space of a flask, which holds boiling water. The other end of this wire is connected to the input high of an electrometer. The input low, in all of the presented experiments, is grounded. The second experiment detects charge by capacitive induction. It uses a beaker with gold leaves gilded on its outside surface. When water boils inside the beaker, the vapor charge is detected by the gold layer without contacting the water or vapor. The two measurement experiments have sensors made of conducting fabric. The fabric is used to cover the opening of a flask, which holds boiling water, to collect the charge in the escaping vapor. These two experiments differ by the number of fabric layers --- four in one and six in the other. The results obtained from these two experiments are essentially the same, within the margin of error, 0.734 & 0.733 nC per gram of vapor. Since the added two layers of the six-layer sensor do not collect more charge than the four-layer sensor, the four-layer sensor must have collected all available charge. The escaping vapor exits into a chamber, which has only a small area opening connecting to the atmosphere. This chamber prevents direct contact between the sensor and the ambient air, which is necessary because air is found to affect the readings from the sensor. Readings taken in the surrounding area in all four experiments show no accumulation of negative charge. These experiments identify a source for the atmospheric electricity in a laboratory environment other than that has been discussed in the literature. However, they also raise the question about the missing negative charge that would be predicted by charge balance or the

  7. Error analysis of integrated water vapor measured by CIMEL photometer

    Science.gov (United States)

    Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.

    2017-01-01

    Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.

  8. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  9. Phoenix Water Vapor Measurements using the SSI Camera

    Science.gov (United States)

    Tamppari, Leslie; Lemmon, Mark T.

    2016-10-01

    The Phoenix and Mars Reconnaissance Orbiter (MRO) spacecraft participated together in an observation campaign that was a coordinated effort to study the Martian atmosphere. These coordinated observations were designed to provide near-simultaneous observations of the same column of atmosphere over the Phoenix lander. Seasonal coverage was obtained at Ls=5-10° resolution and diurnal coverage was obtained as often as possible and with as many times of day as possible. One key aspect of this observation set was the means to compare the amount of water measured in the whole column (via the MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) and the Phoenix Surface Stereo Imager (SSI) with that measured at the surface (via the Phoenix Thermal and Electrical Conductivity probe (TECP; Zent et al., 2008) which contained a humidity sensor). This comparison, along with the Phoenix LIDAR observations of the depth to which aerosols are mixed (Whiteway et al., 2008, 2009), provides clues to the water vapor mixing ratio profile. Tamppari et al. (2009) showed that examination of a subset of these coordinated observations indicate that the water vapor is not well mixed in the atmosphere up to a cloud condensation height at the Phoenix location during northern summer, and results indicated that a large amount of water must be confined to the lowest 0.5-1 km. This is contrary to the typical assumption that water vapor is "well-mixed."Following a similar approach to Titov et al. (2000), we use the Phoenix SSI camera [Lemmon et al., 2008] filters to detect water vapor: LA = 930.7 nm (broad), R4 = 935.5 nm (narrow), and R5 = 935.7 nm (narrow). We developed a hybrid DISORT-spherical model (DISORT model, Stamnes et al. 1988) to model the expected absorption due to a prescribed water vapor content and profile, to search for matches to the observations. Improvements to the model have been made and recent analysis using this model and comparisons to

  10. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    Science.gov (United States)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  11. New Isotopic Water Analyzer for Hydrological Measurements of Both Liquid Water and Water Vapor

    Science.gov (United States)

    Owano, T.; Gupta, M.; Berman, E.; Baer, D.

    2012-04-01

    Measurements of the stable isotope ratios of liquid water allow determination of water flowpaths, residence times in catchments, and groundwater migration. Previously, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of the first Isotopic Water Analyzer that simultaneously quantifies δ2H, δ17O and δ18O in liquid water or in water vapor from different natural water sources (e.g., rain, snow, streams and groundwater). In High-Throughput mode, the IWA can report measurements at the unprecedented rate of over 800 injections per day, which yields more than 140 total unknown and reference samples per day (still with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ2H, δ17O, δ18O) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift despite changes in ambient temperature (over the entire range from 0-45 degrees C). Measurements from recent field studies using the IWA will be presented.

  12. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  13. Relation between 183 GHz Water Vapor Line and Water Continuum Absorption Measured with FTS

    Science.gov (United States)

    Matsushita, S.; Matsuo, H.

    ve carried out Fourier Transform Spectrometer (FTS) measurements of the millimeter and submillimeter-wave (100-1500 GHz or 3 mm - 200 micron) atmospheric opacity at Pampa la Bola, 4800 m above sea level in northern Chile on September 1997 and June 1998. Correlations between 220 GHz opacities and those of the center of submillimeter-wave windows were obtained using the entire data set, and good correlations were obtained except for the periods affected by the liquid water opacity component. We succeeded to separate the total opacity to water vapor and liquid water opacity components. The separated water vapor opacity component shows good correlation with the 183 GHz pure water vapor line opacity, which is also covered in the measured spectra, but the liquid water opacity component shows no correlation. Since the submillimeter-wave opacity is merely affected by the liquid water component, it may be better to use the submillimeter-wave opacity for the phase correction.

  14. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    Energy Technology Data Exchange (ETDEWEB)

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  15. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  16. Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, Richard; Browell, E. V.; Ismail, S.; Barrick, J. D. W.; Diskin, G. S.; Sachse, G. W.; Kooi, S. A.; Brasseur, L. H.; Brackett, V. G.; Clayton, M. B.; Goldsmith, John E M.; Lesht, B. M.; Podolske, J. R.; Schmidlin, F. J.; Turner, David D.; Whiteman, D. N.; Demoz, B. B.; Tobin, D. C.; Revercomb, Henry E.; Miloshevich, Larry M.; di Girolamo, P.

    2004-12-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between November 27 and December 10, 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWV profiles were about 5-7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8-12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ Diode Laser Hygrometer (DLH) UTWV measurements generally agreed to within about 3 to 4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10-25% and 10-15%, respectively. Sippican (formerly VIZ manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with

  17. A direct measurement of the stable isotopes of transpired water vapor in a northern Michigan forest

    Science.gov (United States)

    Aron, P.; Poulsen, C. J.; Fiorella, R.

    2016-12-01

    The stable isotopes of oxygen and hydrogen in water vapor track hydrologic processes as phase changes of water preferentially partition heavy isotopes (18O and 2H) into the condensate and light isotopes (16O and 1H) into the vapor phase. As a result, the isotopic composition of water vapor can be used to identify water fluxes and cycling through natural environments. Forest water vapor is comprised of terrestrial (evaporation and transpiration) and atmospheric (tropospheric mixing, precipitation, and condensation) components. Within the isotopic record of forest water vapor, stable isotopes of transpired water (δT) comprise an important component but is typically either assumed to be non-fractionating or estimated indirectly. However, on small time scales (minutes to hours), non-steady state forest systems experience isotopic enrichment during early morning and late afternoon when transpiration rates are low. We deployed two Picarro Cavity Ring-Down spectrometers (L2120-i and L2130-i, respectively) in the University of Michigan Biological Station (UMBS) forest near Pellston, MI to measure the isotopic composition of near-surface ambient water vapor and the transpired vapor component directly. Both ambient and transpired water vapor were measured at three heights above the forest floor (2, 10, and 20 m) during August 2016. To measure species-specific water use, δT was measured on red maple (Acer rubrum) and northern red oak (Quercus rubra), two of the dominant tree types in the UMBS forest. This work represents the first direct measurement of δT in the UMBS forest and will help decouple local and species-specific hydrologic cycling. Beyond UMBS, this measurement will allow for a better understanding of species-specific plant hydraulics and help identify when the steady state approximation of transpiration is valid, which can be used to study water use and forest health.

  18. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    OpenAIRE

    J. Lee; Worden, J.; D. Noone; K. Bowman; A. Eldering; A. LeGrande; Li, J.-L. F.; Schmidt, G; Sodemann, H.

    2010-01-01

    We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES) over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently...

  19. FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola: III. Water Vapor, Liquid Water, and 183GHz Water Vapor Line Opacities

    Science.gov (United States)

    Matsushita, Satoki; Matsuo, Hiroshi

    2003-02-01

    Further analysis has been made on the millimeter- and submillimeter-wave (100-1600GHz or 3mm-188 μm) atmospheric opacity data taken with the Fourier Transform Spectrometer (FTS) at Pampa la Bola, 4800 m above the sea level in northern Chile, which is the site of the Atacama Large Millimeter/submillimeter Array (ALMA). Time-sequence plots of millimeter- and submillimeter-wave opacities show similar variations to each other, except for during the periods with liquid water (fog or clouds) in the atmosphere. Using millimeter- and submillimeter-wave opacity correlations under two conditions, which are affected and not affected by liquid water, we succeeded to separate the measured opacity into water vapor and liquid water opacity components. The water vapor opacity shows a good correlation with the 183GHz water vapor line opacity, which is also covered in the measured spectra. On the other hand, the liquid water opacity and the 183GHz line opacity show no correlation. S ince only the water vapor component is expected to affect the phase of interferometers significantly, and the submillimeter-wave opacity is less affected by the liquid water component, it may be possible to use the submillimeter-wave opacity for a phase correction of submillimeter interferometers.

  20. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    Science.gov (United States)

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  1. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    Institute of Scientific and Technical Information of China (English)

    Su-wen Li; Wen-qing Liu; Pin-hua Xie; Yi-jun Yang; De-bao Chen; Zheng Li

    2008-01-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could he restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  2. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    Science.gov (United States)

    Li, Su-wen; Liu, Wen-qing; Xie, Pin-hua; Yang, Yi-jun; Chen, De-bao; Li, Zheng

    2008-10-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spec-troscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  3. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    Science.gov (United States)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  4. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    Science.gov (United States)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  5. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  6. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    Science.gov (United States)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  7. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  8. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  9. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  10. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    Science.gov (United States)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  11. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Troyan, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  12. Microwave Radiometer Networks for Measurement of the Spatio-Temporal Variability of Water Vapor

    Science.gov (United States)

    Reising, S. C.; Iturbide-Sanchez, F.; Padmanabhan, S.

    2006-12-01

    Tropospheric water vapor plays a key role in the prediction of convective storm initiation, precipitation and extreme weather events. Conventionally, water vapor profiles are derived from dewpoint and temperature measurements using instrumented weather balloons, including radiosondes. These balloons take approximately one hour to measure from surface to tropopause, and transmitter-sensor packages cannot be reused. Such in-situ measurements provide profiles with very high vertical resolution but with severe limitations in temporal and spatial coverage. Raman lidars use active optical techniques to provide comparable vertical resolution and measurement accuracy to radiosondes. However, these lidars are bulky and expensive, and their operation is limited to clear-sky conditions due to the high optical opacity of clouds. Microwave radiometers provide path-integrated water vapor and liquid water with high temporal resolution during nearly all weather conditions. If multiple frequencies are measured near the water vapor resonance, coarse vertical profiles can be obtained using statistical inversion. Motivated by the need for improved temporal and spatial resolutions, a network of elevation and azimuth scanning radiometers is being developed to provide coordinated volumetric measurements of tropospheric water vapor. To realize this network, two Miniaturized Water Vapor profiling Radiometers (MVWR) have been designed and fabricated at Colorado State University. MWVR is small, light-weight, consumes little power and is highly stable. To reduce the mass, volume, cost and power consumption as compared to traditional waveguide techniques, MWVR was designed based on monolithic microwave integrated-circuit technology developed for the wireless communication and defense industries. It was designed for network operation, in which each radiometer will perform a complete volumetric scan within a few minutes, and overlapping scans from multiple sensors will be combined

  13. LASE measurements of water vapor, aerosol, and cloud distribution in hurricane environments and their role in hurricane development

    Science.gov (United States)

    Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.; Halverson, J.; Rizvi, S.; Krishn, T. N.

    2002-01-01

    LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.

  14. Comparison of Columnar Water-Vapor Measurements from Solar Transmittance Methods

    Science.gov (United States)

    Schmid, Beat; Michalsky, J.; Slater, Donald W.; Barnard, James C.; Halthore, Rangasayi N.; Liljegren, James C.; Holben, Brent N.; Eck, Thomas F.; Livingston, John M.; Russell, Philp B.

    2001-01-01

    The Atmospheric Radiation Measurement program studied water vapor abundance measurement at its southern Great Plains site in the fall of 1997. The program used a large number of instruments, including four solar radiometers. By measuring solar transmittance in the 0.94 micrometer water apor absorption band, they were able to measure columnar water vapor (CWV). In the second round of comparison we used the same radiative transfer model, and the same line-by-line code (which includes recently corrected H2O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8 - 13 %. The model was not responsible for the 8 % spread in CWV which remained.

  15. Comparison of Columnar Water Vapor Measurements During The Fall 1997 ARM Intensive Observation Period: Optical Methods

    Science.gov (United States)

    Schmid, Beat; Michalsky, J.; Slater, D.; Barnard, J.; Halthore, R.; Liljegren, J.; Holben, B.; Eck, T.; Livingston, J.; Russell, P.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    In the fall of 1997 the Atmospheric Radiation Measurement (ARM program conducted an intensive Observation Period (IOP) to study water vapor at its Southern Great Plains (SGP) site. Among the large number of instruments, four sun-tracking radiometers were present to measure the columnar water vapor (CWV). All four solar radiometers retrieve CWV by measuring solar transmittance in the 0.94-micrometer water vapor absorption band. As one of the steps in the CWV retrievals the aerosol component is subtracted from the total transmittance, in the 0.94-micrometer band. The aerosol optical depth comparisons among the same four radiometers are presented elsewhere. We have used three different methods to retrieve CWV. Without attempting to standardize on the same radiative transfer model and its underlying water vapor spectroscopy we found the CWV to agree within 0.13 cm (rms) for CWV values ranging from 1 to 5 cm. Preliminary results obtained when using the same updated radiative transfer model with updated spectroscopy for all instruments will also be shown. Comparisons to the microwave radiometer results will be included in the comparisons.

  16. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    Science.gov (United States)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  17. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  18. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2010-07-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become more dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  19. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Directory of Open Access Journals (Sweden)

    D. W. Fahey

    2014-04-01

    Full Text Available The AquaVIT-1 Intercomparison of Atmospheric Water Vapor Measurement Techniques was conducted at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere where water vapor reaches its lowest atmospheric values (less than 10 ppm. With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, either by extracting air into instrument flow systems, locating instruments inside the chamber, or sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm. In the absence of an accepted reference instrument, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ. In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ. The upper limit of precision was also derived for each instrument from the reported data. These results indicate that the core instruments, in general, have intrinsic skill to determine unknown water vapor mixing ratios with an accuracy of at least ±20%. The implication for atmospheric

  20. Comparison of columnar water vapor over northern China derived from ground-based measurements and MODIS

    Science.gov (United States)

    Liu, Chaoshun; Shi, Runhe; Gao, Wei; Bai, Kaixu

    2011-09-01

    Water vapor represents a small but environmentally significant constituent of the atmosphere. This study retrieved columnar water vapor (CWV) with the 939.3 nm band of a Multi-filter Rotating Shadowband Radiometer (MFRSR) using the modified Langley technique from September 23, 2004 to June 20, 2005 at the XiangHe site.To improve the credibility, the MFRSR results were compared with those obtained from the AERONET (AErosol RObotic NETwork) CIMEL sun-photometer measurements, co-located at the XiangHe site, and the Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Total Precipitable Water Product (MOD05), respectively. These comparisons show a good agreement in terms of correlation coefficients, slopes, and offsets, revealing that the accuracy of CWV estimation using the MFRSR instrument is reliable and suitable for extended studies in northern China.

  1. Simulation and design of solar-blind Raman Lidar for water vapor measurement

    Science.gov (United States)

    Shi, Dongchen; Hua, Dengxin; Gao, Fei; Lei, Ning; Wang, Li

    2017-02-01

    A novel water vapor Raman Lidar is developed at a solar-blind wavelength of 266nm. To obtain signals of Mie-Rayleigh scattering spectra and Raman scattering spectra of H2O, N2 and O2 with fine separation and high efficient extraction, a newly high-efficiency Raman polychromatic system is designed using the combination of dichroic mirrors and narrow- band interference filters. Using the standard atmospheric scattering models and aerosol extinction coefficients, the rejection rate of Mie-Rayleigh scattering signals and the signal-to-noise ratio of atmospheric water vapor measurement are simulated. The optimal parameters of Lidar system are obtained based on the detailed analysis and the discussion of the SNR of echo signals. Lidar emission wavelength and Raman scattering echo wavelengths are all in the ultraviolet range below 300nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of detecting water vapor in the daytime without the influence of solar background radiation in the system. Through the comparison between the Raman Lidars at the wavelengths of 266nm and 355nm respectively, it is concluded that the detection performance of the designed system at 266nm is better than the Raman Lidar system at 355nm during the daytime measurement, and the measurement height can be up to the 4 km.

  2. Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.

  3. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    S. Liu

    2010-11-01

    Full Text Available We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy and water vapor fluxes were measured using eddy covariance systems (EC and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed the differences between the sensible heat fluxes measured by EC and LAS. The results show that the main EC source areas were within a radius of 250 m at all sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed according to season and site, and there were characteristic seasonal variations in the energy and water vapor fluxes at all sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The evapotranspiration (ET at YK was larger than those at the other two sites. The monthly ET reached its peak in July at YK and in June at GT in both 2008 and 2009, while it reached its peak in August at AR in 2008 and in June in 2009. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the energy imbalance of EC, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  4. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  5. Water vapor isotopic composition of a stratospheric air intrusion: Measurements from the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Samuels-Crow, Kimberly

    2014-08-01

    Measurements of water vapor isotopic composition in stratospheric air intrusions can be used to constrain the dilution of the intrusion as it mixes into the middle troposphere. The intrusion studied here occurred on 17 and 18 August 2012 with measurements obtained at an altitude of 5 km in the Chilean Andes at the Atacama Large Millimeter Array astronomical observatory on the Chajnantor Plateau. Surface ozone concentrations rose 16 ppb in 6 h and were associated with a potential vorticity intrusion on the 330 K isentropic surface. A simulated stratospheric ozone tracer reaching Chajnantor also supports the interpretation of a stratospheric intrusion. Beginning around 18:00 UTC on 17 August, the mixing ratio dropped from 3000 ppmv to 430 ppmv as the water vapor δD values dropped from -153‰ to -438‰ over 13 h while the δ18O values dropped from -20‰ to -63‰. The average mixing ratio, δD, and δ18O values during August 2012 were measured to be 1500 ppmv, -250‰, and -34‰, respectively. The minimum water vapor concentration during the intrusion was in the driest 5% of measurements made during that month, while the minimum δD and δ18O values were within the lowest 0.5% of measurements made during that month. Simple two-component models of mixing between stratospheric or upper tropospheric air with boundary layer air fail to reproduce observations, but a three-component mixing model, in which the stratospheric intrusion mixes with an upper tropospheric background air mass, as it mixes with boundary layer air on Chajnantor, matches the observations.

  6. The Atmospheric Water Vapor Content in Fennoscandia Measured by GPS 1996- 2006

    Science.gov (United States)

    Elgered, G.; Nilsson, T.; Ning, T.; Johansson, J.

    2008-12-01

    We have used 10 years of ground-based GPS data to estimate time series of the water vapor content above each one of 33 GPS receiver sites in Finland and Sweden. Although a 10 year period is much too short to search for climate change we use the data set to assess the stability and consistency of the linear trend of the water vapor content that can be estimated from the data. The linear trends in the integrated water vapor content range from -0.2 to +1.0 kg m-2 decade-1. As one may expect we find different systematic patterns for summer and winter data. The formal uncertainty of these trends, taking the temporal correlation of the variability about the estimated model into account, are of the order of 0.4 kg m-2 decade-1. Mostly, this uncertainty is due to the natural short-term variability in the water vapor content, while the formal uncertainties in the GPS measurements have only a small impact on the trend errors. The overall goal for the possible use of GPS data in climate research is to determine to which extent these independent data can be used to discriminate between different climate models --- both in terms of absolute values as well as long term trends --- thereby improving the quality of the models and increasing the probability to produce realistic scenarios of the future climate. It seems reasonable to assume that such applications will require uncertainties of less than 0.1 kg m-2 decade-1. In addition to GPS also additional global navigational satellite systems (GNSS), such as the European Galileo and the finalization of the Russian GLONASS, can be used in the future. This will significantly improve the spatial sampling of the atmosphere, and also reduce the relative influence of orbit errors for individual satellites. On the other hand such changes can introduce new systematic effects in the estimated water vapor time series and care must be taken in order to understand and correct for such effects.

  7. Measurements of an Intrusion of Water Vapor into the High Arctic and its Effect on Wintertime Radiation

    Science.gov (United States)

    Nott, G. J.; Doyle, J. G.; Lesins, G. B.; Thackray, C. P.; Perro, C. W.; Duck, T. J.; Drummond, J. R.

    2010-12-01

    Water vapor is the most important greenhouse gas, yet little is known about it in the High Arctic during winter due to a historic lack of measurements and difficulties associated with satellite retrievals. With cold temperatures and a very stable boundary layer, the water vapor mixing ratio peaks around only 0.3 g kg-1. Any influxes of moist air from more moderate latitudes are thus likely to have a significant impact on Arctic tropospheric processes and the radiation budget. With lidar and accompanying radiometer measurements at Eureka (79°59'N, 85°56'W) we present one highly dynamic instance of such an intrusion from the winter of 2009/10. Measurements with the Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh/Mie/Raman lidar, shown in the figure, display distinct and seperate wet and dry air parcels during the case study. Two significant influxes of moist air (mixing ratio peaking at 1.2 g kg-1) are observed while aerosol profiles show associated cloud and precipitation. An animated map of precipitable water measured by the Microwave Humidity Sounder will be presented that shows the moist air originating over the Bering Sea and sweeping north-east into the Arctic, reaching Eureka on Feburary 9. Radiometer measurements of downwelling radiation during this time period show that the influx of water vapor alone caused a 13% increase in longwave radiation at the surface. A radiative transfer model (SBDART) has been used to isolate the effect of the water vapor, temperature, and cloud cover variations associated with this intrusion, on the overall radiation flux. Only the single event will be presented in detail however longer term data sets of water vapor indicate that such intrusions happen once or twice a month each winter. With such significant influxes of water vapor it is possible that these intrusions significantly affect the average wintertime radiation budget. Lidar measurements of water vapor mixing ratio over Eureka showing two

  8. Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2014-01-01

    The characterization and description of important soil processes such as water vapor transport, volatilization of pesticides, and hysteresis require accurate means for measuring the soil water characteristic (SWC) at low water potentials. Until recently, measurement of the SWC at low water potent...... oven-dry (105 °C) samples of coarse-textured soils exhibited water repellency characteristics. The required measurement times were strongly correlated with clay content and influenced by high organic carbon content....

  9. Using Meteosat-10 and GPS ZWD measurements for creating regional water vapor maps.

    Science.gov (United States)

    Leontiev, Anton; Reuveni, Yuval

    2017-04-01

    Water vapor (WV) is one of the greenhouse gases, which plays a crucial role in global warming. It's investigation is of great importance for climate and global warming studies. One of the main difficulties of such studies is that WV varies constantly across the lower part of the atmosphere. Currently, most of studies provides WV estimations using only one technique such as tropospheric GPS path delays [Duan et al.] or multi-spectral reflected measurements from different meteorological satellites such as the Meteosat series [Schroedter et al.]. Constructing WV maps using only interpolated GPS zenith wet delay (ZWD) estimations has a main disadvantage - it doesn't take in account clouds which are located outside the integrated GPS paths. Using our previous work [Leontiev, Reuveni, in review] we were able to estimate Meteosat-10 7.3 μm WV pixel values by extracting the mathematical dependency between the WV amount calculated using GPS ZWD and the Meteosat-10 data. Here, we present a new strategy which combines these two approaches for WV estimation by using the mathematical dependency between GPS-ZWD and Meteosat-10 in order to evaluate the WV amount at cloudy conditions when preforming the interpolation between adjusted GPS station inside our network. This approach increases the accuracy of the estimated regional water vapor maps. References: Duan, J. et al. (1996), GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, J. Appl. Meteorol., 35(6), 830-838, doi:10.1175/15200450(1996)0352.0.CO;2. Leontiev, A., Reuveni, Y.: Combining METEOSAT-10 satellite image data with GPS tropospheric path delays to estimate regional Integrated Water Vapor (IWV) distribution, Atmos. Meas. Tech. Discuss, doi:10.5194/amt-2016-217, in review, 2016. Schroedter-Homscheidt, M., A. Drews, and S. Heise (2008), Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures, Remote Sens. Environ

  10. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Stephen T.; Nigge, P.; Prakash, Shruti; Laskin, Alexander; Wang, Bingbing; Tyliszczak, Tolek; Leone, Stephen R.; Gilles, Mary K.

    2013-08-01

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor accommodates many gas atmospheres, including reactive or corrosive gasses, but was designed specically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconguration. Using the reactor contributes over 85% less additional absorption compared to lling the STXM chamber with process gas, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  11. Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentrations

    NARCIS (Netherlands)

    Landsberg, Janek

    2014-01-01

    The determination of the isotopic composition of water vapor is an important tool in atmospheric research. The isotopic composition of water in Antarctic or Arctic glacial ice can be used as a paleo-thermometer in the reconstruction of climate changes in the past. The isotope ratios of water vapor i

  12. Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentrations

    NARCIS (Netherlands)

    Landsberg, Janek

    2014-01-01

    The determination of the isotopic composition of water vapor is an important tool in atmospheric research. The isotopic composition of water in Antarctic or Arctic glacial ice can be used as a paleo-thermometer in the reconstruction of climate changes in the past. The isotope ratios of water vapor i

  13. Retrieval of columnar water vapor using multispectral radiometer measurements over northern China

    Science.gov (United States)

    Liu, Chaoshun; Li, Yun; Gao, Wei; Shi, Runhe; Bai, Kaixu

    2011-01-01

    Water vapor is an important component in hydrological processes that basically involve all types of seasons, including dry (e.g., drought) or wet (e.g., hurricane or monsoon). This study retrieved columnar water vapor (CWV) with the 939.3 nm band of a multifilter rotating shadowband radiometer (MFRSR) using the modified Langley technique. Such an investigation was in concert with the use of the atmospheric transmission model MODTRAN for determining the instrument coefficients required for CWV estimation. Results of the retrieval of CWV by MFRSR from September 23, 2004 to June 20, 2005 at the XiangHe site are presented and analyzed in this paper. To improve the credibility, the MFRSR results were compared with those obtained from the AErosol RObotic NETwork CIMEL sun-photometer measurements, co-located at the XiangHe site, and the moderate resolution imaging spectroradiometer (MODIS) near-infrared total precipitable water product (MOD05), respectively. These comparisons show good agreement in terms of correlation coefficients, slopes, and offsets, revealing that the accuracy of CWV estimation using the MFRSR instrument is reliable and suitable for extended studies in northern China.

  14. Some results of water vapor, ozone and aerosol balloon borne measurements during EASOE

    Science.gov (United States)

    Khattatov, V.; Yushkov, V.; Khaplanov, M.; Zaitzev, I.; Rosen, J.; Kjome, N.

    As part of the European Arctic Stratospheric Ozone Experiment (EASOE) in the northern winter of 1991/92, regular measurements of the vertical distribution of ozone and aerosols were carried out from two Russian polar stations, Heiss Island (81N, 58E) and Dikson Island (73N, 81E). In addition measurements of the vertical distribution of water vapor and aerosols were made from Esrange (68N, 21E), near Kiruna in Sweden. The instruments used were electrochemical ozone sondes (ECC-4A), a fluorescence hygrometer, and the University of Wyoming backscattersonde. Following the eruption of Mt.Pinatubo, in the Philippines, in June 1991, volcanic aerosol had reached Arctic latitudes at altitudes below 19 km by September. At all three sites it was observed on every flight. Polar stratospheric clouds were encountered above the volcanic aerosol on two flights from Esrange. There were no indications of dehydration in the Arctic stratosphere. On all flights the minimum mixing ratio of water vapor was observed 2 to 3 km above the tropopause. Total ozone was much lower than the climatological mean, over Dikson Island from the January 27, and over Heiss Island from mid-February, until the end of EASOE. Ozone profiles over these stations showed rapid increases in partial pressure immediately above the peak values of backscatter ratio when the volcanic aerosol was especially dense.

  15. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States); Lesht, B.M.

    1996-06-01

    The operation and calibration of the ARM microwave radiometers is summarized. Measured radiometric brightness temperatures are compared with calculations based on the model using co-located radiosondes. Comparisons of perceptible water vapor retrieved from the radiometer with integrated soundings and co-located GPS retrievals are presented. The three water vapor sensing systems are shown to agree to within about 1 mm.

  16. Water Vapor Radiometer-Global Positioning System Comparison Measurements and Calibration of the 20 to 32 Gigahertz Tropospheric Water Vapor Absorption Model

    Science.gov (United States)

    Keihm, S. J.; Bar-Sever, Y.; Liljegren, J.

    2000-10-01

    Collocated measurements of opacity (from water vapor radiometer (WVR) brightness temperatures) and wet path delay (from ground-based tracking of Global Positions System (GPS) satellites) are used to constrain the model of atmospheric water vapor absorption in the 20 to 32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately 5 months of data were obtained from two experiment sites. At the Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma, three independent WVRs provided near-continuous opacity measurements over the interval from July through September 1998. At NASA's Goldstone tracking station in the California desert, two WVRs obtained opacity data over the September through October 1997 interval. At both sites, a GPS receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of three candidate absorption models referenced in the recent literature. With one exception, all three models provide agreement within approximately 5 percent of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2 to 3 percent level. This accuracy is sufficient to meet the requirements of the tropospheric calibration system now being deployed at Goldstone to support the Cassini Gravitational Wave Experiment.

  17. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2010-09-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry and presents first results using measurements from SCIAMACHY. In the previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in 11–25 km altitude range. In this study the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 20%.

  18. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  19. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  20. Recent lidar technology developments and their influence on measurements of tropospheric water vapor

    Science.gov (United States)

    Ismail, Syed; Browell, Edward V.

    1994-01-01

    In this paper the influences of recent technology developments in the areas of lasers, detectors, andoptical filters of a differential absorption lidar (DIAL) system on the measurenent of tropospheric water vapor (H2O) profiles are discussed. The lidar parameters selected are based upon a diode-seeded Ti:sapphire laser that is locked to an H2O line in the 820- or 930-nm band of H2O. To assess the influence of the mode of deployment on the measurement of tropospheric H2O, DIAL performance is evaluated for operation from a medium-altitude (12 km) aircraft, the ground, and space-based systems. It is found that incorporation of these developments could greatly enhance DIAL measurement capability.

  1. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    Science.gov (United States)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  2. MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns

    Directory of Open Access Journals (Sweden)

    C. Straub

    2010-09-01

    Full Text Available In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.

  3. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  4. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  5. Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky

    Science.gov (United States)

    Mims, Forrest M., III; Chambers, Lin H.; Brooks, David R.

    2011-01-01

    A 2-year study affirms that the temperature (Tz) indicated by an inexpensive ($20 to $60) IR thermometer pointed at the cloud-free zenith sky provides an approximate indication of the total column water vapor (precipitable water or PW). PW was measured by a MICROTOPS II sun photometer. The coefficient of correlation (r2) of the PW and Tz was 0.90, and the rms difference was 3.2 mm. A comparison of the Tz data with the PW provided by a GPS site 31 km NNE yielded an r2 of 0.79, and an rms difference of 5.8 mm. An expanded study compared Tz from eight IR thermometers with PW at various times during the day and night from 17 May to 18 October 2010, mainly at the Texas site and 10 days at Hawaii's Mauna Loa Observatory (MLO). The best results of this comparison were provided by two IR thermometers models that yielded an r2 of 0.96 and an rms difference with the PW of 2.7 mm. The results of both the ongoing 2-year study and the 5-month instrument comparison show that IR thermometers can measure PW with an accuracy (rms difference/mean PW) approaching 10%, the accuracy typically ascribed to sun photometers.

  6. Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky

    Science.gov (United States)

    Mims, Forrest M., III; Chambers, Lin H.; Brooks, David R.

    2011-01-01

    A 2-year study affirms that the temperature (Tz) indicated by an inexpensive ($20 to $60) IR thermometer pointed at the cloud-free zenith sky provides an approximate indication of the total column water vapor (precipitable water or PW). PW was measured by a MICROTOPS II sun photometer. The coefficient of correlation (r2) of the PW and Tz was 0.90, and the rms difference was 3.2 mm. A comparison of the Tz data with the PW provided by a GPS site 31 km NNE yielded an r2 of 0.79, and an rms difference of 5.8 mm. An expanded study compared Tz from eight IR thermometers with PW at various times during the day and night from 17 May to 18 October 2010, mainly at the Texas site and 10 days at Hawaii's Mauna Loa Observatory (MLO). The best results of this comparison were provided by two IR thermometers models that yielded an r2 of 0.96 and an rms difference with the PW of 2.7 mm. The results of both the ongoing 2-year study and the 5-month instrument comparison show that IR thermometers can measure PW with an accuracy (rms difference/mean PW) approaching 10%, the accuracy typically ascribed to sun photometers.

  7. Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2008-06-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapor, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show excellent correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements).The correlation of the microwave link measurements to those of the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The RMSE were 20.8% and 33.1% for the northern and central site measurements, respectively.

  8. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor.

    Science.gov (United States)

    Kelly, Stephen T; Nigge, Pascal; Prakash, Shruti; Laskin, Alexander; Wang, Bingbing; Tyliszczak, Tolek; Leone, Stephen R; Gilles, Mary K

    2013-07-01

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  9. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Stephen T.; Nigge, Pascal; Prakash, Shruti; Gilles, Mary K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Laskin, Alexander; Wang, Bingbing [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Department of Physics, University of California, Berkeley, California 94720 (United States)

    2013-07-15

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  10. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor

    Science.gov (United States)

    Kelly, Stephen T.; Nigge, Pascal; Prakash, Shruti; Laskin, Alexander; Wang, Bingbing; Tyliszczak, Tolek; Leone, Stephen R.; Gilles, Mary K.

    2013-07-01

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  11. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Water vapor sorption can be used to study important properties of porous materials including specific surface area and pore size distribution (PSD). However, the data analysis is somewhat inconsistent in literature. In this work, the important factors influencing the analyzed results using sorpti...

  12. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  13. Comparison of Columnar Water Vapor Measurements During The Fall 1997 ARM Intensive Observation Period: Solar Transmittance Methods

    Science.gov (United States)

    Schmid, B.; Michalsky, J. J.; Slater, D. W.; Barnard, J. C.; Halthore, R. N.; Liljegren, J. C.; Holben, B. N.; Eck, T. F.; Livingston, J. M.; Russell, P. B.

    2000-01-01

    In the fall of 1997, during an Intensive Observation Period (IOP), the Atmospheric Radiation Measurement (ARM) program conducted a study of water vapor abundance measurement at its Southern Great Plains (SGP) site. Among a large number of instruments, four sun-tracking radiometers were present to measure the columnar water vapor (CWV). All four solar radiometers retrieve CWV by measuring total solar transmittance in the 0.94-gm water vapor absorption band and subtracting contributions due to Rayleigh, ozone and aerosol transmittances. The aerosol optical depth comparisons among the same four radiometers has been presented elsewhere (Geophys. Res. Lett., 26, 17, 2725-2728, 1999). We have used three different methods to retrieve CWV. In a first round of comparison no attempt was made to standardize on the same radiative transfer model and its underlying water vapor spectroscopy. In the second round of comparison we used the same line-by-line code (which includes recently corrected H2O spectroscopy) to retrieve CAN from all four suntracking radiometers. This decreased the mean CWV by 8% or 13%. The spread of 8% in the solar radiometer results found when using the same model is an indication of the other-than-model uncertainties involved in determining CWV from solar transmittance measurements with current instrumentation.

  14. Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system

    Directory of Open Access Journals (Sweden)

    R. M. Thomas

    2012-01-01

    Full Text Available We present here the first application of a lightweight unmanned aerial vehicle (UAV system designed to measure turbulent properties and vertical latent heat fluxes (λE. Such measurements are crucial to improve our understanding of linkages between surface moisture supply and boundary layer clouds and phenomena such as atmospheric rivers. The application of UAVs allows for measurements on spatial scales complimentary to satellite, aircraft, and tower derived fluxes. Key system components are: a turbulent gust probe; a fast response water vapor sensor; an inertial navigation system (INS coupled to global positioning system (GPS; and a 100 Hz data logging system. We present measurements made in the continental boundary layer at the National Aeronautics and Space Administration (NASA Dryden Research Flight Facility located in the Mojave Desert. Two flights consisting of several horizontal straight flux run legs up to ten kilometers in length and between 330 and 930 m above ground level (m a.g.l. are compared to measurement from a surface tower. Surface measured λE ranged from −53 W m−2 to 41 W m−2, and the application of a Butterworth High Pass Filter (HPF to the datasets improved agreement to within +/−12 W m−2 for 86% of flux runs, by removing improperly sampled low frequency flux contributions. This result, along with power and co-spectral comparisons and consideration of the differing spatial scales indicates the system is able to resolve vertical fluxes for the measurement conditions encountered. Challenges remain, and the outcome of these measurements will be used to inform future sampling strategies and further system development.

  15. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  16. An Analysis of Satellite, Radiosonde, and Lidar Observations of Upper Tropospheric Water Vapor from the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Soden, Brian J.; Turner, David D.; Lesht, B. M.; Miloshevich, Larry M.

    2004-02-25

    To improve our understanding of the distribution and radiative effects of water vapor, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has conducted a series of coordinated water vapor Intensive Observational Periods (IOPs). This study uses observations collected from four ARM IOPs to accomplish two goals: first, we compare radiosonde and Raman lidar observations of upper tropospheric water vapor with co-located geostationary satellite radiances at 6.7 micrometers. During all four IOPs, we find excellent agreement between the satellite and Raman lidar observations of upper tropospheric humidity with systematic differences of ~10%. In contrast, radiosondes equipped with Vaisala sensors are shown to be systematically drier in the upper troposphere by ~40% relative to both the lidar and satellite measurements. Second, we assess the performance of various "correction" strategies designed to rectify known deficiencies in the radiosonde measurements. It is shown that existing methods for correcting the radiosonde dry bias, while effective in the lower troposphere, offer little improvement in the upper troposphere. An alternative method based on variational assimilation of satellite radiances is presented and, when applied to the radiosonde measurements, is shown to significantly improve their agreement with coincident Raman lidar observations. It is suggested that a similar strategy could be used to improve the quality of the global historical record of radiosonde water vapor observations during the satellite era.

  17. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  18. Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere – Part 1: Basic concepts – the measurements of the water vapor content in the atmosphere with the optical method

    Directory of Open Access Journals (Sweden)

    V. D. Galkin

    2010-12-01

    Full Text Available We retrieved the total content of the atmospheric water vapor from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The accuracy of the empirical parameters used for the power approximation that links the water vapor content with the observed absorption is analyzed. Currently, the calibration and measurement errors yield the uncertainty of about 10% in the total column water vapor. We discuss the possibilities for improving the accuracy of calibration to ~1%, which will make it possible to use data obtained by optical photometry as an independent reference for other methods (GPS, lidar, etc.

  19. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    Science.gov (United States)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near

  20. Identification of atmospheric fronts over the ocean with microwave measurements of water vapor and rain

    Science.gov (United States)

    Katsaros, Kristina B.; Bhatti, Iftekhar; Mcmurdie, Lynn A.; Patty, Grant W.

    1989-01-01

    This paper describes some basic research techniques and algorithms developed to diagnose fronts in cyclonic storms over the ocean with data from satellite-borne microwave radiometers. Methods are developed for flagging strong gradients in integrated atmospheric water vapor and the presence of rain by using data from the SSMR on board the polar orbiting Seasat and Nimbus-7 satellites. Examination of 65 frontal systems showed that the water vapor gradient flag correctly identified 86 percent of the fronts, while the precipitation flagged 91 percent. The two types of flags emphasize different portions of the cyclone and are therefore complementary. Ultimately, these techniques are intended for operational use with data from the Special Sensor Microwave Imager which was launched in June 1987 on a satellite in the Defense Meteorological Satellite Program (DMSP).

  1. Flux correction for closed-path laser spectrometers without internal water vapor measurements

    Directory of Open Access Journals (Sweden)

    R. V. Hiller

    2012-01-01

    Full Text Available Recently, instruments became available on the market that provide the possibility to perform eddy covariance flux measurements of CH4 and many other trace gases, including the traditional CO2 and H2O. Most of these instruments employ laser spectroscopy, where a cross-sensitivity to H2O is frequently observed leading to an increased dilution effect. Additionally, sorption processes at the intake tube walls modify and delay the observed H2O signal in closed-path systems more strongly than the signal of the sampled trace gas. Thereby, a phase shift between the trace gas and H2O fluctuations is introduced that dampens the H2O flux observed in the sampling cell. For instruments that do not provide direct H2O measurement in the sampling cell, transfer functions from externally measured H2O fluxes are needed to estimate the effect of H2O on trace gas flux measurements. The effects of cross-sensitivity and the damping are shown for an eddy covariance setup with the Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Research Inc. that measures CO2, CH4, and H2O fluxes. This instrument is technically identical with the Fast Methane Analyzer (FMA, Los Gatos Research Inc. that does not measure H2O concentrations. Hence, we used measurements from a FGGA to derive a modified correction for the FMA accounting for dilution as well as phase shift effects in our instrumental setup. With our specific setup for eddy covariance flux measurements, the cross-sensitivity counteracts the damping effects, which compensate each other. Hence, the new correction only deviates very slightly from the traditional Webb, Pearman, and Leuning density correction, which is calculated from separate measurements of the atmospheric water vapor flux.

  2. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    Science.gov (United States)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  3. Long-Term Measurement for Low-Tropospheric Water Vapor and Aerosol by Raman Lidar in Wuhan

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-04-01

    Full Text Available A Raman Lidar (RL system is developed to measure the water vapor mixing ratio (WVMR and aerosol optical property in Wuhan with high temporal-spatial resolution during rainless nights. The principle of the self-developed lidar system and data processing method are discussed. WVMR profiles of a representative case retrieved by RL, Radiosonde (RS, and microwave radiometer (MR are in good agreement. The relationship of WVMR and aerosol optical depth (AOD indicates that water vapor dramatically reduces with the decline of the AOD. Moreover, the mean relative difference of mean WVMRs at low-troposphere obtained by RL and RS (MR is about 5.17% (9.47% during the analyzed year. The agreement certifies that the self-developed RL system can stably provide accurate and high temporal-spatial resolution data for the fundamental physical studies on water vapor. Furthermore, the maximum AOD from 0.5 km to 3 km is 0.41 at night in spring, which indicates that the air quality in Wuhan is heavily influenced by aerosols that are transported by air mass from the north during this time. Moreover, abundant rainfall led to relatively low AOD in summer (0.22, which demonstrates that water vapor is crucial for air purification.

  4. Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder

    Science.gov (United States)

    Hurst, Dale F.; Read, William G.; Vömel, Holger; Selkirk, Henry B.; Rosenlof, Karen H.; Davis, Sean M.; Hall, Emrys G.; Jordan, Allen F.; Oltmans, Samuel J.

    2016-09-01

    Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1 % between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10 % at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year-1 (0.6 to 1.5 % year-1) from ˜ 2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor ( ˜ 1 % year-1) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.

  5. Analysis of water vapor LIDAR measurements during the MAP campaign: evidence of sub-structures of stratospheric intrusions

    Science.gov (United States)

    D'Aulerio, P.; Fierli, F.; Congeduti, F.; Redaelli, G.

    2005-06-01

    This paper presents two case studies of transport of dry air in the free troposphere measured by a ground based Raman LIDAR in the Northern-Italy, during the Mesoscale Alpine Programme (MAP). Two observations characterized by the presence of anomalously dry layers, below 6 km height, were analyzed using Lagrangian techniques. These events are related to upper-tropospheric, high Potential Vorticity (PV) streamers crossing the Alpine region. These are interpreted as small-scale features of stratospheric intrusions associated with the PV ridge during its phase of dissipation. One of the measurements also shows the presence of two distinct dehydrated structures associated with the same event. The water vapor concentration also suggests dilution processes of dry stratospheric air in the troposphere. Lagrangian simulations allowed to successfully reproduce the observed water vapor distribution and the air parcel histories confirmed the stratospheric origin of the dry layers.

  6. Validation and statistical analysis of temperature, humidity profiles and Integrated Water Vapor (IWV) from microwave measurements over Granada (Spain)

    Science.gov (United States)

    Bedoya, Andres; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2017-04-01

    Profiles of meteorological variables such as temperature, relative humidity and integrated water vapor derived from a ground-based microwave radiometer (MWR, RPG-HATPRO) are continuously monitored since 2012 at Granada station (Southeastern Spain). During this period up to 210 collocated meteorological balloons, equipped with a radiosonde DFM-09 (GRAWMET), were launched. This study is carried out with a twofold goal. On one hand, a validation of the MWR products such as temperature and water vapor mixing ratio profiles and the IWV from MWR is carried out comparing with radiosonde measurements. The behavior of MWR retrievals under clear and cloudy conditions and for special situations such as inversions has been analyzed. On the other hand, the whole period with continuous measurements is used for a statistical evaluation of the meteorological variables derived from MWR in order to thermodynamically characterize the atmosphere over Granada.

  7. Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere – Part 1: Basic concepts of the measurement technique

    Directory of Open Access Journals (Sweden)

    V. D. Galkin

    2011-05-01

    Full Text Available We retrieved the total content of the atmospheric water vapor (or Integrated Water Vapor, IWV from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The reliability of the empirical parameters, used for the power approximation that links the water vapor content with the observed absorption, is analyzed. Currently, the total (from measurements, calibration, and calculations errors yield the standard uncertainty of about 10 % in the total column water vapor. We discuss the possibilities for improving the accuracy of calibration to ~1 % as indispensable condition in order to make it possible to use data obtained by optical photometry as an independent reference for other methods (GPS, MW-radiometers, lidar, etc.

  8. Comparative measurements of water vapor fluxes over a tall forest using open- and closed-path eddy covariance system

    Directory of Open Access Journals (Sweden)

    J. B. Wu

    2015-05-01

    Full Text Available Eddy covariance using infrared gas analyses has been a useful tool for gas exchange measurements between soil, vegetation and atmosphere. So far, comparisons between the open- and closed-path eddy covariance (CP system have been extensively made on CO2 flux estimations, while lacking in the comparison of water vapor flux estimations. In this study, the specific performance of water vapor flux measurements of an open-path eddy covariance (OP system was compared against a CP system over a tall temperate forest in Northeast China. The results show that the fluxes from the OP system (LEop were generally greater than the (LEcp though the two systems shared one sonic anemometer. The tube delay of closed-path analyser depended on relative humidity, and the fixed median time lag contributed to a significant underestimation of (LEcp between the forest and atmosphere, while slight systematic overestimation was also found for covariance maximization method with single broad time lag search window. After the optimized time lag compensation was made, the average difference between the 30 min (LEop and (LEcp was generally within 6%. Integrated over the annual cycle, the CP system yielded a 5.1% underestimation of forest evapotranspiration as compared to the OP system measurements (493 vs. 469 mm yr−1. This study indicates the importance to estimate the sampling tube delay accurately for water vapor flux calculations with closed-path analysers, and it also suggests that when discuss the energy balance closure problem in flux sites with closed-path eddy covariance systems, it has to be aware that some of the imbalance is possibly caused by the systematic underestimation of water vapor fluxes.

  9. Fourier transform measurements of water vapor line parameters in the 4200-6600 cm{sup -1} region

    Energy Technology Data Exchange (ETDEWEB)

    Jenouvrier, Alain [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France)]. E-mail: alain.jenouvrier@univ-reims.fr; Daumont, Ludovic [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Regalia-Jarlot, Laurence [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Tyuterev, Vladimir G. [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Carleer, Michel [Service de Chimie Quantique et de Photophysique, CP 160/09, Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium); Vandaele, Ann Carine [Institut d' Aeronomie Spatiale de Belgique, Av. Circulaire 3, B-1180 Brussels (Belgium); Mikhailenko, Semen [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademichesskii, 634055 Tomsk (Russian Federation); Fally, Sophie [Service de Chimie Quantique et de Photophysique, CP 160/09, Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium)

    2007-06-15

    New high-resolution water vapor absorption spectra were obtained at room temperature in the 4200-6600 cm{sup -1} spectral region by combining Fourier transform spectrometers (FTS) with single and multiple reflection cells. With absorption paths from 0.3 to 1800 m in pure and air diluted water vapor, accurate measurements of about 10400 lines in an intensity range from 10{sup -29} to 10{sup -19} cm/molecule have been performed. Positions, intensities, self- and air-broadening coefficients and air-induced shifts were determined for the H{sub 2} {sup 16}O, H{sub 2} {sup 17}O, H{sub 2} {sup 18}O and HDO isotopologues. The rovibrational assignment of the observed lines was performed with the use of global variational predictions and allowed the identification of several new energy levels. One major contribution of this work consists of the identification of 3280 new weak lines. A very close agreement between the new measured parameters and those listed in the database is reported as well as between the observations and the most recent variational calculations for the positions and the intensities. The present parameters provide an extended and homogeneous data set for water vapor, which is shown to significantly improve the databases for atmospheric applications, especially in the transmission windows on both sides of the band centered at 5400 cm{sup -1}.

  10. Comparison of ground-based and Viking Orbiter measurements of Martian water vapor - Variability of the seasonal cycle

    Science.gov (United States)

    Jakosky, B. M.; Barker, E. S.

    1984-03-01

    Earth-based observations of Mars atmospheric water vapor are presented for the 1975-1976, 1977-1978, and 1983 apparitions. Comparisons are made with near-simultaneous spacecraft measurements made from the Viking Orbiter Mars Atmospheric Water Detection experiment during 1976-1978 and with previous earth-based measurements. Differences occur between the behavior in the different years, and may be related to the Mars climate. Measurements during the southern summer in 1969 indicate a factor of three times as much water as is present at this same season in other years. This difference may have resulted from the sublimation of water from the south polar residual cap upon removal of most or all of the CO2 ice present; sublimation of all of the CO2 ice during some years could be a result of a greater thermal load being placed on the cap due to the presence of differing amounts of atmospheric dust.

  11. Design of a Slab Waveguide Multiaperture Fourier Spectrometer for Water Vapor Measurements in Earth's Atmosphere

    Science.gov (United States)

    Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel

    Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE

  12. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  13. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  14. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  15. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  16. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2011-07-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofisica de Andalucia (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radio sondes, frost point hygrometers, lidars, microwave radiometers and FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10 % of the data of all correlative instruments, while a high bias of up to 10 % is found in comparison to ground-based microwave instruments around 45 km. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40 % around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS is provided as well.

  17. Using continuous measurements of near-surface atmospheric water vapor isotopes to document snow-air interactions

    Science.gov (United States)

    Steen-Larsen, Hans Christian; Masson-Delmotte, Valerie; Hirabayashi, Motohiro; Winkler, Renato; Satow, Kazuhide; Prie, Frederic; Bayou, Nicolas; Brun, Eric; Cuffey, Kurt; Dahl-Jensen, Dorthe; Dumont, Marie; Guillevic, Myriam; Kipfstuhl, Sepp; Landais, Amaelle; Popp, Trevor; Risi, Camille; Steffen, Konrad; Stenni, Barbara; Sveinbjornsdottir, Arny

    2014-05-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm from the surface has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We observe a clear diurnal cycle in both the value and gradient of the isotopic composition of the water vapor above the snow surface. The diurnal amplitude in δD is found to be ~15‰. The diurnal isotopic composition follows the absolute humidity cycle. This indicates a large flux of vapor from the snow surface to the atmosphere during the daily warming and reverse flux during the daily cooling. The isotopic measurements of the flux of water vapor above the snow give new insights into the post depositional processes of the isotopic composition of the snow. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow

  18. Saturn's Stratospheric Water Vapor Distribution

    Science.gov (United States)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  19. Vapor-Liquid Equilibrium Measurements and Modeling of the Propyl Mercaptan plus Methane plus Water System

    DEFF Research Database (Denmark)

    Awan, Javeed; Thomsen, Kaj; Coquelet, Christophe;

    2010-01-01

    In this work, vapor−liquid equilibrium (VLE) measurements of propyl mercaptan (PM) in pure water were performed at three different temperatures, (303, 323, and 365) K, with a pressure variation from (1 to 8) MPa. The total system pressure was maintained by CH4. The inlet mole fraction of propyl m...

  20. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    CERN Document Server

    Defrère, D; Downey, E; Böhm, M; Danchi, W C; Durney, O; Ertel, S; Hill, J M; Hoffmann, W F; Mennesson, B; Millan-Gabet, R; Montoya, M; Pott, J -U; Skemer, A; Spalding, E; Stone, J; Vaz, A

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 $\\mu$m). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illus...

  1. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  2. Vapor-Liquid Equilibrium Measurements and Modeling of the Propyl Mercaptan plus Methane plus Water System

    DEFF Research Database (Denmark)

    Awan, Javeed; Thomsen, Kaj; Coquelet, Christophe

    2010-01-01

    In this work, vapor−liquid equilibrium (VLE) measurements of propyl mercaptan (PM) in pure water were performed at three different temperatures, (303, 323, and 365) K, with a pressure variation from (1 to 8) MPa. The total system pressure was maintained by CH4. The inlet mole fraction of propyl...... mercaptan in all experiments was the same, around 4.5·10−4 in the liquid phase. The objective was to provide experimental VLE data points of the propyl mercaptan + methane + water system for modeling since there is a lack of available data. These data will allow the industrial modeling of sulfur emission...

  3. Evaluation of continuous water vapor δD and δ18O measurements by off-axis integrated cavity output spectroscopy

    Science.gov (United States)

    Kurita, N.; Newman, B. D.; Araguas-Araguas, L. J.; Aggarwal, P.

    2012-08-01

    Recent commercially available laser spectroscopy systems enabled us to continuously and reliably measure the δD and δ18O of atmospheric water vapor. The use of this new technology is becoming popular because of its advantages over the conventional approach based on cold trap collection. These advantages include much higher temporal resolution/continuous monitoring and the ability to make direct measurements of both isotopes in the field. Here, we evaluate the accuracy and precision of the laser based water vapor isotope instrument through a comparison of measurements with those found using the conventional cold trap method. A commercially available water vapor isotope analyzer (WVIA) with the vaporization system of a liquid water standard (Water Vapor Isotope Standard Source, WVISS) from Los Gatos Research (LGR) Inc. was used for this study. We found that the WVIA instrument can provide accurate results if (1) correction is applied for time-dependent isotope drift, (2) normalization to the VSMOW/SLAP scale is implemented, and (3) the water vapor concentration dependence of the isotopic ratio is also corrected. In addition, since the isotopic value of water vapor generated by the WVISS is also dependent on the concentration of water vapor, this effect must be considered to determine the true water vapor concentration effect on the resulting isotope measurement. To test our calibration procedure, continuous water vapor isotope measurements using both a laser instrument and a cold trap system were carried out at the IAEA Isotope Hydrology Laboratory in Vienna from August to December 2011. The calibrated isotopic values measured using the WVIA agree well with those obtained via the cold trap method. The standard deviation of the isotopic difference between both methods is about 1.4‰ for δD and 0.28‰ for δ18O. This precision allowed us to obtain reliable values for d-excess. The day-to-day variation of d-excess measured by WVIA also agrees well with that found

  4. Evaluation of continuous water vapor δD and δ18O measurements by off-axis integrated cavity output spectroscopy

    Directory of Open Access Journals (Sweden)

    L. J. Araguas-Araguas

    2012-04-01

    Full Text Available Recent commercially available laser spectroscopy systems enabled us to continuously and reliably measure the δD and δ18O of atmospheric water vapor. The use of this new technology is becoming popular because of its advantages over the conventional approach based on cold trap collection. These advantages include much higher temporal resolution/continuous monitoring and the ability to make direct measurements of both isotopes in the field. Here, we evaluate the accuracy and precision of the laser based water vapor isotope instrument through a comparison of measurements with those found using the conventional cold trap method. A commercially available water vapor isotope analyzer (WVIA with the vaporization system of a liquid water standard (Water Vapor Isotope Standard Source, WVISS from Los Gatos Research (LGR Inc. was used for this study. We found that the WVIA instrument can provide accurate results if: (1 correction is applied for time-dependent isotope drift, (2 normalization to the VSMOW/SLAP scale is implemented, and (3 the water vapor concentration dependence of the isotopic ratio is also corrected. In addition, since the isotopic value of water vapor generated by the WVISS is also dependent on the concentration of water vapor, this effect must be considered to determine the true water vapor concentration effect on the resulting isotope measurement. To test our calibration procedure, continuous water vapor isotope measurements using both a laser instrument and a cold trap system were carried out at the IAEA Isotope Hydrology Laboratory in Vienna from August to December 2011. The calibrated isotopic values measured using the WVIA agree well with those obtained via the cold trap method. The standard deviation of the isotopic difference between both methods is about 1.4‰ for δD and 0.28‰ for δ18O. This precision allowed us to obtain reliable values for d-excess. The day-to-day variation of d-excess measured by WVIA also agrees well

  5. Evaluation of continuous water vapor δD and δ18O measurements by off-axis integrated cavity output spectroscopy

    Directory of Open Access Journals (Sweden)

    L. J. Araguas-Araguas

    2012-08-01

    Full Text Available Recent commercially available laser spectroscopy systems enabled us to continuously and reliably measure the δD and δ18O of atmospheric water vapor. The use of this new technology is becoming popular because of its advantages over the conventional approach based on cold trap collection. These advantages include much higher temporal resolution/continuous monitoring and the ability to make direct measurements of both isotopes in the field. Here, we evaluate the accuracy and precision of the laser based water vapor isotope instrument through a comparison of measurements with those found using the conventional cold trap method. A commercially available water vapor isotope analyzer (WVIA with the vaporization system of a liquid water standard (Water Vapor Isotope Standard Source, WVISS from Los Gatos Research (LGR Inc. was used for this study. We found that the WVIA instrument can provide accurate results if (1 correction is applied for time-dependent isotope drift, (2 normalization to the VSMOW/SLAP scale is implemented, and (3 the water vapor concentration dependence of the isotopic ratio is also corrected. In addition, since the isotopic value of water vapor generated by the WVISS is also dependent on the concentration of water vapor, this effect must be considered to determine the true water vapor concentration effect on the resulting isotope measurement. To test our calibration procedure, continuous water vapor isotope measurements using both a laser instrument and a cold trap system were carried out at the IAEA Isotope Hydrology Laboratory in Vienna from August to December 2011. The calibrated isotopic values measured using the WVIA agree well with those obtained via the cold trap method. The standard deviation of the isotopic difference between both methods is about 1.4‰ for δD and 0.28‰ for δ18O. This precision allowed us to obtain reliable values for d-excess. The day-to-day variation of d-excess measured by WVIA also agrees well

  6. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    Science.gov (United States)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  7. Possible seasonal variability of mesospheric water vapor

    Science.gov (United States)

    Bevilacqua, R. M.; Schwartz, P. R.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz water vapor line in atmospheric emission were made at the Jet Propulsion Laboratory, which have been used to deduce the mesospheric water vapor profile. The measurements were made nearly continuously in the spring and early summer of 1984. The results indicate a temporal increase in the water vapor mixing ratio in the upper mesosphere from April through June. At 75 km, this increase is nearly by a factor of 2. Comparison of the present results with the results of a similar series of measurements made at the Haystack (radio astronomy) Observatory indicate that this temporal increase is part of a seasonal variation.

  8. High precision, continuous measurements of water vapor isotopes using a field deployable analyzer with a novel automated calibration system to facilitate ecohydrological studies

    Science.gov (United States)

    Gupta, P.; Crosson, E.; Richman, B. A.; Apodaca, R. L.; Green, I.

    2009-12-01

    The use of stable isotopic analysis techniques has proved quite valuable in establishing links between ecology and hydrology. We present an alternative and novel approach to isotope ratio mass spectrometry (IRMS) for making high-precision D/H and 18O/16O isotope ratio measurements of water vapor at a field site using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) based technology. This WS-CRDS analyzer allows continuous real-time measurements of water vapor with automated periodic calibration using liquid standards, needing no human intervention for weeks during deployment. The new automated calibration system, designed specifically for field deployment, uses syringe pumps and is robust, consistent and reliable. The advanced temperature and pressure control within the analyzer are some of the key design features that allow high precision (0.2‰ for δ18O and 1.0‰ for δD) performance at extremely low drift (water vapor analyzer, a field trial was conducted where the common isotopologues of water vapor were measured at a local ecological site over a period of a few days. The resulting high resolution data gives us the ability to understand the impact of meteorology and plant physiology on the isotopic composition of water vapor in ambient air. Such measurements of water vapor, when combined with measurements of the isotopic composition of liquid water in plants, soil water and local water bodies, will close the eco-hydrological loop of any region. The ability of the WS-CRDS analyzer to make continuous, real-time measurements with a resolution on the order of a few seconds will aid in understanding the complex interdependencies between ecological and hydrological processes and will provide critical information in refining existing models of water transport in ecosystems. These studies are critical to understanding the impact of global climate change on landscapes.

  9. Simple field device for measurement of dimethyl sulfide and dimethylsulfoniopropionate in natural waters, based on vapor generation and chemiluminescence detection.

    Science.gov (United States)

    Nagahata, Takanori; Kajiwara, Hidetaka; Ohira, Shin-Ichi; Toda, Kei

    2013-05-07

    A small, simple device was developed for trace analysis of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) in natural waters. These compounds are known to be the major sources of cloud condensation nuclei in the oceanic atmosphere and ideally should be measured onsite because of their volatility and instability. First, chemical and physical vapor generations were examined, and simple pressurizing by injection of 30 mL of air using a syringe was adopted. Pressurized headspace air above a 10 mL water sample was introduced to a detection cell as a result of the pressure differential and mixed with ozone to induce chemiluminescence. Although the measurement procedure was simple, the method was very sensitive: sharp peaks appeared within seconds for nanomolar levels of DMS, and the limit of detection was 0.02 nmol L(-1) (1 ng L(-1)). Although interference from methanethiol was significant, this was successfully addressed by adding a small amount of Cd(2+) before DMS vapor generation. DMSP was also measured after hydrolysis to DMS, as previously reported. Pond water and seawater samples were analyzed, and DMS was found in both types of sample, whereas DMSP was observed only in seawater. The DMS/DMSP data obtained using the developed method were compared with data obtained by purge/trap and gas chromatography-mass spectrometry, and the data from the two methods agreed, with good correlation (R(2) = 0.9956). The developed device is inexpensive, light (5 kg), simple to use, can be applied in the field, and is sensitive enough for fresh- and seawater analysis.

  10. Refraction of microwave signals by water vapor

    Science.gov (United States)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  11. Water vapor release from biofuel combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-03-01

    Full Text Available We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  12. Water vapor release from biofuel combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-03-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  13. Water vapor release from biomass combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-10-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  14. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air.

  15. Time series analysis of ground-based microwave measurements at K- and V-bands to detect temporal changes in water vapor and temperature profiles

    Science.gov (United States)

    Panda, Sibananda; Sahoo, Swaroop; Pandithurai, Govindan

    2017-01-01

    Ground-based microwave measurements performed at water vapor and oxygen absorption line frequencies are widely used for remote sensing of tropospheric water vapor density and temperature profiles, respectively. Recent work has shown that Bayesian optimal estimation can be used for improving accuracy of radiometer retrieved water vapor and temperature profiles. This paper focuses on using Bayesian optimal estimation along with time series of independent frequency measurements at K- and V-bands. The measurements are used along with statistically significant but short background data sets to retrieve and sense temporal variations and gradients in water vapor and temperature profiles. To study this capability, the Indian Institute of Tropical Meteorology (IITM) deployed a microwave radiometer at Mahabubnagar, Telangana, during August 2011 as part of the Integrated Ground Campaign during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX-IGOC). In this study, temperature profiles for the first time have been estimated using short but statistically significant background information so as to improve the accuracy of the retrieved profiles as well as to be able to detect gradients. Estimated water vapor and temperature profiles are compared with those taken from the reanalysis data updated by the Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), to determine the range of possible errors. Similarly, root mean square errors are evaluated for a month for water vapor and temperature profiles to estimate the accuracy of the retrievals. It is found that water vapor and temperature profiles can be estimated with an acceptable accuracy by using a background information data set compiled over a period of 1 month.

  16. Analysis of the Application of the Optical Method to the Measurements of the Water Vapor Content in the Atmosphere. I. Basic Concepts

    CERN Document Server

    Galkin, V D; Alekseeva, G A; Berger, F -H; Leiterer, U; Naebert, T; Nikanorova, I N; Novikov, V V; Pakhomov, V P; Sal'nikov, I B

    2010-01-01

    We retrieved the total content of the atmospheric water vapor from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The accuracy of the empirical parameters used for the power approximation that links the water vapor content with the observed absorption is analyzed. Currently, the calibration and measurement errors yield the uncertainty of about 10% in the total column water v...

  17. Measurement and Modeling of Vapor-Liquid Equilibrium for Ternary System Water+2-Propanol+1-Butyl-3-methylimidazolium Chloride

    Institute of Scientific and Technical Information of China (English)

    邓东顺; 乔玉珍; 姬登祥; 葛筠; 章连众

    2014-01-01

    Vapor-liquid equilibrium (VLE) data for water+2-propanol+1-butyl-3-methylimidazolium chloride ([bmim]Cl) were measured. Six sets of complete T, x, y data are reported, in which the 2-propanol mole fraction on IL-free basis is fixed separately at 0.1, 0.2, 0.4, 0.6, 0.8, and approximate 0.98, while the IL mass fraction is varied from 0.1 to 0.8, in an interval of 0.1. The non-random-two-liquid (NRTL) and electrolyte non-random-two-liquid (eNRTL) equations are used to correlate the experimental data with satisfactory results. The ternary VLE behavior is also modeled with the parameters obtained by correlating two data sets, in which the mole fraction of 2-propanol on IL-free basis is approximately 0.1 and 0.98. In this way, the six sets of data are reproduced satisfactorily. With the eNRTL model, the root-mean-square deviation for temperature is 0.82 K and that for vapor-phase mole fraction is 0.0078. The influences of IL on activity coefficients and relative volatility of the volatile components are also graphically illustrated.

  18. Vapor-Liquid Equilibrium Measurements and Modeling for Ternary System Water + Ethanol + 1-Butyl-3-methylimidazolium Acetate

    Institute of Scientific and Technical Information of China (English)

    D.ENG Dongshun; WANG Rufa; ZHANG Lianzhong; GE Yun; JI Jianbing

    2011-01-01

    Vapor-liquid equilibrium(VLE) data were measured for ternary system water + ethanol + 1-butyl-3methylimidazolium acetate([bmim][OAc]),in a relatively wide range of ionic liquid(IL) mass fractions up to 0.8.Six sets of complete T-x-y data were obtained,in which the mole fraction of ethanol on IL-free basis was fixed separately at 0.1,0.2,0.4,0.6,0.8,and approximate 0.98.The non-random-two-liquid(NRTL) and electrolyte non-random-two-liquid(eNRTL) equations were used for correlation,showing similar deviations.The ternary VLE was also modeled with the correlation from two data sets,with the mole fractions of ethanol on IL-free basis being 0.1 and approximate 0.98.The VLE data were also reproduced satisfactorily.With the eNRTL model,the root-mean-square deviation for temperature is 0.79K and that for vapor-phase mole fraction is 0.0094.The calculations are in good agreement with experimental data.The effect of the IL on the VLE behavior of the volatile components is also illustrated.

  19. Water vapor release from biomass combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the ...

  20. Water vapor release from biofuel combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 ...

  1. Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Sec-butyl Acetate at 101.3 kPa

    Institute of Scientific and Technical Information of China (English)

    LI Ling; HE Yong; WU Yanxiang; ZOU Wenhu

    2013-01-01

    Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water + acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids (NRTL) model.The Root Mean Square Deviation (RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.

  2. Cavity Ring-Down Spectroscopy Lite: A Low Power Analyzer for measuring Carbon Dioxide, Methane and Water Vapor

    Science.gov (United States)

    Fleck, Derek; Hoffnagle, John; Tan, Sze; He, Yonggang

    2016-04-01

    Greenhouse gas accumulation has contributed to the changes in environments across the globe. Monitoring these fluctuations on global and local scales will allow scientists to better understand contributions that are made from nature and humans. This has led to the deployment of analytical instrumentation of all types to the most remote areas as well as the most densely populated areas. This however requires instruments to be precise, versatile, robust, and most importantly have power requirements that are as not limited by location, i.e. low enough power consumption to run off of batteries or even solar array. Here we present a full greenhouse gas analyzer that utilizes a new method of CRDS to measure carbon dioxide, methane and water vapor that consumes only 25W and still maintains long term stability to allow for averaging time of over 3 hours. Measurements have a 1-σ precision of 30 ppb for CO2 and 300 ppt of CH4 with 5 minutes of averaging; and with measurements of 3 hour averages reaching precisions down to 40ppt of methane. Additionally this new flavor of CRDS has allowed for an overall increase in measurement dynamic range from traditional CW-CRDS measuring methane up to 1000ppm and carbon dioxide up to several percent. We will present supplemental data acquired using this tower measurements from Santa Clara, CA.

  3. Ozone and Water Vapor Measurements by Raman Lidar in the Planetary Boundary Layer: Error Sources and Field Measurements

    Science.gov (United States)

    Lazzarotto, Benoit; Frioud, Max; Larcheveque, Gilles; Mitev, Valentin; Quaglia, Philippe; Simeonov, Valentin; Thompson, Anne; VandenBergh, Hubert; Calpini, Bertrand; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Why do we need time series of ozone and water vapor profiles at low altitude? The degradation of air quality is a very serious environmental problem that affects urban and industrial areas worldwide. Air pollution injures human health and ecosystems, diminishes crop yield, and spoils patrimony and materials. The phenomena involved in air pollution are very complex. Once emitted into the atmosphere, (primary) pollutants are transported, dispersed, transformed by gas/solid phase change and chemical reaction, and finally removed by dry and wet deposition. Most challenging is the fact that the health and environmental impacts of secondary pollutants (formed in the atmosphere) are frequently more severe than those of their precursors (primary pollutants). This is the case of ozone and other photochemical pollutants, such as peroxyacetil nitrate (PAN) and secondary particles, produced in the atmosphere by the photo-oxidation volatile organic compounds (VOC) catalyzed by nitrogen oxides (NO(sub x)). Photochemical air pollution is a complex science because of the non-linearity of its response to changes in primary emission.

  4. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  5. Deep Sub-micro mol{\\cdot }mol^{-1} Water-Vapor Measurement by Dual-Ball SAW Sensors for Temperature Compensation

    Science.gov (United States)

    Takeda, N.; Oizumi, T.; Tsuji, T.; Akao, S.; Takayanagi, K.; Nakaso, N.; Yamanaka, K.

    2015-12-01

    A collimated surface acoustic wave (SAW) circles around the equator of a sphere hundreds of times. Because of the long distance travel of the collimated SAW, a small change in the SAW propagation caused by the environment of the sphere can be accumulated as a measurable range in amplitude and/or in delay time. So, a spherical SAW device enables highly sensitive water-vapor measurements. In this paper, deep sub \\upmu mol{\\cdot }mol^{-1} water-vapor detection by 1 mm diameter quartz crystal ball SAW sensors is described. To measure such a low water-vapor concentration in real time, it is necessary to compensate the temperature dependence of the ball SAW sensor, which is about 20 ppm{\\cdot }°C^{-1} in delay time change. A dual-frequency burst analog detector was developed for the temperature compensation in real time. By using a harmonic SAW sensor, which was excited by 80 MHz and 240 MHz at the same time, it was confirmed that the delay time drift for a temperature range of 21.0°C ± 1.0°C became less than 0.05 ppm in delay time change. By using dual-ball SAW sensors (which included a 150 MHz sensor with a water-vapor sensitive layer and a 240 MHz sensor as a reference), water-vapor concentrations from 0.1 \\upmu mol{\\cdot }mol^{-1} to 5 \\upmu mol{\\cdot }mol^{-1} were successfully measured. It appears that the delay time change is proportional to the square root of the water-vapor concentration. The detection limit determined by the electrical noise of the system was estimated at 0.01 \\upmu mol{\\cdot }mol^{-1}.

  6. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  7. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  8. Vapor fraction measurements in a steam-water tube at up to 15 bar using neutron radiography techniques

    CERN Document Server

    Glickstein, S S; Joo, H

    1999-01-01

    Real-time neutron radiography has been used to study the dynamic behavior of two-phase flow and measure the time averaged vapor fraction in a heated metal tube containing boiling steam-water operating at up to 15 bar pressure. The neutron radiographic technique is non-intrusive and requires no special transparent window region. This is the first time this technique has been used in an electrically heated pressurized flow loop. This unique experimental method offers the opportunity to observe and record on videotape, flow patterns and transient behavior of two-phase flow inside opaque containers without disturbing the environment. In this study the test sections consisted of stainless steel tubes with a 1.27 cm outer diameter and wall thicknesses of 0.084 and 0.124 cm. The experiments were carried out at the Pennsylvania State University 1 MW TRIGA reactor facility utilizing a Precise Optics neutron radiography camera. The inlet water temperature to the test section was varied between 120 deg. C and 170 deg. C...

  9. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere

    Science.gov (United States)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Witinski, M.; Allen, N. T.; Demusz, J. N.; Rivero, M.; Tuozzolo, C.; Anderson, J. G.

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT/LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons, in

  10. Experimental measurement of the solubility of bismuth phases in water vapor from 220 deg. C to 300 deg. C: Implications for ore formation

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Jason M. [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States); Wood, Scott A., E-mail: swood@uidaho.edu [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States)

    2009-04-15

    Preliminary measurements were carried out of the solubility of the O{sub 2-}buffering assemblage bismuth + bismite (Bi{sub 2}O{sub 3}) in aqueous liquid-vapor and vapor-only systems at temperatures of 220, 250 and 300 deg. C. All experiments were carried out in Ti reaction vessels and were designed such that the Bi solids were contained in a silica tube that prevented contact with liquid water at any time during the experiment. Two blank (no Bi solids present) liquid-vapor experiments at 220 deg. C yielded Bi concentrations ({+-}1{sigma}) in the condensed liquid of 0.22 {+-} 0.02 mg/L, whereas the solubility measurements at this temperature yielded an average value of approximately 6 {+-} 9 mg/L, with replicate experiments ranging from 0.3 to 26 mg/L. Although the 6 mg/L value is associated with a considerable degree of uncertainty, the experiments do indicate transport of Bi through the vapor phase. Measured Bi concentrations in the condensed liquid at 250 deg. C were in the same range as those at 220 deg. C, whereas those at 300 deg. C were significantly lower (i.e., all below the blank value). Vapor-only experiments necessarily contained much smaller initial volumes of water, thereby making the results more susceptible to contamination. Single blank runs at 220 and 300 deg. C yielded Bi concentrations of 82 and 16 mg/L, respectively. Measured concentrations ({+-}1{sigma}) of Bi in the vapor-only solubility experiments at 220 deg. C were 235 {+-} 78 mg/L for an initial water volume of 0.5 mL, and at 300 deg. C were 56 {+-} 30 mg/L and 33 {+-} 21 for initial water volumes of 1 and 2 mL, respectively, suggesting strong preferential partitioning of Bi into the vapor. The results indicate a negative dependence of Bi solubility on temperature, but are inconclusive with respect to the dependence of Bi solubility on water density or fugacity. The experiments reported here suggest that significant Bi transport is possible in the vapor phase. Comparison of the liquid-vapor

  11. Water vapor diffusion membrane development

    Science.gov (United States)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  12. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    Science.gov (United States)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  13. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  14. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  15. Evaluation of the hydrological cycle of MATCH driven by NCEP reanalysis data: comparison with GOME water vapor measurements

    Directory of Open Access Journals (Sweden)

    R. Lang

    2005-01-01

    Full Text Available This study examines two key parameters of the hydrological cycle, water vapor (WV and precipitation rates (PR, as modelled by the chemistry transport model MATCH (Model of Atmospheric Transport and Chemistry driven by National Centers for Environmental Prediction (NCEP reanalysis data (NRA. For model output evaluation we primarily employ WV total column data from the Global Ozone Monitoring Experiment (GOME on ERS-2, which is the only instrument capable measuring WV on a global scale and over all surface types with a substantial data record from 1995 to the present. We find that MATCH and NRA WV and PR distributions are closely related, but that significant regional differences in both parameters exist in magnitude and distribution patterns when compared to the observations. We also find that WV residual patterns between model and observations show remarkable similarities to residuals observed in the PR when comparing MATCH and NRA output to observations comprised by the Global Precipitation Climatology Project (GPCP. We conclude that deficiencies in model parameters shared by MATCH and NRA, like in the surface evaporation rates and regional transport patterns, are likely to lead to the observed differences. Monthly average regional differences between MATCH modelled WV columns and the observations can be as large as 2 cm, based on the analysis of three years. Differences in the global mean WV values are, however, below 0.1 cm. Regional differences in the PR between MATCH and GPCP can be above 0.5 cm per day and MATCH computes on average a higher PR than what has been observed. The lower water vapor content of MATCH is related to shorter model WV residence times by up to 1 day as compared to the observations. We find that MATCH has problems in modelling the WV content in regions of strong upward convection like, for example, along the Inter Tropical Convergence Zone, where it appears to be generally too dry as compared to the observations. We

  16. Distribution of Water Vapor in Molecular Clouds

    CERN Document Server

    Melnick, Gary J; Snell, Ronald L; Bergin, Edwin A; Hollenbach, David J; Kaufman, Michael J; Li, Di; Neufeld, David A

    2010-01-01

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J =5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to Av < 15 mag., the ratio of H2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large Av. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations...

  17. Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements

    OpenAIRE

    Costa-Surós Montserrat; Stachlewska Iwona S.; Markowicz Krzysztof

    2016-01-01

    A study of comparison of water vapor mixing ratio profiles, relative humidity profiles, and cloud vertical structures using two different instruments, a multiwavelength Aerosol-Depolarization-Raman lidar and radiosoundings, is presented. The observations were taken by the lidar located in Warsaw center and the radiosoundings located about 30km to the North in Legionowo (Poland). We compared the ground-based remote sensing technology with in-situ method in order to improve knowledge about wate...

  18. Development of photoacoustic water vapor and total water measuring instrument with a long term objective of becoming part of the IAGOS project

    Science.gov (United States)

    Tatrai, David; Bors, Noemi; Gulyas, Gabor; Szabo, Gabor; Smit, Herman G. J.; Petzold, Andreas; Bozoki, Zoltan

    2016-04-01

    Airborne hygrometry is one of the key topics in atmospheric and climate research that is why airborne hygrometers are almost always included in aircraft based measurement campaigns (see e.g. MOZAIC and CARIBIC). However for its successful application an airborne hygrometer has to be able to measure humidity in a wide range (1 60000 ppmV) at various total pressures with high accuracy and short response time. In addition, an instrument capable of measuring water vapor and condensed water selectively has considerable added value as the water content of clouds seems to be a very uncertain parameter in climate models. At the University of Szeged, a dual channel, photoacoustic spectroscopy based hygrometer system had been developed, that measures water vapor concentration and total water content simultaneously from the ground level up to cruising altitude [1, 2]. An early version of this system is the core hygrometer of the CARIBIC project. In the past few years efforts were made to improve further the performance and long term reliability of the system [3] while also reducing its size and weight. Most important of the recent achievements is a new data acquisition and control system with more precise control performance [4]. Many of these results have been proved by various laboratory (AquaVIT2a-b) and in-flight (DANCHAR-IFCC, AIRTOSS I-II) measurement campaigns. Based on these results the system received invitation into the IAGOS ESFRI project to become one of its core instruments. The presented work was funded by EUFAR contract no. 227159, by the Hungarian Research and Technology Innovation Fund (OTKA), project no. NN109679 and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312311. [1] Szakáll, M et.al: Infrared Physics & Technology. 2006. 48, (3) 192-201 [2] Szakáll, M. et.al: Infrared Physics & Technology, 2007. 51, (2) 113-121 [3] Tátrai, D. et.al: Atmos. Meas. Tech., 8, 33-42, 2015 [4] Tátrai, D. et

  19. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  20. On-site measurement of trace-level sulfide in natural waters by vapor generation and microchannel collection.

    Science.gov (United States)

    Toda, Kei; Kuwahara, Haruka; Ohira, Shin-Ichi

    2011-07-01

    Aqueous sulfide plays an important role in the environment even at low concentrations. However, it is unstable, which means field samples cannot be transported to the laboratory for analysis without fixation. In this work, a novel method was developed to determine trace levels of sulfide on site. This method is based on vapor generation and collection in a special microchannel device followed by fluorescence measurement (VG-μGAS). The microchannel scrubber gave a high enrichment factor, and a high sensitivity was achieved, which allowed measurement of nanomolar (nM) levels of sulfide. The theoretical approach to vapor generation for several compounds is discussed to evaluate the applicability of the method to these analytes, and compounds having a low Henry's law constant (Ariake Sea and Lake Baikal.

  1. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  2. Water vapor release from biomass combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-10-01

    Full Text Available We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  3. Laboratory measurements of the 5-20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere

    Science.gov (United States)

    Bellotti, Amadeo; Steffes, Paul G.; Chinsomboom, Garrett

    2016-12-01

    Over the past decade, several extensive laboratory studies have been conducted of the microwave opacity of ammonia and water vapor in preparation for interpretation of the precise measurements of jovian microwave emission to be made with the Microwave Radiometer (MWR) instrument aboard the NASA Juno Mission. (See, e.g., Hanley et al. [2009] Icarus, 202, 316-335; Karpowicz and Steffes [2011a] Icarus 212, 210-223; Karpowicz and Steffes [2011b] Icarus 214, 783; Devaraj et al. [2014] Icarus, 241, 165-179) These works included models for the opacity of these constituents valid over the pressure and temperature ranges measured in the laboratory experiments (temperatures up to 500 K and pressures up to 100 bars). However, studies of the microwave emission made using these models indicate that significant contributions to the emission at the 24-cm and 50-cm wavelengths to be measured by the Juno MWR will be made by layers of the atmosphere with temperatures at or exceeding 600 K. While the ammonia opacity models described by Hanley et al. (2009) and Devraj et al. (2014) give consistent results at temperatures up to 500 K (within 6%), they diverge significantly at temperatures and pressures exceeding 550 K and 50 bars, respectively. Similarly, at temperatures above 500 K, the model for water vapor opacity developed by Karpowicz and Steffes (2011a,b) exhibits non-physical attributes. To resolve these ambiguities, we have conducted laboratory measurements of the microwave opacity of ammonia at temperatures up to 600 K and that for water vapor at temperatures up to 600 K. Additionally, since the microwave opacity of ammonia is influenced by pressure-broadening from methane (a significant constituent in jovian atmospheres), measurements of the effects of methane on the ammonia absorption spectrum have also been conducted. These measurements have resulted in updated models for the opacities of ammonia and water vapor under conditions of the deep jovian atmosphere.

  4. Direct Measuring Methods of Water Vapor Content and Air Velocity at High Temperature using ZrO2-MgO Gas Chemisorption Type Ceramic Body

    Science.gov (United States)

    Nomura, Tomohiro; Nishimura, Nobuya; Shiba, Tooru; Hyodo, Tsutomu

    The control of humidity or air velocity as well as temperature is imperative for industrial process equipment such as air conditioners, dryers. At present, much about humidity sensors has been reported, and recently, ceramic sensors have been used with improved results. However, the effective operating temperature of these sensors for a direct measurement of the humidity is about 423 K at the highest. From the various ceramic sensors so far investigated, the authors selected composite ceramics ZrO2-MgO with porous structure and n-type semiconductor for humidity sensing at high temperature. This is because, when the working temperature of the ceramic sensor is between 673 and 973K, the sensor detects the presence of water vapor and gas velocity by the variations in the electronic condition caused by the reversible of the water vapor. From the test, the sensor that use a single sensing ceramic element can detect directly both the water vapor content in a mixed gas of air and superheated vapor in the temperature range 373-773 K and the air velocity(O.5-4m/s) in the range 373-573K.

  5. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  6. Review of methods and measurements of selected hydrophobic organic contaminant aqueous solubilities, vapor pressures, and air-water partition coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Bamford, H.A.; Baker, J.E.; Poster, D.L.

    1998-03-01

    Aqueous solubilities, vapor pressures, and Henry`s law constants for a wide range of organic contaminants of environmental interest are presented. Specifically, a discussion of methods used to measure these physical constants and resulting measurements are provided in an effort to examine the scope of physical constants reported in the scientific literature. Physical constants reviewed include those for 40 PAHs, 14 chlorinated aliphatics, 149 PCBs, 12 chlorinated benzenes, 16 dioxins, 63 furans, and 29 agrochemicals (a total of 323 compounds) and overall a total of 1,605 values are listed.

  7. Water Vapor Forecasting for Chilean Sites

    Science.gov (United States)

    Marín, Julio C.; Cuevas, O.; Pozo, D.; Curé, M.

    2017-09-01

    "A number of observatories in Chile operate in the infrared region of the electromagnetic spectrum. Therefore, it is very important to them to accurately know the water vapor content of the atmosphere for a better observational planning. This talk provides an overview of the methods used to forecast water vapor over astronomical sites in Chile using observations and atmospheric numerical modeling."

  8. Aircraft measurements of CO{sub 2}, O{sub 3}, water vapor, aerosol fluxes and, turbulence over Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Alkezweeny, A. J. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    1996-04-01

    Using an instrumented aircraft we made a constant altitude flight over lake Michigan near the Chicago Shoreline and about 50 km downwind of it. The flight was made on June 18, 1992 between about 1:30 and 3:30 pm. The wind was southwesterly averaged about 12 m s{sup -}1. Employing the eddy correlation method we calculated the fluxes of CO{sub 2}, O{sub 3}, water vapor and aerosols in the diameter range of 0.1 to 3.0 {mu}m. The fluxes near the shoreline were found to be significantly higher than those in the middle of the lake. The fluxes near the shoreline for O{sub 3} and aerosols were directed toward the surface and corresponding to transfer (deposition) velocities of 0.15 cm s{sup -}1 and 0.86 cm s{sup -}1, respectively. For CO{sub 2}, and water vapor, the fluxes were directed upward and corresponding to transfer velocities of 0.04 cm s{sup -}1 and 0.54 cm s{sup -}1, respectively. At mid-lake the fluxes of O{sub 3} and water vapor were directed upward and corresponding to transfer velocity of 0.045 cm s{sup -}1 and 0.003 cm s{sup -}1. For CO{sub 2} and aerosols the fluxes were directed downward and corresponding to transfer (deposition) velocities of 0.006 cm s{sup -}1 and 0.226 cm s{sup -}1. [Spanish] Con un a vion dotado de instrumentos hicimos un vuelo a altura constante sobre el lago Michigan cerca de la linea de costa y 50 km, aproximadamente, viento abajo de ella. El vuelo fue hecho en junio 18 de 1992 entre las 1:30 y las 3:30 p.m. El viento era del suroeste 12 ms{sup -}1 en promedio. Empleando el metodo de correlacion torbellinaria calculamos los fluidos de CO{sub 2} y O{sub 3}, vapor de agua y aerosoles en una gama de diametros de 0.1 a 3.0 {mu}m. Se encontro que los flujos cerca de la costa eran significativamente mas altos que en medio del lago. Los flujos del O{sub 3} y aerosoles cerca de la costa estaban dirigidos hacia la superficie y correspondian a las velocidades de transporte (depositacion) de 0.15 cm s{sup -}1 y 0.45 cm s{sup -}1

  9. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    Science.gov (United States)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3

  10. Shipboard Sunphotometer Measurements of Aerosol Optical Depth Spectra and Columnar Water Vapor During ACE-2 and Comparison with Selected Land, Ship, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Kapustin, Vladimir N.; Schmid, Beat; Russell, Philip B.; Quinn, Patricia K.; Bates, Timothy S.; Durkee, Philip A.; Smith, Peter J.; Freudenthaler, Volker; Wiegner, Matthias; Covert, Dave S.; Gasso, Santiago; Hegg, Dean; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Vitale, Vito; Tomasi, Claudio

    2000-01-01

    Analyses of aerosol optical depth (AOD) and colurnmn water vapor (CWV) measurements acquired with NASA Ames Research Center's 6-channel Airborne Tracking Sunphotometer (AATS-6) operated aboard the R/V Professor Vodyanitskiy during the 2nd Aerosol Characterization Experiment (ACE-2) are discussed. Data are compared with various in situ and remote measurements for selected cases. The focus is on 10 July, when the Pelican airplane flew within 70 km of the ship near the time of a NOAA-14/AVHRR satellite overpass and AOD measurements with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) above the marine boundary layer (MBL) permitted calculation of AOD within the MBL from the AATS-6 measurements. A detailed column closure test is performed for MBL AOD on 10 July by comparing the AATS-6 MBL AODs with corresponding values calculated by combining shipboard particle size distribution measurements with models of hygroscopic growth and radiosonde humidity profiles (plus assumptions on the vertical profile of the dry particle size distribution and composition). Large differences (30-80% in the mid-visible) between measured and reconstructed AODs are obtained, in large part because of the high sensitivity of the closure methodology to hygroscopic growth models, which vary considerably and have not been validated over the necessary range of particle size/composition distributions. The wavelength dependence of AATS-6 AODs is compared with the corresponding dependence of aerosol extinction calculated from shipboard measurements of aerosol size distribution and of total scattering mearured by a shipboard integrating nephelometer for several days. Results are highly variable, illustrating further the great difficulty of deriving column values from point measurements. AATS-6 CWV values are shown to agree well with corresponding values derived from radiosonde measurements during 8 soundings on 7 days and also with values calculated from measurements taken on 10 July with

  11. A New Way to Study Water-Vapor Absorption Coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱ ozone monitor,water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.

  12. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  13. Comparison of Water Vapor Measurements by Airborne Sun photometer and Near-Coincident In Situ and Satellite Sensors during INTEX-ITCT 2004

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, J.; Schmid, Beat; Redemann, Jens; Russell, P. B.; Ramirez, Samuel; Eilers, J.; Gore, W.; Howard, Samuel; Pommier, J.; Fetzer, E. J.; Seemann, S. W.; Borbas, E.; Wolfe, Daniel; Thompson, Anne M.

    2007-06-06

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes, and with water vapor profiles retrieved from AIRS measurements during 8 Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during 5 Aqua and 5 Terra overpasses. For 35 J31 vertical profiles mean (bias) and rms AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1% and 8.8%, respectively. For 22 aircraft profiles within 1 h and 130 km of radiosonde soundings, AATS-minus-sonde bias and rms LWV differences are -5.4% and 8.8%, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3% and 8.4%, respectively. AIRS LWV retrievals within 80 km of J31 profiles yield lower bias and rms differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8% to 5.8%, and the rms difference decreases from 21.5% to 16.4%. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2% to +6% and rms differences of ~20% below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5-km at nadir) are biased wet by 10.4% compared to AATS over-ocean near surface retrievals. The MODIS Aqua subset (79 grid cells) exhibits a wet bias of 5.1%, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2%.

  14. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments

    Directory of Open Access Journals (Sweden)

    C. Schiller

    2008-09-01

    Full Text Available In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR flew a zenith-viewing water vapor differential absorption lidar (DIAL during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH and the Fluorescent Advanced Stratospheric Hygrometer (FLASH onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer

  15. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  16. How well can interannual to decadal-scale variability in stratospheric ozone and water vapor be quantified using limb-based satellite measurements?

    Science.gov (United States)

    Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Hassler, B.; Read, W. G.

    2015-12-01

    Vertical profiles of ozone and humidity from the upper troposphere to stratosphere have been retrieved from a number of limb sounding and solar occultation satellite instruments since the 1980's. In particular, measurements from the SAGE instruments, UARS MLS, UARS HALOE, and most recently Aura MLS, have provided overlapping data since 1984. In order to quantify interannual- to decadal-scale variability in water vapor and ozone, it is necessary to have a uniform and homogenous record over the period of interest. With this in mind, we merged the aforementioned satellite measurements to create the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set, which contains vertically resolved zonal-mean (2.5°) monthly-mean water vapor and ozone concentration at levels covering the stratosphere. In this presentation, we describe the process of merging the satellite data sets, which involves adjusting the data to a reference measurement using offsets calculated from coincident observations taken during instrument overlap periods. Uncertainties associated with individual measurement precision, geophysical variability, and the merging process are quantified and compared to one another. We show that while the SWOOSH data can be used to quantify interannual variability, quantifying long-term trends in SWOOSH is complicated by the various sources of uncertainty, as well as by potential drifts of individual instruments. The issue of satellite-derived trends is discussed in relation to the long-term record of balloon-borne frostpoint hygrometer measurements from Boulder, CO.

  17. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10‑6 g m‑2 day‑1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10‑6 g m‑2 day‑1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  18. Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements.

    Science.gov (United States)

    Bisson, S E; Goldsmith, J E; Mitchell, M G

    1999-03-20

    We describe a high-performance Raman lidar system with combined day and night capability for tropospheric water-vapor profile measurements. The system incorporates high-performance UV interference filters and a narrow-band, dual-field-of-view receiver for rejection of background sunlight. Daytime performance has been demonstrated up to 5 km with 150-m vertical and 5-min temporal averaging. The nighttime performance is significantly better with measurements routinely extending from 10 to 12 km with 75-m range resolution and a 5-min temporal average. We describe design issues for daytime operation and a novel daytime calibration technique.

  19. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

    Directory of Open Access Journals (Sweden)

    B. C. Kindel

    2014-10-01

    Full Text Available Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near infrared spectra acquired with the Solar Spectral Flux Radiometer during the first science phase of the NASA Airborne Tropical Tropopause EXperiment. From the 1400 and 1900 nm absorption bands, we infer water vapor amounts in the tropical tropopause layer and adjacent regions between 14 and 18 km altitude. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004. Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amount, 0.004 absorptance change at 1870 nm results in 5.5 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm and 44% (1870 nm differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2 and 7% (1367 nm and 12% (1870 nm differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2. A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere (TOA is discussed.

  20. Water Vapor Corrosion in EBC Constituent Materials

    Science.gov (United States)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  1. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  2. Water vapor sorption hysteresis of ceramic bricks

    Science.gov (United States)

    Koronthalyova, Olga

    2016-07-01

    A quantification of the hysteretic effects and their thorough analysis was carried out for three types of ceramic bricks. Water vapor adsorption/desorption isotherms were measured by the standard desiccator method. The desorption measurements were carried out from capillary moisture content as well as from equilibrium moisture content corresponding to the relative humidity of 98 %. For all three tested types of bricks the hysteretic effects were present but their significance differed depending on the particular type of brick. Significant differences were noticed also in desorption curves determined from capillary moisture content and from equilibrium moisture content corresponding to the relative humidity of 98 %. Based on the measured data a possible correlation between pore structure parameters and noticed hysteretic effects as well as relevance of the open pore model are discussed. The obtained adsorption/desorption curves were approximated by an analytical relation.

  3. Relative Reactivity Measurements of Stabilized CH2OO, Produced by Ethene Ozonolysis, Toward Acetic Acid and Water Vapor Using Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Yajima, Ryoji; Sakamoto, Yosuke; Inomata, Satoshi; Hirokawa, Jun

    2017-08-31

    We investigated the relative reactivity of stabilized CH2OO, produced by ethene ozonolysis, toward acetic acid and water vapor at a temperature of 298 ± 2 K and atmospheric pressure. Hydroperoxymethyl acetate produced through the reaction between stabilized CH2OO and acetic acid was monitored using a chemical ionization mass spectrometer as a function of the acetic acid concentration at different relative humidities. The rate of the reaction between CH2OO and water vapor depended quadratically on the water vapor concentration, suggesting that CH2OO reacted with water dimers in preference to water monomers. We obtained the bimolecular rate constant for the reaction between CH2OO and water dimer relative to the rate constant for the reaction between CH2OO and acetic acid, k3/k1, of (6.3 ± 0.4) × 10(-2). The k3 value of (8.2 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1) was derived by combining with a k1 value of (1.3 ± 0.1) × 10(-10) cm(3) molecule(-1) s(-1), which has been previously reported by direct kinetic studies. The k3 value thus obtained is consistent with the absolute rate constants measured directly, suggesting that the reactivity of CH2OO is irrespective of the CH2OO generation method, namely, ethene ozonolysis or diiodomethane photolysis. We indirectly determined the yield of stabilized CH2OO from the ozonolysis of ethene of 0.59 ± 0.17 and 0.55 ± 0.16 under dry and humid (relative humidity 23-24%) conditions, respectively, suggesting that the yield is independent of the water vapor concentration. Our results suggest that hydroperoxymethyl acetate is the sole product of the reaction between stabilized CH2OO and acetic acid. The approach presented here can likely be extended to studies of the reactivities of more complicated and atmospherically relevant stabilized Criegee intermediates.

  4. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 2: Data analysis and calibration for long-term monitoring

    Directory of Open Access Journals (Sweden)

    T. Leblanc

    2011-08-01

    Full Text Available The well-recognized, key role of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements triggered the development by JPL of a powerful Raman lidar to try to meet these needs. This development started in 2005 and was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review all the stages of the instrument data acquisition, data analysis, profile retrieval and calibration procedures, as well as selected results from the recent validation campaign MOHAVE-2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The stages in the instrumental development and the conclusions from three validation campaigns (including MOHAVE-2009 are presented in details in a companion paper (McDermid et al., 2011. In its current configuration, the lidar demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere with an estimated accuracy of 5 %. Since 2005, nearly 1000 profiles have been routinely measured with a precision of 10 % or better near 13 km. Since 2009, the profiles have typically reached 14 km for 1 h integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions.

  5. A summary of meteorological requirements for water vapor data and possible space shuttle applications

    Science.gov (United States)

    1976-01-01

    The accuracy of water vapor measurement required by modelers and forecasters at a number of scales of motion is discussed. Direct and indirect methods for operational use in obtaining atmospheric water vapor data are reviewed along with meteorological applications of water vapor data obtained by a space shuttle laboratory lidar system.

  6. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  7. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    Energy Technology Data Exchange (ETDEWEB)

    Ventrillard, I.; Romanini, D.; Mondelain, D.; Campargue, A., E-mail: Alain.Campargue@ujf-grenoble.fr [LIPhy, Université Grenoble Alpes, F-38000 Grenoble (France); LIPhy, CNRS, F-38000 Grenoble (France)

    2015-10-07

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.

  8. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 1: Instrument development, optimization, and validation

    Directory of Open Access Journals (Sweden)

    I. S. McDermid

    2011-08-01

    Full Text Available Recognizing the importance of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements, JPL began the development of a powerful Raman lidar in 2005 to try to meet these needs. This development was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review the stages in the instrumental development of the lidar and the conclusions from three validation campaigns: MOHAVE, MOHAVE-II, and MOHAVE 2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The data analysis, profile retrieval and calibration procedures, as well as additional results from MOHAVE-2009 are presented in detail in a companion paper (Leblanc et al., 2011a. Ultimately the lidar has demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere, reaching 14 km for 1-h integrated profiles and 21 km for 6-h integrated profiles, with a precision of 10 % or better near 13 km and below, and an estimated accuracy of 5 %.

  9. High-pressure vapor-liquid equilibria of systems containing ethylene glycol, water and methane - Experimental measurements and modeling

    DEFF Research Database (Denmark)

    Folas, Georgios; Berg, Ole J.; Solbraa, Even;

    2007-01-01

    This work presents new experimental phase equilibrium measurements of the binary MEG-methane and the ternary MEG-water-methane system at low temperatures and high pressures which are of interest to applications related to natural gas processing. Emphasis is given to MEG and water solubility...... measurements in the gas phase. The CPA and SRK EoS, the latter using either conventional or EoS/G(E) mixing rules are used to predict the solubility of the heavy components in the gas phase. It is concluded that CPA and SRK using the Huron-Vidal mixing rule perform equally satisfactory, while CPA requires...

  10. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  11. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  12. Assessment of a Technique for Estimating Total Column Water Vapor Using Measurements of the Infrared Sky Temperature

    Science.gov (United States)

    Merceret, Francis J.; Huddleston, Lisa L.

    2014-01-01

    A method for estimating the integrated precipitable water (IPW) content of the atmosphere using measurements of indicated infrared zenith sky temperature was validated over east-central Florida. The method uses inexpensive, commercial off the shelf, hand-held infrared thermometers (IRT). Two such IRTs were obtained from a commercial vendor, calibrated against several laboratory reference sources at KSC, and used to make IR zenith sky temperature measurements in the vicinity of KSC and Cape Canaveral Air Force Station (CCAFS). The calibration and comparison data showed that these inexpensive IRTs provided reliable, stable IR temperature measurements that were well correlated with the NOAA IPW observations.

  13. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  14. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    Science.gov (United States)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  15. Range resolved measurements of atmospheric ozone and water vapour; Misure `range resolved` di ozono e vapor d`acqua

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Palucci, A.; Ribezzo, S.

    1992-12-31

    The ENEA (Italian Agency for New Technology, Energy and Environment) ground based lidar (Light Detection and Ranging) station, equipped with two TEA CO/sub 2/ laser transmitters, allows for range resolved measurements of minor atmospheric constituents or pollutants, using the DIAL differential absorption technique. This paper provides brief notes on the lidar station`s design characteristics and reports on the application of the instruments to obtain water vapour and ozone concentration profiles with a useful investigated range , R = 6 Km.

  16. Water vapor feedback in the tropics deduced from SSM/T-2 water vapor and MSU temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.W. [NASA Marshall Space Flight Center, Huntsville, AL (United States); Braswell, W.D. [Nichols Research Corp., Huntsville, AL (United States)

    1996-12-31

    In simulations of the atmospheric response to increases in surface temperature or radiative forcing by CO{sub 2}, water vapor is usually found to produce a large positive feedback. In studies using the NCAR Community Climate Model (CCM2), it was found that the dependence of clear sky outgoing longwave radiation on sea surface temperature (SST) was almost a factor of two less with water vapor feedback included. However, other studies have provided negative vapor feedback results. Because the outgoing longwave radiation can be computed given tropospheric temperature and water vapor profiles and surface temperature, it is proposed to use satellite measurements that are primarily sensitive to these quantities. This paper discusses the method and preliminary results obtains from four satellite instrument types used to gather data on tropical SSTs between 1992 and 1995. So far, evidence from the new microwave water vapor retrievals indicates that most of the tropical upper troposphere is quite dry, with the most frequently occurring relative humidity near 10%. The hypersensitivity of clear sky outgoing longwave radiation to humidity changes at low relative humidity suggests that the tropical subsidence zones could have a controlling influence on water vapor feedback. 16 refs., 3 figs.

  17. Remote sensing of water vapor within the solar spectrum

    Science.gov (United States)

    Bartsch, Barbara; Bakan, Stephan; Fischer, Juergen

    1995-01-01

    Due to the great importance of atmospheric water vapor for weather and climate, much effort is devoted to remote sensing of atmospheric water vapor. The detection over water is well established, while the situation over land surface is worse. Therefore, a new method is developed to derive the total atmospheric water vapor content over land surfaces even for higher aerosol contents with the aid of backscattered solar radiances. Numerous radiative transfer simulations with a matrix operator code of vertically backscattered solar radiance were carried out for different vertically stratified atmospheres. The resolution of 1.7 nm in the wavelength range from 700 to 1050 nm was adopted to the resolution of our multichannel spectrometer OVID (Optical Visible and near Infrared Detector). Various atmospheric conditions were chosen, which were defined by variable input parameters of: (a) vertical profiles of temperature, pressure, and water vapor, (b) total water vapor content, (c) aerosols, (d) surface reflectance, and (e) sun zenith angle. Clouds were not taken into account. From the evaluation of these theoretical calculations it can be concluded that this technique allows the detection of total atmospheric water vapor content over land surfaces with an error of less than 10%. This result is important with regard to future measurements planed with the MERIS imaging spectrometer on board the european satellite ENVISAT, which will be launched in 1998. In addition to these theoretical calculations also various aircraft measurements of the backscattered radiances in the wavelength range from 600 to 1650 nm were carried out. These measurements are done with the above mentioned OVID, a new multichannel array spectrometer of the Universities of Hamburg and Berlin. First comparisons of these airborne CCD measurements with calculated spectra are shown.

  18. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  19. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  20. Correlation and causal relationship between GPS water vapor measurements and rainfall intensities in a tropical region (Tahiti-French Polynesia)

    Science.gov (United States)

    Serafini, J.; Sichoix, L.; Barriot, J.-P.; Fadil, A.

    2011-11-01

    We processed a eight-year time series (2001-2008) of zenith wet delay and associated precipitable water (PW) contents from the permanent GPS station THTI (OGT) and a corresponding precipitation time series from the pluviometer of the Matatia valley (7 km South East from the GPS receiver). Daily GPS data were obtained (including zenith total delay and North and East gradients) by applying the PPP strategy of the GIPSY-OASIS II package w.r.t. IGS final products. We used the Saastamoinen model to extract the hydrostatic part of the delay. Taking into account surface meteorological measurements, we transformed the resulting wet delay into an estimate of PW above the receiver. The precipitation dataset consisted of rainfall gauge measurements spanning the same period provided by the "Direction de l'Equipement" (GEGDP). This work poses a preliminary diagnostic on the evolution of PW and precipitations over French Polynesia with emphasis on a broad range of timescales, from seasonal to diurnal components. Before this study, no monitoring system had provided accurate and quasi continuous measures of PW in French Polynesia.

  1. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    Science.gov (United States)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  2. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    Directory of Open Access Journals (Sweden)

    K.-E. Min

    2015-10-01

    Full Text Available We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS for aircraft measurements of glyoxal (CHOCHO, methylglyoxal (CH3COCHO, nitrous acid (HONO, nitrogen dioxide (NO2, and water (H2O. The instrument spans 361–389 and 438–468 nm, using two light emitting diodes (LEDs and a grating spectrometer with a charge-coupled device (CCD detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  3. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  4. Remote sensing of water vapor within the solar spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, B. [Univ. Hamburg (Germany). Meteorologisches Inst.; Bakan, S. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften

    1995-12-31

    Water vapor is the most important natural atmospheric greenhouse gas, influencing strongly solar and thermal infrared radiative transfer, and giving rise for clouds, which have strong influence on weather and climate. Therefore, much effort is devoted to remote sensing of atmospheric water vapor. The detection over water is well established, while the situation over land surfaces is worse. A new method is developed to derive the total atmospheric water vapor content over land surfaces even for higher aerosol contents with the aid of backscattered solar radiances. Numerous radiative transfer simulations with a matrix operator code of vertically backscattered solar radiance were carried out for different vertically stratified atmospheres. From the evaluation of these theoretical calculations it can be concluded that this technique allows the detection of total atmospheric water vapor content over land surfaces with an error of less than 10%. This result is important with regard to future measurements planned with the MERIS imaging spectrometer on board the European satellite ENVISAT, which will be launched in 1998. In addition to these theoretical calculations also various aircraft measurements of the backscattered radiances in the wavelength range from 600 to 1,650 nm were carried out. These measurements are done with the above mentioned OVID, a new multichannel array spectrometer of the Universities of Hamburg and Berlin. First comparisons of these airborne CCD measurements with calculated spectra are shown.

  5. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  6. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  7. Condensation of Water Vapor on Waterproof Breathable Fabrics

    Institute of Scientific and Technical Information of China (English)

    周小红; 王善元; 袁观洛

    2003-01-01

    Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20°C and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃. The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics,which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.

  8. Water Vapor Interference Correction in a Non Dispersive Infrared Multi-Gas Analyzer

    Institute of Scientific and Technical Information of China (English)

    SUN You-Wen; LIU Wen-Qing; ZENG Yi; WANG Shi-Mei; HUANG Shu-Hua; XIE Pin-Hua; YU Xiao-Man

    2011-01-01

    We demonstrate an effective method to eliminate the interfering effect of water vapor in a non-dispersive infrared multi-gas analyzer.The response coefficients of water vapor at each filter channel are measured from the humidity of the ambient air.Based on the proposed method,the water vapor interference is corrected with the measured response coefficients.By deducting the absorbance of each filter channel related to water vapor,the measuring precision of the analyzer is improved significantly and the concentration retrieval correlation accuracy of each target gas is more than 99%.

  9. Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapor concentration field measurements

    Science.gov (United States)

    Seidel, A.; Wagner, S.; Dreizler, A.; Ebert, V.

    2015-05-01

    We have developed a fast, spatially scanning direct tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. With this instrument, tomographic measurements of absolute 2-D water vapor concentration profiles are possible without any calibration using a reference gas. A spatial area of 0.8 m x 0.8 m was covered, which allows for application in soil physics, where greenhouse gas emission from certain soil structures shall be monitored. The whole concentration field was measured with up to 2.5 Hz. In this paper, we present the setup and spectroscopic performance of the instrument regarding the influence of the polygon rotation speed and mode on the absorption signal. Homogeneous H2O distributions were measured and compared to a single channel, bi-static reference TDLAS spectrometer for validation of the instrument. Good accuracy and precision with errors of less than 6% of the absolute concentration and length and bandwidth normalized detection limits of up to 1.1 ppmv . m (Hz)-0.5 were achieved. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered as a good basis for future field measurements in environmental research.

  10. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    Science.gov (United States)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  11. Water vapor retrieval from OMI visible spectra

    Directory of Open Access Journals (Sweden)

    H. Wang

    2014-01-01

    optimization of retrieval windows and parameters. The Air Mass Factor (AMF is calculated using look-up tables of scattering weights and monthly mean water vapor profiles from the GEOS-5 assimilation products. We convert from SCD to Vertical Column Density (VCD using the AMF and generate associated retrieval averaging kernels and shape factors. Our standard water vapor product has a median SCD of ~ 1.3 × 1023 molecule cm−2 and a median relative uncertainty of ~ 11% in the tropics, about a factor of 2 better than that from a similar OMI algorithm but using narrower retrieval window. The corresponding median VCD is ~ 1.2 × 1023 molecule cm−2. We have also explored the sensitivities to various parameters and compared our results with those from the Moderate-resolution Imaging Spectroradiometer (MODIS and the Aerosol Robotic NETwork (AERONET.

  12. Measurements of Humidity in the Atmosphere: Validation Experiments (MOHAVE I and MOHAVE II). Results Overview and Implication for the Long-Term Lidar Monitoring of Water Vapor in the UT/LS

    Science.gov (United States)

    Leblanc, Thierry; McDermid, I. S.; Vomel, H.; Whiteman, D.; Twigg, Larry; McGee, T. G.

    2008-01-01

    1. MOHAVE+MOHAVE II = very successful. 2. MOHAVE -> Fluorescence was found to be inherent to all three participating lidars. 3. MOHAVE II -> Fluorescence was removed and agreement with CFH was extremely good up to 16-18 km altitude. 4. MOHAVE II -> Calibration tests revealed unsuspected shortfalls of widely used techniques, with important implications for their applicability to longterm measurements. 5. A factor of 5 in future lidar signal-to-noise ratio is reasonably achievable. When this level is achieved water vapor Raman lidar will become a key instrument for the long-term monitoring of water vapor in the UT/LS

  13. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.

  14. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  15. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  16. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  17. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    triple-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument for simultaneous measurement of water vapor and carbon-dioxide column density measurement from an air-borne platform. This presentation will give an overview of the 2 decades of 2-micron coherent and direction detection of laser/lidar development at NASA Langley Research Center and will present the ground and airborne wind and column CO2 measurement intercomparison with in-situ, balloon and flask measurements.

  18. Diurnal variations in water vapor over Central and South America

    Science.gov (United States)

    Meza, Amalia; Mendoza, Luciano; Bianchi, Clara

    2016-07-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 73 GNSS tracking sites (GPS + GLONASS) which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, with different diurnal variations of the integrated total humidity content. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). The numerical tools, Singular Value Decomposition and classical Multidimensional Scaling methods, are used to study these variations, considering the measurements made at each stations, as sample in the analysis. The aim of this investigation is to identify the IWV variability with respect to the local time associated to the different climate regions. In order to improve our analysis, all available weather information, such as radiosondes measurements (which are few), measurements of pressure and temperature and Numerical Weather Models reanalysis data, are used. Reference: Dai, A., K. E. Trenberth, and T. R. Karl, 1999 a: Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate, 12, 2451-2473. Dai, A., F. Giorgi, and K. E. Trenberth, 1999 b: Observed and model simulated precipitation diurnal cycle over the contiguous United States.J. Geophys. Res., 104, 6377-6402. KEYWORDS: water vapor, diurnal cycle, GNSS

  19. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  20. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    Science.gov (United States)

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features.

  1. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines

    National Research Council Canada - National Science Library

    Witzel, O; Klein, A; Meffert, C; Wagner, S; Kaiser, S; Schulz, C; Ebert, V

    2013-01-01

    We report the first application of a vertical-cavity surfaceemitting laser (VCSEL) for calibration- and sampling-free, high-speed, in situ H2O concentration measurements in IC engines using direct TDLAS...

  2. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  3. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    Science.gov (United States)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  4. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines.

    Science.gov (United States)

    Witzel, O; Klein, A; Meffert, C; Wagner, S; Kaiser, S; Schulz, C; Ebert, V

    2013-08-26

    We report the first application of a vertical-cavity surfaceemitting laser (VCSEL) for calibration- and sampling-free, high-speed, in situ H2O concentration measurements in IC engines using direct TDLAS (tunable diode laser absorption spectroscopy). Measurements were performed in a single-cylinder research engine operated under motored conditions with a time resolution down to 100 μs (i.e., 1.2 crank angle degrees at 2000 rpm). Signal-to-noise ratios (1σ) up to 29 were achieved, corresponding to a H2O precision of 0.046 vol.% H2O or 39 ppm · m. The modulation frequency dependence of the performance was investigated at different engine operating points in order to quantify the advantages of VCSEL against DFB lasers.

  5. Water Vapor Products from Differential-InSAR with Auxiliary Calibration Data: Accuracy and Statistics

    Science.gov (United States)

    Gong, W.; Meyer, F. J.; Webley, P.

    2014-12-01

    Although water vapor disturbance has been long term recognized as the major error source in differential Interferometric Synthetic Aperture Radar (d-InSAR) techniques for the ground deformation monitoring and topography reconstruction, it provides opportunities to extract the atmospheric water-vapor information from satellite SAR imageries that can be further used to support studies on earth energy budget, climate, the hydrological cycle, and meteorological forecasting, etc. The water vapor contribution in interferometric phases is normally referred as the atmospheric delay dominated by water vapor rather than condensed water (e.g. cloud). D-InSAR can produce maps of the column water vapor amounts (equivalent to integrated water vapor (IWV) or Precipitable Water Vapor (PWV) in other literatures) that are important parameters quantitatively describe the total amount of water vapor overlying a point on the earth surface. Similar products have been operationally produced in multi-spectrum remote sensing, e.g. Moderate-resolution Imaging Spectroradiometer (MODIS) with a spatial resolution in 500 m to 1km; Whereas, the PWV products derived by d-InSAR have remarkably high spatial resolution that can capture fine scale of water vapor variations in space as small as tens of meters or even less. In recent years, some efforts have been made to derive the water vapor products from interferogram and analyze the corresponding products quality, such as studies comparing integrated water vapor derived from interferometric phases to other measurements (e.g. MERIS, MODIS, GNSS), studies on deriving absolute water vapor products from d-InSAR, and studies on integrating d-InSAR water vapor products in meteorological numerical forecast. In this study, considering these limitation factors and based on previous studies, we discuss the accuracy and statistics of the water vapor products from satellite SAR, including (1) Accuracy of the differential water vapor products; (2) Sources of

  6. Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. D. Thornberry

    2013-06-01

    Full Text Available A chemical ionization mass spectrometer (CIMS instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS. A low-pressure flow of sample air passes through an ionization volume containing an α-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+ from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm, 10−6 mol mol−1 generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57F high-altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1 s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm−1 at 3 ppm with a signal to noise ratio (2 σ, 1 s greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

  7. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  8. Computation of Isobaric Vapor-Liquid Equilibrium Data for Binary and Ternary Mixtures of Methanol, Water, and Ethanoic Acid from T, p, x, and HmE Measurements

    Directory of Open Access Journals (Sweden)

    Daming Gao

    2012-01-01

    Full Text Available Vapor-liquid equilibrium (VLE data for the strongly associated ternary system methanol + water + ethanoic acid and the three constituent binary systems have been determined by the total pressure-temperature-liquid-phase composition-molar excess enthalpy of mixing of the liquid phase (p, T, x, HmE for the binary systems using a novel pump ebulliometer at 101.325 kPa. The vapor-phase compositions of these binary systems had been calculated from Tpx and HmE based on the Q function of molar excess Gibbs energy through an indirect method. Moreover, the experimental T, x data are used to estimate nonrandom two-liquid (NRTL, Wilson, Margules, and van Laar model parameters, and these parameters in turn are used to calculate vapor-phase compositions. The activity coefficients of the solution were correlated with NRTL, Wilson, Margules, and van Laar models through fitting by least-squares method. The VLE data of the ternary system were well predicted from these binary interaction parameters of NRTL, Wilson, Margules, and van Laar model parameters without any additional adjustment to build the thermodynamic model of VLE for the ternary system and obtain the vapor-phase compositions and the calculated bubble points.

  9. Radiometric estimation of water vapor content over Brazil

    Science.gov (United States)

    Karmakar, P. K.; Maiti, M.; Sett, S.; Angelis, C. F.; Machado, L. A. T.

    2011-11-01

    A multi-channel microwave radiometre (make: Radiometrics Corporation) is installed at Instituto Nacional de Pesquisas Espaciais-INPE, Brazil (22°S). The radiometric output of two channels of the radiometer in the form of brightness temperature at 23.834 GHz and 30 GHz, initially, were used to find out the ambient water vapor content and the non-precipitable cloud liquid water content. The necessary algorithm was developed for the purpose. The best results were obtained using the hinge frequency 23.834 GHz and 30 GHz pair having an r.m.s. error of only 2.64. The same methodology was then adopted exploiting 23.034 GHz and 30 GHz pair. In that case the r.m.s. error was 3.42. These results were then compared with those obtained over Kolkata (22°N), India, by using 22.234 GHz and 31.4 GHz radiometric data. This work conclusively suggests the use of a frequency should not be at the water vapor resonance line. Instead, while measuring the vapor content for separation of vapor and cloud liquid, one of them should be a few GHz left or right from the resonance line i.e., at 23.834 GHz and the other one should be around 30 GHz.

  10. Water vapor toward starless cores: the Herschel view

    CERN Document Server

    Caselli, P; Pagani, L; Aikawa, Y; Yildiz, U A; van der Tak, F F S; Tafalla, M; Bergin, E A; Nisini, B; Codella, C; van Dishoeck, E F; Bachiller, R; Baudry, A; Benedettini, M; Benz, A O; Bjerkeli, P; Blake, G A; Bontemps, S; Braine, J; Bruderer, S; Cernicharo, J; Daniel, F; di Giorgio, A M; Dominik, C; Doty, S D; Encrenaz, P; Fich, M; Fuente, A; Gaier, T; Giannini, T; Goicoechea, J R; de Graauw, Th; Helmich, F; Herczeg, G J; Herpin, F; Hogerheijde, M R; Jackson, B; Jacq, T; Javadi, H; Johnstone, D; Jorgensen, J K; Kester, D; Kristensen, L E; Laauwen, W; Larsson, B; Lis, D; Liseau, R; Luinge, W; Marseille, M; McCoey, C; Megej, A; Melnick, G; Neufeld, D; Olberg, M; Parise, B; Pearson, J C; Plume, R; Risacher, C; Santiago-Garcia, J; Saraceno, P; Shipman, R; Siegel, P; van Kempen, T A; Visser, R; Wampfler, S F; Wyrowski, F

    2010-01-01

    SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) 7000 AU and ~2x10^-10 toward the center. The radiative trans fer analysis shows that this is consistent with a x(o-H2O) profile peaking at ~10^-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Herschel has provided the first measurement of water vapor in dark regions. Prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) are very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds.

  11. An automated dynamic water vapor permeation test method

    Science.gov (United States)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  12. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  13. Determining Adequate Averaging Periods and Reference Coordinates for Eddy Covariance Measurements of Surface Heat and Water Vapor Fluxes over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen Ming-Hsu Li

    2012-01-01

    Full Text Available Two coordinate rotation approaches (double and planar-fit rotations and no rotation, in association with averaging periods of 15 - 480 min, were applied to compute surface heat and water vapor fluxes using the eddy covariance approach. Measurements were conducted in an experimental watershed, the Lien-Hua-Chih (LHC watershed, located in central Taiwan. For no rotation and double rotation approaches, an adequate averaging period of 15 or 30 min was suggested for better energy closure and small variations on energy closure fractions. For the planar-fit rotation approach, an adequate averaging period of 60 or 120 min was recommended, and a typical averaging period of 30 min is not superior to that of 60 or 120 min in terms of better energy closure and small variations on energy closure fractions. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours at LHC site. Seasonal variations of daily energy closure fractions, high in dry season and low in wet season, were found to be associated with the surface dryness and strength of turbulent development. The mismatching of flux footprint areas among flux sensors was suggested as the cause of larger CF variations during the dry seasons as that indicated by the footprint analysis showing scattered source areas. During the wet season, the underestimation of turbulent fluxes by EC observations at the LHC site was attributed to weak turbulence developments as the source area identified by the footprint analysis was closer to the flux tower than those scattered in dry season.

  14. Water vapor analysis with use of sunphotometry and radiosoundings

    Science.gov (United States)

    Pakszys, Paulina; Zielinski, Tymon; Petelski, Tomek; Makuch, Przemyslaw; Strzalkowska, Agata; Markuszewski, Piotr; Kowalczyk, Jakub

    2014-05-01

    Information about vertically integrated content of water vapor in the atmosphere and type, composition and concentration of aerosols is relevant in many types of atmospheric studies. Such information is required to understand mechanisms of global climate and its further modeling (Smirnov et al., 2000). This work is devoted to the description of a basic technique of analysis and comparing the derivation of Columnar Water Vapor (CWV) from different instruments, such as a radiosonde and a sunphotometer. The measurements were carried out using Microtops II Ozone Monitor & Sunphotometer during the cruises onboard the R/V Oceania (13 cruises) and from one cruise onboard of the SY TASK in the southern Baltic Sea. Measurements were collected for the NASA program Maritime Aerosol Network. Data collected with the DiGICORA III Radiosonde (RS92) come from the webpage of the University of Wyoming, Department of Atmospheric Science. The first instrument, sunphotometer, allows us to collect data on days that are cloud-free. The Microtops II is capable of measuring the total ozone column, total precipitable water vapor and aerosol optical depth at 1020 nm (Morys et al. 2001; Ichoku et al., 2002). Each of these parameters is automatically derived. Data collected by Microtops have been processed with the pre- and post-field calibration and automatic cloud clearing. Precipitable water vapor in the column was derived from the 936nm channel. Detailed data description is available on the AERONET webpage. In radiousoundings the total precipitable water is the water that occurs in a vertical column of a unit cross-sectional area between any two specified levels, commonly expressed as from the earth's surface to the 'top' of the atmosphere. The Integrated Precipitable Water Vapor (IPWV) is the height of liquid water that would result from the condensation of all water vapor in a column. The study of one cruise (29 March - 20 April) shows that 241 Microtops measurements were made, each of

  15. Water Vapor Measurements by Mobile Raman Lidar Over The Mediterranean Sea in the Framework of HyMex: Application to Multi-Platform Validation of Moisture Profiles

    Directory of Open Access Journals (Sweden)

    Totems Julien

    2016-01-01

    Full Text Available The Water Aerosol Lidar (WALI system, deployed for 14 weeks during 2012 & 2013 on the island of Menorca, provided the Hydrological cycle in the Mediterranean eXperiment (HyMeX with an opportunity to perform a multi-platform comparison on moisture retrievals at the timescales relevant for extreme precipitation events in the West Mediterranean basin. After calibration, the WALI lidar yields nighttime profiles of water vapor with ~7% accuracy from the ground up to 7 km, and daytime coverage of the lower layers, alongside common aerosol retrievals. It is used to characterize the water vapor profile product given by the IASI instrument on-board MetOp-B, and the fields simulated by the Météo-France AROME-WMED model and the open-source WRF model. IASI is found to be reliable above 1 km altitude, and the two models obtain similar high scores in the middle troposphere; WRF beneficiates from a more accurate modelling of the planetary boundary layer.

  16. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  17. The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database

    Science.gov (United States)

    Campargue, A.; Mikhailenko, S. N.; Vasilchenko, S.; Reynaud, C.; Béguier, S.; Čermák, P.; Mondelain, D.; Kassi, S.; Romanini, D.

    2017-03-01

    The weak absorption spectrum of water vapor in the important 2.2 μm transparency window is investigated with very high sensitivity. Overall, about 400 absorption lines were measured by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) in five spectral intervals: 4248.2-4257.3, 4298.4-4302.6, 4336.8.5-4367.5, 4422.4-4441.2 and 4514.6-4533.7 cm-1. The achieved sensitivity of the recordings (noise equivalent absorption, αmin, on the order of 2×10-10 cm-1) allowed detecting transitions with intensity values down to 1×10-28 cm/molecule, more than one order of magnitude better than previous studies by Fourier Transform spectroscopy. The rovibrational assignment was performed on the basis of variational calculations and of previously determined empirical energy values. Most of the newly assigned lines correspond to transitions of the ν1, ν3 and 3ν2 bands of H217O in natural isotopic abundance. Fourteen energy levels of H217O, H218O and HD18O are newly determined. An accurate and complete spectroscopic database is constructed for natural water in the 4190-4550 cm-1 region (2.39-2.20 μm). The list includes about 4500 transitions with intensity greater than 1×10-29 cm/molecule, for the six most abundant isotopologues in natural isotopic abundance. Line positions were obtained by difference of empirical energy values determined from literature data and complemented with the present CRDS results. The list is made mostly complete by including weak transitions not yet detected, with positions calculated from empirical levels and variational intensities. The variational intensities computed by a collaboration between the University College London and the Institute of Applied Physics in Nizhny Novgorod are found to improve significantly previous results by Schwenke and Partridge. Examples of comparison of the constructed line list to CRDS spectra and to simulations based on the HITRAN2012 list illustrate the advantages

  18. Water recovery by catalytic treatment of urine vapor

    Science.gov (United States)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  19. An interim reference model for the variability of the middle atmosphere water vapor distribution

    Science.gov (United States)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  20. Water vapor intrusions into the High Arctic during winter

    Science.gov (United States)

    Doyle, J. G.; Lesins, G.; Thackray, C. P.; Perro, C.; Nott, G. J.; Duck, T. J.; Damoah, R.; Drummond, J. R.

    2011-06-01

    The meridional transport of water vapor into the High Arctic, accompanied by dry enthalpy and clouds, impacts the surface radiative forcing. The evolution of one such moist intrusion over 9-11 February 2010 is presented. The event is analyzed using a unique blend of measurements including a new pan-Arctic retrieval of column water vapor from the Microwave Humidity Sounders, water vapor profiles from a Raman lidar and a ground-based microwave radiometer at the Polar Environment Atmospheric Research Laboratory (PEARL), in Eureka (80°N, 86°W), on Ellesmere Island in the Canadian High Arctic. A radiation model reveals the intrusion is associated with a 17 W m-2 average increase in downwelling longwave irradiance. Optically thin clouds, as observed by the lidar, contribute a further 20 W m-2 to the downwelling longwave irradiance at their peak. Intrusion events are shown to be a regular occurrence in the Arctic winter with implications for the understanding of the mechanisms driving Arctic Amplification.

  1. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  2. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  3. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  4. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  5. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  6. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    Science.gov (United States)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    Water vapor in the atmosphere plays an important role in radiative transfer and the process of radiative balance so critical for understanding global change. It is the principal ingredient in cloud formation, one of the most difficult atmospheric processes to model, and the most variable component of the Earth-atmosphere albedo. And as a free molecule, it is the most active infrared absorber and emitter, thus, the most important greenhouse gas. The radiative impact of water vapor is important at all levels of the atmosphere. Even though moisture decreases by several orders-of-magnitude from the Earth's surface to the tropopause, recent research has shown that, from a radiative standpoint, a small percentage change in water vapor at any level is nearly equivalent. Therefore accurate and precise measurements of this important atmospheric constituent are needed at all levels to evaluate the full radiative impact. The need for improved measurements in the upper troposphere is particularly important because of the generally hostile (very dry and cold) conditions encountered. Because of the importance of water vapor to the understanding of radiative transfer, the Department of Energy's Atmospheric Radiation Measurements (ARM) program initiated a series of measurement campaigns at the Cloud And Radiation Testbed (CART) site in Oklahoma, especially focused on atmospheric water vapor. Three water vapor intensive observation period (water vapor IOP) campaigns were planned. Two of the water vapor IOP campaigns have been completed: the first IOP was held during the fall of 1996 with a focus on boundary layer water vapor measurements, and the second was conducted during the fall of 1997 with a focus on both boundary layer moisture e and moisture in the upper troposphere. This paper presents a review of the intercomparisons of water vapor measurements in the upper troposphere aquired during the second water vapor IOP. Data to be presented include water vapor measurements ements

  7. An optical water vapor sensor for unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  8. Tracing water vapor and ice during dust growth

    CERN Document Server

    Krijt, Sebastiaan; Bergin, Edwin A

    2016-01-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ${\\sim}50$ in the disk atmosphere. In our isothermal column, this vapor depletion r...

  9. On the vertical distribution of water vapor in the Martian tropics

    Science.gov (United States)

    Haberle, Robert M.

    1988-01-01

    Although measurements of the column abundance of atmospheric water vapor on Mars have been made, measurements of its vertical distribution have not. How water is distributed in the vertical is fundamental to atmosphere-surface exchange processes, and especially to transport within the atmosphere. Several lines of evidence suggest that in the lowest several scale heights of the atmosphere, water vapor is nearly uniformly distributed. However, most of these arguments are suggestive rather than conclusive since they only demonstrate that the altitude to saturation is very high if the observed amount of water vapor is distributed uniformly. A simple argument is presented, independent of the saturation constraint, which suggests that in tropical regions, water vapor on Mars should be very nearly uniformly mixed on an annual and zonally averaged basis.

  10. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  11. DSMC simulation of Europa water vapor plumes

    Science.gov (United States)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  12. Water vapor diffusion into a nanostructured iron oxyhydroxide.

    Science.gov (United States)

    Song, Xiaowei; Boily, Jean-François

    2013-06-17

    Water diffusion through 0.4 nm × 0.4 nm wide tunnels of synthesized akaganéite (β-FeOOH) nanoparticles was studied by a coupled experimental-molecular modeling approach. A sorption isotherm model obtained from quartz crystal microbalance measurements suggests that the akaganéite bulk can accommodate a maximum of 22.4 mg of water/g (44% bulk site occupancy) when exposed to atmospheres of up to 16 Torr water vapor. Fourier transform infrared spectroscopy also showed that water molecules interact with (hydr)oxo groups on both the akaganéite bulk and surface. Diffusion reactions through the akaganéite bulk were confirmed through important changes in the hydrogen-bonding environment of bulk hydroxyl groups. Molecular dynamics simulations showed that water molecules are localized in cavities that are bound by eight hydroxyl groups, forming short-lived (water are three orders of magnitude lower than they are in liquid water (D = 0.0-11.1 × 10(-12) m(2)·s(-1)), whereas large integral rotational correlation times are 4 to 15 times higher (τr = 8.4-31.8 ps). Moreover, both of these properties are strongly loading-dependent. The simulations of the interface between the water vapor phase and the (010) surface plane of the akaganéite, where tunnel openings are exposed, revealed sluggish rates of incorporation between interfacial water species and their tunnel counterparts. The presence of defects in the synthesized particles are suspected to contribute to different diffusion rates in the laboratory when compared to those observed in pristine crystalline materials, as studied by molecular modeling.

  13. Water vapor: An extraordinary terahertz wave source under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith [Massachusetts Institute of Technology, PO Box 380792, Cambridge, MA 02238-0792 (United States); HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada)], E-mail: kjohnson@mit.edu; Price-Gallagher, Matthew [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Mamer, Orval; Lesimple, Alain [Mass Spectroscopy Unit, 740 Dr. Penfield, Suite 5300, McGill University, Montreal, QC, H3A 1A4 (Canada); Fletcher, Clark [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Chen Yunqing; Lu Xiaofei; Yamaguchi, Masashi; Zhang, X.-C. [W.M. Keck Laboratory for Terahertz Science, Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2008-09-15

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H{sub 2}O vapor is significantly stronger than that from D{sub 2}O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  14. Observations of atmospheric water vapor with the SAGE 2 instrument

    Science.gov (United States)

    Larsen, Jack C.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.

    1988-01-01

    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition.

  15. Development of Field-deployable Diode-laser-based Water Vapor Dial

    Directory of Open Access Journals (Sweden)

    Le Hoai Phong Pham

    2016-01-01

    Full Text Available In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  16. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    Science.gov (United States)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  17. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  18. Seasonal Trends in Stratospheric Water Vapor as Derived from SAGE II Data

    Science.gov (United States)

    Roell, Marilee M.; Fu, Rong

    2008-01-01

    Published analysis of HALOE and Boulder balloon measurements of water vapor have shown conflicting trends in stratospheric water vapor for the periods of 1981 through 2005. Analysis of the SAGE II monthly mean water vapor data filtered for large aerosol events for time periods from 1985-1991, 1995-1999, and 2000-2005 have shown a globally decreasing water vapor trend at 17.5km. Seasonal analysis for these three time periods show a decreasing trend in water vapor at 17.5km for the winter and spring seasons. The summer and autumn seasonal analysis show a decreasing trend from 1985-2005, however, there is a increasing trend in water vapor at 17.5km for these seasons during 1995-2005. Latitude vs height seasonal analysis show a decreasing trend in the lower stratosphere between 20S - 20N for the autumn season, while at the latitudes of 30-50S and 30-50N there is an increasing trend in water vapor at heights up to 15km for that season. Comparison with regions of monsoon activity (Asian and North American) show that the Asian monsoon region had some effect on the lower stratospheric moistening in 1995-1999, however, for the time period of 2000-2005, there was no change in the global trend analysis due to either monsoon region. This may be due to the limitations of the SAGE II data from 2000-2005.

  19. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  20. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  1. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [and others

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  2. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    Science.gov (United States)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  3. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content......, cation exchange capacity) and engineering properties (e.g., swelling potential). Our objectives for this work were to: (i) evaluate the potential of several theoretical and empirical isotherm models to accurately describe measured moisture adsorption/desorption isotherms (aw range of 0.03 to 0.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...

  4. Field campaign LINEX 96/1 - possibilities of water vapor observation in the free atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Dier, H.; Engelbart, D.; Goersdorf, U.; Lehmann, V.; Leiterer, U.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium; Bakan, S. [Hamburg Univ. (Germany). Meteorologisches Inst.; Boesenberg, J.; Jansen, F.; Wulfmeyer, V. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Gendt, G. [GeoForschungsZentrum Potsdam (Germany); Gueldner, J. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    1998-12-01

    LINEX 96/1 was a field experiment to assess information content, accuracy, and availability for different remote sensing techniques measuring water vapor. An important goal of LINEX 96/1 was the test of a new differential absorption lidar (DIAL) developed by the MPI fuer meteorologie Hamburg. Comparisons of DIAL with rawinsonde and tethersonde measurements showed an excellent accuracy of the DIAL method in the determination of water vapor with high vertical and temporal resolution. The operation of the microwave radiometer WVR-1100 showed a high availability of water vapor and liquid water column content measurements except during rain. Microwave radiometers are reliable systems to measure the precipitable water vapor and liquid water content under unattended operational conditions with high accuracy and temporal resolution. Measurements of the water vapor column content by ground-based GPS receivers proved highly reliable. Comparisons with corresponding values of the microwave radiometer showed a bias less than 0.6 mm and a standard deviation less than 0.9 mm. The main problem of an operational use of this new information is that the evaluated data are not available in real-time because, at present, the data have to be postprocessed in a ground control center. During LINEX 96/1, possibilities for estimation of water vapor column content from sun and star photometer measurements were also demonstrated. The comparison of the precipitable water vapor content measurements of sun and star photometers, microwave radiometer, and rawinsondes RS 80 showed a good agreement. Unfortunately, the use of optical methods like sun and star photometers is restricted by cloudy conditions. 28 refs.

  5. Urban emissions of water vapor in winter

    Science.gov (United States)

    Salmon, Olivia E.; Shepson, Paul B.; Ren, Xinrong; Marquardt Collow, Allison B.; Miller, Mark A.; Carlton, Annmarie G.; Cambaliza, Maria O. L.; Heimburger, Alexie; Morgan, Kristan L.; Fuentes, Jose D.; Stirm, Brian H.; Grundman, Robert; Dickerson, Russell R.

    2017-09-01

    Elevated water vapor (H2Ov) mole fractions were occasionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emission estimates range between 1.6 × 104 and 1.7 × 105 kg s-1 and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1°C d-1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.

  6. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System)satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented.A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information,which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.

  7. Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance

    Science.gov (United States)

    Hu, Mingke; Zhao, Bin; Ao, Xianze; Pei, Gang

    2017-05-01

    A radiative cooler based on aluminum-evaporated polyvinyl-fluoride surface was employed to investigate the effect of precipitable water vapor amount on its radiative cooling performance. A mathematic model of steady heat transfer that considers the spectral radiant distribution of the sky, the transparent cover and the collecting surface was established. The results indicate that the amount of precipitable water vapor shows a remarkable and negative effect on radiative cooling performance of the radiative cooler. Both the temperature difference between the cooler and surroundings and the net radiative cooling power decrease as the precipitable water vapor amount increases. The net radiative cooling power drops by about 41.0% as the the precipitable water vapor amount changes from 1.0 cm to 7.0 cm. Besides, the radiative cooler shows better cooling performance in winter than in summer. The net radiative cooling power in summer of Hefei is about 82.2% of that in winter.

  8. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  9. In-Situ Water Vapor Probe for a Robot Arm-Mounted, Compact Water Vapor Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to test a prototype water vapor sampling end-effector in the laboratory and in the field thatwill eventually be integrated with a small, infrared...

  10. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  11. 1,3-二甲基咪唑四氟硼酸盐的合成及其水溶液的蒸气压测定%Vapor Pressure Measurement of Water+1,3-Dimethylimidazolium Tetrafluoroborate System

    Institute of Scientific and Technical Information of China (English)

    武向红; 李静; 范丽华; 郑丹; 董丽

    2011-01-01

    In absorption cycles, ionic liquid (IL) 1,3-dimethylimidazolium tetrafluoroborate ([Dmim]BF4) may be a promising absorbent of working pair using water as refrigerant. The vapor pressures of [Dmim]BF4 aqueous solution were measured with the boiling-point method in the temperature range from 312.25 to 403.60 K and in the mass concentration range of 65% to 90% of [Dmim]BF4. The experimental data were correlated with an Antoine-type equation and the Non-Random Two-Liquid (NRTL) model, and the average absolute deviations between the experimental and calculated values were 1.06% and 1.15%, respectively. For the [Dmim]BF4 aqueous solution, the experimental vapor pressures show negative deviations from the calculated data with Raoult's law. For higher mass concentration of the IL, the deviation is more negative. In addition, the vapor pressures, the hydrophilicity and the solubility of [Dmim]BF4 aqueous solutions were compared with those of [Dmim]C1 aqueous solutions and [Bmim]BF4 aqueous solutions at IL-mole fraction of 0.20.

  12. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene

    Science.gov (United States)

    Liang, Jin-Hu; Wang, Su; Zhang, Sheng-Tao; Yue, Lian-Jie; Fan, Bing-Cheng; Zhang, Xin-Yu; Cui, Ji-Ping

    2014-08-01

    In ground tests of hypersonic scramjet, the high-enthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when ϕ = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when ϕ = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at ϕ = 0.5, while no effect is found at ϕ = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.

  13. Characteristics of water vapor fluctuations by the use of GNSS signal delays

    Science.gov (United States)

    Gregorič, Asta; Škrlec, Samo; Mole, Maruška; Bergant, Klemen; Vučković, Marko; Stanič, Samo

    2017-04-01

    Water vapor plays a crucial role in a number of atmospheric processes related to the water cycle. It is also the Earth's most abundant greenhouse gas, thus influencing global climate as well as micrometeorology. Since the phase change of water is associated with large latent heat, water vapor plays an important role in the vertical atmospheric stability. It also influences aerosol aging and removal from the atmosphere. As the temporal and spatial distribution of water vapor is in general highly variable, continuous monitoring at several locations is required to be able to describe the situation in a given terrain configuration. In-situ meteorological measurements provide the information on water vapor concentration at the surface only, while the radiosonde data suffers from poor temporal and spatial (horizontal) resolution. Integrated water vapor content above a certain location on the surface can also be monitored in real time, exploiting the wet delay of GNSS signals, however, it does not yield absolute humidity. In this contribution we present a measurement of average absolute humidity within the Vipava valley (Slovenia), between February 2015 and October 2016. It is based on differential measurement of integrated water vapor content at two adjacent stations, using stationary GNSS receivers, which are horizontally displaced for 6 km, and vertically displaced for 826 m. The integrated water vapor values were derived using the GIPSY-OASIS II software. One of the receivers is located at the valley floor (125 m a.s.l.) and the other on the top of the adjacent mountain ridge (951 m a.s.l.). Visual data from both stations was also stored to evaluate the reliability of the remote sensing results in different weather conditions. Based on the dataset covering 20 consecutive months, we investigated temporal evolution of the water vapor content within the valley. The results show typical seasonal pattern and are strongly correlated to weather phenomena. Comparison to the

  14. The upward branch of the Brewer-Dobson circulation quantified by tropical stratospheric water vapor and carbon monoxide measurements from the Aura Microwave Limb Sounder

    Science.gov (United States)

    Minschwaner, K.; Su, H.; Jiang, J. H.

    2016-03-01

    The vertical distributions of water vapor (H2O) and carbon monoxide (CO) in the tropical lower stratosphere are controlled largely by their mixing ratios near the tropopause and by ascending motions as part of the Brewer-Dobson circulation (BDC). The upward propagation of seasonal variations imprinted on H2O and CO vertical profiles, often referred to as the tropical "tape recorder," can be used to derive the mean vertical velocity, w*>¯, in this region of the lower stratosphere where quasi-horizontal mixing is not strong enough to erase the seasonal tape recorder signals. We used Aura Microwave Limb Sounder observations of the tropical tape recorders from 2004 to 2014 to derive values of w*>¯ at pressures between 90 and 16 hPa (about 18 to 28 km altitude). Mean vertical profiles of w*>¯ are consistent with calculated velocities derived from net radiative heating rates based on observed temperature, humidity, cloud, and trace gas amounts. Temporal variations in w*>¯ are dominated by a quasi-biennial oscillation (QBO) and seasonal cycles, with maximum upwelling coinciding with easterly phases of the QBO in zonal wind shear and during the November-December period of the seasonal cycle. Both the QBO and annual modes emphasize the importance of wave phenomena in modulating the strength of tropical upwelling in the BDC. Interannual anomalies in w*>¯ are correlated with variations in the El Niño-Southern Oscillation (ENSO), with enhanced stratospheric upwelling during El Niño phases and reduced upwelling during La Niña. A small decreasing linear trend (~6%/decade) in w*>¯ is observed from 2005 to 2014, although confidence is low in identifying such a trend as part of a long-term change due to the influence of ENSO over this period.

  15. Remotely sensed water vapor variations during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Meischner, P.F. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kiemle, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Ehret, G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kaestner, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Schreiber, H.G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Evtushenko, A.V. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Kutuza, B.G. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Petrenko, B.Z. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki; Smirnov, M.T. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Radiotekhniki i Ehlektroniki

    1994-11-01

    Total atmospheric water vapor contents have been measured during CLEOPATRA `92 using different methods. A multifrequency microwave radiometer system from IRE, Moskow operated from ground and an airborne DIAL system, DLR, performed measurements above the radiometer site. The results compare well if the atmosphric conditions are sufficiently homogeneous in the mesoscale and complement in a high space resolution for the DIAL measurements and a high time resolution of the microwave system. Under these conditions both measurement results further agree with radiosoundings and aircraft in situ measurements within the estimated measurement errors. Coordinated observations by the different systems with high time and high space resolution open a good change to separate between transports caused by advection or convection. Microwave radiometer measurements from ground are best suited for monitoring long term trends as well as fast fluctuations, whereas the DIAL measurements give more detailed insight in the diffusion processes within the atmospheric boundary layer ABL. The measurements on May 29 very impressively show the moisture fluxes from local lakes into the ABL. The observations support the ABL to act as a flux-averaging medium, thus contributing naturally to an upscaling which improves the use of remote measurements from space for the estimation of area averaged moisture fluxes. (orig.)

  16. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  17. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-03-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  18. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  19. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  20. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    Science.gov (United States)

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling.

  1. Carbon and water vapor fluxes of different ecosystems in Oklahoma

    Science.gov (United States)

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspira...

  2. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    Science.gov (United States)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  3. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  4. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  5. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  6. Measurement of the Kerr nonlinear refractive index of Cs vapor

    CERN Document Server

    Araújo, Michelle O; Oriá, Marcos; Chevrollier, Martine; de Silans, Thierry Passerat; Castro, Romeu; Moretti, Danieverton

    2014-01-01

    Atomic vapors are systems well suited for nonlinear optics studies but very few direct measurements of their nonlinear refractive index have been reported. Here we use the z-scan technique to measure the Kerr coefficient, $n_2$, for a Cs vapor. Our results are analyzed through a four-level model, and we show that coherence between excited levels as well as cross-population effects contribute to the Kerr-nonlinearity.

  7. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  8. Spectroscopy underlying microwave remote sensing of atmospheric water vapor

    Science.gov (United States)

    Tretyakov, M. Yu.

    2016-10-01

    The paper presents a spectroscopist's view on the problem of recovery of the atmosphere humidity profile using modern microwave radiometers. Fundamental equations, including the description of their limitations, related to modeling of atmospheric water vapor absorption are given. A review of all reported to date experimental studies aimed at obtaining corresponding numerical parameters is presented. Best estimates of these parameters related to the Voigt (Lorentz, Gross, Van Vleck - Weisskopf and other equivalent) profile based modeling of the 22- and 183-GHz water vapor diagnostic lines and to non-resonance absorption as well as corresponding uncertainties are made on the basis of their comparative analysis.

  9. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  10. Experimental and numerical study of liquefied natural gas (LNG) pool spreading and vaporization on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Kakosimos, Konstantinos; Zhang, Bin; Liu, Yi; Mentzer, R; Mannan, M Sam

    2017-07-15

    The investigation of pool spreading and vaporization phenomenon is an essential part of consequence analysis to determine the severity of LNG spills on water. In this study, release of LNG on water during marine operations is studied through experimental and numerical methods The study involves emulation of an LNG leak from transfer arms during side by side loading operations. The experimental part involves flow of LNG in a narrow trench filled with water and subsequent measurement of pool spreading and vaporization parameters. The numerical part involves CFD simulation using a three dimensional hybrid homogenous Eulerian multiphase solver to model the pool spreading and vaporization phenomenon. In this method, LNG is modeled as dispersed phase droplets which can interact with continuous phases - water and air through interphase models. The numerical study also employs a novel user-defined routine for capturing the LNG vaporization process. The CFD solver was capable of capturing the salient features of LNG pool spreading and vaporization phenomena. It was observed from experiment and CFD simulation that wind influenced both pool spreading and vaporization phenomenon through entrainment and convection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Supersaturation in the spontaneous formation of nuclei in water vapor

    Science.gov (United States)

    Sander, Adolf; Damkohler, Gerhard

    1953-01-01

    According to experience, a certain supersaturation is required for condensation of water vapor in the homogeneous phase; that is, for inception of the condensation, at a prescribed temperature, the water vapor partial pressure must lie above the saturation pressure. The condensation starts on so-called condensation nuclei. Solid or liquid suspended particles may serve as nuclei; these particles may either a priori be present in the gas phase (dust, soot), or may spontaneously be formed from the vapor molecules to be condensed themselves. Only the second case will be considered. Gas ions which facilitate the spontaneous formation of nuclei may be present or absent. The supersaturations necessary for spontaneous nucleus formation are in general considerable higher than those in the presence of suspended particles.

  12. The Infrared Astronomical Characteristics of Roque de los Muchachos Observatory: precipitable water vapor statistics

    CERN Document Server

    Garcia-Lorenzo, B; Castro-Almazan, J; Pinilla-Alonso, N; Muñoz-Tuñon, C; Rodriguez-Espinosa, J M

    2010-01-01

    The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical analysis of GPS measurements points to ORM as an observing site with suitable conditions for infrared (IR) observations, with a median column of precipitable water vapor (PWV) of 3.8 mm. PWV presents a clear seasonal behavior, being Winter and Spring the best seasons for IR observations. The percentage of nighttime showing PWV values smaller than 3 mm is over 60% in February, March and April. We have also estimated the temporal variability of water vapor content at the ORM. A summary of PWV statistical results at different astronomical sites is presented, recalling that these values are not directly comparable as a result of the differences in the techniques used to recorded the data.

  13. Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME

    Directory of Open Access Journals (Sweden)

    R. Lang

    2002-07-01

    Full Text Available We use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP in order to retrieve total water vapor columns (WVC from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME. SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but slower, Optical Absorption Coefficient Spectroscopy (OACS.

  14. Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME

    Directory of Open Access Journals (Sweden)

    R. Lang

    2003-01-01

    Full Text Available We use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP in order to retrieve total water vapor columns (WVC from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME. SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly-scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but more computationally expensive, Optical Absorption Coefficient Spectroscopy (OACS.

  15. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch

    CERN Document Server

    Collette, S; Reniers, F

    2016-01-01

    The reactivity of water vapor introduced in the flowing post-discharge of an RF atmospheric plasma torch is investigated through electrical characterization, optical emission spectroscopy and mass spectrometry measurements. Due to the technical features of the plasma torch, the post-discharge can be considered as divided into two regions: an inner region (inside the plasma torch device) where the water vapor is injected and an outer region which directly interacts with the ambient air. The main reactions induced by the injection of water vapor are identified as well as those indicative of the influence of the ambient air. Plausible pathways allowing the production of H, OH, O radicals and H2O2 are discussed as well as reactions potentially responsible for inhomogeneities and for a low DC current measured in the flowing post-discharge. Keywords: atmospheric post-discharge, H2O plasma reactivity, RF plasma torch

  16. Indirect radiative forcing of aerosols via water vapor above non-precipitating maritime cumulus clouds

    Directory of Open Access Journals (Sweden)

    M. A. Pfeffer

    2011-10-01

    Full Text Available Aerosol-cloud-water vapor interactions in clean maritime air have been described for different aerosol sources using the WRF-Chem atmospheric model. The simulations were made over the Lesser Antilles in the region of the RICO measurement campaign where the clouds are low, patchy, typical trade-wind cumuli. In this very clean air, sea salt and DMS are found to have greater effects than anthropogenic pollution on the cloud droplets' effective radii and longwave and shortwave outgoing top of atmosphere radiation. The changes in radiation due to each aerosol source are a function of how each source influences aerosol concentration, cloud droplet number concentration, cloud droplet sizes, and water vapor concentration. Changes in outgoing shortwave radiation are due predominantly to changes in the clouds, followed by the direct aerosol effect which is about 2/3 as important, followed by the effects of water vapor which is in turn about 2/3 as important as the direct effect. Changes in outgoing longwave radiation are due predominantly to changes in the clouds, with changes in water vapor being about 1/10 as important. The simulated changes in water vapor concentration are due to the competing effects of aerosol particles being able to both enhance condensation of available water vapor and enhance evaporation of smaller droplets. These changes are independent of precipitation effects as there is essentially no drizzle in the domain. It is expected that the indirect radiative forcing of aerosols via water vapor may be stronger in dirtier and more strongly convective conditions.

  17. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    Science.gov (United States)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  18. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations - Method, validation, and data characteristics

    Science.gov (United States)

    Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1993-01-01

    Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.

  19. Measurement and correlation of vapor-liquid equilibria for dichloromethane-methanol-acetone-water system%二氯甲烷-甲醇-丙酮-水体系汽液平衡测定和关联

    Institute of Scientific and Technical Information of China (English)

    邵少花; 顾正桂

    2012-01-01

    In the chemical and medicine industry,the dichloromethane-methanol-acetone-water quaternary system is commonly existed in the liquid waste. It is essential of the vapor-liquid equilibrium ( VLE ) data for this system to recover them by separating process. Isobaric VLE data on the six pairs of binary mixtures of dichloromethane, methanol, acetone and water were determined with single stage vapor-liquid equilibrium still at atmospheric pressure. The result shows that the thermodynamic consistency of the experimental data is satisfied by means of point to point method. In the experiment, the vapor-liquid phase compositions were analyzed by using SP-6800 gas chromatograph. Six pairs of correlation parameters of Wilson model and the calculated values of vapor-phase compositions were observed by using non-linear least square method procedure of Matlab. Besides, the vapor-liquid equilibria in this quaternary system were measured experimentally at 100 kPa, correlated by the six pairs of model parameters, and compared with the experimental data. The results obtained show that the absolute deviation of experiment and calculation is less than 0. 05. It means that the Wilson model is reliable for the prediction and correlation of the VLE data of the dichloromethane-methanol-acetone-water quaternary system as to its exact fitting accuracy. The experimental and correlative data can provide a basis for extractive distillation separation of dichloromethane-methanol-acetone-water system.%二氯甲烷-甲醇-丙酮-水四元体系常见于化工、医药等行业生产的废液中,该体系分离回收的前提是进行汽液平衡数据的测定.现利用单级循环汽液平衡釜测定了二氯甲烷、甲醇、丙酮、水混合液中的6组二元体系在常压下的汽液平衡数据,同时对其进行了点对点法热力学一致性校验.实验中采用SP-6800型气相色谱仪分析汽液相组成,并运用Matlab中的非线性最小二乘法分别关联6

  20. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  1. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  2. Isotopic Controls of Rainwater and Water Vapor on Mangrove Leaf Water and Lipid Biomarkers

    Science.gov (United States)

    Ladd, N.; Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Hydrogen isotope ratios (2H/1H or δ2H) of sedimentary mangrove lipid biomarkers can be used as a proxy of past salinity and water isotopes. This approach is based on the observation that apparent 2H/1H fractionation between surface water and mangrove lipids increases with surface water salinity in six species of mangroves with different salt management strategies growing at sites spanning a range of relative humidities throughout Australia and Micronesia. In order to more robustly apply mangrove lipid δ2H as a paleoclimate proxy, we investigated the cause of the correlation between apparent 2H fractionation and salinity. We present results from two related experiments that assessed controls on isotopes of mangrove leaf water, the direct source of hydrogen in lipids: (1) Measurements of natural δ2H in precipitation, surface water, and mangrove tissue water from a series of lakes with varying salinity and water isotope composition in Palau, and (2) measurements of mangrove tissue water and treatment water from a controlled simulation in which mangroves were treated with artificial rain of varying isotopic composition. Rainwater 2H/1H fluctuations of 30‰ over a one-month period explain up to 65% of the variance in leaf water δ2H for Bruguiera gymnorhiza mangroves from Palau despite lake water isotope differences among sites of up to 35‰. This indicates that in humid tropical settings, leaf water isotopes are more closely related to those of precipitation and water vapor than to those of lake surface water, explaining the observed change in apparent fractionation in B. gymnorhiza lipids with salinity. The relationship between leaf water and rainwater isotopes may be due to either equilibration of leaf water with water vapor in the nearly saturated air or direct foliar uptake of rain and/or dew. Foliar uptake is an important water source for many plants, but has not been documented in mangroves. We tested the capacity for mangroves to perform this function by

  3. Development of a scattering probability method for accurate vapor fraction measurements by neutron radiography

    CERN Document Server

    Joo, H

    1999-01-01

    Recent test results indicated drawbacks associated with the simple exponential attenuation method (SEAM) as currently applied to neutron radiography measurements to determine vapor fractions in a hydrogenous two-phase flow in a metallic conduit. The scattering component of the neutron beam intensity exiting the flow system is not adequately accounted for by SEAM, and this leads to inaccurate results. To properly account for the scattering effect, a neutron scattering probability method (SPM) is developed. The method applies a neutron-hydrogen scattering kernel to scattered thermal neutrons that leave the incident beam in narrow conduits but eventually show up elsewhere in the measurements. The SPM has been tested with known vapor (void) distributions within an acrylic disk and a water/vapor channel. The vapor (void) fractions deduced by SPM are in good agreement with the known exact values. Details of the scattering correction method and the test results are discussed.

  4. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  5. [Study on large-scale regional laser detection methods for water vapor concentration].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Wang, Li-Ming; You, Kun; Zhou, Yi; Sun, Xiao-Min; Liu, Zhen-Min

    2013-03-01

    Water vapor is an important meteorological parameter in the atmosphere, TDLAS direct absorption technology combined with open-path monitoring was used in order to achieve large-scale regional atmospheric water vapor concentration detection with high sensitivity, high accuracy and fast response, and to correct the remote sensing data. The large-scale regional laser detection system for water vapor was designed and the absorption line of water vapor molecules near 1.27 microm was chosen as the goal line. The system performance was verified in conjunction with a multiple reflection cell, that the system limit sensitivity was 14.803 mmol.mol-1 in optical path of 40 m. The continuous field experiment in 1,420 m optical path at the Yucheng Integrated Experimental Station, CAS was completed with this system which worked stably. Then the measured data was compared with the data of a gas analyzer LI-7500 in eddy correlation observation system at the same site, and the data consistency was good. A new method for water vapor concentration monitoring in the complex field of non-uniform underlying surface was provided.

  6. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    Energy Technology Data Exchange (ETDEWEB)

    FERRARE,R.A.

    2000-01-09

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  7. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  8. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    Science.gov (United States)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  9. Vaporization of fault water during seismic slip

    NARCIS (Netherlands)

    Chen, Jianye|info:eu-repo/dai/nl/370819071; Niemeijer, André R.|info:eu-repo/dai/nl/370832132; Fokker, Peter A.|info:eu-repo/dai/nl/08711092X

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase

  10. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  11. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    Science.gov (United States)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  12. A new technique for monitoring the water vapor in the atmosphere

    Science.gov (United States)

    Black, H. D.; Eisner, A.

    1984-01-01

    In the correction of satellite Doppler data for tropospheric effects the precipitable water vapor (PWV) is inferred at the tracking site. The technique depends on: (1) an ephemeris for the satellite; (2) an analytic model for the refraction range effect that is good to a few centimeters; (3) Doppler data with noise level below 10 centimeters; and (4) a surface pressure/temperature measurement at the tracking site. The PWV is a by product of the computation necessary to correct the Doppler data for tropospheric effects. A formulation of the refraction integral minimizes the necessity for explicit water vapor, temperature and pressure profiles.

  13. Carbon and water vapor balance in a subtropical pine plantation

    Directory of Open Access Journals (Sweden)

    Posse G

    2016-10-01

    Full Text Available Afforestation has been proposed as an effective tool for protecting primary and/or secondary forests and for mitigating atmospheric CO2. However, the dynamics of primary productivity differs between plantations and natural forests. The objective of this work was to evaluate the potential for carbon storage of a commercial pine plantation by determining its carbon balance. Measurements started when trees were aged 6 and ended when they were older than 8 years. We measured CO2 and water vapor concentrations using the Eddy covariance method. Gross primary productivity in 2010 and 2011 was 4290 ± 473 g C m-2 and 4015 ± 485 g C m-2, respectively. Ecosystem respiration ranged between 7 and 20 g C m-2 d-1, reaching peaks in all Februaries. Of the 30 months monitored, the plantation acted as carbon source for 21 months and as carbon sink for 6 months, while values close to neutrality were obtained during 3 months. The positive balance representing CO2 loss by the system was most likely due to the cut branches left on the ground following pruning activities. The plantation was subjected to pruning in January and September 2008 and to sanitary pruning in October 2010. In all cases, cut branches were not removed but remained on the ground. Residue management seems to have a very important impact on carbon balance.

  14. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    Science.gov (United States)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity

  15. Effects of Satellite Spectral Resolution and Atmospheric Water Vapor on Retrieval of Near-Ground Temperatures

    Science.gov (United States)

    1993-04-28

    alternate low-level water vapor profile was considered. This " dry " water vapor profile (dashed in Fig. I) was specified to be equal to the "basic...the dry water vapor profile for the night situation. As expected, the unresolvable perturbations of surface temperature were smaller for the dry

  16. A scanning Raman lidar for observing the spatio-temporal distribution of water vapor

    Science.gov (United States)

    Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka

    2016-12-01

    We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site

  17. Vapor pressure and freezing point osmolality measurements applied to a volatile screen.

    Science.gov (United States)

    Draviam, E J; Custer, E M; Schoen, I

    1984-12-01

    This is a report of a rapid and precise screening procedure, developed for the determination of ethanol in serum using osmolality measurements. The osmolality of the patient is determined by freezing point method (freezing point osmometry) and dew point (water vapor pressure osmometry) method. The difference between freezing point osmolality and vapor pressure osmolality (delta osm) is due to the presence of volatiles in the serum, because the volatiles are not measured by vapor pressure osmometry. The amount of ethanol (mg/dL) in serum is estimated by multiplying delta osm by a factor of 4.2. As a comparison method, ethanol also is measured by a spectrophotometric alcohol dehydrogenase method. In addition, a significant difference between an osmometric alcohol assayed value and enzymatic spectrophotometric measurement indicates the presence of volatiles, other than ethanol. In addition to ethanol there is a linear relationship between osmolality and isopropanol or methanol when added in vitro to serum.

  18. Self-deactivation of water vapor - Role of the dimer

    Science.gov (United States)

    Zuckerwar, A. J.

    1984-01-01

    A phenomenological multiple-relaxation theory of the deactivation rate constant for the nu-2 (1 - 0) bending mode of water vapor is presented which incorporates the role not only of the excited monomer but also of the bound molecular complex, in particular the dimer. The deactivation takes place by means of three parallel processes: (1) collisional deexcitation of the excited monomer, (2) a two-step reaction involving association and spontaneous redissociation of an H2O collision complex, and (3) spontaneous dissociation of the stably bound H2O dimer. Oxygen, but not nitrogen or argon, serves as an effective chaperon for the formation of the activated complex. This observation explains the impurity dependence of the self-deactivation rate constant of water vapor. Analysis of an ultrasonic absorption peak based on the third process yields values for the standard entropy and enthalpy of dissociation of the stably bound H2O dimer.

  19. A nonisothermal emissivity and absorptivity formulation for water vapor

    Science.gov (United States)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  20. Modeling an integrated photoelectrolysis system sustained by water vapor

    OpenAIRE

    Xiang, Chengxiang; Chen, Yikai; Lewis, Nathan S.

    2013-01-01

    Two designs for an integrated photoelectrolysis system sustained by water vapor have been investigated using a multi-physics numerical model that accounts for charge and species conservation, electron and ion transport, and electrochemical processes. Both designs leverage the use of a proton-exchange membrane that provides conductive pathways for reactant/product transport and prevents product crossover. The resistive losses, product gas transport, and gas crossovers as a function of the geom...

  1. Permeation of oxygen, water vapor, and limonene through printed and unprinted biaxially oriented polypropylene films.

    Science.gov (United States)

    Rubino, M; Tung, M A; Yada, S; Britt, I J

    2001-06-01

    Oriented polypropylene (OPP) and coated OPP (acrylic/OPP/PVDC) films were printed with two commercially available inks to investigate the influence of inks on water vapor and oxygen transmission rates. The permeation of an aroma compound (d-limonene) through coated OPP film printed with these inks was also evaluated at 35 degrees C and 100% relative humidity. The water vapor transmission rate increased significantly through OPP film printed with nitrocellulose-based ink. The oxygen transmission rate was significantly lower through both OPP and coated OPP films printed with the nitrocellulose ink. The effect of inks on limonene permeation was minor compared to the marked increase in permeation measured when the PVDC side of the coated film was exposed to the aroma, compared to the acrylic side. Scanning electron micrographs of coated film cross sections revealed changes in film structure upon exposure to limonene vapors, which were most pronounced when the PVDC side was exposed to limonene.

  2. Remotely sensed water vapor variations during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Meischner, P.F. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Kiemle, C. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Ehret, G. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Kaestner, M. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Schreiber, H.G. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Evtushenko, A.V. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Kutuza, B.G. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Petrenko, B.Z. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Smirnov, M.T. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation)

    1994-11-01

    Total atmospheric water vapor contents have been measured during CLEOPATRA `92 using different methods. A multifrequency microwave radiometer system from IRE, Moskow operated from ground and an airborne DIAL system, DLR, performed measurements above the radiometer site. The results compare well if the atmospheric conditions are sufficiently homogeneous in the mesoscale and complement in a high space resolution for the DIAL measurements and a high time resolution of the microwave system. Under these conditions both measurement results further agree with radiosoundings and aircraft in situ measurements within the estimated measurement errors. Coordinated observations by the different systems with high time and high space resolution open a good chance to separate between transports caused by advection or convection. Microwave radiometer measurements from ground are best suited for monitoring long term trends as well as fast fluctuations, whereas the DIAL measurements give more detailed insight in the diffusion processes within the atmospheric boundary layer ABL. The measurement on May 29 very impressively show the moisture fluxes from local lakes into the ABL. The observations support the ABL to act as a flux-averaging medium, thus contributing naturally to an upscaling which improves the use of remote measurements from space for the estimation of area averaged moisture fluxes. (orig.) [Deutsch] Der Gesamtsaeulenwassergehalt der Atmosphaere wurde waehrend CLEOPATRA `92 aus verschiedenen Messmethoden bestimmt. Ein Mehrfrequenz-Mikrowellenradiometersystem des IRE, Moskau hat vom Boden aus gemessen, waehrend mit einem flugzeuggetragenen DIAL System der DLR ueber dem Mikrowellensystem nach unten gemessen wurde. Die Messergebnisse sind gut vergleichbar bei mesoskalig homogenen Bedingungen und ergaenzen sich gut, was die hohe zeitliche Aufloesung der Radiometer und die hohe raeumliche Aufloesung des DIALs betrifft. Auch mit den Ergebnissen von Radiosondenmessungen und den

  3. Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; HU Jin-lian; YAN Hao-jing

    2002-01-01

    Solution-cast films of shape memory polyurethane have beea investigated. Differential scanning calorimetry,DMA, tensile test, water vapor permeability and the shape merry effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S- shaped curve, and increases abruptly at Tm of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D)are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below Tg. The crystalline state hardsegment is necessary for the good shape memory effect.

  4. Adsorption characteristics of water vapor on honeycomb adsorbents

    Science.gov (United States)

    Wajima, Takaaki; Munakata, Kenzo; Takeishi, Toshiharu; Hara, Keisuke; Wada, Kouhei; Katekari, Kenichi; Inoue, Keita; Shinozaki, Yohei; Mochizuki, Kazuhiro; Tanaka, Masahiro; Uda, Tatsuhiko

    2011-10-01

    Recovery of tritium released into working areas in nuclear fusion plants is a key issue of safety. A large volume of air from tritium fuel cycle or vacuum vessel should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes high-pressure drop in catalyst and adsorbent beds. In this study, the applicability of honeycomb-type adsorbents, which offers a useful advantage in terms of their low-pressure drop, to ACS was examined, in comparison with conventional pebble-type adsorbent. Honeycomb-type adsorbent causes far less pressure drop than pebble-type adsorbent beds. Adsorption capacity of water vapor on a honeycomb-type adsorbent is slightly lower than that on a pebble-type adsorbent, while adsorption rate of water vapor on honeycomb-type adsorbent is much higher than that of pebble-type adsorbent.

  5. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  6. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  7. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    Science.gov (United States)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  8. UTLS water vapor trends as observed by the Boulder balloon series

    Science.gov (United States)

    Kunz, A.; Mueller, R.; Homonnai, V.; Janosi, I. M.; Rohrer, F.; Spelten, N.; Hurst, D. F.; Forster, P.

    2012-12-01

    Thirty years of high resolution balloon-borne measurements over Boulder, Colorado, are used to investigate the water vapor trend in the tropopause region. This analysis extents already existing Boulder sonde trend statistics, usually focusing on altitudes above 16km, to lower altitudes in the UTLS. This is achieved using two new concepts: 1) Trends are presented in a tropopause (TP) referenced coordinate system from -2km below to 10km above the TP. 2) The sonde profiles are characterized according to tropical and midlatitude TP heights, since the sonde location at 40°N is affected by dynamics and seasonality of the local jet stream. A data selection according to branches with z_TP>14km (B1) and z_TPwater vapor reservoirs. An analysis based on these concepts reduces the dynamically-induced water vapor variability at the TP and allows trend studies in the UTLS. The analysis shows that trends in branch B1 have a better significance -2 to 4km around the TP compared with trends in branch B2. At higher altitudes trends are comparable with published trends, suggesting that a TP based trend calculation is not necessary there. Nevertheless, a decrease in water vapor beginning in 2001 is not visible in both branches between -2 to 4km around the TP. At higher altitudes, this decrease is flattened for the two branches compared with a third branch (B3) with TP heights between 12 and 14km. Branch B3 is characterized by a sharp slope of TP heights across the jet stream. We discuss the hypothesis that the decrease in water vapor beginning in 2001 above Boulder may also be linked with dynamics above the jet stream. These results are also revealed by HALOE based analyses. Using radiative transfer calculations based on a fixed dynamical heating assumption we will study the possible impact of observed water vapor trends around the TP on radiative forcing of surface temperatures.

  9. The Mobility of Electrons in Ammonia, Methylamine, and Water Vapors.

    Science.gov (United States)

    Blanks, Daniel Kaye

    Measurements of the mobility (mu) of electrons photoinjected into ammonia, methylamine, and water vapors were carried out as a function of the gas density n (10('18) -10('20), 10('19)-10('20), and (TURN)10('19) cm('-3) for NH(,3), NeNH(,2), and H(,2)O, respectively). An anomalous drop in the normalized mobility n(mu) was observed as n was raised above 10('19) cm('-3) in the case of NH(,3) and MeNH(,2). It is proposed that the decrease in n(mu) is associated with the transition from free to localized states and possibly the solvation of the electrons into clusters of polar molecules similar to the solvating clusters observed for electrons in some polar liquids. A computerized data acquisition system was developed to measure the transient current of (TURN) 1 nanoamp and 1-1000 (mu)sec duration produced by the motion of electrons moving between two parallel plates in a constant electric field E. The electrons were injected into the gas by illuminating the cathode with a pulse of UV light provided by a xenon lamp or a dye laser. A computer program was developed to fit the transient curves to a theoretical equation and calculate the mobility (mu) and the longitudinal diffusion constant D(,L). This led to attempts to measure the electron temperature T(,e) = eD(,L)/k(mu) as a function of E, but distortions in the electric field were found to affect the diffusion constant too severely to produce reliable results.

  10. Molecular dynamics of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  11. Molecular dynamics of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  12. The effect of titanium nanoparticles on Na–water vapor reaction at 105 °C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyeongbuk (Korea, Republic of); Korea Institute of Nuclear Safety, Yuseong, Daejeon 305-338 (Korea, Republic of)

    2015-11-15

    Highlights: • Na based Titanium Nanofluid (NaTiNF) has been produced. • We experimentally investigate the suppressed reactivity of NaTiNF. • We conduct NaTiNF–water vapor reaction experiment with visualization. • We demonstrate a lower temperature increment of NaTiNF than Na. • We observe a stable surface behavior of NaTiNF while vigorous surface reaction of Na. - Abstract: We investigated the suppressing effect of Sodium-based Titanium Nanofluid (NaTiNF) on the Sodium–water Vapor Reaction (SVR). The increases in temperature during the reaction of pure sodium (Na) and NaTiNF with water vapor were measured, and surface reaction phenomena were recorded using a high-speed camera. The temperature increase in the reaction of NaTiNF with water vapor was slower than that of Na. From the visualization view, the surface of NaTiNF remained stable whereas the surface of Na reacted vigorously during the reaction. This difference in behavior demonstrates that titanium nanoparticles (Ti NPs) of NaTiNF impede the contact between Na and water, and thereby suppress the chemical reactivity of the SVR.

  13. Effects of water concentration in the coating solution on the wall relaxation rate of octadecyltrichlorosilane coated rubidium vapor cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guiying; Wei, Lihua; Wang, Meiling; Zhao, Kaifeng, E-mail: zhaokf@fudan.edu.cn [Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China and Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Fudan University, Shanghai 200433 (China)

    2015-01-28

    High quality anti-relaxation surface coatings for atomic vapor cells are essential for the preservation of atomic spin coherence and the enhancement of measurement sensitivity. In this paper, we studied the effects of water concentration in octadecyltrichlorosilane (OTS) coating solution on the relaxation rate and its reproducibility of OTS coated Rubidium vapor cells. We found that appropriate water concentration can improve the anti-relaxation performance of OTS coated cells.

  14. Measurement of AC loss of superconductors by vaporizing method

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Hiroshi; Isono, Takaaki; Matsui, Kunihiro; Fujisaki, Reishi; Nunoya, Yoshihiko; Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-07-01

    In Japan Atomic Energy Research Institute, the development of superconducting pulse conductors for next period nuclear fusion reactors has been carried out. For these conductors, the rated current of 46 kA and the rated magnetic field of 13T are demanded. When the pulse excitation of superconductors is carried out, AC loss arises, and the temperature of the superconductors rises, and when it exceeds a certain value, the superconducting state cannot be maintained. Therefore, the AC loss of pulse conductors must be limited to a low value. It is difficult to evaluate the AC loss of superconductors by calculation, therefore, it is evaluated by actual measurement. There are magnetizing method and vaporizing method for measuring the AC loss. This time, the equipment for measuring the AC loss of 40 kA class superconductors by vaporizing method which measures the helium gas quantity vaporizing at the time of AC loss occurrence was designed and manufactured for the first time. The method of measuring the AC loss, the structure of the measuring equipment, the helium gas recovering part and the measuring part, the countermeasures for preventing helium gas leakage, the resistance heater for calibration, and the results of measurement are reported. (K.I.)

  15. Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales

    CERN Document Server

    Makarieva, Anastassia M

    2010-01-01

    Basic physical principles are considered that are responsible for the origin of dynamic air flow upon condensation of water vapor, the partial pressure of which represents a store of potential energy in the atmosphere of Earth. Quantitative characteristics of such flow are presented for several spatial scales. It is shown that maximum condensation-induced velocities reach 160 m/s and are realized in compact circulation patterns like tornadoes.

  16. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vertical structure of water vapor in atmosphere is one of the initial information of numerical weather forecast model. Because of the strong variation of water vapor in atmosphere and limited spatio-temporal solutions of traditional observation technique, the initial water vapor field of numerical weather forecast model can not accurately be described. At present, using GPS slant observations to study water vapor profile is very popular in the world. Using slant water vapor(SWV) observations from Shanghai GPS network,we diagnose the three-dimensional(3D) water vapor structure over Shanghai area firstly in China. In water vapor tomography, Gauss weighted function is used as horizontal constraint, the output of numerical forecast is used as apriori information, and boundary condition is also considered. For the problem without exact apriori weights for observations, estimation of variance components is introduced firstly in water vapor tomography to determine posteriori weights. Robust estimation is chosen for reducing the effect of blunders on solutions. For the descending characteristic of water vapor with height increasing, non-equal weights are used along vertical direction. Comparisons between tomography results and the profile provided by numerical model (MM5) show that the forecasted moisture fields of MM5 can be improved obviously by GPS slant water vapor. Using GPS slant observations to study 3D structure of atmosphere in near real-time is very important for improving initial water vapor field of short-term weather forecast and enhancing the accuracy of numerical weather forecast.

  17. A laser extinction based sensor for simultaneous droplet size and vapor measurement

    Institute of Scientific and Technical Information of China (English)

    Xueqiang Sun; David J. Ewing; Lin Ma

    2012-01-01

    Multiphase flows involving liquid droplets in association with gas flow occur in many industrial and scientific applications.Recent work has demonstrated the feasibility of using optical techniques based on laser extinction to simultaneously measure vapor concentration and temperature and droplet size and loading.This work introduces the theoretical background for the optimal design of such laser extinction techniques,termed WMLE (wavelength-multiplexed laser extinction).This paper focuses on the development of WMLE and presents a systematic methodology to guide the selection of suitable wavelengths and optimize the performance of WMLE for specific applications.WMLE utilizing wavelengths from 0.5to 10 μm is illustrated for droplet size and vapor concentration measurements in an example of water spray,and is found to enable unique and sensitive Sauter mean diameter measurement in the range of ~1-15μm along with accurate vapor detection.A vapor detection strategy based on differential absorption is developed to extend accurate measurement to a significantly wider range of droplet loading and vapor concentration as compared to strategies based on direct fixed-wavelength absorption.Expected performance of the sensor is modeled for an evaporating spray.This work is expected to lay the groundwork for implementing optical sensors based on WMLE in a variety of research and industrial applications involving multi-phase flows.

  18. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  19. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  20. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  1. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  2. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  3. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  4. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    Science.gov (United States)

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  5. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  6. Projections of Horizontal Water Vapor Transport across Europe

    Science.gov (United States)

    Lavers, D. A.

    2015-12-01

    With a warming Earth's atmosphere, the global water cycle is expected to intensify, a process that is likely to yield changes in the frequency and intensity of hydrological extremes. To quantify such changes over Europe, most previous research has been based upon precipitation scenarios. However, seldom has the horizontal water vapor transport (integrated vapor transport IVT) been investigated, a key variable responsible for heavy precipitation events and one that links water source and sink regions. It is hence the aim of this study to assess the projections of IVT across Europe. The Climate Model Intercomparison Project Phase 5 (CMIP5) is the source of the climate model projections. The historical simulations (1979-2005) and two emissions scenarios (2073-2099), or representative concentration pathways (RCP4.5 and RCP8.5) from 22 global circulation models were retrieved and evaluated. In particular, at model grid points across Europe the mean, standard deviation, and the 95th percentile of IVT were calculated for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean closely resembles the ECMWF ERA-Interim reanalysis. In the future under the two emissions scenarios, the IVT increases in magnitude, with the highest percentage changes occurring in the extreme emissions (RCP8.5) scenario; for example, multi-model mean IVT increases of 30% are found in the domain. An evaluation of the low-altitude moisture and winds indicates that higher atmospheric water vapor content is the primary cause of these projected changes.

  7. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    Science.gov (United States)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  8. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies the mass transport properties for water vapor and nitrogen for a series of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) multi-block copolymers via: (a) the permeation of a water vapor/N2 mixture (b) the sorption of water vapor, (c) the diffusion of water vapor, (d

  9. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  10. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2008-02-01

    Full Text Available Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres and tropical lower stratospheric (TLS water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux, and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation. After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006. The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde temperatures (up to 2005 with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor

  11. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  12. Oxidation of Carbon Fibers in Water Vapor Studied

    Science.gov (United States)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  13. Atmospheric Water Vapor: A Nemesis for Millimeter Wave Propagation

    Science.gov (United States)

    1980-01-01

    Sulphur dioxide, for example, nucleates with water vapor to form sulfuric acid primary particles in large numbers (as high as 1015 m- 3 ), which are...electro- polished stainless steel (SS 304) cavity (3440 cm3 and 1265 cm2 , S/V = 0.37 cm-1 ) evacuated for > 24 hours to 10-4 torr and subjected to... electropolished -1.50 30 150 400 HMDSa silanizing -1.35 27 190 750 Parylene C (Union Carbine) -1.60 32 140 580 Silicone SR240 (GE) -2.10 42 200 550 Teflon REPI20

  14. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  15. Diurnal variations in water vapor over Central and South America

    Science.gov (United States)

    Meza, Amalia; Mendoza, Luciano; Clara, Bianchi

    2017-04-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 70 GNSS tracking sites (GPS + GLONASS) belonging to Central and South America, which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, and diverse relieves, therefore the patterns of IWV diurnal variations are very different for each station. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). Firstly, our work study the main characteristics of the IWV diurnal cycle (and for surface temperature, T) obtained for all stations together, using Principal Component Analysis (PCA). First and second PCA modes highlight the global main behaviors of IWV variability for all stations. The first mode on IWV represent the 70% of the variability and could be related to the surface evapotranspiration, while the second mode (27 % of the variability) is practically in counter phase to T variability (its first mode represent the 97% of the variability), therefore this mode could be related to breeze regime. Then, every station is separately analyzed and seasonal and local variations (relative to the relives) are detected, these results spotlight, among other characteristics, the sea and mountain breeze regime. This presentation shows the first analysis of IWV diurnal cycle performed over Central and South America and another original characteristic is PCA technique employed to infer the results. Reference: Dai, A., K. E. Trenberth, and T. R. Karl

  16. Titanium Dioxide Volatility in High Temperature Water Vapor

    Science.gov (United States)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  17. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    Science.gov (United States)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  18. Water-vapor source shift of Xinjiang region during the recent twenty years

    Institute of Scientific and Technical Information of China (English)

    Dai Xingang; Li Weijing; Ma Zhuguo; Wang Ping

    2007-01-01

    The aim of this paper is to investigate the climate water-vapor sources of Xinjiang region and their shifts during the past 20 years. First, the principle and steps are roughly regulated to seek the water-vapor sources. Second, the climate stationary water-vapor transport in troposphere is calculated to distinguish where the water vapor comes from by ERA-40 reanalysis. In addition, the collocation between the transport and the atmospheric column water vapor content is analyzed. The results show that the major vapor comes from the west side of Xinjiang for mid-month of seasons, apart from July while the water vapor comes from the north or northwest direction. The water vapor sources are different for different seasons, for example, the Caspian Sea and Mediterranean are the sources in January and April, the North Atlantic and the Arctic sea in July, and the Black Sea and Caspian Sea in October, respectively. In recent ten years more water vapor above Xinjiang comes from the high latitudes and the Arctic sea with global warming, and less from Mediterranean in comparison with the case of 1973-1986. In fact, the air over subtropics becomes dry and the anomalous water vapor transport direction turns to west or southwest during 1987-2000. By contrast, the air over middle and high latitudes is warmer and wetter than 14 years ago.

  19. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.

    Science.gov (United States)

    Ehret, G; Kiemle, C; Renger, W; Simmet, G

    1993-08-20

    A near-infrared airborne differential absorption lidar (DIAL) system has become operational. Horizontal and vertical water vapor profiles of the troposphere during summer (nighttime) conditions extending from the top of the planetary boundary layer (PBL) up to near the tropopause are investigated. These measurements have been performed in Southern Bavaria, Germany. The system design, the frequency control units, and an estimation of the laser line profile of the narrow-band dye laser are discussed. Effective absorption cross sections in terms of altitude are calculated. Statistical and systematic errors of the water vapor measurements are evaluated as a function of altitude. The effect of a systematic range-dependent error caused by molecular absorption is investigated by comparing the DIAL data with in situ measurements. Typical horizontal resolutions range from 4 km in the lower troposphere to 11 km in the upper troposphere, with vertical resolutions varying from 0.3 to 1 km, respectively. The lower limit of the sensitivity of the water vapor mixing ratio is calculated to be 0.01 g/kg. The total errors of these measurements range between 8% and 25%. A sine-shaped wave structure with a wavelength of 14 km and an amplitude of 20% of its mean value, detected in the lower troposphere, indicates an atmospheric gravity wave field.

  20. Considering Organic Carbon for Improved Predictions of Clay Content from Water Vapor Sorption

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2014-01-01

    to water vapor sorption isotherms that can be rapidly measured with a fully automated vapor sorption analyzer are a viable alternative. In this presentation we evaluate the performance of recently developed regression models based on comparison with standard CF measurements for soils with high organic...... carbon (OC) content and propose a modification to improve prediction accuracy. Evaluation of the CF prediction accuracy for 29 soils with clay contents ranging from 6 to 25% and with OC contents from 2.0 to 8.4% showed that the models worked reasonably well for all soils when the OC content was below 2.......4%. For soils with OC>2.4% and CFcontent. Based on 20 soils with CF between 3 and 15% and OC between 2.6 and 8.4%, we propose correction factors to account for the sorbed water content associated with OC. Evaluation of the OC...

  1. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    Science.gov (United States)

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  2. Ricor's Nanostar water vapor compact cryopump: applications and model overview

    Science.gov (United States)

    Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan

    2017-05-01

    Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.

  3. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  4. Water Vapor and the Dynamics of Climate Changes

    Science.gov (United States)

    Schneider, Tapio; O'Gorman, Paul A.; Levine, Xavier J.

    2010-07-01

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change nonmonotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circulation changes through simulations with an idealized general circulation model. This allows us to explore a continuum of climates, to constrain macroscopic laws governing this climatic continuum, and to place past and possible future climate changes in a broader context.

  5. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  6. The Water Vapor Abundance in Orion KL Outflows

    CERN Document Server

    Cernicharo, J; Daniel, F; Lerate, M R; Barlow, M J; Swinyard, B M; Van Dishoeck, E F; Lim, T L; Viti, S; Yates, J

    2006-01-01

    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O for...

  7. Water vapor in the protoplanetary disk of DG Tau

    CERN Document Server

    Podio, L; Codella, C; Cabrit, S; Nisini, B; Dougados, C; Sandell, G; Williams, J P; Testi, L; Thi, W -F; Woitke, P; Meijerink, R; Spaans, M; Aresu, G; Menard, F; Pinte, C

    2013-01-01

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K...

  8. Tropospheric water-vapor profiling using an airborne DIAL system: results from the EFEDA '91 experiment

    Science.gov (United States)

    Kiemle, Christoph; Ehret, Gerhard; Renger, Wolfgang

    1992-12-01

    An airborne near infrared differential absorption lidar (DIAL) has been completed for meteorological applications. This system is based on a Nd:YAG pumped narrow-band tunable dye laser for both the on- and off-line measurements. Performing H2O measurements within and above the planetary boundary layer (PBL) up to an altitude of 4 km, it successfully participated in the European Field Experiment on Desertification Threatened Areas (EFEDA '91) conducted in Spain in the summer of 1991. Data processing of the lidar signals provides range resolved horizontal and vertical water vapor profiles, horizontal power spectra of turbulence, and aerosol backscattering profiles. Water vapor profiles are being calculated using gliding averages of single lidar returns. Typical horizontal resolutions range from 1.3 to 3 km with vertical resolutions varying from 300 to 600 m, depending on the signal-to-noise ratio, in order to meet a 5 to 10% accuracy. The systematic errors, however, are estimated to be around 6%. The vertical water vapor profiles agree well with radiosonde measurements.

  9. Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method.

    Science.gov (United States)

    Hsieh, Cheng-I; Lai, Mei-Chun; Hsia, Yue-Joe; Chang, Tsang-Jung

    2008-07-01

    This study investigated the flux-variance relationships of temperature, humidity, and CO(2), and examined the performance of using this method for predicting sensible heat (H), water vapor (LE), and CO(2) fluxes (F(CO2)) with eddy-covariance measured flux data at three different ecosystems: grassland, paddy rice field, and forest. The H and LE estimations were found to be in good agreement with the measurements over the three fields. The prediction accuracy of LE could be improved by around 15% if the predictions were obtained by the flux-variance method in conjunction with measured sensible heat fluxes. Moreover, the paddy rice field was found to be a special case where water vapor follows flux-variance relation better than heat does. However, the CO(2) flux predictions were found to vary from poor to fair among the three sites. This is attributed to the complicated CO(2) sources and sinks distribution. Our results also showed that heat and water vapor were transported with the same efficiency above the grassland and rice paddy. For the forest, heat was transported 20% more efficiently than evapotranspiration.

  10. Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface.

    Science.gov (United States)

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-07-18

    The coupled heat and mass transfer that occurs in evaporation is of interest in a large number of fields such as evaporative cooling, distillation, drying, coating, printing, crystallization, welding, atmospheric processes, and pool fires. The temperature jump that occurs at an evaporating interface is of central importance to understanding this complex process. Over the past three decades, thermocouples have been widely used to measure the interfacial temperature jumps at a liquid-vapor interface during evaporation. However, the reliability of these measurements has not been investigated so far. In this study, a numerical simulation of a thermocouple when it measures the interfacial temperatures at a liquid-vapor interface is conducted to understand the possible effects of the thermocouple on the measured temperature and features in the temperature profile. The differential equations of heat transfer in the solid and fluids as well as the momentum transfer in the fluids are coupled together and solved numerically subject to appropriate boundary conditions between the solid and fluids. The results of the numerical simulation showed that while thermocouples can measure the interfacial temperatures in the liquid correctly, they fail to read the actual interfacial temperatures in the vapor. As the results of our numerical study suggest, the temperature jumps at a liquid-vapor interface measured experimentally by using a thermocouple are larger than what really exists at the interface. For a typical experimental study of evaporation of water at low pressure, it was found that the temperature jumps measured by a thermocouple are overestimated by almost 50%. However, the revised temperature jumps are still in agreement with the statistical rate theory of interfacial transport. As well as addressing the specific application of the liquid-vapor temperature jump, this paper provides significant insight into the role that heat transfer plays in the operation of thermocouples

  11. Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WEI Jie; LIN Zhao-Hui; XIA Jun; TAO Shi-Yan

    2005-01-01

    The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.

  12. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. (Baxter Healthcare Corporation, Round Lake, IL (USA))

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  13. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  14. Global Distribution of Water Vapor and Cloud Cover--Sites for High Performance THz Applications

    CERN Document Server

    Suen, Jonathan Y; Lubin, Philip M

    2014-01-01

    Absorption of terahertz radiation by atmospheric water vapor is a serious impediment for radio astronomy and for long-distance communications. Transmission in the THz regime is dependent almost exclusively on atmospheric precipitable water vapor (PWV). Though much of the Earth has PWV that is too high for good transmission above 200 GHz, there are a number of dry sites with very low attenuation. We performed a global analysis of PWV with high-resolution measurements from the Moderate Resolution Imaging Spectrometer (MODIS) on two NASA Earth Observing System (EOS) satellites over the year of 2011. We determined PWV and cloud cover distributions and then developed a model to find transmission and atmospheric radiance as well as necessary integration times in the various windows. We produced global maps over the common THz windows for astronomical and satellite communications scenarios. Notably, we show that up through 1 THz, systems could be built in excellent sites of Chile, Greenland and the Tibetan Plateau, ...

  15. Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment

    Science.gov (United States)

    Fox, Dennis S.; Opila, Elizabeth J.; Nguyen, QuynhGiao; Humphrey, Donald L.; Lewton, Susan M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Three silicon nitride materials were exposed to dry oxygen flowing at 0.44 cm/s at temperatures between 1200 and 1400 C. Reaction kinetics were measured with a continuously recording microbalance. Parabolic kinetics were observed. When the same materials were exposed to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s, all three types exhibited paralinear kinetics. The material is oxidized by water vapor to form solid silica. The protective silica is in turn volatilized by water vapor to form primarily gaseous Si(OH)4. Nonlinear least squares analysis and a paralinear kinetic model were used to determine both parabolic and linear rate constants from the kinetic data. Volatilization of the protective silica scale can result in accelerated consumption of Si3N4. Recession rates under conditions more representative of actual combustors are compared to the furnace data.

  16. Airborne Lidar Observations of Water Vapor Variability in the Northern Atlantic Trades

    Science.gov (United States)

    Kiemle, Christoph; Groß, Silke; Wirth, Martin; Bugliaro, Luca

    2017-04-01

    During the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiments in December 2013 and August 2016 the DLR lidar WALES (Water vapor Lidar Experiment in Space) was operated on board the German research aircraft HALO. The lidar simultaneously provided two-dimensional curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution, in order to help improve our knowledge on the coupling between water vapor, clouds, and circulation in the trades. The variability of water vapor, ubiquitous in our measurements, poses challenges to climate models because it acts on the small-scale low-cloud cover. Aloft, the very dry free troposphere in the subsiding branch of the Hadley cell acts as an open window in a greenhouse, efficiently cooling the lower troposphere. Secondary circulations between radiatively heated and cooled regions are supposed to occur, adding complexity to the situation. After recently having identified them to be mainly responsible for the uncertainty in global climate sensitivity, such interactions between shallow convection, circulation and radiation are at the heart of present scientific debate, endorsed by the WCRP (World Climate Research Programme) "Grand Challenge on Clouds, Circulation and Climate Sensitivity". Out of the wealth of about 30 winter and 60 summer flight hours totaling 75000 km of data over the Tropical Atlantic Ocean east of Barbados, several representative lidar segments from different flights are presented, together with Meteosat Second Generation (MSG) images and dropsonde profiles. All observations indicate high heterogeneity of the humidity in the lowest 5 km, as well as high variability of the depth of the cloud layer (1 - 2 km thick) and of the sub-cloud boundary layer ( 1 km thick). Layer depths and partial water vapor columns within the layers may vary by up to a factor of 2, and on a large range of horizontal scales. Occasionally, very dry, up

  17. Detecting shifts in tropical moisture imbalances with satellite-derived isotope ratios in water vapor

    Science.gov (United States)

    Bailey, A.; Blossey, P. N.; Noone, D.; Nusbaumer, J.; Wood, R.

    2017-06-01

    As global temperatures rise, regional differences in evaporation (E) and precipitation (P) are likely to become more disparate, causing the drier E-dominated regions of the tropics to become drier and the wetter P-dominated regions to become wetter. Models suggest that such intensification of the water cycle should already be taking place; however, quantitatively verifying these changes is complicated by inherent difficulties in measuring E and P with sufficient spatial coverage and resolution. This paper presents a new metric for tracking changes in regional moisture imbalances (e.g., E-P) by defining δDq—the isotope ratio normalized to a reference water vapor concentration of 4 mmol mol-1—and evaluates its efficacy using both remote sensing retrievals and climate model simulations in the tropics. By normalizing the isotope ratio with respect to water vapor concentration, δDq isolates the portion of isotopic variability most closely associated with shifts between E- and P-dominated regimes. Composite differences in δDq between cold and warm phases of El Niño-Southern Oscillation (ENSO) verify that δDq effectively tracks changes in the hydrological cycle when large-scale convective reorganization takes place. Simulated δDq also demonstrates sensitivity to shorter-term variability in E-P at most tropical locations. Since the isotopic signal of E-P in free tropospheric water vapor transfers to the isotope ratios of precipitation, multidecadal observations of both water vapor and precipitation isotope ratios should provide key evidence of changes in regional moisture imbalances now and in the future.

  18. Trends and variability in column-integrated atmospheric water vapor

    Science.gov (United States)

    Trenberth, Kevin E.; Fasullo, John; Smith, Lesley

    2005-06-01

    An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988 2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997 98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N 30°S of 7.8% K-1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  20. Temporal variations of δ18O of atmospheric water vapor at Delingha

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Oxygen stable isotope of atmospheric water vapor is widely used to study the modern process of cli- mate. Atmospheric water vapor samples were collected at Dlingha, northeast of Tibetan Plateau during the period from July 2005 to February 2006. The variation of δ18O and the relationships between δ18O and both the temperature and specific humidity are analyzed in this paper. Results show that the sea- sonal variation of δ18O of atmospheric water vapor at Delingha is remarkable with higher δ18O in summer and lower δ18O in winter. The temporal variation of vapor δ18O shows obvious fluctuations, with magnitude of over 37‰. The daily variation of the δ18O is highly correlated with air temperature. The relationship between δ18O and atmospheric water vapor content is complex. Study shows that δ18O of atmospheric water vapor is positively correlated with specific humidity in winter in seasonal scale and inversely correlated with specific humidity in summer rainy period. The δ18O values of at- mospheric water vapor are lower than those of precipitation at Delingha, and the average difference is 10.7‰. Variations of δ18O of atmospheric water vapor is also found to be affected by precipitation events, The model results show that the precipitation effect could have caused the vapor δ18O in the raining season to lower by 7% in average in July and August.

  1. Short-term, seasonal and interannual variability of the vertical distribution of water vapor observed by AIRS

    Science.gov (United States)

    Olsen, E. T.; Granger, S. L.; Fetzer, E. J.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) consists of a suite of instruments on board the Aqua spacecraft which retrieve atmospheric parameters over the globe at radiosonde quality on a daily basis in non-precipitating fields of view with less than 80% cloud cover. Although quantitative global measurements of water vapor have been available since the 1980's, the vertical resolution of these measurements was very coarse. AIRS provides global coverage amounting to 324,000 precipitable water vapor profiles with spatial resolution at nadir of 45 km and a vertical resolution in the troposphere of 2 km.

  2. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    Science.gov (United States)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  3. Algorithm for Recovery of Integrated Water Vapor Content in the Atmosphere over Land Surfaces Based on Satellite Spectroradiometer Data

    Science.gov (United States)

    Lisenko, S. A.

    2017-05-01

    An algorithm is proposed for making charts of the distribution of water vapor in the atmosphere based on multispectral images of the earth by the Ocean and Land Color Instrument (OLCI) on board of the European research satellite Sentinel-3. The algorithm is based on multiple regression fits of the spectral brightness coefficients at the upper boundary of the atmosphere, the geometric parameters of the satellite location (solar and viewing angles), and the total water vapor content in the atmosphere. A regression equation is derived from experimental data on the variation in the optical characteristics of the atmosphere and underlying surface, together with Monte-Carlo calculations of the radiative transfer characteristics. The equation includes the brightness coefficients in the near IR channels of the OLCI for the absorption bands of water vapor and oxygen, as well as for the transparency windows of the atmosphere. Together these make it possible to eliminate the effect of the reflection spectrum of the underlying surface and air pressure on the accuracy of the measurements. The algorithm is tested using data from a prototype OLCI, the medium resolution imaging spectrometer (MERIS). A sample chart of the distribution of water vapor in the atmosphere over Eastern Europe is constructed without using subsatellite data and digital models of the surface relief. The water vapor contents in the atmosphere determined using MERIS images and data provided by earthbound measurements with the aerosol robotic network (AERONET) are compared with a mean square deviation of 1.24 kg/m2.

  4. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    Science.gov (United States)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  5. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  6. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Rye, B.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences]|[National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.; Machol, J.L.; Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  7. Water Vapor Variability in the Tropical Western Pacific from 20-year Radiosonde Data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The 20-year (1976-1995) daily radiosonde data at 17 stations in the tropical western Pacific was ana lyzed. The analysis shows that the atmosphere is more humid in a warmer climate on seasonal, inter-annual and long-term (20-year) time scales, implying a positive water vapor feedback. The vertical structure of the long-term trends in relative humidity (RH) is distinct from that on short-term (seasonal and inter-annual) time scales, suggesting that observed water vapor changes on short time scales could not be considered as a surrogate of long-term climate change. The increasing trend of RH (3%-5%/decade) in the upper troposphere is stronger than that in the lower troposphere (1%-2% / decade). Such vertical structure would amplify positive water vapor feedback in comparison to the common assumption of constant RH changes vertically. The empirical orthogonal function (EOF) analysis of vertical structure of RH variations shows distinct features of the vertical structure of the first three EOFs. The first three EOFs are optimal for repre sentation of water vapor profiles and provide some hints on physical mechanisms responsible for observed humidity variability. Vaisala radiosondes were used at nine stations, and VIZ radiosondes used at other eight stations. The Vaisala data are corrected for temperature-dependence error using the correction scheme developed by NCAR / ATD and Vaisala. The comparison of Vaisala and VIZ data shows that the VIZ-measured RHs after October 1993 have a moist bias of ~ 10% at RHs < 20%. During 1976-1995, several changes in cluding both instruments and reporting practice have been made at Vaisala stations and introduce errors to long-term RH variations.

  8. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  9. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique;

    2015-01-01

    -water-gas hydrate inhibitor systems, at temperatures ranging from 283 to 353 K and at pressures up to 40 MPa. The core of the equipment is an equilibrium cell, equipped with sapphire windows and connected to an analytical system by capillary samplers.New vapor-liquid-liquid equilibrium data are reported for methane......+ n-hexane + methanol + water at 296.2 K and pressures of 6 to 10 MPa. The Cubic-Plus-Association (CPA) equation of state is used to model the phase equilibria data measured. A good agreement between predictions and experimental data is observed, supporting the reliability of the new data. (C) 2015...

  10. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  11. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Science.gov (United States)

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  12. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  13. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074

    NARCIS (Netherlands)

    Potreck, Jens; Nijmeijer, Dorothea C.; Kosinski, Thomas; Wessling, Matthias

    2009-01-01

    This work investigates the transport behavior of a hydrophilic, highly permeable type of poly ethylene oxide (PEO)-based block copolymer (PEBAX® 1074) as membrane material for the removal of water vapor from light gases. Water vapor sorption isotherms in PEBAX® 1074 represent Flory–Huggins type of s

  14. Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system

    Science.gov (United States)

    Ehret, G.; Kiemle, C.; Renger, W.; Simmet, G.

    1992-01-01

    Summarized here are the results of airborne water vapor measurements in the lower middle and upper troposphere using the Differential Absorption Lidar (DIAL) technique in the near infrared. The measurements were performed in July 1990 in Southern Bavaria between Allersberg and Straubing from 20 to 23 UTC taking advantage of night time conditions. The tropospheric H2O profiles were range investigated both horizontally and vertically. With the DIAL system that was used, water vapor measurements in the upper troposphere have been carried out for the first time. To calibrate the H2O-retrievals, effective absorption cross sections of selected H2O lines in terms of altitude around 724 nm were calculated using line parameter data from the literature (B. E. Grossmann et al). The frequency of the on-line measurements was adjusted by the spectra of a Polyacenic Semiconductor (PAS) cell filled with H2O. We found that the calibration error ranged between 0.005 and 0.015 cm(exp -1). The systematic errors of the H2O as a function of altitude were estimated below 7 km and 12 percent accuracy in the upper troposphere. The vertical H2O profile agrees well with in situ measurements in the investigated range between the top of the planetary boundary layer (PBL) up to near the tropopause. Horizontal and vertical H2O profiles are calculated by means of averaging single lidar returns. Typical horizontal resolutions range from 4 km in the lower to 11 km in the upper troposphere with vertical resolutions varying from 0.3 km up to 1 km, respectively, in order to satisfy a 5 - 10 percent accuracy in the statistical error. The measurement sensibility of the water vapor mixing ration in the upper troposphere is 0.01 g/kg.

  15. Sampling tritiated water vapor from the atmosphere by an active system using silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Alegria, N., E-mail: natalia.alegria@ehu.es [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Idoeta, R.; Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain)

    2011-11-15

    Among the different methods used to collect the tritiated water vapor (HTO) contained in the atmosphere, one of the most worldwide used is its collection using an air pump, which forces the air to pass through a dry silica gel trap. The silica gel is then distilled to remove the water collected, which is measured in a liquid scintillation counting system. In this paper, an analysis of the water collection efficiency of the silica gel has been done as a function of the temperatures involved, the dimensions of the pipe driving the air into the silica gel traps, the air volume passing through the trap and the flow rates used. Among the obtained conclusions, it can be pointed out that placing the traps inside a cooled container, the amount of silica gel needed to collect all the water contained in the air passing through these traps can be estimated using a weather forecast and a psychometric chart. To do this, and as thermal equilibrium between incoming and open air should be established, a suitable design of the sampling system is proposed. - Highlights: > To recollect the atmosphere air tritiated water vapor, an active system was used. > The system is an air pump and three traps with silica gel connected by a rubber pipe. > The silica gel retention depends on the meteorological conditions and the flow rate. > The amount of water collected and the mass of silica gel need were calculated, F.

  16. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    Science.gov (United States)

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings.

  17. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor.

    Science.gov (United States)

    Soden, Brian J; Wetherald, Richard T; Stenchikov, Georgiy L; Robock, Alan

    2002-04-26

    The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in reproducing the observed drying after the volcanic eruption. Then, by comparing model simulations with and without water vapor feedback, we demonstrate the importance of the atmospheric drying in amplifying the temperature change and show that, without the strong positive feedback from water vapor, the model is unable to reproduce the observed cooling. These results provide quantitative evidence of the reliability of water vapor feedback in current climate models, which is crucial to their use for global warming projections.

  18. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  19. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    Science.gov (United States)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  20. How to measure diffusional decoherence in multimode Rubidum vapor memories?

    CERN Document Server

    Chrapkiewicz, Radoslaw; Radzewicz, Czeslaw

    2013-01-01

    Diffusion is the main limitation of storage time in multispatial mode applications of warm atomic vapors. Surprisingly, there is scarce data for diffusion coefficients of Rubidium in buffer gases and available measurement methods are poorly suited to modern experiments. Here we present a simple, efficient and direct method of measuring diffusion coefficients in gases by creating, storing and retrieving spatially-varying atomic coherence. Raman scattering provides a necessary interface to the atoms that allows for probing many spatial periodicities concurrently. We single out the diffusional component of depolarization and determine the diffusion coefficient.We found the normalized diffusion coefficients for Rubidium atoms in noble gases to be as follows: Neon 0.20 cm$^{2}$/s, Krypton 0.068 cm$^{2}$/s, Xenon 0.057 cm$^{2}$/s. We are the first to give experimental results for Xenon and we recommend this gas for multimode quantum storage applications.

  1. Identification of a wagging vibrational mode of water molecules at the water/vapor interface.

    Science.gov (United States)

    Perry, Angela; Neipert, Christine; Ridley, Christina; Space, Brian; Moore, Preston B

    2005-05-01

    An improved time correlation function description of sum frequency generation (SFG) spectroscopy was applied to theoretically describe the water/vapor interface. The resulting spectra compare favorably in shape and relative magnitude to extant experimental results in the O-H stretching region of water. Further, the SFG spectra show a well-defined intermolecular mode at 875 cm(-1) that has significant intensity. The resonance is due to a wagging mode localized on a single water molecule. It represents a well-defined population of water molecules at the interface that, along with the free O-H modes, represent the dominant interfacial species.

  2. An evaluation of the SAGE III Version 4 aerosol extinction coefficient and water vapor data products

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2009-10-01

    Full Text Available Herein, we provide an assessment of the data quality of Stratospheric Aerosol and Gas Experiment (SAGE III Version 4 aerosol extinction coefficient and water vapor data products. The evaluation is based on comparisons with data from four instruments: SAGE II, the Polar Ozone and Aerosol Measurement (POAM III, the Halogen Occultation Experiment (HALOE, and the Microwave Limb Sounder (MLS. Since only about half of the SAGE III channels have a direct comparison with measurements by other instruments, we have employed some empirical techniques to evaluate measurements at some wavelengths. We find that the aerosol extinction coefficient measurements at 449, 520, 755, 869, and 1021 nm are reliable with accuracies and precisions on the order of 10% in the primary aerosol range of 15 to 25 km. We also believe this to be true of the aerosol measurements at 1545 nm though we cannot exclude some positive bias below 15 km. We recommend use of the 385 nm measurements above 16 km where the accuracy is on par with other aerosol channels. The 601 nm measurement is much noisier (~20% than other channels and we suggest caution in the use of these data. We believe that the 676 nm data are clearly defective particularly above 20 km (accuracy as poor as 50% and the precision is also low (~30%. We suggest excluding this channel under most circumstances. The SAGE III Version 4 water vapor data product appears to be high quality and is recommended for science applications in the stratosphere below 45 km. In this altitude range, the mean differences with all four corroborative data sets are no bigger than 15% and often less than 10% with exceptional agreement with POAM III and MLS. Above 45 km, it seems likely that SAGE III water vapor values are increasingly too large and should be used cautiously or avoided. We believe that SAGE III meets its preflight goal of 15% accuracy and 10% precision between 15 and 45 km. We do not currently recommend limiting the SAGE III

  3. Retrieval of atmospheric water vapor content in polar regions using spaceborne microwave radiometry; Bestimmung des atmosphaerischen Wasserdampfgehaltes in Polargebieten mit Hilfe der passiven Mikrowellenradiometrie

    Energy Technology Data Exchange (ETDEWEB)

    Miao, J. [Bremen Univ. (Germany). Inst. fuer Umweltphysik

    1998-12-31

    The concern on the possibly adverse effects of global warming has made monitoring the Earth environment a high priority item. Satellites have been widely used since the 60`s to measure atmospheric parameters from space. Over open oceans, the atmospheric water vapor content has been successfully measured using passive microwave radiometry. However, this measurement was limited to the non polar regions. The difficulties encountered in polar regions arise from the very low water vapor burden of the atmosphere and from the highly variable surface conditions of polar ice. It is the goal of this thesis to improve this situation by carefully investigating the information content of the Special Sensor Microwave/Water Vapor (SSM/T2), which is part of the United States Defense Meteorological Satellite Program (DMSP). SSM/T2 has three channels located on the wing of the storage water vapor absorption line at 183.31 GHz and is therefore very sensitive to water vapor. In addition, the center frequencies of these channels are close enough, so that the polar ice shows nearly the same emission properties at all these channels. On the contrary, these channels have quite different sensitivities to water vapor, therefore it appears possible to extract information on tropospheric water vapor. (orig.)

  4. Integrated water vapor above Ny Ålesund, Spitsbergen: a multi-sensor intercomparison

    Directory of Open Access Journals (Sweden)

    M. Pałm

    2010-02-01

    Full Text Available Water vapor is an important constituent of the atmosphere. Because of its abundance and its radiative properties it plays an important role for the radiation budget of the atmosphere and has major influence on weather and climate.

    In this work integrated water vapor (IWV derived from the measurements of three satellite sensors, GOME, SCIAMACHY and AMSU-B, two ground based sensors, a Fourier-transform spectrometer (FTIR, a microwave radiometer for O3 (RAM and IWV inferred from GPS zenith path delay (ZPD measurements, are compared to radio-sonde measurements above Ny Ålesund, 79° N. All six remote sensors exploit different principles and work in different wavelength regions.

    All remote sensing instruments reproduce the sonde measurements very well and are highly correlated when compared with the radio-sonde measurements.

    The ground-based FTIR shows very little scatter of about 10%. The GPS performs similar to the FTIR at all times except for very low IWV, where the scatter exceeds 50% of the measured IWV. The other remote sensing instruments show scatter of about 20% (standard deviation. The ground-based RAM performs similar to the satellite instruments, despite the fact that the retrieval of IWV is just a by-product of this ozone sensor.

  5. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  6. Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview

    Directory of Open Access Journals (Sweden)

    Xixi Wang

    2015-08-01

    Full Text Available Evaporation from bare sandy soils is the core component of the hydrologic cycle in arid environments, where vertical water movement dominates. Although extensive measurement and modeling studies have been conducted and reported in existing literature, the physics of dry soil and its function in evaporation is still a challenging topic with significant remaining issues. Thus, an overview of the previous findings will be very beneficial for identifying further research needs that aim to advance our understanding of the vapor flow resistance (VFR effect on soil water evaporation as influenced by characteristics of the dry soil layer (DSL and evaporation zone (EZ. In this regard, six measurement and four modeling studies were overviewed. The results of these overviewed studies, along with the others, affirm the conceptual dynamics of DSL and EZ during drying or wetting processes (but not both within dry sandy soils. The VFR effect tends to linearly increase with DSL thickness (δ when δ < 5 cm and is likely to increase as a logarithmic function of δ when δ ≥ 5 cm. The vaporization-condensation-movement (VCM dynamics in a DSL depend on soil textures: sandy soils can form a thick (10 to 20 cm DSL while sandy clay soils may or may not have a clear DSL; regardless, a DSL can function as a transient EZ, a vapor condensation zone, and/or a vapor transport medium. Based on the overview, further studies will need to generate long-term continuous field data, develop hydraulic functions for very dry soils, and establish an approach to quantify the dynamics and VFR effects of DSLs during wetting-drying cycles as well as take into account such effects  when using conventional (e.g., Penman-Monteith evaporation models.

  7. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oberreit, Derek [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110 (United States); Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J., E-mail: hogan108@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-14

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  8. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  9. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  10. Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil

    Institute of Scientific and Technical Information of China (English)

    李向宾; 李楠; 王国玉; 张敏弟

    2016-01-01

    The supercavitation has attracted a growing interest because of its potential for high-speed vehicle maneuvering and drag reduction. To better understand the reverse flow characteristics of a water-vapor mixture in supercavitating flows around a hydrofoil, a numerical simulation is conducted using a unified supercavitation model, which combines a modified RNGk-e turbulence model and a cavitation one. By comparing the related experimental results, the reverse motion of the water-vapor mixture is found in the cavitation area in all supercavitation stages. The inverse pressure gradient leads to reverse pressure fluctuations in the cavity, followed by the reverse motion of the water-vapor two-phase interface. Compared with the water-vapor mixture area at the back of the cavity, the pressure in the vapor area is inversely and slowly reduced,a higher-pressure gradient occurs near the cavity boundary.

  11. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  12. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  13. Atmospheric water vapor as driver of litter decomposition during rainless seasons

    Science.gov (United States)

    Dirks, I.; Navon, Y.; Kanas, D.; Dumbur, R.; Grünzweig, José

    2010-05-01

    Litter production in many drought-affected ecosystems coincides with the beginning of an extended season of no or limited rainfall. Because of lack of moisture litter decomposition during such periods has been largely ignored so far, despite potential importance for the overall decay process in such ecosystems. To determine drivers and extent of litter decay in rainless periods a litterbag study was conducted in Mediterranean shrublands, dwarf shrublands and grasslands. Heterogeneous local and common straw litter was left to decompose in open and shaded patches of various field sites in two study regions. Fresh local litter lost 4-18% of its initial mass over about 4 months without rainfall, which amounted to 15-50% of total annual decomposition. Lab incubations and changes in chemical composition suggested that litter was degraded by microbial activity, enabled by absorption of water vapor from the atmosphere. High mean relative humidity of 85% was measured during 8-9 h of most nights, but the possibility of fog deposition or dew formation at the soil surface was excluded. Over 95% of the variation in mass loss and changes in litter nitrogen were explained by characteristics of water-vapor uptake by litter. Photodegradation induced by the intense solar radiation was an additional mechanism of litter decomposition as indicated by lignin dynamics. Lignin loss from litter increased with exposure to ultraviolet radiation and with initial lignin concentration, together explaining 90-97% of the variation in lignin mass change. Results indicate that water vapor is a driver of litter decay which has been ignored so far. Water-vapor absorption presumably enables microbial degradation, which, together with solar radiation and litter quality, controls decomposition and changes in litter chemistry during rainless seasons. Warmer and drier conditions as a consequence of climate change will result in enhanced drying of litter layers also outside currently classified drylands

  14. Validation and update of OMI Total Column Water Vapor product

    Science.gov (United States)

    Wang, Huiqun; Gonzalez Abad, Gonzalo; Liu, Xiong; Chance, Kelly

    2016-09-01

    The collection 3 Ozone Monitoring Instrument (OMI) Total Column Water Vapor (TCWV) data generated by the Smithsonian Astrophysical Observatory's (SAO) algorithm version 1.0 and archived at the Aura Validation Data Center (AVDC) are compared with NCAR's ground-based GPS data, AERONET's sun-photometer data, and Remote Sensing System's (RSS) SSMIS data. Results show that the OMI data track the seasonal and interannual variability of TCWV for a wide range of climate regimes. During the period from 2005 to 2009, the mean OMI-GPS over land is -0.3 mm and the mean OMI-AERONET over land is 0 mm. For July 2005, the mean OMI-SSMIS over the ocean is -4.3 mm. The better agreement over land than over the ocean is corroborated by the smaller fitting residuals over land and suggests that liquid water is a key factor for the fitting quality over the ocean in the version 1.0 retrieval algorithm. We find that the influence of liquid water is reduced using a shorter optimized retrieval window of 427.7-465 nm. As a result, the TCWV retrieved with the new algorithm increases significantly over the ocean and only slightly over land. We have also made several updates to the air mass factor (AMF) calculation. The updated version 2.1 retrieval algorithm improves the land/ocean consistency and the overall quality of the OMI TCWV data set. The version 2.1 OMI data largely eliminate the low bias of the version 1.0 OMI data over the ocean and are 1.5 mm higher than RSS's "clear" sky SSMIS data in July 2005. Over the ocean, the mean of version 2.1 OMI-GlobVapour is 1 mm for July 2005 and 0 mm for January 2005. Over land, the version 2.1 OMI data are about 1 mm higher than GlobVapour when TCWV 15 mm.

  15. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  16. Water vapor variation and the effect of aerosols in China

    Science.gov (United States)

    Gui, Ke; Che, Huizheng; Chen, Quanliang; Zeng, Zhaoliang; Zheng, Yu; Long, Qichao; Sun, Tianze; Liu, Xinyu; Wang, Yaqiang; Liao, Tingting; Yu, Jie; Wang, Hong; Zhang, Xiaoye

    2017-09-01

    This study analyzes the annual and seasonal trends in precipitable water vapor (PWV) and surface temperature (Ts) over China from 1979 to 2015, and the relationships between PWV and Ts and between PWV and aerosol absorption optical depth (AAOD), using data from radiosonde stations, weather stations and multiple satellite observations. The results revealed a positive PWV trend between 1979 and 1999, and a negative PWV trend between 2000 and 2015. Analysis of the differences in the PWV trend among different stations types showed that the magnitude of the trends were in the order main urban stations > provincial capital stations > suburb stations, suggesting that anthropogenic activities have a strong influence on the PWV trend. The AAOD exhibited a significant positive trend in most regions of China from 2005 to 2015 (confidence level 95%). Using spatial correlation analysis, we showed that PWV trend derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations is correlated with Ts, with an annual correlation coefficient of 0.596. In addition, the spatial correlation between PWV and AAOD showed a negative relationship, with the highest correlation coefficients of -0.76 and -0.71 observed in mid-eastern China and central northwest China, respectively, suggesting that the increase in AAOD in recent years may be one of the reasons for the decrease in PWV since the 2000s in China.

  17. Water vapor in nearby infrared galaxies as probed by Herschel

    CERN Document Server

    Yang, Chentao; Omont, A; Liu, Daizhong; Isaak, K G; Downes, D; van der Werf, P P; Lu, Nanyao

    2013-01-01

    We report the first systematic study of the submillimeter water vapor rotational emission lines in infrared (IR) galaxies based on the Fourier Transform Spectrometer (FTS) data of {\\it Herschel} SPIRE. Among the 176 galaxies with publicly available FTS data, 45 have at least one H$_2$O emission line detected. The H$_2$O line luminosities range from $\\sim 1 \\times 10^5$ L$_{\\odot}$ to $\\sim 5 \\times 10^7$ L$_{\\odot}$ while the total IR luminosities (L$_\\mathrm{IR}$) have a similar spread ($\\sim$1-300 $\\times 10^{10}$ L$_{\\odot}$). In addition, emission lines of H$_2$O$^+$ and H$_2^{18}$O are also detected. H$_2$O is found, for most galaxies, to be the strongest molecular emitter after CO in FTS spectra. The luminosity of the five most important H$_2$O lines is near-linearly correlated with L$_\\mathrm{IR}$ no matter strong AGN signature is present or not. However, the luminosity of H$_2$O(2$_{11}-2_{02}$) and H$_2$O(2$_{20}-2_{11}$) appears to increase slightly faster than linear with L$_\\mathrm{IR}$. Although ...

  18. Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infiared radiative cooling by water vapor is a pivotal factor in niddle-lower stratospheric cooling. However. in the npper stratosphere (above 45 kn), infrared radiation is not a factor in cooling;there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However,ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric teinperature change.

  19. Water Vapor Sensors Based on the Swelling of Relief Gelatin Gratings

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2015-01-01

    Full Text Available We report on a novel device to measure relative humidity. The sensor is based on surface diffraction gratings made of gelatin. This material swells and shrinks according to the content of water vapor in air. By sending a light beam to the grating, diffracted orders appear. Due to the gelatin swelling or shrinking, first order intensity changes according to the relative humidity. Calibration curves relating intensity versus relative humidity have been found. The fabrication process of diffraction gratings and the testing of the prototype sensing devices are described.

  20. Mesospheric water vapor sounding using earth-limb pure-rotational emission in the LWIR

    Science.gov (United States)

    Adler-Golden, Steven; de, Piali; Smith, Donald; D'Agati, Anthony

    1993-08-01

    Limb sounding of mesospheric water vapor using pure rotational emission in the long-wavelength IR region has been demonstrated using data from the ELC-1 rocket experiment, launched in October, 1983. By simultaneously analyzing H2O emission at 23-29 microns and CO2 emission in the nu2 band region, effects due to uncertainties in the atmospheric temperature and instrument calibration are minimized. The H2O profile obtained from ELC-1 is consistent with other fall to early-winter measurements. Given accurate line-of-sight pointing information, this approach will be feasible for global mesospheric H2O sounding from limb-viewing satellites.

  1. Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma

    Science.gov (United States)

    Wagle, P.; Gowda, P. H.; Northup, B. K.

    2016-12-01

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.

  2. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  3. 丙酮-水-丙酮连氮体系汽液平衡测定与关联%Measurement and correlation of vapor-liquid equilibria for acetone-water-azine system

    Institute of Scientific and Technical Information of China (English)

    李柏春; 王琮; 黄岩; 张文林

    2013-01-01

    Vapor-liquid equilibrium (VLE) data for acetone-azine binary system and parts of acetone water azine ternary system were determined in an Othmer equilibrium at atmospheric pressure (101.3 kPa). The experimental data was verified by Herington method and were consistent with thermodynamics. The data of acetone-azine binary system were correlated with the NRTL,Wilson and UNIQUAC models by using chemical engineering analogue software. Respectively,all the models were correlated well with the VLE data. NRTL model produced best data,with the average deviations of temperature of 0.0639 K and vapor-phase mole fraction of methanol of 0.0048. The NRTL model was used to correlate the VLE data of the ternary system,and the interaction parameters of acetone-azine,water-azine,and acetone-water were obtained. In order to verify the reliability of the VLE data of the ternary system and these interacting binary parameters,the vapor compositions were calculated and compared with the corresponding experimental VLE data of acetone-azine binary system. The agreement between the calculated and experimental data was satisfactory. The experimental and correlative data could provide a basis for distillation separation of acetone-water-azine’s VLE system.%采用汽液双循环平衡釜,在常压(101.3 kPa)下测定了丙酮-丙酮连氮二元组分物系以及部分丙酮-水-丙酮连氮三元组分物系的汽液平衡数据。实验数据经Herington面积积分法检验符合热力学一致性。通过化工过程模拟软件,分别采用 Wilson、NRTL、UNIQUAC 活度系数模型对丙酮-丙酮连氮二元组分物系实验数据进行关联得到模型参数。并对汽液平衡的计算值与实验值进行比较,3种模型都吻合良好,其中由NRTL方程关联得到的计算结果最为适合,平均温度偏差和汽相组成偏差分别为0.0639 K和0.0048。从三元汽液相平衡数据中拟合出了丙酮-丙酮连氮、丙酮-

  4. Contributions of stratospheric water vapor to decadal changes in the rate of global warming.

    Science.gov (United States)

    Solomon, Susan; Rosenlof, Karen H; Portmann, Robert W; Daniel, John S; Davis, Sean M; Sanford, Todd J; Plattner, Gian-Kasper

    2010-03-01

    Stratospheric water vapor concentrations decreased by about 10% after the year 2000. Here we show that this acted to slow the rate of increase in global surface temperature over 2000-2009 by about 25% compared to that which would have occurred due only to carbon dioxide and other greenhouse gases. More limited data suggest that stratospheric water vapor probably increased between 1980 and 2000, which would have enhanced the decadal rate of surface warming during the 1990s by about 30% as compared to estimates neglecting this change. These findings show that stratospheric water vapor is an important driver of decadal global surface climate change.

  5. In situ metrology to characterize water vapor delivery during atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, Tariq, E-mail: tariq.ahmido@nist.gov; Kimes, William A.; Sperling, Brent A.; Hodges, Joseph T.; Maslar, James E. [Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8320, Gaithersburg, Maryland 20899-8320 (United States)

    2016-05-15

    Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative water partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.

  6. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-05-01

    Full Text Available GPS has become a very effective tool to remotely sense precipitable water vapor (PWV information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorological sensors can retrieve water vapor using standard atmosphere parameters, which lead to a decrease in accuracy. In this paper, a method of interpolating NWP reanalysis data to site locations for generating corresponding meteorological elements is explored over China. The NCEP FNL dataset provided by the NCEP (National Centers for Environmental Prediction and over 600 observed stations from different sources was selected to assess the quality of the results. A one-year experiment was performed in our study. The types of stations selected include meteorological sites, GPS stations, radio sounding stations, and a sun photometer station. Compared with real surface measurements, the accuracy of the interpolated surface pressure and air temperature both meet the requirements of GPS PWV derivation in most areas; however, the interpolated surface air temperature exhibits lower precision than the interpolated surface pressure. At more than 96% of selected stations, PWV differences caused by the differences between the interpolation results and real measurements were less than 1.0 mm. Our study also indicates that relief amplitude exerts great influence on the accuracy of the interpolation approach. Unsatisfactory interpolation results always occurred in areas of strong relief. GPS PWV data generated from interpolated meteorological parameters are consistent with other PWV products (radio soundings, the NWP reanalysis dataset, and sun photometer PWV data. The

  7. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    Science.gov (United States)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  8. Characterization of ionic permeability and water vapor transmission rate of polymers used for implantable electronics.

    Science.gov (United States)

    Kirsten, Sabine; Schubert, Martin; Uhlemann, Jürgen; Wolter, Klaus-Jurgen

    2014-01-01

    Biocompatible polymers used as encapsulation and packaging materials for implantable electronic devices have to comply with numerous requirements. Especially their barrier properties against water molecules and ions are of particular interest regarding the reliability of the encapsulation as well as functional integrity of the electronic components since water and ions on the circuit board may evoke corrosion, leakage current and finally the failure of the device. This paper describes a measurement setup to investigate the ionic permeability under in vitro conditions of polymeric membranes manufactured from various biocompatible polymers. Ionic permeability and water vapor transmission rate representing the barrier properties of these membranes were investigated. First results were obtained for polyimide, silicone, polyether ether ketone and polyamide, whereas polyimide evinced the best properties.

  9. A feasibility study for the retrieval of the total column precipitable water vapor from satellite observations in the blue spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2013-04-01

    Full Text Available We present a new algorithm for satellite retrievals of the atmospheric water vapor column in the blue spectral range. The water vapor absorption cross section in the blue spectral range is much weaker than in the red spectral range. Thus the detection limit and the uncertainty of individual observations is systematically larger than for retrievals at longer wavelengths. Nevertheless, water vapor retrievals in the blue spectral range have also several advantages: since the surface albedo in the blue spectral range is similar over land and ocean, water vapor retrievals are more consistent than for longer wavelengths. Compared to retrievals at longer wavelengths, over ocean the sensitivity for atmospheric layers close to the surface is higher due to the (typically 2 to 3 times higher ocean albedo in the blue. Water vapor retrievals in the blue spectral range are also possible for satellite sensors, which do not measure at longer wavelengths of the visible spectral range like the Ozone Monitoring instrument (OMI. We investigated details of the water vapor retrieval in the blue spectral range based on radiative transfer simulations and observations from the Global Ozone Monitoring Experiment 2 (GOME-2 and OMI. It is demonstrated that it is possible to retrieve the atmospheric water vapor column density in the blue spectral range over most parts of the globe. The findings of our study are of importance also for future satellite missions like e.g. Sentinel 4 and 5.

  10. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  11. An exposure system for measuring nasal and lung uptake of vapors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, A.R.; Brookins, L.K.; Gerde, P. [National Inst. for Working Life, Solna (Sweden)

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposure system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.

  12. The Determination of the Water Vapor Content in the Pulkovo VKM-100 Multipass Vacuum Cell Using Polymer Sensors of Humidity

    CERN Document Server

    Galkin, V D; Nikanorova, I N; Sal'nikov, I B; Leiterer, U; Alekseeva, G A; Novikov, V V; Dauß, D

    2010-01-01

    In spectral studies of water vapor under laboratory conditions (determination of molecular constants, measurement for spectral transmission functions), the amount of water vapor in the time of the measurements is one of the most essential parameters, which should be determined accurately. We discuss the application for this purpose of polymer sensors of humidity manufactured by Praktik-NC (Moscow) and used in the Pulkovo VKM-100 multipass vacuum cell. These sensors were examined in the laboratory of Lindenberg Meteorological observatory (Germany) by comparison between their readings and those of standard measuring devices for various values of relative humidity, pressure, and temperature. We also carried out measurements of relative humidity in boxes with saline solution, in which the relative humidity that corresponds to a given solution is guaranteed with the accuracy of several tenths of percent. The analysis of the results of the laboratory examination of the sensors and extended sets of measurements made...

  13. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Science.gov (United States)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Voemel, H.

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  14. Production of a long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    Science.gov (United States)

    Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.

    1995-01-01

    There is a well-documented requirement for a comprehensive and accurate global moisture data set to assist many important studies in atmospheric science. Currently, atmospheric water vapor measurements are made from a variety of sources including radiosondes, aircraft and surface observations, and in recent years, by various satellite instruments. Creating a global data set from a single measuring system produces results that are useful and accurate only in specific situations and/or areas. Therefore, an accurate global moisture data set has been derived from a combination of these measurement systems. Under a NASA peer-reviewed contract, STC-METSAT produced two 5-yr (1988-1992) global data sets. One is the total column (integrated) water vapor data set and the other, a global layered water vapor data set using a combination of radiosonde observations, Television and Infrared Observation Satellite (TIROS) Operational Satellite (TOVS), and Special Sensor Microwave/Imager (SSM/I) data sets. STC-METSAT also produced a companion, global, integrated liquid water data set. The complete data set (all three products) has been named NVAP, an anachronym for NASA Water Vapor Project. STC-METSAT developed methods to process the data at a daily time scale and 1 x 1 deg spatial resolution.

  15. Herschel/HIFI observations of IRC+10216: water vapor in the inner envelope of a carbon-rich AGB star

    CERN Document Server

    Neufeld, David A; Melnick, Gary J; Schmidt, Miroslaw; Szczerba, Ryszard; Decin, Leen; de Koter, Alex; Schöier, Fredrik; Cernicharo, José

    2010-01-01

    We report the results of observations of ten rotational transitions of water vapor toward the carbon-rich AGB (asymptotic giant branch) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (few x 1.E+14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H2-17O/H2-16O and H2-18O/H2-16O isotopic abundance ratios of ~ 5.E-3 (3 sigma), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  16. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  17. Fuel for cyclones: How the water vapor budget of a hurricane depends on its motion

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Chikunov, Alexander V; Sheil, Douglas; Nobre, Antonio D; Li, Bai-Lian

    2016-01-01

    Tropical cyclones are fueled by water vapor. Here we estimate the oceanic evaporation within an Atlantic hurricane to be less than one sixth of the total moisture flux precipitating over the same area. So how does the hurricane get the remaining water vapor? Our analysis of TRMM rainfall, MERRA atmospheric moisture and hurricane translation velocities suggests that access to water vapor relies on the hurricane's motion -- as it moves through the atmosphere, the hurricane consumes the water vapor it encounters. This depletion of atmospheric moisture by the hurricane leaves a "dry footprint" of suppressed rainfall in its wake. The thermodynamic efficiency of hurricanes -- defined as kinetic energy production divided by total latent heat release associated with the atmospheric moisture supply -- remains several times lower than Carnot efficiency even in the most intense hurricanes. Thus, maximum observed hurricane power cannot be explained by the thermodynamic Carnot limit.

  18. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  19. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  20. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  1. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  2. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    Directory of Open Access Journals (Sweden)

    KOHIO Niéssan

    2014-12-01

    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  3. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  4. HIRDLS/Aura Level 3 Water Vapor (H2O) Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Water Vapor (H2O) Zonal Fourier Coefficients" version 7 data product (H3ZFCH2O) contains the entire mission (~3 years) of HIRDLS data...

  5. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  6. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  7. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Science.gov (United States)

    Grund, Christian J.; Hardesty, R. Michael; Rye, Barry J.

    1995-04-01

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution (e.g. high resolution infrared (IR) Fourier transform radiometry), poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  8. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  9. Effect of water vapor on the performance of glass RPCs in avalanche mode operation

    CERN Document Server

    Raveendrababu, K; Satyanarayana, B; Mukhopadhayay, S; Majumdar, N

    2016-01-01

    We studied the effect of water vapor on the performance of glass Resistive Plate Chambers (RPCs) in the avalanche mode operation. Controlled and calibrated amount of water vapor was added to the RPC gas mixture that has C$_2$H$_2$F$_4$ as the major component. The deterioration in the performance of RPC was observed while operating with wet gas and recovered after switching to standard gas.

  10. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying

    2016-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are studied numerically in this paper. The results show that the condensation process is a rapid variation of the vapor......-liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  11. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  12. Atmospheric control on isotopic composition and d-excess in water vapor over ocean surface

    Science.gov (United States)

    Fan, Naixin

    surface temperature (SST) and dew point (Td) at the measurement height (20m). Gd represents the dew point temperature gradient between sea surface and 20m; it better explains the variation of d-excess than relative humidity. Finally, we study the difference of isotopic composition and d-excess of water vapor between Arctic and subtropical regions. The results highlight the relationship between climate and isotopic ratios of moisture sources at different regions. Model results show that deltaD of Arctic oceanic surface water vapor is much more sensitive to variability in mixing ratio of subsiding air than that of subtropics. The Tropospheric Emission Spectrometer (TES) six years (2004--2009) observational data shows a significant decreasing trend of deltaD immediately above the MBL. The observed decrease of deltaD may be a result of the concurrent moisture gain of the Arctic upper troposphere.

  13. Interaction of water vapor with clean and oxygen-covered uranium surfaces

    Science.gov (United States)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1987-04-01

    The interaction of water vapor with clean and oxygen-covered high-purity polycrystalline uranium surfaces was studied between 85 and 298 K with thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectroscopy (SIMS). Saturation of the uranium surface with oxygen or water vapor produced an asymmetric O1s photoelectron peak that consisted of a main oxide contribution and a small component assigned to strongly chemisorbed oxygen or hydroxyl ions, respectively. Saturation of the clean or oxygen-covered surface with water vapor at 85 K produced multilayer ice that was converted to oxide and adsorbed hydroxyl ions after warming to room temperature. A significant difference in binding energies was observed in the O1s spectra between water vapor adsorption on clean and oxygen-covered surfaces that lends support to the oxygen inhibition of the water vapor-uranium reaction by a surface mechanism. The initial oxidation mechanisms of uranium with oxygen and water vapor are discussed.

  14. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G.F., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2011-01-10

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper-chlorine (Cu-Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to {approx}950 K, at a high COP of {approx}6.5. Based on measured data available in past literature, the authors have determined the T-s diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches {approx}2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper-chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at {approx}950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by

  15. Calculation of the transport and relaxation properties of dilute water vapor

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa

    2009-07-01

    Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements.

  16. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    Science.gov (United States)

    Sussmann, Ralf; Reichert, Andreas; Rettinger, Markus

    2016-09-01

    Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.) a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm-1 (1.28-25 µm). As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum = 0.1 mm, median = 2.3 mm) and very low aerosol optical depth (AOD = 0.0024-0.0032 at 7800 cm-1 at air mass 1). All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR) continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR). Uncertainty contributions to near-infrared (NIR) radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR) calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an increasing and dominant contribution towards higher NIR wavenumbers

  17. The Laboratory Complex for the Calibration of Photometers Using the Optical Method for Determination of the Water Vapor Content in the Earth Atmosphere

    CERN Document Server

    Galkin, V D; Nikanorova, I N; Leiterer, U; Niebert, T; Alekseeva, G A; Novikov, V V; Ilyin, G N; Pakhomov, V P

    2010-01-01

    We describe the laboratory complex for the calibration of photometers that are used in weather service to measure the water vapor content in the Earth atmosphere. The complex was built up in Pulkovo Observatory and developed within the framework of collaboration between Pulkovo Observatory and Lindenberg Meteorological Observatory (Meteorologisches Observatorium Lindenberg - Richard-A{\\ss}mann-Observatorium, Lindenberg, Germany). It is used to obtain calibration dependences for individual devices, and also to develop and compare various methods of construction of calibration dependences. These techniques are based on direct calibration of the photometers, on the use of spectral laboratory transmission functions for water vapor, on calculation methods using spectroscopical databases for individual lines. We hope that when the parameters of the equipment are taken into account in detail and new results for the absorptive power of water vapor are used, the accuracy of determination of the water vapor content in ...

  18. Seasonal and Short-term Variation of Water Vapor Isotope ratios in Surface Air in Sapporo, Japan

    Science.gov (United States)

    Sunmonu, L. A.; Fujiyoshi, Y.; Muramoto, K.; Kurita, N.

    2011-12-01

    Stable isotopes of atmospheric water vapor provide information about movement of water and its phase changes in the atmosphere. Surface water vapor's δD and δ18O measurement was conducted in Sapporo (43.1N, 141.3E), a humid continental site characterized by a warm but not humid summer and a quite cold and snowy winter, in Hokkaido, Japan with a Los Gatos Research's (LGR) Water-Vapor Isotope Analyzer (WVIA, model DLT-100). The observation in Sapporo was carried out in four phases: (I) 28 April 2009 - 25 June 2009; (II) 15 September 2009 - 29 November 2009; (III) 1 April 2010 - 21 May 2010 and (IV) 17 December 2010 - 30 May 2011. In addition, auxiliary data (air temperature, atmospheric pressure, relative humidity, wind speed & direction, etc.) were obtained with an automatic weather station (AWS). Thus, the objective of this study is to investigate the characteristics of δD and δ18O of atmospheric water vapor near the ground in Sapporo and to explore the meteorological processes that influence δD and δ18O of atmospheric water vapor at the surface. In general, δD and δ18O were higher in warm season (PHASES I & III) than in cold season (PHASES II & IV) with almost equal day-to-day δD variability in both seasons. The lightest δD (-239.7%) occurs in the month of March/April despite not being the coldest month in Sapporo. This is thought to be due to "rigorous" evaporation due to snow-melting. In addition, over periods of about 1-7days, considerable variations occurred, sometimes exceeding 100% for δD. These considerable variations were attributable to weather phenomena such as sea-breeze and cold frontal passages. The former causes δD to increase abruptly while the latter causes an abrupt decrease.

  19. Exploring the Elevated Water Vapor Signal Associated with Biomass Burning Aerosol over the Southeast Atlantic Ocean

    Science.gov (United States)

    Pistone, Kristina; Redemann, Jens; Wood, Rob; Zuidema, Paquita; Flynn, Connor; LeBlanc, Samuel; Noone, David; Podolske, James; Segal Rozenhaimer, Michal; Shinozuka, Yohei; hide

    2017-01-01

    The quantification of radiative forcing due to the cumulative effects of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in our understanding of the physical climate. How the magnitude of these effects may be modified by meteorological conditions is an important aspect of this question. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning (BB) smoke plumes overlying a persistent stratocumulus cloud deck, offers a perfect natural observatory in which to study the complexities of aerosol-cloud interactions. The NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign consists of three field deployments over three years (2016-2018) with the goal of gaining a better understanding of the complex processes (direct and indirect) by which BB aerosols affect clouds. We present results from the first ORACLES field deployment, which took place in September 2016 out of Walvis Bay, Namibia. Two NASA aircraft were flown with a suite of aerosol, cloud, radiation, and meteorological instruments for remote-sensing and in-situ observations. A strong correlation was observed between the aircraft-measured pollution indicators (carbon monoxide and aerosol properties) and atmospheric water vapor content, at all altitudes. Atmospheric reanalysis indicates that convective dynamics over the continent, near likely contribute to this elevated signal. Understanding the mechanisms by which water vapor covaries with plume strength is important to quantifying the magnitude of the aerosol direct and semi-direct effects in the region.

  20. Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes

    Science.gov (United States)

    Pougatchev, Nikita; August, Thomas; Calbet, Xavier; Hultberg, Tim; Oduleye, Osoji; Schlüssel, Peter; Stiller, Bernd; St. Germain, Karen; Bingham, Gail

    2008-08-01

    The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI) Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The L2 data were validated through assessment of their error covariances and biases using radiosonde data for the reference. The radiosonde data set includes dedicated launches as well as the ones performed at regular synoptic times at Lindenberg station, Germany). For optimal error estimate the linear statistical Validation Assessment Model (VAM) was used. The model establishes relation between the compared satellite and reference measurements based on their relations to the true atmospheric state. The VAM utilizes IASI averaging kernels and statistical characteristics of the ensembles of the reference data to allow for finite vertical resolution of the retrievals and spatial and temporal non-coincidence. For temperature retrievals expected and assessed errors are in good agreement; error variances/rms of a single FOV retrieval are 1K between 800 - 300 mb with an increase to ~1K in tropopause and ~2K at the surface, possibly due to wrong surface parameters and undetected clouds/haze. Bias against radiosondes oscillates within +/-0 5K . between 950 - 100 mb. As for water vapor, its highly variable complex spatial structure does not allow assessment of retrieval errors with the same degree of accuracy as for temperature. Error variances/rms of a single FOV relative humidity retrieval are between 10 - 13% RH in the 800 - 300 mb range.

  1. Single-beam water vapor detection system with automatic photoelectric conversion gain control

    Science.gov (United States)

    Zhu, C. G.; Chang, J.; Wang, P. P.; Wang, Q.; Wei, W.; Liu, Z.; Zhang, S. S.

    2014-11-01

    A single-beam optical sensor system with automatic photoelectric conversion gain control is proposed for doing high reliability water vapor detection under relatively rough environmental conditions. Comparing to a dual-beam system, it can distinguish the finer photocurrent variations caused by the optical power drift and provide timely compensation by automatically adjusting the photoelectric conversion gain. This system can be rarely affected by the optical power drift caused by fluctuating ambient temperature or variation of fiber bending loss. The deviation of the single-beam system is below 1.11% when photocurrent decays due to fiber bending loss for bending radius of 5 mm, which is obviously lower than the dual-beam system (8.82%). We also demonstrate the long-term stability of the single-beam system by monitoring a 660 ppm by volume (ppmv) water vapor sample continuously for 24 h. The maximum deviation of the measured concentration during the whole testing period does not exceed 10 ppmv. Experiments have shown that the new system features better reliability and is more apt for remote sensing application which is often subject to light transmission loss.

  2. Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

    Science.gov (United States)

    Lainer, Martin; Hocke, Klemens; Kämpfer, Niklaus

    2016-06-01

    Many studies investigated solar-terrestrial responses (thermal state, O3, OH, H2O) with emphasis on the tropical upper atmosphere. In this paper the focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88 ° N / 7.46 ° E) are investigated to study oscillations with the focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼ 64 km) during the rising sunspot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing the similarity of their temporal oscillations. The H2O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to - 0.3 to - 0.4, and the phase lag is 6-10 days at 0.04 hPa. The confidence level of the correlation is ≥ 99 %. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photodissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC) complete our study. More periods of high common wavelet power of H2O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level) correlations occur intermittently in the 27 and 13-day band with variable phase lock behavior. Large Lyman-α oscillations appeared after the solar superstorm in July 2012 and the H2O oscillations show a well pronounced anti-correlation. The competition between advective transport and photodissociation loss of mesospheric water vapor may explain the sometimes variable phase relationship of mesospheric H2

  3. Water Vapor in Titan’s Stratosphere from Cassini CIRS Far-infrared Spectra

    Science.gov (United States)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Bézard, B.; de Kok, R.; Lellouch, E.; Irwin, P. G. J.; Flasar, F. M.; Bampasidis, G.

    2012-10-01

    We will report the measurement of water vapor in Titan’s stratosphere (Cottini et al. 2012), using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al. 2004). CIRS senses water emissions in the far infrared spectral region near 50 microns, which we have modeled using a radiative transfer code (NEMESIS, Irwin et al. 2008). From the analysis of nadir spectra we have derived a mixing ratio of 0.14 ± 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7±1.3 × 1014 molecules/cm2. In the latitude range 80°S to 30°N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13 ± 0.04 ppb at an altitude of 115 km and 0.45 ± 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by previous photochemical models. We have also fitted our data using scaling factors of 0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan’s lower stratosphere. Valeria Cottini is supported by the NASA Postdoctoral Program. References Cottini V. et al., 2012. Detection of water vapor in Titan’s atmosphere from Cassini/CIRS infrared spectra. Icarus, 220, 2, 855-862 Flasar, F.M., and 44 colleagues, 2004. Exploring the Saturn system in the thermal infrared: The Composite Infrared Spectrometer. Space Sci. Rev., 115, 169-297 Irwin, P.G.J., et al., 2008. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Trans., 109, 1136-1150.

  4. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  5. SEPARATION OF WATER VAPORS FROM AIR BY SORPTION ON SOME COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    OANA HAUTĂ

    2014-01-01

    Full Text Available This work presents an experimental investigation of the kinetics of water vapor sorption on two composites synthesized by impregnating activated carbon and activated alumina respectively with lithium bromide (named as MCA2 and MCC2 respectively. The obtained results showed an increase in water amount adsorbed on both composite materials. Due to different chemical natures of the host matrices, the water sorption kinetics on MCC2 is faster compared to that of MCA2. The presence of calcium chloride instead of lithium bromide in alumina pores will determine a shorter breakthrough time and a higher adsorption rate of water vapors.

  6. Waste storage in the vadose zone affected by water vapor condensation and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  7. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  8. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  9. In situ measurement and dynamic control of the evaporation rate in vapor diffusion crystallization of proteins

    Science.gov (United States)

    Shu, Zhan-Yong; Gong, Hai-Yun; Bi, Ru-Chang

    1998-08-01

    A special device with a weight-sensitive facility was designed for monitoring and controlling the water evaporation in vapor diffusion protein crystallization. The device made it possible to measure the weight of the drop in real time while the crystallization experiment was going on normally. The precise water equilibration curves under different crystallization conditions could be obtained automatically. By monitoring and controlling the evaporation rate, the crystallization of hen egg-white lysozyme and trichosanthin, a plant protein from Chinese herb, was optimized by regulating the reservoir solution dynamically. The experimental results of these two proteins indicate both the feasibility of the device and the usefulness of dynamic control technique. Compared with traditional crystallization experiments, dynamically controlled crystallization can reduce the number of nuclei, increase the crystal size and save experimental time effectively.

  10. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  11. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  12. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer