WorldWideScience

Sample records for water vapor h2o

  1. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    Science.gov (United States)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  2. Equilibrium water vapor pressures over polyvanadates M2V12O30.7·nH2O

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.; Ivakin, A.A.

    1986-01-01

    Equilibrium pressures of water vapors over polyvanadates M 2 V 12 O 30.7 xnH 2 O where M=Li, Na, K are determined in the 293-343 K temperature range. Changes in Gibbs free energy and enthalpy of compound dehydration depending on water content in the final product are calculated on the basis of these data. Molar enthalpy of water is shown to reduce from lithium to potassium, while equilibrium pressure of water vapors over the compounds grows from lithium to potassium. Good correlation of thermodynamic properties of crystallization water of polyvanadates with energy characteristics of hydrated M + ions of the solutions confirms the conclusion that they cannot be attributed to ordinary crystallohydrates

  3. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  4. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  5. Methanol reformer with water vapor and oxygen in catalysts of Cu/CeO2-ZrO2 to generate H2

    International Nuclear Information System (INIS)

    Aguila M, M.M.

    2007-01-01

    The environmental pollution is one of the problems more important to solve in the present time because its affect the quality of the alive beings' life. For such a reason alternatives have been looked for to diminish the percentage of air pollution (NO x , CO x , SO x , etc.), for they have been developed it the well-known catalytic converters. Another possibility is the energy use through fuel cells in vehicles using H 2 as fuel free of CO (smaller concentration to 10 ppm). Processes exist for the production of H 2 starting from the methanol and in this work the one was used reformed of methanol with water vapor and oxygen (OSRM) as the main reaction of this work. The primordial objective of this work consists on studying the catalytic properties of the copper (Cu) supported in mixed oxides (ZrO 2 -CeO 2 ) in the reaction of having reformed of methanol with water vapor and oxygen for the production of H 2 . Zirconia is synthesized (ZrO 2 ) and mixed oxides ZrO 2 -CeO 2 (with different relationship Zr/Ce) for the sol-gel method and the one cerium oxide (CeO 2 ) by direct combustion of the cerium nitrate. The oxides were stabilized thermally at 600 C by 5h. The catalysts were prepared by classic impregnation using copper acetate, the nominal concentration was of 3% in weight. The catalysts were roasted at 350 C and later on reduced in flow from H 2 to 350 C for 1h. The characterization of the catalytic materials is carried out through different techniques as: adsorption-desorption of nitrogen to determine the surface area BET, scanning electron microscopy (SEM) to determine the final morphology of the catalysts, X-ray diffraction (XRD) to identify the crystalline phases of the catalytic materials and reduction to programmed temperature (TPR) to evidence the interaction metal-support. The catalytic properties of the catalysts were studied in the reaction CH 3 OH + H 2 O + O 2 , to determine the activity and selectivity. The surface area of the mixed oxides was

  6. Water vapor emission from H II regions and infrared stars

    International Nuclear Information System (INIS)

    Cato, B.T.; Ronnang, B.O.; Rydbeck, O.E.H.; Lewin, P.T.; Yngvesson, K.S.; Cardiasmenos, A.G.; Shanley, J.F.

    1976-01-01

    The spatial structure of water vapor microwave line emission has been investigated with moderate angular resolution in several well-known H II regions. New H 2 O sources have been with infrared (1R) sources. One of these sources, IRC: 20411, has been investigated at optical wavelengths. It is found to be of spectral class M3-M5 and by indirect evidence the luminosity class is preliminarily determined to Ib. The distance is estimated to be approx.2 kpc, and the star must be in front of the dust complex which obscures W28 A2. In NGC 7538 new high-velocity features have been discovered. Two new weak water vapor masers, G30.1: 0.7 and G32.8: 0.3, have been detected in a search among eight class II OH/IR sources. H 2 O emission coinciding with the low-velocity OH features of VY Canis Majoris has also been detected. A search for local thermodynamic equilibrium (LTE) water-vapor line emission in molecular clouds associated with H II regions is also reported. No line was detected with the utilized sensitivity. The physical implications of this are discussed and an upper limit of the H 2 O column density has been estimated. Gaussian analysis of the strong, narrow feature in the spectrum of ON 1 indicates a possible presence of two hyperfine components, viz., F→F'=7→6 and 6→5

  7. Vapor pressures of nitric acid and water in the systems HNO3-H2O and HNO3-Th(NO3)4-H2O at 50oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Brown, C.P.; Campbell, A.B.

    1985-01-01

    The equilibrium compositions of the vapor above nitric acid-water, thorium nitrate-water, and nitric acid-thorium nitrate-water mixtures at 50 o C have been studied as a function of solution concentration by using a transpiration technique. Nitric acid concentrations were varied from 0 to 20 m and thorium nitrate concentrations from 0 to 2.5 m. Our data for the nitric acid-water system have been combined with literature data to obtain parameters for Scatchard's ion-component model, and these parameters provide a satisfactory description of the system at 50 o C over a wide concentration range. The enhancement, at 50 o C, of the nitric acid vapor pressure by added thorium nitrate was found to be less than that previously determined at 25 o C. The data for the nitric acid-thorium nitrate-water system at 50 o C were fitted to a single multiparameter function. (author)

  8. Vapor-liquid equilibrium of the Mg(NO3)2-HNO3-H2O system

    International Nuclear Information System (INIS)

    Thompson, B.E.; Derby, J.J.; Stalzer, E.H.

    1983-06-01

    The vapor-liquid equilibrium of the Mg(NO 3 ) 2 -HNO 3 -H 2 O system in concentrations of 0 to 70 wt % Mg(NO 3 ) 2 and 0 to 75 wt % HNO 3 at atmospheric pressure was correlated by two approaches. One was based on a dissociation equilibrium expression in which the activities of the reacting species (HNO 3 , NO 3 - , and H + ) were approximated with mole fractions. The activity coefficients of the undissociated HNO 3 and H 2 O were correlated as functions of the concentrations of magnesium nitrate and nitric acid by second-order polynomials. The average absolute difference between predicted and experimental values was 8% for the mole fraction of acid in the vapor and 8 0 K for the bubble-point temperature. The second approach was to correlate the mean ionic rational activity coefficient of water with a form of the excess Gibbs energy composed of two terms. One term, a function of the ionic strength, accounts for the coulombic (ionic) interactions; the other term accounts for the non-coulombic (molecular) interactions. The average absolute difference between predicted and experimental values was 9% for the mole fraction of acid in the vapor, and 10 0 K for the bubble-point temperature

  9. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Frurip, D.J.; Blander, M.

    1979-01-01

    The thermal conductivities of H 2 O and D 2 O vapors were measured in a modified thick hot wire cell between 358 and 386 K at pressures ranging from 100 to 1000 Torr. Analysis of the data indicates that molecular association to form a dimeric species is the main source of enhancement of the thermal conductivity of both vapors. The enthalpy and entropy of association of the H 2 O dimer are -3.59 kcal mol -1 and -18.59 cal deg -1 mol -1 , respectively. The enthalpy and entropy of association of the D 2 O dimer are -3.66 kcal mol -1 and -18.67 cal deg -1 mol -1 , respectively. The measured enthalpy of association of the H 2 O dimer is in agreement with recently reported ab initio molecular orbital calculations on the H 2 O dimer. The entropies of association of the H 2 O and D 2 O dimers are calculated theoretically and are found to be in agreement with the measured values

  10. Water vapor pressure over molten KH_2PO_4 and demonstration of water electrolysis at ∼300 °C

    International Nuclear Information System (INIS)

    Berg, R.W.; Nikiforov, A.V.; Petrushina, I.M.; Bjerrum, N.J.

    2016-01-01

    Highlights: • The vapor pressure over molten KH_2PO_4 was measured by Raman spectroscopy to be about 8 bars at ∼300 °C. • Raman spectroscopy shows that molten KH_2PO_4 under its own vapor pressure contains much dissolved water. • It is demonstrated spectroscopically that water electrolysis is possible in KH_2PO_4 electrolyte forming H_2 and O_2 at 300 °C. • Molten KH_2PO_4 is a possible electrolyte for water electrolysis. - Abstract: A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH_2PO_4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH_2PO_4 was found to dissociate into H_2O gas in equilibrium with a melt mixture of KH_2PO_4−K_2H_2P_2O_7−KPO_3−H_2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH_2PO_4 can be split by electrolysis via the reaction 2H_2O2H_2 + O_2 at temperatures ∼275–325 °C. At these temperatures, before the start of the electrolysis, the KH_2PO_4 melt gives off H_2O gas that pressurizes the cell according to the following dissociations: 2KH_2PO_4 ↔ K_2H_2P_2O_7 + H_2O2KPO_3 + 2H_2O. The spectra show however that the water by

  11. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  12. Effects of water vapor on protectiveness of Cr2O3 scale at 1073 K

    Science.gov (United States)

    Arifin, S. K.; Hamid, M.; Berahim, A. N.; Ani, M. H.

    2018-01-01

    Fe-Cr alloy is commonly being used as boiler tube’s material. It is subjected to prolonged exposure to water vapor oxidation. The ability to withstand high temperature corrosion can normally be attributed to the formation of a dense and slow growing Cr-rich-oxide scale known as chromia, Cr2O3 scale. However, oxidation may limit the alloy’s service lifetime due to decreasing of its protectiveness capability. This paper is to presents an experimental study of thermo gravimetric and Fourier transform infrared analysis of Cr2O3 at 1073 K in dry and humid environment. Samples were used from commercially available Cr2O3 powder. It was cold-pressed into pellet shape of 12 mm diameter and 3 mm thick with hydraulic press for 40 min at 48 MPa. It then sintered at 1173 K in inert gas environment for 8 h. The samples are cooled and placed in 5 mm diameter platinum pan. It is subjected to reaction in dry and wet environment at 1073 K by applying 100%-Ar and Ar-5%H2 gas. Each reaction period is 48 h utilizing Thermo Gravimetric Analyzer, TGA to quantify the mass changes. After the reaction, the samples then characterized with Fourier Transform Infrared Spectroscopy, FT-IR and Field Emission Electron Scanning Microscopy, FE-SEM. The TGA result shows mass decreasing ratio of Cr2O3 in wet (PH2O = 9.5x105Pa) and dry environment is at a factor of 1.2 while parabolic rate at 1.4. FT-IR results confirmed that water vapor significantly broaden the peaks, thus promotes the volatilization of Cr2O3 in wet sample. FESEM shows mostly packed and intact in dry while in wet sample, slightly porous particle arrangement compare to dry. It is concluded that water vapor species decreased Cr2O3 protectiveness capability.

  13. Study of kinetics of reaction of lithium deuteride powder with O2, CO2 and water vapor

    International Nuclear Information System (INIS)

    Li Gan; Lu Guangda; Jing Wenyong; Qin Cheng

    2004-01-01

    The kinetics of reaction of lithium deuteride powder with O 2 , CO 2 and water vapor is studied. The experimental results show that lithium deuteride reacts with O 2 and CO 2 at very small reaction rate but with water vapor at comparatively larger rate at room temperature (≅28 degree C). The reaction process with water vapor could be described using the unreacted shrinking core model. The second-order kinetics is appropriate for the chemical reaction on the surface of lithium deuteride and reaction rate constant is 0.281 kPa -1 ·min -1

  14. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  15. Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300ºC

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nikiforov, Aleksey Valerievich; Petrushina, Irina

    2016-01-01

    A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH2PO4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH2PO4 was found to dissociate into H2O gas in equilibrium with a melt mixture of KH2PO4—K2H2P2O7—KPO3...... of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells...... with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH2PO4 can be split by electrolysis via the reaction 2H2O...

  16. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    Science.gov (United States)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  17. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    Science.gov (United States)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  18. Unraveling the role of SiC or Si substrates in water vapor incorporation in SiO 2 films thermally grown using ion beam analyses

    Science.gov (United States)

    Corrêa, S. A.; Soares, G. V.; Radtke, C.; Stedile, F. C.

    2012-02-01

    The incorporation of water vapor in SiO 2 films thermally grown on 6H-SiC(0 0 0 1) and on Si (0 0 1) was investigated using nuclear reaction analyses. Water isotopically enriched in deuterium ( 2H or D) and in 18O was used. The dependence of incorporated D with the water annealing temperature and initial oxide thickness were inspected. The D amount in SiO 2/SiC structures increases continuously with temperature and with initial oxide thickness, being incorporated in the surface, bulk, and interface regions of SiO 2 films. However, in SiO 2/Si, D is observed mostly in near-surface regions of the oxide and no remarkable dependence with temperature or initial oxide thickness was observed. At any annealing temperature, oxygen from water vapor was incorporated in all depths of the oxide films grown on SiC, in contrast with the SiO 2/Si.

  19. HERSCHEL/HIFI SEARCH FOR H{sub 2}{sup 17}O AND H{sub 2}{sup 18}O IN IRC+10216: CONSTRAINTS ON MODELS FOR THE ORIGIN OF WATER VAPOR

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, David A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Tolls, Volker; Melnick, Gary J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Agundez, Marcelino [LAB, Universite de Bordeaux, UMR 5804, F-33270 Floirac (France); Gonzalez-Alfonso, Eduardo [Universidad de Alcala de Henares, Departamento de Fisica y Matematicas, Campus Universitario, E-28871 Alcala de Henares, Madrid (Spain); Decin, Leen [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Daniel, Fabien; Cernicharo, Jose [Departamento de Astrofisica, Centro de Astrobiologia, CSIC-INTA, Ctra. de Torrejon a Ajalvir km 4, E-28850 Madrid (Spain); Schmidt, Miroslaw; Szczerba, Ryszard [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Rabianska 8, 87-100 Torun (Poland)

    2013-04-10

    We report the results of a sensitive search for the minor isotopologues of water, H{sub 2}{sup 17}O and H{sub 2}{sup 18}O, toward the carbon-rich asymptotic giant branch star IRC+10216 (a.k.a. CW Leonis) using the HIFI instrument on the Herschel Space Observatory. This search was motivated by the fact that any detection of isotopic enhancement in the H{sub 2}{sup 17}O and H{sub 2}{sup 18}O abundances would have strongly implicated CO photodissociation as the source of the atomic oxygen needed to produce water in a carbon-rich circumstellar envelope. Our observations place an upper limit of 1/470 on the H{sub 2}{sup 17}O/H{sub 2}{sup 16}O abundance ratio. Given the isotopic {sup 17}O/{sup 16}O ratio of 1/840 inferred previously for the photosphere of IRC+10216, this result places an upper limit of a factor 1.8 on the extent of any isotope-selective enhancement of H{sub 2}{sup 17}O in the circumstellar material, and provides an important constraint on any model that invokes CO photodissociation as the source of O for H{sub 2}O production. In the context of the clumpy photodissociation model proposed previously for the origin of water in IRC+10216, our limit implies that {sup 12}C{sup 16}O (not {sup 13}C{sup 16}O or SiO) must be the dominant source of {sup 16}O for H{sub 2}O production, and that the effects of self-shielding can only have reduced the {sup 12}C{sup 16}O photodissociation rate by at most a factor {approx}2.

  20. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    International Nuclear Information System (INIS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-01-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn 2 O 4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn 2 O 4 particles in air and water vapor atmospheres as model reactions; LiMn 2 O 4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO 3 precursor impregnated with LiOH, LiMn 2 O 4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn 2 O 4 particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn 2 O 4 particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  1. A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.

    2008-01-01

    Kinetic model for the radiolysis of pure water describing the formation of H 2 , H 2 O 2 and O 2 and the radiation chemical transformations of aqueous solutions containing these compounds over a broad range of concentrations, pH, absorbed doses and dose rates is proposed and substantiated. The model includes a set of chemical reactions with optimized rate constants and the radiation chemical yields of radiolysis products. The model applicability to the description of the whole set of data on the radiation chemical transformations of water and aqueous solutions of H 2 , H 2 O 2 and O 2 is demonstrated

  2. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  3. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  4. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    Science.gov (United States)

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  5. Dual effects of water vapor on ceria-supported gold clusters.

    Science.gov (United States)

    Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao

    2018-04-05

    Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.

  6. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  7. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  8. A tentative detection of the 183-GHz water vapor line in the martian atmosphere: Constraints upon the H2O abundance and vertical distribution

    Science.gov (United States)

    Encrenaz, TH.; Lellouch, E.; Cernicharo, J.; Paubert, G.; Gulkis, S.

    1995-01-01

    The 183-GHz water vapor line was tentatively detected on Mars in January 1991, with the IRAM 30-m millimeter antenna, under extremely dry atmospheric conditions. The measurement refers to the whole disk. The spectral line, although marginally detected, can be fit with a constant H2O mixing ratio of 1.0 x 10(exp -5), which corresponds to a water abundance of 1 pr-microns; in any case, an upper limit of 3 pr-microns is inferred. This value is comparable to the very small abundances measured by Clancy (1992) 5 weeks before our observation and seems to imply both seasonal and long-term variations in the martian water cycle.

  9. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    Science.gov (United States)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  10. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  11. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, 2–5-1 Akebono-cho, Kochi 780-8520 (Japan); Murakami, Takeshi; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-11-15

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  12. Degradation of process water containing polymers UV/H{sub 2}O{sub 2} system; Degradacao de agua de processo contendo polimeros via sistema UV/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Will, Isabela B.S.; Telemaco, Emmanuelle P.; Chiavone-Filho, Osvaldo; Guardani, Roberto; Nascimento, Claudio A.O. do

    2004-07-01

    The water rationalization has been one of the goals of the petrochemical industry. Such goals in such a way demand technological innovations for new productive processes how much for new techniques of treatment and reuse of water in the production chain. The high industrial water costs in Brazil, particularly in the regions metropolitans, have stimulated the national industries to evaluate the possibilities of reuse. The objective of this work is the application of the process water treatment containing polypropylene using ultraviolet radiation and hydrogen peroxide, that is system UV/H{sub 2}O{sub 2}, aiming at to adjust them for reuses in the proper process, reducing the water capitation daily pay-treated and improving the water exploitation. Photochemical annular reactor with medium pressure mercury vapor lamp was used and the following parameters of process had been evaluated: radiation, temperature of reaction and hydrogen peroxide concentration. The monitoring of the experiments was based on the measurement of contents of dissolved organic carbon, total carbon and inorganic carbon. Additionally, experiments using solar radiation had been evaluated. The experimental results had indicated the viability of application of system UV/H{sub 2}O{sub 2} having used artificial and solar light sources. The quality of the water obtained in the treatment was adequate to reuse it. (author)

  13. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  14. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  15. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    OpenAIRE

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-01-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60?70?ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5?1.8-nm radii. The first o-Ps decaying process include...

  16. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    Science.gov (United States)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (T eff clouds brighten the planet: T eff ∼ 150 K, g ≳ 20 ms‑2, f sed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and T eff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High f sed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

  17. The ESA GOME-Evolution "Climate" water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2

    Science.gov (United States)

    Beirle, Steffen; Lampel, Johannes; Wang, Yang; Mies, Kornelia; Dörner, Steffen; Grossi, Margherita; Loyola, Diego; Dehn, Angelika; Danielczok, Anja; Schröder, Marc; Wagner, Thomas

    2018-03-01

    We present time series of the global distribution of water vapor columns over more than 2 decades based on measurements from the satellite instruments GOME, SCIAMACHY, and GOME-2 in the red spectral range. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. Potentially systematic effects due to differences in ground pixel size are avoided by merging SCIAMACHY and GOME-2 observations to GOME spatial resolution, which also allows for a consistent treatment of cloud effects. In addition, the GOME-2 swath is reduced to that of GOME and SCIAMACHY to have consistent viewing geometries.Remaining systematic differences between the different sensors are investigated during overlap periods and are corrected for in the homogenized time series. The resulting Climate product v2.2 (https://doi.org/10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2" target="_blank">https://doi.org/10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2) allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.

  18. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer

    International Nuclear Information System (INIS)

    Begović, Nebojša N.; Blagojević, Vladimir A.; Ostojić, Sanja B.; Radulović, Aleksandra M.; Poleti, Dejan; Minić, Dragica M.

    2015-01-01

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni 2 (en) 2 (H 2 O) 6 (pyr)]·4H 2 O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system

  19. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  20. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

    International Nuclear Information System (INIS)

    Medellin-Castillo, Nahum A.; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D.

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H 2 O 2 , O 3 /AC, O 3 /H 2 O 2 ) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O 3 /H 2 O 2 and O 3 /AC systems is faster than that with only O 3 . The technologies based on AOPs (UV/H 2 O 2 , O 3 /H 2 O 2 , O 3 /AC) significantly improve the degradation of DEP compared to conventional technologies (O 3 , UV). AC adsorption, UV/H 2 O 2 , O 3 /H 2 O 2 , and O 3 /AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O 3 /AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: ► Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. ► The pH solution did not significantly affect the photodegradation kinetics of DEP. ► The O 3 /H 2 O 2 and O 3 /AC systems were more efficient than O 3 to degrade DEP. ► The generation of HO • from O 3 was enhanced by ACs, mainly by those of basic nature. ► O

  1. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  2. Supercooling of natural water, heavy water and of the blends H2O-D2O

    International Nuclear Information System (INIS)

    Lafargue, C.; Babin, L.; Clausse, D.; Lere-Porte, M.; Broto, F.

    1975-01-01

    It is shown that the coherency of the results of various measurements on water freezing temperatures proves that freezing temperatures must be dependent on the structure of the supercooled liquid. Recent experiments that confirm this interpretation are described: study of the stability of supercooled water as a function of time at fixed temperature, study of the influence of various thermal treatments on the behavior of supercooled water, study of the supercooling of heavy water and of D 2 O-H 2 O blends [fr

  3. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  4. Investigation of the Na2(H2PO2)2 - Ba(H2PO2)2 - H2O Water-Salt Ternary System at Room Temperature

    OpenAIRE

    Erge, Hasan; Turan, Hakan; Kul, Ali Riza

    2016-01-01

    Objective: In this study, the solubility, density, conductivity and phase equilibria of the Na2(H2PO2)2-Ba(H2PO2)2-H2O ternary system located in the structure of the Na+, Ba2+, (H2PO2)-//H2O quaternary reciprocal water-salt system were investigated using physicochemical analysis methods. Material and Methods: Riedel-de Haen and Merck salts were used to investigate the solubility and phase equilibria of the Na2(H2PO2)2 -Ba(H2PO2)2-H2O ternary water–salt system at room temperature Res...

  5. Microscopic study of the H.sub.2./sub.O vapor treatment of the silicon grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Rezek, Bohuslav; Fejfar, Antonín; Kočka, Jan

    2008-01-01

    Roč. 354, č. 19-25 (2008), s. 2310-2313 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 Keywords : polycrystalline silicon films * H 2 O vapor treatment * potential * crystalline disorder * stress * defects * passivation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  6. Study on the interaction of lithium orthosilicate with water vapor and hydrogen

    International Nuclear Information System (INIS)

    Huber, S.

    1994-09-01

    The present work discusses the adsorption of H 2 O(g) as well as the reactions of D 2 O(g) and D 2 (g) with lithium orthosilicate (Li 4 SiO 4 ), a potential tritium breeding ceramic for future fusion reactors. An apparatus was constructed which permits H 2 O partial pressures as low as 1 μbar to be generated and subsequently measured with high accuracy and precision. Using the frontal analysis of gas chromatography, adsorption isotherms were determined at temperatures and water vapor pressures ranging from 653 to 1093 K and 1 to 10 μbar, respectively. Based upon the data, the tritium inventory at the surface of Li 4 SiO 4 (cr) can be estimated as function of temperature and water vapor concentration in the purge gas of a solid breeder blanket. The reactions of lithium orthosilicate with deuterium oxide and deuterium were studied at high temperature (1160 - 1420K) by means of Knudsen effusion mass spectrometry. In both cases the production of lithium hydroxide and the establishment of an equilibrium between LiOD(g) and D 2 O(g) were observed; D 2 O is derived from oxidation of deuterium, presumably under formation of a reduced surface layer. Equilibrium constants and reaction enthalpies were computed for the reaction of Li 4 SiO 4 (cr) with D 2 O(g). In addition, the vapor pressure of LiOD(g) above Li 4 SiO 4 (cr) was determined as function of temperature and deuterium oxide pressure. Further experiments with lithium orthosilicate were carried out under flowing hydrogen in order to analyze the effects of temperature, H 2 -concentration, gas flow, sample size and sample pretreatment on the formation of water vapor. The results confirm the mass spectrometric findings mentioned above. (orig.) [de

  7. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.

    1975-01-01

    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  8. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (≤few x 10 14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H 17 2 O/H 16 2 O and H 18 2 O/H 16 2 O isotopic abundance ratios of ∼5 x 10 -3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  9. CANDIDATE WATER VAPOR LINES TO LOCATE THE H{sub 2}O SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Notsu, Shota; Ishimoto, Daiki [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Nomura, Hideko [Department of Earth and Planetary Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Walsh, Catherine [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Honda, Mitsuhiko [Department of Physics, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka 830-0011 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Millar, T. J., E-mail: snotsu@kusastro.kyoto-u.ac.jp [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2016-08-20

    Inside the H{sub 2}O snowline of protoplanetary disks, water evaporates from the dust-grain surface into the gas phase, whereas it is frozen out onto the dust in the cold region beyond the snowline. H{sub 2}O ice enhances the solid material in the cold outer part of a disk, which promotes the formation of gas-giant planet cores. We can regard the H{sub 2}O snowline as the surface that divides the regions between rocky and gaseous giant planet formation. Thus observationally measuring the location of the H{sub 2}O snowline is crucial for understanding the planetesimal and planet formation processes, and the origin of water on Earth. In this paper, we find candidate water lines to locate the H{sub 2}O snowline through future high-dispersion spectroscopic observations. First, we calculate the chemical composition of the disk and investigate the abundance distributions of H{sub 2}O gas and ice, and the position of the H{sub 2}O snowline. We confirm that the abundance of H{sub 2}O gas is high not only in the hot midplane region inside the H{sub 2}O snowline but also in the hot surface layer of the outer disk. Second, we calculate the H{sub 2}O line profiles and identify those H{sub 2}O lines that are promising for locating the H{sub 2}O snowline: the identified lines are those that have small Einstein A coefficients and high upper state energies. The wavelengths of the candidate H{sub 2}O lines range from mid-infrared to sub-millimeter, and they overlap with the regions accessible to the Atacama Large Millimeter/sub-millimeter Array and future mid-infrared high-dispersion spectrographs (e.g., TMT/MICHI, SPICA).

  10. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O2/H2O low-temperature plasma treatment

    Science.gov (United States)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    The natural leather was modified through O2/H2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O2/H2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  11. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  12. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  13. Atmospheric pressure plasma jet utilizing Ar and Ar/H2O mixtures and its applications to bacteria inactivation

    International Nuclear Information System (INIS)

    Cheng Cheng; Shen Jie; Xiao De-Zhi; Xie Hong-Bing; Lan Yan; Fang Shi-Dong; Meng Yue-Dong; Chu Paul K

    2014-01-01

    An atmospheric pressure plasma jet generated with Ar with H 2 O vapor is characterized and applied to inactivation of Bacillus subtilis spores. The emission spectra obtained from Ar/H 2 O plasma shows a higher intensity of OH radicals compared to pure argon at a specified H 2 O concentration. The gas temperature is estimated by comparing the simulated spectra of the OH band with experimental spectra. The excitation electron temperature is determined from the Boltzmann's plots and Stark broadening of the hydrogen Balmer H β line is applied to measure the electron density. The gas temperature, excitation electron temperature, and electron density of the plasma jet decrease with the increase of water vapor concentration at a fixed input voltage. The bacteria inactivation rate increases with the increase of OH generation reaching a maximum reduction at 2.6% (v/v) water vapor. Our results also show that the OH radicals generated by the Ar/H 2 O plasma jet only makes a limited contribution to spore inactivation and the shape change of the spores before and after plasma irradiation is discussed. (physics of gases, plasmas, and electric discharges)

  14. Protonation and structural/chemical stability of Ln{sub 2}NiO{sub 4+δ} ceramics vs. H{sub 2}O/CO{sub 2}: High temperature/water pressure ageing tests

    Energy Technology Data Exchange (ETDEWEB)

    Upasen, S. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Batocchi, P.; Mauvy, F. [ICMCB, ICMCB-CNRS-IUT-Université de Bordeaux, 33608 Pessac Cedex (France); Slodczyk, A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Colomban, Ph., E-mail: philippe.colomban@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France)

    2015-02-15

    Highlights: • High temperature/water pressure autoclave is used to study the reaction/corrosion at SOFC/HTSE electrode. • High stability of Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) dense ceramics vs. water pressure is demonstrated. • Protonated rare-earth nickelates retain the perovskite-type structure and their H-content is determined. • Very low laser illumination power is required to avoid RE nickelate phase transition. • Nickelates show increasing stability from La to Pr/Nd vs. CO{sub 2}-rich high temperature water vapor. - Abstract: Mixed ionic-electronic conductors (MIEC) such as rare-earth nickelates with a general formula Ln{sub 2}NiO{sub 4+δ} (Ln = La, Pr, Nd) appear as potential for energy production and storage systems: fuel cells, electrolysers and CO{sub 2} converters. Since a good electrode material should exhibit important stability in operating conditions, the structural and chemical stability of different nickelate-based, well-densified ceramics have been studied using various techniques: TGA, dilatometry, XRD, Raman scattering and IR spectroscopy. Consequently, La{sub 2}NiO{sub 4+δ} (LNO), Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) have been exposed during 5 days to high water vapor pressure (40 bar) at intermediate temperature (550 °C) in an autoclave device, the used water being almost free or saturated with CO{sub 2}. Such protonation process offers an accelerating stability test and allows the choice of the most pertinent composition for industrial applications requiring a selected material with important life-time. In order to understand any eventual change of crystal structure, the ceramics were investigated in as-prepared, pristine state as well as after protonation and deprotonation (due to thermal treatment till 1000 °C under dry atmosphere). The results show the presence of traces or second phases originating from undesirable hydroxylation and carbonation, detected in the near

  15. Thermally activated 3D to 2D structural transformation of [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O flexible coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Nebojša N. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Institute of General and Physical Chemistry, Belgrade (Serbia); Blagojević, Vladimir A. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Ostojić, Sanja B.; Radulović, Aleksandra M. [Institute of General and Physical Chemistry, Belgrade (Serbia); Poleti, Dejan [Faculty of Technology and Metallurgy, University of Belgrade (Serbia); Minić, Dragica M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade (Serbia); Department of Biomedical Sciences, State University of Novi Pazar (Serbia)

    2015-01-15

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system.

  16. Reactions of modulated molecular beams with pyrolytic graphite IV. Water vapor

    International Nuclear Information System (INIS)

    Olander, D.R.; Acharya, T.R.; Ullman, A.Z.

    1977-01-01

    The reaction of water vapor with the prism plane face of anneal pyrolytic graphite was investigated by modulated molecular beam--mass spectrometry methods. The equivalent water vapor pressure of the beam was approx.2 x 10 -5 Torr and the graphite temperature was varied from 300 to 2500 0 K. The mechanism was deduced from three types of experiments: isotope exchange utilizing modulated H 2 O and steady D 2 O beams; measurements of the phase difference between H 2 O and neon reflected from the surface from a mixed primary beam of these species; and reaction of a modulated H 2 O beam to produce CO and H 2 . Based upon the isotope exchange experiments chemisorption of water on graphite was found to be dissociative and reversible. Incident water molecules chemisorbed with a sticking probability of 0.15 +- 0.02 to form the complexes C--OH and C--H. Recombination of the surface complexes reverses the adsorption step and is responsible for the isotope exchange properties of the graphite surface. This process is unactivated. Reaction to produce CO and H 2 also results from collisions of the primary surface complexes, but this step has an activation energy of 170 kJ/mole. This reaction yields bound complexes tentatively identified as C--O and H--C--H, which then decompose to produce the stable reaction products. All of the above steps exhibit characteristic times on the order of milliseconds, and are therefore detectable by the modulated beam method. All surface intermediates are strongly affected by solution and diffusion in the bulk of the solid

  17. Preparation of hydrogenated-TiO2/Ti double layered thin films by water vapor plasma treatment

    International Nuclear Information System (INIS)

    Pranevicius, L.L.; Milcius, D.; Tuckute, S.; Gedvilas, K.

    2012-01-01

    Highlights: ► We investigated reaction of water plasma with nanocrystalline TiO 2 films. ► Simultaneous oxidation and hydrogenation of Ti was observed during plasma treatment. ► Water plasma treatment forms hydrogenated nanocrystalline TiO 2 in the shallow surface. - Abstract: We have investigated the structural and compositional variations in 200–500 nm thick Ti films deposited by magnetron sputter-deposition technique and treated in water vapor plasma at different processing powers. It was found that the upper layer of treated film with the thickness of 110 nm was changed into the black hydrogenated-TiO 2 with around 16 nm sized nanocystals during 10 min for dissipated power 200 W at room temperature. Analysis of the experimental results is used to obtain insights into the effects of water layer adsorbed on hydrophilic oxidized titanium surfaces exposed to plasma radiation.

  18. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first...

  19. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies

    Science.gov (United States)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.

    2017-10-01

    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  20. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    Science.gov (United States)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  1. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I-Energy levels and transition wavenumbers for H217O and H218O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Carleer, Michel R.; Csaszar, Attila G.; Gamache, Robert R.; Hodges, Joseph T.; Jenouvrier, Alain; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Daumont, Ludovic; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Mikhailenko, Semen N.

    2009-01-01

    This is the first part of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependence and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. The present article contains energy levels and data for line positions of the singly substituted isotopologues H 2 17 O and H 2 18 O. The procedure and code MARVEL, standing for measured active rotational-vibrational energy levels, is used extensively in all stages of determining the validated levels and lines and their self-consistent uncertainties. The spectral regions covered for both isotopologues H 2 17 O and H 2 18 O are 0-17125cm -1 . The energy levels are checked against ones determined from accurate variational calculations. The number of critically evaluated and recommended levels and lines are, respectively, 2687 and 8614 for H 2 17 O, and 4839 and 29 364 for H 2 18 O. The extensive lists of MARVEL lines and levels obtained are deposited in the Supplementary Material, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. A distinguishing feature of the present evaluation of water spectroscopic data is the systematic use of all available experimental data and validation by first-principles theoretical calculations.

  2. Process-property relationships of SiC chemical vapor deposition in the Si/H/C/O system

    International Nuclear Information System (INIS)

    Richardson, C.; Takoudis, C.G.

    1999-01-01

    The thermal, chemical, and physical properties of SiC make it an attractive material for a wide range of applications from wear resistant coatings on tools to high temperature microelectronics operations. A comprehensive thermodynamic analysis has been performed for the Si/H/C/O system from which a priori process-property relationships of the chemical vapor deposition (CVD) of silicon carbide (SiC) are obtained. The parameter space for pure silicon carbide growth is reported for five orders of magnitude of the system water vapor level (1 ppb--100 ppm), four orders of magnitude of system pressure (0.1--760 Torr), and two orders of magnitude of C/Si feed ratio (0.25--20) and H 2 /Si feed ratio (50--10,000). Lower growth temperatures for pure SiC are predicted in clean systems with low system water vapor levels, at stoichiometric to near carbon excess conditions (C/Si ≅ 1 to C/Si > 1), at high carrier gas flow rates (large H 2 /Si feed ratios), and at low operating pressures. Because relative C/Si and H 2 /Si feed ratios have been considered, the predictions in this study are applicable to both multiple and single precursor systems. Further, these results are valid for the CVD of α-SiC as well as β-SiC. Experimental data reported on the growth of α-SiC and β-SiC are found to be in satisfactory agreement with the theoretical predictions, for numerous systems that include multiple and single source, silicon and carbon, species

  3. Simultaneous desulfurization and denitrification of flue gas by ·OH radicals produced from O2+ and water vapor in a duct.

    Science.gov (United States)

    Bai, Mindi; Zhang, Zhitao; Bai, Mindong

    2012-09-18

    In the present study, simultaneous flue gas desulfurization and denitrification are achieved with ·OH radicals generated from O(2)(+) reacting with water vapor in a duct. The O(2)(+) ions are generated by a strong ionization dielectric barrier discharge and then injected into the duct. Compared with conventional gas discharge treatment, the present method does not need a plasma reaction reactor, additional catalysts, reductants, or oxidants. The main recovered products are the liquids H(2)SO(4) and HNO(3), which can be used in many processes. Removal rates of 97% for NO and 82% for SO(2) are obtained under the following optimal experimental conditions: molar ratio of reactive oxygen species (O(2)(+), O(3)) to SO(2) and NO, 5; inlet flue gas temperature, 65 °C; reaction time, 0.94 s; and H(2)O volume fraction, 8%. Production of O(2)(+) and the plasma reaction mechanisms are discussed, and the recovered acid is characterized. The experimental results show that the present method performs better for denitrification than for desulfurization. Compared with conventional air discharge flue gas treatments, the present method has lower initial investment and operating costs, and the equipment is more compact.

  4. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  5. Cassini/CIRS Observations of Water Vapor in Titan's Stratosphere

    Science.gov (United States)

    Bjoraker, Gordon L.; Achterberg, R. K.; Anderson, C. M.; Samuelson, R. E.; Carlson, R. C.; Jennings, D. E.

    2008-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained spectra of Titan during most of the 44 flybys of the Cassini prime mission. Water vapor on Titan was first detected using whole-disk observations from the Infrared Space Observatory (Coustenis et al 1998, Astron. Astrophys. 336, L85-L89). CIRS data permlt the retrieval of the latitudinal variation of water on Titan and some limited information on its vertical profile. Emission lines of H2O on Titan are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. Water abundances were retrieved in nadir spectra at 55 South, the Equator, and at 19 North. Limb spectra of the Equator were also modeled to constrain the vertical distribution of water. Stratospheric temperatures in the 0.5 - 4.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304/cm. The temperature in the lower stratosphere (4 - 20 mbar) was derived from fitting pure rotation lines of CH4 between 80 and 160/cm. The origin of H2O and CO2 is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of water originates either within the Saturn system or from the interplanetary medium. Recently, Horst et al (J. Geophys. Res. 2008, in press) developed a photochemical model of Titan in which there are two external sources of oxygen. Oxygen ions (probably from Enceladus) precipitate into Titan's atmosphere to form CO at very high altitudes (1100 km). Water ice ablation at lower altitudes (700 km) forms H2O and subsequent chemistry produces CO2. CIRS measurements of CO, CO2, and now of H2O will provide valuable constraints to these photochemical models and - improve our understanding of oxygen chemistry on Titan.

  6. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O_2/H_2O low-temperature plasma treatment

    International Nuclear Information System (INIS)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    Graphical abstract: - Highlights: • O_2/H_2O can increase oxygen concentration in the plasma compared to the pure O_2 atmosphere. • Pores at the surface of natural leather became larger and deeper with enhanced permeability of water. • The initial water contact angle was about 21°. • Its preferable surface hydrophilicity kept for 3 days, which gives guidance for next process. • The elongation of the treated sample for 10 min was twice as large as that of the untreated sample. - Abstract: The natural leather was modified through O_2/H_2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O_2/H_2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  8. Liquids - vapor and liquids - solids equilibria in the system Th(NO3)4 - UO2(NO3)2 - HNO3 - H2O

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Mamaev, S.L.; Zhirnov, Yu.P.

    1999-01-01

    Liquids - vapor and liquids - solids equilibria in the system Th(NO 3 ) 4 - UO 2 (NO 3 ) 2 - HNO 3 - H 2 O were investigated. It was established that in this system thorium nitrate hexahydrate and uranyl nitrate hexa- and trihydrate are formed. Empiric equations of solubility isotherm at 25 deg C were found. Densities of liquid phases of the system were determined. It was established that uranyl nitrates and thorium nitrates salt out nitric acid in vapor phase just as separately so in the case of mutual presence. Empiric equation fixing relationship between nitric acid concentration in condensed phase and concentrations of all components in liquid phase was found

  9. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua

    2005-01-01

    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  10. Low-energy proton stopping power of N2, O2, and water vapor, and deviations from Bragg's rule

    International Nuclear Information System (INIS)

    Xu, Y.J.; Khandelwal, G.S.; Wilson, J.W.

    1984-01-01

    A modified local-plasma model, based on the works of Lindhard and Winther, and Bethe, Brown, and Walske is established. The Gordon-Kim model for molecular-electron density is used to calculate stopping power of N 2 , O 2 , and water vapor for protons of energy ranging from 40 keV to 2.5 MeV, resulting in good agreement with experimental data. Deviations from Bragg's rule are evaluated and are discussed under the present theoretical model

  11. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  12. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles

    Science.gov (United States)

    Todd Clancy, R.; Smith, Michael D.; Lefèvre, Franck; McConnochie, Timothy H.; Sandor, Brad J.; Wolff, Michael J.; Lee, Steven W.; Murchie, Scott L.; Toigo, Anthony D.; Nair, Hari; Navarro, Thomas

    2017-09-01

    ; Montmessin et al., 2004; Steele et al., 2014; Navarro et al., 2014) and depend on uncertain cloud microphysical properties (Navarro et al., 2014). The derived low-to-mid latitude changes in Mars water vapor vertical distributions should reduce current model-data disagreements in column O3 and H2O2 abundances over low-to-mid latitudes (e.g., within the ACB; Lefèvre et al., 2008; Encrenaz et al., 2015; Clancy et al., 2016). Lastly, the global/seasonal average comparison of CRISM and LMDGCM O2(1△g) VER below 20 km altitudes indicates a factor of ∼3 times lower value (0.25 ×10-20 cm3sec-1) for the CO2 collisional de-excitation rate coefficient of O2(1△g) than derived recently by Guslyakova et al. (2016).

  13. Experimental study of cluster formation in binary mixture of H2O and H2SO4 vapors in the presence of an ionizing radiation source

    Science.gov (United States)

    Singh, J. J.; Smith, A. C.; Yue, G. K.

    1980-01-01

    Molecular clusters formed in pure nitrogen containing H2O and H2SO4 vapors and exposed to a 3 mCi Ni63 beta source were studied in the mass range 50 to 780 amu using a quadrupole mass spectrometer. Measurements were made under several combinations of relative humidity and relative acidity ranging from 0.7 to 7.5 percent and 0.00047 to 0.06333 percent, respectively. The number of H2SO4 molecules in the clusters observed ranged from 1 to 7 whereas the number of H2O molecules ranged from 1 to 16. The experimental cluster spectra differ considerably from those calculated using the classical nucleation theory. First order calculations using modified surface tension values and including the effects of multipole moments of the nucleating molecules indicate that these effects may be enough to explain the difference between the measured and the calculated spectra.

  14. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  15. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon)

    Energy Technology Data Exchange (ETDEWEB)

    Medellin-Castillo, Nahum A. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Av. Dr. M. Nava No.6, San Luis de Potosi, 78290 (Mexico); Ocampo-Perez, Raul [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, 78290 (Mexico); Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Leyva-Ramos, Roberto [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, 78290 (Mexico); Sanchez-Polo, Manuel [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Rivera-Utrilla, Jose, E-mail: jrivera@ugr.es [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Mendez-Diaz, Jose D. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain)

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H{sub 2}O{sub 2}, O{sub 3}/AC, O{sub 3}/H{sub 2}O{sub 2}) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between {pi} electrons of its aromatic ring with {pi} electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/AC systems is faster than that with only O{sub 3}. The technologies based on AOPs (UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2}, O{sub 3}/AC) significantly improve the degradation of DEP compared to conventional technologies (O{sub 3}, UV). AC adsorption, UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2}, and O{sub 3}/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O{sub 3}/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: Black-Right-Pointing-Pointer Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. Black-Right-Pointing-Pointer The pH solution did not significantly affect the photodegradation kinetics of DEP. Black

  16. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  17. Method for heavy-water production by H2S--H2O chemical exchange process

    International Nuclear Information System (INIS)

    Strathdee, G.G.

    1978-01-01

    The invention discloses a heavy water production stage in a bithermal H 2 S gas H 2 O liquid exchange plant wherein the cold tower is operated under temperature and pressure conditions such that H 2 S in the liquid phase is formed and is maintained in the separation units (sieve trays or plates) of the cold tower. It has been found that the presence of liquid H 2 S acts as an efficient anti-foaming agent

  18. Thermodynamics of the CSCl-H2O system at low temperatures

    International Nuclear Information System (INIS)

    Monnin, C.; Dubois, M.

    1999-01-01

    The interpretation of fluid-inclusion data requires knowledge of phase diagrams at low (subfreezing) temperatures. From the example of the CsCl-H 2 O system, we here investigate the possibility to build such diagrams from thermodynamic models of aqueous solutions parameterized at higher temperatures. Holmes and Mesmer (1983) have built a model for the thermodynamic properties of CsCl(aq) based on Pitzer's equation fit to thermodynamic data mainly at temperatures above 0 C along with a few freezing-point-depression data down to -8 C. We show how this model can be used along with the published water-ice equilibrium constant and thermodynamic data at 25 C for Cs + (aq), Cl - (aq) and CsCl(s), to predict with confidence the ice-liquid-vapor (ILV) and the salt-liquid-vapor (SLV) curves down to the eutectic temperature for the CsCl-H 2 O system. (orig.)

  19. One- or two-electron water oxidation, hydroxyl radical, or H_2O_2 evolution

    International Nuclear Information System (INIS)

    Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian; Nørskov, Jens K.

    2017-01-01

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H_2O_2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O_2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H_2O_2, and O_2.

  20. Water Vapor in the Middle Atmosphere of Venus from the Data of the Venera-15 IR Fourier Spectrometer

    Science.gov (United States)

    Ignat'ev, N. I.; Moroz, V. I.; Zasova, L. V.; Khatuntsev, I. V.

    In 1983, the Fourier spectrometer experiment onboard Venera-15 returned spectra of IR radiation (6-50 micron) of the Venusian atmosphere which contained information about temperature, aerosols, and minor constituents, including water vapor. The currently available techniques of radiation-transfer modeling and the H2O-abundance reconstruction allowed us to reanalyze these data, and the most recent results of this analysis are presented here. Most of the measurements are in the range 5-15 ppm. Temporal and spatial variations of the water-vapor abundance were measured. The estimates of H2O abundance calculated from the spectra refer to a certain altitude approximately determined by the level where the optical depth tau in the aerosol continuum near the H2O bands region is close to unity. This altitude varies from 62.5 +/- 2 km at low latitudes to 56 +/- 2 km at high altitudes, but the mean measured water-vapor abundance is found to be roughly the same for both areas, about 10 ppm. At low and middle latitudes, the H2O mixing ratio is maximum on the dayside of the planet and minimum on the nightside. Although the direct reconstruction of the H2O vertical profile from the spectra failed, its indirect estimates confirming the decrease of the mixing ratio with altitude were obtained.

  1. A numerical model for the movement of H 2O, H 218O, and 2HHO in the unsaturated zone

    Science.gov (United States)

    Shurbaji, Abdel-Rahman M.; Phillips, Fred M.

    1995-09-01

    Vertical profiles of H 218O and 2HHO concentrations have yielded useful information on evaporation and infiltration processes in soils. However, in the field, quantitative interpretation of such profiles has been limited by the restrictions inherent in the quasi-steady-state and transient analytical models available to describe the physical processes. This study presents a flexible numerical model that simulates transient fluxes of heat, liquid water, water vapor, and isotopic species. The model can simulate both infiltration and evaporation under fluctuating meteorological conditions and thus should be useful in reproducing changes in field isotope profiles. A transition factor is introduced in the isotope transport equation. This factor combines hydrologic and isotopic parameters and changes slowly with depth in the soil profile but strongly in the evaporation zone, owing to the rapid change in the dominant phase of water from liquid to vapor. Using the transition factor in the isotope transport equation facilitates obtaining the typical shape of the isotope profile (bulge at the evaporation zone). This factor also facilitates producing broad isotope enrichment peaks that may be seen in very dry soils.

  2. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  3. H2O Formation in C-rich AGB Winds

    NARCIS (Netherlands)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N.L.J.; De Ridder, J.; Khouri, T.; Agúndez, M.; Blommaert, J.A.D.L.; Gernicharo, J.; González-Alfonso, E.; Groenewegen, M.A.T.; Kerschbaum, F.; Neufeld, D.; Vandenbussche, B.; Waelkens, C.

    2015-01-01

    The Herschel detection of warm H2O vapor emission from C-rich winds of AGB stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O formation. In the first, penetration of UV interstellar radiation through a clumpy circumstellar

  4. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O{sub 2}/H{sub 2}O low-temperature plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    You, Xuewei; Gou, Li, E-mail: gouli@scu.edu.cn; Tong, Xingye

    2016-01-01

    Graphical abstract: - Highlights: • O{sub 2}/H{sub 2}O can increase oxygen concentration in the plasma compared to the pure O{sub 2} atmosphere. • Pores at the surface of natural leather became larger and deeper with enhanced permeability of water. • The initial water contact angle was about 21°. • Its preferable surface hydrophilicity kept for 3 days, which gives guidance for next process. • The elongation of the treated sample for 10 min was twice as large as that of the untreated sample. - Abstract: The natural leather was modified through O{sub 2}/H{sub 2}O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O{sub 2}/H{sub 2}O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  5. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  6. Microscopic study of the H.sub.2./sub.O vapor treatment of the silicon grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Rezek, Bohuslav; Fejfar, Antonín; Kočka, Jan

    2008-01-01

    Roč. 354, č. 19-25 (2008), s. 2310-2313 ISSN 0022-3093 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA AV ČR IAA1010316; GA MŠk LC510; GA AV ČR IAA1010413; GA AV ČR KJB100100512; GA MŽP(CZ) SN/3/172/05 Institutional research plan: CEZ:AV0Z10100521 Keywords : polycrystalline silicon films * H 2 O vapor treatment * potential * crystalline disorder * stress * defects * passivation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  7. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  8. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  9. Peak power and heavy water production from electrolytic H2 and O2 using CANDU reactors

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Bradley, W.J.; Butler, J.P.

    1976-04-01

    A combined energy storage - heavy water production system is presented. Off-peak nuclear energy is stored in the form of electrolytic H 2 (and O 2 ) from which a large fraction of the deuterium has been transferred to water in an H 2 /H 2 O deuterium exchange catalytic column. The main features and advantages of the combined electrolysis -catalytic exchange D 2 O process are discussed. Significant quantities of D 2 O could be produced economically at reasonable peak to base power cost ratios. Thirty to forty percent of the primary electric energy should be available for peak energy via either gas-steam turbines or fuel cells. (author)

  10. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    Science.gov (United States)

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  11. Surface characterization of U(AlxSi1-x)3 alloy and its interaction with O2 and H2O, at room temperature

    Science.gov (United States)

    Matmor, M.; Cohen, S.; Rafailov, G.; Vaknin, M.; Shamir, N.; Gouder, T.; Zalkind, S.

    2018-02-01

    Surface characterization and the interactions of U(AlxSi1-x)3 alloy (x = 0.57) with oxygen and water vapor were studied, utilizing X-Ray Photoelectron Spectroscopy and Direct Recoil Spectrometry, at room temperature. The U 4f spectrum of U(AlxSi1-x)3 alloy exhibits weak correlation satellites, suggesting an itinerant description of the U 5f states for this compound. The Al and Si 2p lines are chemically shifted to lower binding energies. Exposing the alloy to oxygen and water vapor results in oxidation of mainly the uranium and aluminum components, while silicon is only slightly oxidized. Oxygen was found to be a stronger oxidizer than water vapor and the trend is consistent with the more negative enthalpies of formation of metal oxides produced by the O2 reaction, as compared to H2O. During oxygen exposure, fast oxidation occurs by oxide islands nucleation and lateral growth, followed by oxidation of the sub-surface, up to ∼4 nm, at 1000 L exposure. Water initially reacts with the surface by full dissociation and oxide islands formation, which is then covered by hydroxides. Only a minor increase in the oxide thickness of up to ∼2.5 nm, was observed after coalescence.

  12. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    International Nuclear Information System (INIS)

    Myers, B.F.

    1993-01-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ( 85m Kr) on water-vapor pressure, P(H 2 O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H 2 O) becomes weaker as temperatures increase above 770 degree C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H 2 O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol

  13. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B.F.

    1993-08-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ({sup 85m}Kr) on water-vapor pressure, P(H{sub 2}O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H{sub 2}O) becomes weaker as temperatures increase above 770{degree}C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H{sub 2}O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol.

  14. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  15. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... (H2O) vapor content in the flue gas on the high-temperaturecorrosion of austenitic stainless steel (TP 347H FG) under laboratory conditions, to improve the understanding of corrosionmechanisms. Deposit-coated and deposit-free samples were isothermally exposed for 72 h in a synthetic flue gas...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  16. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    Science.gov (United States)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  17. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  18. Laboratory isotopic behaviour (2H, 18O) of sediments pore water during evaporation

    International Nuclear Information System (INIS)

    Ciolzyk, A.; Bariac, T.; Klamecki, A.; Jusserand, C.

    1987-01-01

    Two bare sediments (sand and loam) wetted with water of known isotopic composition have been subjected to evaporation in laboratory conditions. An attempt of application of classical isotopic evaporation models for free waters with reducing reservoir has been made, the better fit implies: a)laminar conditions of the atmosphere in the sediment under evaporation; b) a similar isotopic composition of water vapor as the isotopic composition of the water vapor of the external atmosphere. Variation of ε K and δ V H implies a better knowledge of the complex mechanisms of the atmosphere behaviour in the pore path of porous media under evaporation [fr

  19. On the Quality of the Nimbus 7 LIMS Version 6 Water Vapor Profiles and Distributions

    Science.gov (United States)

    Remsberg, E. E.; Natarajan, M.; Lingenfelser, G. S.; Thompson, R. E.; Marshall, B. T.; Gordley, L. L.

    2009-01-01

    This report describes the quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) water vapor (H2O) profiles of 1978/79 that were processed with a Version 6 (V6) algorithm and archived in 2002. The V6 profiles incorporate a better knowledge of the instrument attitude for the LIMS measurements along its orbits, leading to improvements for its temperature profiles and for the registration of its water vapor radiances with pressure. As a result, the LIMS V6 zonal-mean distributions of H2O exhibit better hemispheric symmetry than was the case from the original Version 5 (V5) dataset that was archived in 1982. Estimates of the precision and accuracy of the V6 H2O profiles are developed and provided. Individual profiles have a precision of order 5% and an estimated accuracy of about 19% at 3 hPa, 14% at 10 hPa, and 26% at 50 hPa. Profile segments within about 2 km of the tropopause are often affected by emissions from clouds that appear in the finite field-of-view of the detector for the LIMS H2O channel. Zonally-averaged distributions of the LIMS V6 H2O are compared with those from the more recent Microwave Limb Sounder (MLS) satellite experiment for November, February, and May of 2004/2005. The patterns and values of their respective distributions are similar in many respects. Effects of a strengthened Brewer-Dobson circulation are indicated in the MLS distributions of the recent decade versus those of LIMS from 1978/79. A tropical tape recorder signal is present in the 7-month time series of LIMS V6 H2O with lowest values in February 1979, and the estimated, annually-averaged "entry-level" H2O is 3.5 to 3.8 ppmv. It is judged that this historic LIMS water vapor dataset is of good quality for studies of the near global-scale chemistry and transport for pressure levels from 3 hPa to about 70 to 100 hPa.

  20. On the calibration of continuous, high-precision delta18O and delta2H measurements using an off-axis integrated cavity output spectrometer.

    Science.gov (United States)

    Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo

    2009-02-01

    The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright 2009 John Wiley & Sons, Ltd.

  1. In-pile vapor pressure measurements on UO2 and (U,Pu)O2

    International Nuclear Information System (INIS)

    Breitung, W.; Reil, K.O.

    1985-08-01

    The Effective-Equation-of-State (EEOS) experiments investigated the saturation vapor pressures of ultra pure UO 2 , reactor grade UO 2 , and reactor grade (Usub(.77)Pusub(.23))O2 using newly developed in-pile heating techniques. For enthalpies between 2150 and 3700 kJ/kg (about 4700 to 8500 K) vapor pressures from 1.3 to 54 MPa were measured. The p-h curves of all three fuel types were identical within the experimental uncertainties. An assessment of all published p-h measurements showed that the p-h saturation curve of UO 2 appears now well established by the EEOS and the CEA in-pile data. Using an estimate for the heat capacity of liquid UO 2 , the in-pile results were also compared to earlier p-T measurements. The assessments lead to proposal of two equations. Equation I, which includes a factor-of-2 uncertainty band, covers all p-T equilibrium evaporation measurements. Equation I yields 3817 K for the normal boiling point, 415.4 kJ/mol for the corresponding heat of vaporization, and 1.90 MPa for the vapor pressure at 5000 K. Equations I and II, which represent a parametric form of the p-h curve (T=parameter), also give a good description of the EEOS and CEA in-pile data. Thus the proposed equations allow a consistent representation of both p-T and p-h measurements, they are sufficiently precise for CDA analyses and cover the whole range of interest (3120-8500 K, 1400-3700 kJ/kg). (orig./HP) [de

  2. A decadal time series of water vapor and D / H isotope ratios above Zugspitze: transport patterns to central Europe

    Science.gov (United States)

    Hausmann, Petra; Sussmann, Ralf; Trickl, Thomas; Schneider, Matthias

    2017-06-01

    We present vertical soundings (2005-2015) of tropospheric water vapor (H2O) and its D / H isotope ratio (δD) derived from ground-based solar Fourier transform infrared (FTIR) measurements at Zugspitze (47° N, 11° E, 2964 m a.s.l.). Beside water vapor profiles with optimized vertical resolution (degrees of freedom for signal, DOFS, = 2.8), {H2O, δD} pairs with consistent vertical resolution (DOFS = 1.6 for H2O and δD) applied in this study. The integrated water vapor (IWV) trend of 2.4 [-5.8, 10.6] % decade-1 is statistically insignificant (95 % confidence interval). Under this caveat, the IWV trend estimate is conditionally consistent with the 2005-2015 temperature increase at Zugspitze (1.3 [0.5, 2.1] K decade-1), assuming constant relative humidity. Seasonal variations in free-tropospheric H2O and δD exhibit amplitudes of 140 and 50 % of the respective overall means. The minima (maxima) in January (July) are in agreement with changing sea surface temperature of the Atlantic Ocean. Using extensive backward-trajectory analysis, distinct moisture pathways are identified depending on observed δD levels: low column-based δD values (δDcol 95th percentile: 46° N, 4.6 km). Backward-trajectory classification indicates that {H2O, δD} observations are influenced by three long-range-transport patterns towards Zugspitze assessed in previous studies: (i) intercontinental transport from North America (TUS; source region: 25-45° N, 70-110° W, 0-2 km altitude), (ii) intercontinental transport from northern Africa (TNA; source region: 15-30° N, 15° W-35° E, 0-2 km altitude), and (iii) stratospheric air intrusions (STIs; source region: > 20° N, above zonal mean tropopause). The FTIR data exhibit significantly differing signatures in free-tropospheric {H2O, δD} pairs (5 km a.s.l.) - given as the mean with uncertainty of ±2 standard error (SE) - for TUS (VMRH2O = 2.4 [2.3, 2.6] × 103 ppmv, δD = -315 [-326, -303] ‰), TNA (2.8 [2.6, 2.9] × 103 ppmv, -251 [-257

  3. Assessing Near-surface Heat, Water Vapor and Carbon Dioxide Exchange Over a Coastal Salt-marsh

    Science.gov (United States)

    Bogoev, I.; O'Halloran, T. L.; LeMoine, J.

    2017-12-01

    Coastal ecosystems play an important role in mitigating the effects of climate change by storing significant quantities of carbon. A growing number of studies suggest that vegetated estuarine habitats, specifically salt marshes, have high long-term rates of carbon sequestration, perhaps even higher than mature tropical and temperate forests. Large amounts of carbon, accumulated over thousands of years, are stored in the plant materials and sediment. Improved understanding of the factors that control energy and carbon exchange is needed to better guide restoration and conservation management practices. To that end, we recently established an observation system to study marsh-atmosphere interactions within the North Inlet-Winyah Bay National Estuarine Research Reserve. Near-surface fluxes of heat, water vapor (H2O) and carbon dioxide (CO2) were measured by an eddy-covariance system consisting of an aerodynamic open-path H2O / CO2 gas analyzer with a spatially integrated 3D sonic anemometer/thermometer (IRGASON). The IRGASON instrument provides co-located and highly synchronized, fast response H2O, CO2 and air- temperature measurements, which eliminates the need for spectral corrections associated with the separation between the sonic anemometer and the gas analyzer. This facilitates calculating the instantaneous CO2 molar mixing ratio relative to dry air. Fluxes computed from CO2 and H2O mixing ratios, which are conserved quantities, do not require post-processing corrections for air-density changes associated with temperature and water vapor fluctuations. These corrections are particularly important for CO2, because they could be even larger than the measured flux. Here we present the normalized frequency spectra of air temperature, water vapor and CO2, as well as their co-spectra with the co-located vertical wind. We also show mean daily cycles of sensible, latent and CO2 fluxes and analyze correlations with air/water temperature, wind speed and light availability.

  4. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    Science.gov (United States)

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  5. Thermodynamics of the CSCl-H{sub 2}O system at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Monnin, C. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. de Geochimie; Dubois, M. [Centre National de la Recherche Scientifique (CNRS), 59 - Villeneuve d`Ascq (France). Lab. de Sedimentologie et Geodynamique

    1999-05-01

    The interpretation of fluid-inclusion data requires knowledge of phase diagrams at low (subfreezing) temperatures. From the example of the CsCl-H{sub 2}O system, we here investigate the possibility to build such diagrams from thermodynamic models of aqueous solutions parameterized at higher temperatures. Holmes and Mesmer (1983) have built a model for the thermodynamic properties of CsCl(aq) based on Pitzer`s equation fit to thermodynamic data mainly at temperatures above 0 C along with a few freezing-point-depression data down to -8 C. We show how this model can be used along with the published water-ice equilibrium constant and thermodynamic data at 25 C for Cs{sup +}(aq), Cl{sup -}(aq) and CsCl(s), to predict with confidence the ice-liquid-vapor (ILV) and the salt-liquid-vapor (SLV) curves down to the eutectic temperature for the CsCl-H{sub 2}O system. (orig.)

  6. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  7. The reaction kinetics of lithium salt with water vapor

    International Nuclear Information System (INIS)

    Balooch, M.; Dinh, L.N.; Calef, D.F.

    2002-01-01

    The interaction of lithium salt (LiH and/or LiD) with water vapor in the partial pressure range of 10 -5 -2657 Pa has been investigated. The reaction probability of water with LiH cleaved in an ultra high vacuum environment was obtained using the modulated molecular beam technique. This probability was 0.11 and independent of LiH surface temperature, suggesting a negligible activation energy for the reaction in agreement with quantum chemical calculations. The value gradually reduced, however, to 0.007 as the surface concentration of oxygen containing product approached full coverage. As the film grew beyond a monolayer, the phase lag of hydrogen product increased from 0 deg. C to 20 deg. C and the reaction probability reduced further until it approached our detection limit (∼10 -4 ). This phase lag was attributed to a diffusion-limited process in this regime. For micrometer thick hydroxide films grown in high moisture concentration environment on LiD and LiH, the reaction probability reduced to ∼4x10 -7 and was independent of exposure time. In this regime of thick hydroxide films (LiOH and/or LiOD), microcracks generated in the films to release stress provided easier pathways for moisture to reach the interface. A modified microscope, capable of both atomic force microscopy and nanoindentation, was also employed to investigate the surface morphology of hydroxide monohydrate (LiOH · H 2 O and/or LiOD · H 2 O) grown on hydroxide at high water vapor partial pressures and the kinetics of this growth

  8. H2O grain size and the amount of dust in Mars' residual North polar cap

    Science.gov (United States)

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  9. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  10. Structure and Dynamics in Formamide-(H2O)3: A Water Pentamer Analogue.

    Science.gov (United States)

    Blanco, Susana; Pinacho, Pablo; López, Juan Carlos

    2017-12-21

    Water self-association dominates the formation of microsolvated molecular clusters which may give rise to complex structures resembling those of pure water clusters. We present a rotational study of the complex formamide-(H 2 O) 3 formed in a supersonic jet and several monosubstituted isotopologues. Formamide and water molecules form a four-body sequential cycle through N-H···O, O-H···O, and O-H···O═C hydrogen bonds, resulting in a chiral structure with a nonplanar skeleton that can be overlapped to that of water pentamer. The analysis of the 14 N-nucleus quadrupole coupling effects shows the depletion of the electron density of the N atom lone pair with respect to the bare formamide that affects the amide group C-N and C═O distances. The study of the observed tunneling doublets shows that formamide-(H 2 O) 3 follows a path to invert its structure driven by the flipping of water subunits and passing through successive nonplanar configurations, a motion reminiscent of the pseudorotation of water pentamer.

  11. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  12. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    Science.gov (United States)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  13. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  14. Validation of UARS Microwave Limb Sounder 183 GHz H2O Measurements

    Science.gov (United States)

    Lahoz, W. A.; Suttie, M. R.; Froidevaux, L.; Harwood, R. S.; Lau, C. L.; Lungu, T. A.; Peckham, G. E.; Pumphrey, H. C.; Read, W. G.; Shippony, Z.; hide

    1996-01-01

    The Upper Atmosphere Research Satellite (UARS) microwave limb sounder (MLS) makes measurements of thermal emission at 183.3 GHz which are used to infer the concentration of water vapor over a pressure range of 46-0.2hPa (approximately 20-60 km). We provide a validation of MLS H2O by analyzing the integrity of the measurements, by providing an error characterization, and by comparison with data from other instruments. It is estimated that version 3 MLS H2O retrievals are accurate to within 20-25% in the lower stratosphere and to within 8-13% in the upper stratosphere and lower mesosphere. The precision of a single profile is estimated to be approximately 0.15 parts per million by volume (ppmv) in the midstratosphere and 0.2 ppmv in the lower and upper stratosphere. In the lower mesosphere the estimate of a single profile precision is 0.25-0.45 ppmv. During polar winter conditions, H2O retrievals at 46 hPa can have a substantial contribution from climatology. The vertical resolution of MLS H2O retrievals is approximately 5 km.

  15. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Science.gov (United States)

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  17. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  18. Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ring‐down laser spectroscopy

    Science.gov (United States)

    Mather, Ian; Rolfe, James; Evans, Nicholas P.; Herwartz, Daniel; Staubwasser, Michael; Hodell, David A.

    2015-01-01

    Rationale The recent development of cavity ring‐down laser spectroscopy (CRDS) instruments capable of measuring 17O‐excess in water has created new opportunities for studying the hydrologic cycle. Here we apply this new method to studying the triple oxygen (17O/16O, 18O/16O) and hydrogen (2H/1H) isotope ratios of gypsum hydration water (GHW), which can provide information about the conditions under which the mineral formed and subsequent post‐depositional interaction with other fluids. Methods We developed a semi‐automated procedure for extracting GHW by slowly heating the sample to 400°C in vacuo and cryogenically trapping the evolved water. The isotopic composition (δ17O, δ18O and δ2H values) of the GHW is subsequently measured by CRDS. The extraction apparatus allows the dehydration of five samples and one standard simultaneously, thereby increasing the long‐term precision and sample throughput compared with previous methods. The apparatus is also useful for distilling brines prior to isotopic analysis. A direct comparison is made between results of 17O‐excess in GHW obtained by CRDS and fluorination followed by isotope ratio mass spectrometry (IRMS) of O2. Results The long‐term analytical precision of our method of extraction and isotopic analysis of GHW by CRDS is ±0.07‰ for δ17O values, ±0.13‰ for δ18O values and ±0.49‰ for δ2H values (all ±1SD), and ±1.1‰ and ±8 per meg for the deuterium‐excess and 17O‐excess, respectively. Accurate measurement of the 17O‐excess values of GHW, of both synthetic and natural samples, requires the use of a micro‐combustion module (MCM). This accessory removes contaminants (VOCs, H2S, etc.) from the water vapour stream that interfere with the wavelengths used for spectroscopic measurement of water isotopologues. CRDS/MCM and IRMS methods yield similar isotopic results for the analysis of both synthetic and natural gypsum samples within analytical error of the two methods. Conclusions We

  19. Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment.

    Science.gov (United States)

    Rozas, Oscar; Vidal, Cristiane; Baeza, Carolina; Jardim, Wilson F; Rossner, Alfred; Mansilla, Héctor D

    2016-07-01

    Organic micropollutants (OMPs) are ubiquitous in natural waters even in places where the human activity is limited. The presence of OMPs in natural water sources for human consumption encourages the evaluation of different water purification technologies to ensure water quality. In this study, the Biobío river (Chile) was selected since the watershed includes urban settlements and economic activities (i.e. agriculture, forestry) that incorporate a variety of OMPs into the aquatic environment, such as pesticides, pharmaceuticals and personal care products. Atrazine (herbicide), caffeine (psychotropic), diclofenac (anti-inflammatory) and triclosan (antimicrobial) in Biobío river water and in different stages of a drinking and two wastewater treatment plants downstream Biobío river were determined using solid phase extraction (SPE) and liquid chromatography/tandem mass spectrometry (LC-MS/MS) and electrospray ionization (ESI). Quantification of these four compounds showed concentrations in the range of 8 ± 2 to 55 ± 10 ng L(-1) in Biobío river water, 11 ± 2 to 74 ± 21 ng L(-1) in the drinking water treatment plant, and 60 ± 10 to 15,000 ± 1300 ng L(-1) in the wastewater treatment plants. Caffeine was used as an indicator of wastewater discharges. Because conventional water treatment technologies are not designed to eliminate some emerging organic pollutants, alternative treatment processes, UV and UV/H2O2, were employed. The transformation of atrazine, carbamazepine (antiepileptic), diclofenac and triclosan was investigated at laboratory scale. Both processes were tested at different UV doses and the Biobío river water matrix effects were evaluated. Initial H2O2 concentration used was 10 mg L(-1). Results showed that, the transformation profile obtained using UV/H2O2 at UV doses up to 900 mJ cm(-2), followed the trend of diclofenac > triclosan > atrazine > carbamazepine. Furthermore acute toxicity tests with Daphnia magna were carried

  20. Global lower mesospheric water vapor revealed by LIMS observations

    Science.gov (United States)

    Gordley, L. L.; Russell, J. M., III; Remsberg, E. E.

    1985-01-01

    The Limb Infrared Monitor of the Stratospheric water vapor channel data analysis has been extended from the 1. mb level (about 48 km) to the .3 mb level (about 60 km) through a radiance averaging procedure and better understanding of systematic errors. The data show H2O mixing ratio peaks near the .5 mb level varying from 4 to 7 ppmv with latitude and season. Above this level the mixing ratio drops off quickly with altitude, but, due to experimental uncertainties, at an uncertain rate. The stratospheric results are virtually the same as determined from the archived LIMS results with a tropical hygropause and enhanced H2O concentration in the lower levels at high winter latitudes.

  1. Water vapor δ17O measurements using an off-axis integrated cavity output spectrometer and seasonal variation in 17O-excess of precipitation in the east-central United States

    Science.gov (United States)

    Tian, C.; Wang, L.; Novick, K. A.

    2016-12-01

    High-precision triple oxygen isotope analysis can be used to improve our understanding of multiple hydrological and meteorological processes. Recent studies focus on understanding 17O-excess variation of tropical storms, high-latitude snow and ice-core as well as spatial distribution of meteoric water (tap water). The temporal scale of 17O-excess variation in middle-latitude precipitation is needed to better understand which processes control on the 17O-excess variations. This study focused on assessing how the accuracy and precision of vapor δ17O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. Meanwhile, we presented 17O-excess data from two-year, event based precipitation sampling in the east-central United States. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ2H, δ18O and δ17O measurements. GISP and SLAP2 from IAEA and four working standards were used to evaluate the sensitivity in the three factors. Overall, the accuracy and precision of all isotope measurements were sensitive to concentration, with higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. Precision was also sensitive to the range of delta values, though the effect was not as large when compared to the sensitivity to concentration. The precision was much less sensitive to averaging time when compared with concentration and delta range effects. The preliminary results showed that 17O-excess variation was lower in summer (23±17 per meg) than in winter (34±16 per meg), whereas spring values (30±21 per meg) was similar to fall (29±13 per meg). That means kinetic fractionation influences the isotopic composition and 17O-excess in different seasons.

  2. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  3. Isotope effects in aqueous systems. Excess thermodynamic properties of 1,3-dimethylurea solutions in H2O and D2O

    International Nuclear Information System (INIS)

    Jakli, G.; Hook, W.A. Van

    1997-01-01

    The osmotic coefficients of 1,3-dimethylurea-h 2 (DMUh 2 )/H 2 O and 1,3-dimethylurea-d 2 (DMUd 2 )/D 2 O solutions (1, 2, 4, 12, and 20 m aq , 15 < t/degree C < 80) were obtained from differential vapor pressure measurements. Excess partial molar free energies, enthalpies, and entropies for the solvent and their isotope effects were calculated from the temperature derivatives of the osmotic coefficients. New partial molar volume data are reported at 25 C at low and intermediate concentrations. The thermodynamic properties of solution are compared with those of urea and discussed using the cage model of hydrophobic hydration. The results support the mixed (polar-apolar) character of this compound and show that its structural effect on water changes with temperature and concentration

  4. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Directory of Open Access Journals (Sweden)

    Hong Sheng

    Full Text Available The bactericidal effect of hydroxyl radical (·OH generated by combination of photolysis of hydrogen peroxide (H2O2 and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2 and ultrasound (power: 30 w, frequency: 1.65 MHz at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  5. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  6. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water

    International Nuclear Information System (INIS)

    Zhou, Chao; Gao, Naiyun; Deng, Yang; Chu, Wenhai; Rong, Wenlei; Zhou, Shengdong

    2012-01-01

    Highlights: ► NAms with three-induced toxicity, as emerging DBPs, has caused a great public attention. ► No paper regards UV/H 2 O 2 oxidation of mixed NAms in an aquatic environment. ► The treatment effect is typically affected by a few factors in water. ► NPIP and NDPhA are the most readily and difficult to be degraded due to unique structure. ► All the NAms degradation exhibited a pseudo-first-order kinetics pattern. - Abstract: Disinfection by-products (DBPs) are a great challenge to our drinking water security. Particularly, nitrosamines (NAms), as emerging DBPs, are potently carcinogenic, mutagenic, and teratogenic, and have increasingly attained public attention. This study was to evaluate the performance of the NAms degradation by the ultraviolet (UV) irradiation (253.7 nm) in the presence of hydrogen peroxide (H 2 O 2 ). In the UV/H 2 O 2 system, hydroxyl radicals (OH·), a type of nonselective and powerful oxidant, was produced to attack the molecules of NAms. Factors affecting the treatment efficiency, including the H 2 O 2 dosage, initial NAms concentration, UV irradiation intensity, initial solution pH, and inorganic anions present in water, were evaluated. All the NAms degradation exhibited a pseudo-first-order kinetics pattern. Within 60 min, 0.1 mg/L of any NAms could be almost decomposed except NDPhA that required 120 min for complete removal, at 25 μmol/L H 2 O 2 and at initial pH 7. Results demonstrate that the UV/H 2 O 2 treatment is a viable option to control NAms in water.

  7. Synthesis and crystal structure of trans-[Ni(pyzdcH)M 2 (H 2 O) 2 ...

    African Journals Online (AJOL)

    The determined structure of the title compound C24H20Ni2N8O20 consists of the mononuclear trans-[Ni(pyzdc)2(H2O)2], (pyzdc = pyrazine-2,3- dicarboxylate). The Ni(II) atom is hexa-coordinated by two (pyzdcH)- groups and two water molecules. The coordinated water molecules are in trans-diaxial positions and the ...

  8. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Adil, Karim; Belmabkhout, Youssef; Shekhah, Osama; Bhatt, Prashant M.; Cadiau, Amandine

    2016-01-01

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided

  9. Fourier transform measurements of water vapor line parameters in the 4200-6600 cm{sup -1} region

    Energy Technology Data Exchange (ETDEWEB)

    Jenouvrier, Alain [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France)]. E-mail: alain.jenouvrier@univ-reims.fr; Daumont, Ludovic [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Regalia-Jarlot, Laurence [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Tyuterev, Vladimir G. [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Carleer, Michel [Service de Chimie Quantique et de Photophysique, CP 160/09, Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium); Vandaele, Ann Carine [Institut d' Aeronomie Spatiale de Belgique, Av. Circulaire 3, B-1180 Brussels (Belgium); Mikhailenko, Semen [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademichesskii, 634055 Tomsk (Russian Federation); Fally, Sophie [Service de Chimie Quantique et de Photophysique, CP 160/09, Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium)

    2007-06-15

    New high-resolution water vapor absorption spectra were obtained at room temperature in the 4200-6600 cm{sup -1} spectral region by combining Fourier transform spectrometers (FTS) with single and multiple reflection cells. With absorption paths from 0.3 to 1800 m in pure and air diluted water vapor, accurate measurements of about 10400 lines in an intensity range from 10{sup -29} to 10{sup -19} cm/molecule have been performed. Positions, intensities, self- and air-broadening coefficients and air-induced shifts were determined for the H{sub 2} {sup 16}O, H{sub 2} {sup 17}O, H{sub 2} {sup 18}O and HDO isotopologues. The rovibrational assignment of the observed lines was performed with the use of global variational predictions and allowed the identification of several new energy levels. One major contribution of this work consists of the identification of 3280 new weak lines. A very close agreement between the new measured parameters and those listed in the database is reported as well as between the observations and the most recent variational calculations for the positions and the intensities. The present parameters provide an extended and homogeneous data set for water vapor, which is shown to significantly improve the databases for atmospheric applications, especially in the transmission windows on both sides of the band centered at 5400 cm{sup -1}.

  10. Observations of interstellar H2O emission at 183 Gigahertz

    International Nuclear Information System (INIS)

    Waters, J.W.; Gustincic, J.J.; Kakar, R.K.; Kuiper, T.B.H.; Roscoe, H.K.; Swanson, P.N.; Rodriguez Kuiper, E.N.; Kerr, A.R.; Thaddeus, P.

    1980-01-01

    Line emission at 183 GHz by the 3 13 --2 20 rotational transition of water vapor has been detected from the Orion Nebula with the NASA Kuiper Airborne Observatory 91 cm telescope. The peak antenna temperature of the line is 15 K, its LSR velocity is 8 km s -1 , and its width is 15 km s -1 . The velocity profile has characteristics similar to those for CO:a narrow (approx.4 km s -1 ) ''spike'' centered at 9.5 km s -1 and a broad ''plateau'' with flaring wings centered at approx.8 km s -1 . Our 7'.5 antenna beam did not resolve the source. The 183 GHz H 2 O plateau emission appears enhanced above that expected for thermal excitation if it originates from the no greater than 1' region characteristic of plateau emission from all other observed molecules. The spike emission is consistent with an optically thick source of the approximated size of the well-known molecular ridge in Orion having the H 2 O in thermal equilibrium at Tapprox. =50 K. If this is the case, then the H 2 O column density giving rise to the spike is N/sub H/2/sub O/> or =3 x 10 17 cm -2 . An excitation calculation implies N/sub H/2/sub O/approx. =10 18 cm -2 for a source the size of the molecular ridge. These results imply that H 2 O is one of the more abundant species in the Orion Molecualr Cloud.H 2 O emission at 183 GHz was not detected in Sgr A, Sgr B2, W3, W43, W49, W51, DR 21, NGC 1333, NGC 7027, GL 2591, or the rho Oph cloud; it may have been detected in M17

  11. UO{sub 2} surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Espriu-Gascon, A., E-mail: alexandra.espriu@upc.edu [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Llorca, J.; Domínguez, M. [Institut de Tècniques Energètiques (INTE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Giménez, J.; Casas, I. [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, E-08243 Manresa (Spain)

    2015-12-15

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO{sub 2} surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO{sub 2} samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO{sub 2} surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO{sub 2} surface by the water vapor. - Highlights: • UO{sub 2} surface has been oxidized by water vapor in an argon stream at 350 °C. • H{sub 2} reduced more uranium oxidation produced by water at 350 °C when compared to Ar. • In H{sub 2} presence, the uranium oxidation produced by water depends on the temperature.

  12. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  13. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains

    Science.gov (United States)

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  14. Effect of Water Content on Properties of Homogeneous [bmim]Fe(IIICl4–H2O Mixtures and Their Application in Oxidative Absorption of H2S

    Directory of Open Access Journals (Sweden)

    Jianhong Wang

    2018-01-01

    Full Text Available The potential of 1-butyl-3-methylimidazolium tetrachloroferrate ([bmim]Fe(IIICl4 for replacing an iron(III chelate catalytic solution in the catalytic oxidation of H2S is attributed to its no side reaction and no degradation of the chelating agent. The catalytic oxidation product of water in non-aqueous [bmim]Fe(IIICl4 possibly has an influence on the oxidative absorption of H2S. Water and hydrophobic [bmim]Fe(IIICl4 mixtures at water volume percents from 40% to 70% formed separate phases after srirring, without affecting the oxidative absorption of hydrogen sulfide. Then, studies on the properties of homogeneous [bmim]Fe(IIICl4–H2O mixtures at water volume percents in the range of 5.88–30% and above 80% reveal that these mixtures are both Brønsted and Lewis acids at vol % (H2O ≤ 30%, and only Lewis acids at vol % (H2O ≥ 80%. Raman spectra showed that [bmim]Fe(IIICl4 was the dominating species at vol % (H2O ≤ 30%, in contrast, [bmim]Fe(IIICl4 decomposed into FeCl3·2H2O and [bmim]Cl at vol % (H2O ≥ 80%. Further research on oxidative absorption of H2S by homogeneous [bmim]Fe(IIICl4–H2O mixtures demonstrated that [bmim]Fe(IIICl4 was reduced by H2S to [bmim]Fe(IICl4H and FeCl3·2H2O was reduced to FeCl2, at the same time, H2S was oxidized to S8. In addition, the decrease in acidity caused by increasing the water content increased the weight percent of absorbed H2S, and decreased volatile HCl emissions. However, it is difficult to prevent the suspended S8 generated at vol % (H2O ≥ 80% from the formation of sulfur blockage. Therefore, oxidative absorption of H2S by [bmim]Fe(IIICl4–H2O mixtures is feasible at vol % (H2O < 80% without sulfur blockage.

  15. Photoionization-induced water migration in the amide group of trans-acetanilide-(H2O)1 in the gas phase.

    Science.gov (United States)

    Sakota, Kenji; Harada, Satoshi; Shimazaki, Yuiga; Sekiya, Hiroshi

    2011-02-10

    IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).

  16. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The propagation of a soil H218O labeling through the atmosphere-plant-soil system under drought using H218O and C18OO as two independent proxies

    Science.gov (United States)

    Barthel, Matthias; Sturm, Patrick; Hammerle, Albin; Siegwolf, Rolf; Gentsch, Lydia; Buchmann, Nina; Knohl, Alexander

    2013-04-01

    Above- and belowground processes in plants are tightly coupled via carbon and water flows through the atmosphere-plant-soil system. While recent studies elucidated the influence of drought on the carbon flow through plant and soil using 13C, much less is known about the propagation of 18O. Therefore, this study aimed to examine the timing and intensity of 18O enrichment in soil and shoot CO2 and H2O vapor fluxes of European beech saplings (Fagus sylvatica L.) after applying 18O-labeled water to the soil. A custom-made chamber system, separating shoot from soil compartments, allowed independent measurements of shoot and soil related processes in a controlled climate chamber environment. Gas-exchange of oxygen stable isotopes in CO2 and H2O-vapor served as the main tool for investigation and was monitored in real-time using laser spectroscopy. This is the first study measuring concurrently and continuously the enrichment of 18O in CO2 and H2O in shoot- and soil gas-exchange after applying 18O-labeled water to the soil. Photosynthesis (A) and stomatal conductance (gs) of drought-stressed plants showed an immediate coinciding small increase to the H218O irrigation event after only ~30 min. This rapid information transfer, however, was not accompanied by the arrival of 18O labeled water molecules within the shoot. The actual label induced 18O enrichment in transpired water and CO2 occurred not until ~4h after labeling. Further, the timing of the enrichment of 18O in the transpirational flux was similar in both treatments, thus pointing to similar transport rates. However, drought reduced the 18O exchange rate between H2O and CO2at the shoot level, likely caused by a smaller leaf CO2retroflux. Moreover, 18O exchange between H2O and CO2 occurred also in the soil. However, the there was no difference observed between the treatments.

  18. Temporal Variations of Water Vapor in the Coma of 67P/Churyumov-Gerasimenko as Observed by Rosetta’s Alice FUV Spectrograph

    Science.gov (United States)

    Steffl, Andrew J.; Feaga, Lori M.; A'Hearn, Michael; Bertaux, Jean-Loup; Feldman, Paul D.; Keeney, Brian A.; Knight, Matthew M.; Medina, Richard; Noonan, John; Parker, Joel Wm.; Pineau, Jon; Schindhelm, Eric; Stern, S. Alan; Versteeg, Maarten H.; Vervack, Ronald J.; Weaver, Harold A.

    2017-10-01

    During the Rosetta mission, the Alice far-ultraviolet (FUV) imaging spectrograph obtained spatially-resolved spectra of the coma and nucleus of comet 67P/Churyumov-Gerasimenko over the wavelength range of 700-2050Å. Typically, Alice detected emissions from the neutral atomic daughter and granddaughter products (H, O, C, and S) of the primary molecular species in the coma: H2O, CO2, CO, and O2. However, during a six-month period centered near perihelion, Alice directly detected water vapor in absorption of sunlight reflected from the nucleus. We present here analyses of the water vapor column density as measured by the Alice FUV spectrograph. Alice is sensitive to water vapor at column densities greater than ~1016 cm-2 along the sum of the Sun-nucleus and nucleus-spacecraft lines of sight. Due to the excellent temporal coverage provided by the Alice instrument (exposures were typically obtained every 5-10 minutes), we are able to show variations of water vapor in the coma caused by the changing heliocentric distance of the comet, the comet’s ~12-hour rotation period, and short-term outbursts. We compare our water vapor column densities to those derived from other instruments aboard the Rosetta spacecraft and use models to estimate the water production rate.Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute.

  19. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water.

    Science.gov (United States)

    Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M

    2011-11-15

    Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  1. Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

    International Nuclear Information System (INIS)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng; Liu, Guangliang; Chen, Ping; Zhao, Zhixi

    2013-01-01

    Direct synthesis of H 2 O 2 and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au 0 species for H 2 O 2 synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H 2 O 2 synthesis as CH 3 OH/H 2 O ratio of solvent changed. H 2 O 2 decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O 2 /H 2 ratio on H 2 O 2 concentration, H 2 conversion and H 2 O 2 selectivity revealed a relationship between H 2 O 2 generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O 2 /H 2 ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H 2 conversion and oxidative desulfurization selectivity of H 2 were presented

  2. Surface tension of H2O and D2O

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Volkov, B.N.

    1975-01-01

    There is a great number of works on surface tension of clean water (H 2 O) at temperatures up to 100 deg C and very few above the boiling point. Works on surface tension of heavy water (D 2 O) are insufficient. A review of works on surface tension of both kinds of water is given

  3. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    Science.gov (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  4. The rates and mechanisms of water exchange of actinide aqua ions: A variable temperature 17O NMR study of U(H2O)104+, UF(H2O)93+, and Th(H2O)104+

    International Nuclear Information System (INIS)

    Farkas, I.; Grenthe, I.; Banyai, I.

    2000-01-01

    The rate constants and the activation parameters for the exchange between water solvent and [U(H 2 O) 10 ] 4+ and [UF(H 2 O) 9 ] 3+ , and a lower limit for the rate constant at room temperature for [Th(H 2 O) 10 ] 4+ , were determined by 17 O NMR spectroscopy in the temperature range 255--305 K. The experiments were made at different constant hydrogen ion concentrations, which varied between 0.16 and 0.8 mol kg -1 . The Th(IV) system was investigated using Tb 3+ as a shift reagent. The following kinetic parameters at 25 C were obtained: k ex = (5.4 ± 0.6) 10 6 x -1 , ΔH double dagger = 34 ± 3 kJ mol -1 , ΔS ++ = -16 ± 10 J mol -1 K -1 for U 4+ (aq), k ex = (5.5 ± 0.7) 10 6 x -1 , ΔH d ouble dagger = 34 ± 3 kJ mol -1 , ΔS ++ = 3 ± 15 J mol -1 K -1 for UF 3+ (Iaq), and k ex > 5 10 7 s -1 for Th 4+ (aq), where the uncertainty is given at the 2σ-level. This is the first experimental information on the kinetic parameters for the exchange of water for any M 4+ ion. There is no information on the rates and mechanisms of ligand substitutions involving other mono-dentate ligands, hence the mechanistic interpretation of the data is by necessity provisional. The kinetic data and the known ground-state geometry with a coordination number of 10 ± 1 for the Th(IV) and U(IV) complexes suggest a dissociatively activated interchange mechanism. There is no noticeable effect of coordination of one fluoride or one hydroxide to U(IV) on the water exchange rate. This is unusual, for other metal ions there is a strong labilizing of coordinated water when a second ligand is bonded, e.g., in complexes of aluminum and some d-transition elements. In previous studies of the rates and mechanisms of ligand exchange in uranium (VI) systems the authors found a strong decrease in the lability of coordinated water in some fluoride containing complexes

  5. Adsorption of water on O(2x2)/Ru(0001): thermal stability and inhibition of dissociation by H2O-O bonding

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko; Cabrera-Sanfelix, Pepa; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2008-08-01

    The effect of preadsorbed oxygen on the subsequent adsorption and reactions of water on Ru(0001) has been studied using low temperature scanning tunneling microscopy and DFT calculations. Experiments were carried out for O coverages close to 0.25 ML. It was found that no dissociation of water takes place up to the desorption temperature of {approx}180-230 K. DFT calculations show that intact water on O(2x2)/Ru(0001) is {approx} 0.49 eV more stable than the dissociation products, H and OH, at their preferred fcc and top adsorption sites.

  6. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  7. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided are methods of making metal organic frameworks.

  8. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  9. Degradation of Organophosphorus Pesticides in Water during UV/H2O2 Treatment: Role of Sulphate and Bicarbonate Ions

    Directory of Open Access Journals (Sweden)

    Am Fadaei

    2012-01-01

    Full Text Available The photodegradation of two organophosphorus pesticides, malathian and diazinon, by sulfate radicals and bicarbonate radicals in aqueous solution were studied. The effect of the operational parameters such as pH, salt concentration, water type, H2O2 concentration and initial concentration of pesticides was studied. Gas chromatography mass spectroscopy (GC–MS was used for analyses of pesticides. When salt effect was studied, it was found that sodium bicarbonate was the most powerful inhibitor used, while sodium sulfate was the weakest one. The highest degradation in UV/H2O2 process for malathion was found in alkaline condition and for diazinon in acidic condition. The photodegradation in all waters used in this work exhibited first order kinetics. Photodegradation rate in distilled water was higher than real water. The degradation of pesticides increased with increasing of H2O2 concentration.

  10. Studies on the direct synthesis of [O-15]-H2O

    International Nuclear Information System (INIS)

    Hagami, Eiichi; Murakami, Matsutaro; Takahashi, Kazuhiro; Kanno, Iwao; Aizawa, Yasuo; Hachiya, Takenori; Shoji, Yasuaki; Shishido, Fumio; Uemura, Kazuo

    1986-01-01

    A direct [O-15]-H 2 O synthesis method and its critical point of non-radioactive NH 4 + contamination were described. The 6.4 MeV deuterons were irradiated into the target chamber of 177 ml, filled up with 3.5 kg/cm 2 of 0.1 % H 2 in N 2 . [O-15]-H 2 O vapor was transported to PET room by He flow of 2.5 l/min through the teflon tubing of 2 mm in internal diameter and of 30 m in length. [O-15]-H 2 O was trapped in the vial containing 10 ml of saline and passed through Millipore filter. In this condition, the small amount of non-radioactive NH 4 + (24.9 ± 12.8 (1 SD) μg/dl, n = 23) was detected. This NH 4 + concentration varied from 25 to 11,000 μg/dl with changing H 2 amount in the target from 0.1 to 4.0 %. The NH 4 + concentration was kept lower than a normal range of the healthy human blood with 0.5 % or less H 2 in N 2 in the target. Therefore, 0.1 % of H 2 was used in clinical use. By the present method, a yield of approximately 7 mCi/μA of [O-15]-H 2 O saline was obtained. About 10 % of radioactive gases, corresponding to C 15 O, C 15 O 2 and N 2 15 O, were detected in the waste gas. The radiochemical and radionuclidic impurity was not detected in the saline. The biological tests for bacteria and pyrogen were all passed. In conclusion, the direct synthesis method provides [O-15]-H 2 O saline in the PET room with the simple handling and is convenient for the clinical use. (author)

  11. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    Directory of Open Access Journals (Sweden)

    Nausika Querejeta

    2016-05-01

    Full Text Available The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications.

  12. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    Science.gov (United States)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  13. Initial oxidation of TiFe1−xMnx (x = 0–0.3) by low dose exposures to H2O and O2

    International Nuclear Information System (INIS)

    Shwartz, A.; Shamir, N.; Froumin, N.; Zalkind, S.; Edry, I.; Haim, A.; Mintz, M.H.

    2014-01-01

    Highlights: • Thermodynamics of adsorption and initial oxidation of TiFe 1−x Mn x by H 2 O versus O 2 . • Explanation of different oxide formations. • Explanation of the role of the different constituents of the alloys in the processes. - Abstract: The very initial room-temperature oxidation processes of the ternary pseudo-binary TiFe 1−x Mn x (x = 0–0.3) intermetallics by trace amounts of H 2 O vapor and O 2 were studied utilizing XPS and AES techniques. Different reactivities of the two gases were obtained, with a lower oxidation ability of H 2 O, relative to O 2 , as anticipated from thermodynamic considerations. The exposure to O 2 results in a two stage oxidation of the Ti ingredient, which first converts into a divalent TiO (up to exposures of about 2 L), then proceeds into a tetravalent TiO 2 form. Unlike oxygen, water exposure produces only the divalent oxide through the whole exposure range studied (11 L). The Mn component in these compounds is oxidized only by O 2 and not by H 2 O. The Fe ingredient is not oxidized at all and remains in its metallic form up to exposures of 30 L

  14. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  15. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor

    2013-01-01

    This is the third of a series of articles reporting critically evaluated rotational–vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational–vibrational transitions of the most abundant isotopologue of water, H 2 16 O. The latest version of the MARVEL (Measured Active Rotational–Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H 2 16 O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H 2 16 O containstwo components, an ortho (o) and a para (p) one. For o-H 2 16 O and p-H 2 16 O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H 2 16 O and p-H 2 16 O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a

  16. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  17. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    Science.gov (United States)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  18. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  19. A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure

    Science.gov (United States)

    Yang, Haowei; Pan, Lei; Han, Yingping; Ma, Lihua; Li, Yao; Xu, Hongbo; Zhao, Jiupeng

    2017-11-01

    In study, we proposed a simple yet fast optical sensing motif based on thimbleful of polyvinyl alcohol (PVA) infiltrated photonic crystal (PC), which allows for high efficiency in vapor sensing through changes in their inter-layer space. Linear response to a broad dynamic range of vapor concentration was realized. Ultrafast response time (<1 s) and excellent recyclability were also demonstrated. Selective response to a vapor was exhibited, reflecting well the characteristic sorption properties of PVA, with which colorimetric reporting was readily achieved. These substantial improvements in performance are attributed to the efficacy of signal transduction and the enhanced signal transduction because of thimbleful PVA infiltrated space between adjacent SiO2 nanospheres.

  20. Hyperpolarized H2O MR angiography

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, Jan Henrik; Laustsen, Christoffer; Bowen, Sean

    2014-01-01

    polarization followed by dissolution in D2O. A water 1H signal enhancement of 77 times compared with 4.7 Tesla was obtained. This corresponds to a polarization of 3.5% for the 3.9 mol/L 1H in D2O . Moreover, a T1 in excess of 20 s was achieved. The use of hyperpolarized water as a contrast agent presents a new...

  1. Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400 °C

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Berg, Rolf W.; Bjerrum, Niels J.

    2018-01-01

    Cesium dihydrogen phosphate, CsH2PO4 (CDP) was studied for water electrolysis at ~ 225–400 °C. In the presence of sufficient humidity, CDP is structurally disordered and super-protonic conducting with conductivities reaching 0.2–0.25 S cm−1, when determined in suitable H-shaped sealed conductivity...... on internal reference gases. Pressures up to ~ 49 bar were estimated, much higher than previously expected. Conductivities were given as polynomials and plotted in solid and liquid states. Water splitting electrolysis 2H2O → 2H2 + O2 was demonstrated by Raman at ~ 355 °C under a water pressure of ~ 23 bar...... in a quartz cell with platinum electrodes, showing molten CDP to have significant potential for water electrolysis....

  2. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  3. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  4. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  5. Application of UV/TiO2/H2O2 Advanced Oxidation to Remove Naphthalene from Water

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2016-11-01

    Full Text Available Naphthalene is released into the environment by burning such organic materials as fossil fuels and wood and in industrial and vehicle exhaust emissions. Naphthalene is used in the manufacture of plastics, resins, fuels, and dyes. The aim of this study was to evaluate the performance of UV/TiO2/H2O2 process to decompose naphthalene in aqueous solutions. For this purpose, the photocatalytic degradation of naphthalene was investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. Photodegradation efficiencies of H2O2/UV, TiO2/UV, and H2O2/TiO2/UV processes were compared in a batch reactor using the low pressure mercury lamp irradiation. The effects of operating parameters such as reaction time (min; solution pH; and initial naphthalene, TiO2, and H2O2 concentrations on photodegradation were examined. In the UV/TiO2/H2O2 system with a naphthalene concentration of 15 mg/L, naphthalene removal efficiencies of 63, 75, 80, 88, 92, 95, 96.5, and 98% were achieved, respectively, for reaction times of 5, 10, 20, 30, 40, 50, 60, 100 and 120 min. This is while removal efficienciesof 50, 59.5, 69, 80, 85, 88, 91, and 95% were obtained in the UV/TiO2 system under the same conditions. For initial pH values of 3, 4, 5, 6, 7,9, 10, and 12, naphthalene removal efficiencies of approximately 96.8, 85.5, 86, 75.5, 68.8, 57.8, and 52.5% were acheived, respectively, with the UV/TiO2/H2O2 system. Thus, it may be claiomed that, compared to either H2O2/UV or TiO2/UV process, the H2O2/TiO2/UV process yielded a far more efficient photodegradation.

  6. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  7. Evaluation of corrosivity of the vapor-phase environments to sterilized water with chlorine; Enso kei mekkin shorisui no kisho kankyo no fushokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Michio. [Nippon Steel Corp. Yamaguchi (Japan). Technical Development Bureau

    1999-08-15

    Corrosivity of vapor-phase aenvironments in indoor pool, water thank, and water purification plants was investigated. Sodium hypochlorite (NaClO) was used as a sterilizing agent in indoor pool, while chlorine gas was used in water tank and water purification plants. It was found that Cl{sup -} ion were concentrated in the dew formed in the indoor pool. H{sup +} ions as well as Cl{sup -} ions were accumulated in the dew dormed in the water tank ans water purification plants. Thus, the corrosion condition was varied with the type of sterilizing agents used. Through the investigation of water tanl, the relationship between pH and Cl{sup -} ion concentration was given as follow; pH=-1.09-2.19 log [Cl{sup -}] (mol/L). Corrosivity of vapor-phase enviroments in sterilizing water systems would be characterized by the exstence of oxidizing chemical agents such as ClO{sup -} and HClO, the shift of corrosion potenrial of the thin water film, and the accumulation of H{sup +} and/or Cl{sup -} ions in the dew. (author)

  8. The fate of H2O2 during managed aquifer recharge: A residual from advanced oxidation processes for drinking water production.

    Science.gov (United States)

    Wang, F; van Halem, D; van der Hoek, J P

    2016-04-01

    The fate of H2O2 residual from advanced oxidation process (AOP) preceding managed aquifer recharge (MAR) is of concern because H2O2 could lead to undesired effects on organisms in the MAR aquatic and soil ecosystem. The objective of this study was to distinguish between factors affecting H2O2 decomposition in MAR systems, simulated in batch reactors with synthetic MAR water and slow sand filter sand. The results showed that pure sand and soil organic matter had no considerable effect on H2O2 decomposition, whereas naturally occurring inorganic substances on the surface of sand grains and microbial biomass are the two main factors accelerating H2O2 decomposition in MAR systems. Additionally, the results showed that the H2O2 decompositions with different initial concentrations fitted first-order kinetics in 2-6 h in a mixture of slow sand filter sand (as a substitute for sand from a MAR system) and synthetic MAR water with high bacterial population. An estimation indicated that low concentrations of H2O2 (<3 mg/L) could decompose to the provisional standard of 0.25 mg/L in the first centimeters of MAR systems with the influent water containing high microbial biomass 38 ng ATP/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Water as a solute in aprotic dipolar solvents. 2. D2O-H2O solute isotope effects on the enthalpy of water dissolution in nitromethane, acetonitrile and propylene carbonate at 298.15 K

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.; Smirnov, Valeriy I.

    2010-01-01

    The enthalpies of solution of ordinary (H 2 O) and heavy (D 2 O) water in nitromethane (NM), acetonitrile (ACN) and propylene carbonate (PC) were measured calorimetrically at 298.15 K. Standard (at the infinite dilution) enthalpies of solution and solvation, along with D 2 O-H 2 O solute isotope effects on the quantities in question, were calculated. The enthalpies of solution of water H/D isotopologues were found to be positive by sign and substantially increasing in magnitude on going from ACN and PC to NM, whereas the corresponding positive solute H/D isotope effect changes in a consequence: NM > ACN > PC. The qualitative interrelations between the enthalpy-isotopic effect of dissolution (solvation) of water and the electron-accepting/donating ability of aprotic dipolar solvent (within a series considered) were found.

  10. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  11. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    Science.gov (United States)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  12. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    Science.gov (United States)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  13. Mechanism of H2O-Induced Conductance Changes in AuCl4-Functionalized CNTs

    KAUST Repository

    Murat, Altynbek

    2015-04-30

    We employ ab initio self-interaction corrected density functional theory combined with the nonequilibrium Green\\'s function method to study the electronic and quantum transport properties of carbon nanotubes (CNTs) functionalized with AuCl4 molecules. In particular, we investigate the electronic structure and characterize the conductance for different concentrations and configurations of randomly distributed AuCl4 molecules with and without the adsorption of H2O. We thus propose a mechanism that explains the origin of the recently observed resistivity changes of AuCl4-functionalized CNTs upon H2O adsorption. We find that water adsorption shifts the highest occupied Cl and Au states down in energy and thereby reduces the scattering of the electrons around the Fermi energy, hence enhancing the conductivity. Our results help in the development of highly sensitive nanoscale H2O vapor sensors based on AuCl4-functionalized CNTs. © 2015 American Chemical Society.

  14. Experimental determination of liquidus H2O contents of haplogranite at deep-crustal conditions

    Science.gov (United States)

    Makhluf, A. R.; Newton, R. C.; Manning, C. E.

    2017-09-01

    The liquidus water content of a haplogranite melt at high pressure ( P) and temperature ( T) is important, because it is a key parameter for constraining the volume of granite that could be produced by melting of the deep crust. Previous estimates based on melting experiments at low P (≤0.5 GPa) show substantial scatter when extrapolated to deep crustal P and T (700-1000 °C, 0.6-1.5 GPa). To improve the high-P constraints on H2O concentration at the granite liquidus, we performed experiments in a piston-cylinder apparatus at 1.0 GPa using a range of haplogranite compositions in the albite (Ab: NaAlSi3O8)—orthoclase (Or: KAlSi3O8)—quartz (Qz: SiO2)—H2O system. We used equal weight fractions of the feldspar components and varied the Qz between 20 and 30 wt%. In each experiment, synthetic granitic composition glass + H2O was homogenized well above the liquidus T, and T was lowered by increments until quartz and alkali feldspar crystalized from the liquid. To establish reversed equilibrium, we crystallized the homogenized melt at the lower T and then raised T until we found that the crystalline phases were completely resorbed into the liquid. The reversed liquidus minimum temperatures at 3.0, 4.1, 5.8, 8.0, and 12.0 wt% H2O are 935-985, 875-900, 775-800, 725-775, and 650-675 °C, respectively. Quenched charges were analyzed by petrographic microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMPA). The equation for the reversed haplogranite liquidus minimum curve for Ab36.25Or36.25Qz27.5 (wt% basis) at 1.0 GPa is T = - 0.0995 w_{{{H}_{ 2} {O}}}^{ 3} + 5.0242w_{{{H}_{ 2} {O}}}^{ 2} - 88.183 w_{{{H}_{ 2} {O}}} + 1171.0 for 0 ≤ w_{{{H}_{ 2} {O}}} ≤ 17 wt% and T is in °C. We present a revised P - T diagram of liquidus minimum H2O isopleths which integrates data from previous determinations of vapor-saturated melting and the lower pressure vapor-undersaturated melting studies conducted by other workers on

  15. Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl · 2H2O

    International Nuclear Information System (INIS)

    Zhao, Pu Su; Lu, Lu De; Jian, Fang Fang

    2003-01-01

    The crystal structure of [Co(phen) 2 (Cl)(H 2 O)] Cl · 2H 2 O(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P 1 , with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)A, α=64.02(1), β=86.364(9), γ=78.58(2) .deg., and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33A). The intermolecular hydrogen bonds connect the [Co(phen) 2 (Cl)(H 2 O)] 1+ , H 2 O moieties and chloride ion

  16. Selective photocatalytic reduction of CO{sub 2} by H{sub 2}O/H{sub 2} to CH{sub 4} and CH{sub 3}OH over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad, E-mail: mtahir@cheme.utm.my [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Punjab (Pakistan); Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia)

    2016-12-15

    Highlights: • Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalysts tested for CO{sub 2} photoreduction with H{sub 2}O/H{sub 2}. • Production of CH{sub 4} and CH{sub 3}OH depends on reductants type and metal-loading to TiO{sub 2}. • CH{sub 4} production over Cu-In/TiO{sub 2} was 1.5 fold more than In/TiO{sub 2} and 5 times the TiO{sub 2}. • The Cu-promoted CH{sub 3}OH production while In gave more CH{sub 4} with water vapors. • The H{sub 2} reductant gave negative effect for CH{sub 4} but enhanced CH{sub 3}OH production. - Abstract: Photocatalytic CO{sub 2} reduction by H{sub 2}O and/or H{sub 2} reductant to selective fuels over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N{sub 2} adsorption-desorption, UV–vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO{sub 2}, oxidized as Cu{sup 2+} and In{sup 3+}, promoted efficient separation of photo-generated electron/hole pairs (e{sup −}/h{sup +}). The results indicate that the reduction rate of CO{sub 2} by H{sub 2}O to CH{sub 4} approached to 181 μmol g{sup −1} h{sup −1} using 0.5% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst, a 1.53 fold higher than the production rate over the 3% In{sub 2}O{sub 3}/TiO{sub 2} and 5 times the amount produced over the pure TiO{sub 2}. In addition, Cu was found to promote efficient production of CH{sub 3}OH and yield rate reached to 68 μmol g{sup −1} h{sup −1} over 1% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H{sub 2} reductant was less favorable for CH{sub 4} production, yet a significant amount of CH{sub 4} and CH{sub 3}OH were obtained using a mixture of H{sub 2}O/H{sub 2} reductant. Therefore, Cu-loaded In{sub 2}O{sub 3}/TiO{sub 2} catalyst has shown to be capable for

  17. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  18. Relative transport of water (H2O) and tritiated water (HTO) across cellulose acetate (CA) membranes

    International Nuclear Information System (INIS)

    Prabhakar, S.; Misra, B.M.; Ramani, M.P.S.

    1986-01-01

    The relative transport characteristics of water (H 2 O) and tritiated water (HTO) were evaluated through cellulose acetate membranes under osmosis, reverse osmosis and pervaporation. The results indicate that the relative transport is independent of the process. The anamolous observations under osmotic conditions are explained. (orig.)

  19. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    Science.gov (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  20. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  1. Water vapor absorption of carbon dioxide laser radiation

    Science.gov (United States)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  2. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  3. The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database

    International Nuclear Information System (INIS)

    Campargue, A.; Mikhailenko, S.N.; Vasilchenko, S.; Reynaud, C.; Béguier, S.; Čermák, P.; Mondelain, D.; Kassi, S.; Romanini, D.

    2017-01-01

    The weak absorption spectrum of water vapor in the important 2.2 μm transparency window is investigated with very high sensitivity. Overall, about 400 absorption lines were measured by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) in five spectral intervals: 4248.2–4257.3, 4298.4–4302.6, 4336.8.5-4367.5, 4422.4-4441.2 and 4514.6-4533.7 cm"−"1. The achieved sensitivity of the recordings (noise equivalent absorption, α_m_i_n, on the order of 2×10"−"1"0 cm"−"1) allowed detecting transitions with intensity values down to 1×10"−"2"8 cm/molecule, more than one order of magnitude better than previous studies by Fourier Transform spectroscopy. The rovibrational assignment was performed on the basis of variational calculations and of previously determined empirical energy values. Most of the newly assigned lines correspond to transitions of the ν_1, ν_3 and 3ν_2 bands of H_2"1"7O in natural isotopic abundance. Fourteen energy levels of H_2"1"7O, H_2"1"8O and HD"1"8O are newly determined. An accurate and complete spectroscopic database is constructed for natural water in the 4190–4550 cm"−"1 region (2.39–2.20 µm). The list includes about 4500 transitions with intensity greater than 1×10"−"2"9 cm/molecule, for the six most abundant isotopologues in natural isotopic abundance. Line positions were obtained by difference of empirical energy values determined from literature data and complemented with the present CRDS results. The list is made mostly complete by including weak transitions not yet detected, with positions calculated from empirical levels and variational intensities. The variational intensities computed by a collaboration between the University College London and the Institute of Applied Physics in Nizhny Novgorod are found to improve significantly previous results by Schwenke and Partridge. Examples of comparison of the constructed line list to CRDS spectra and to simulations

  4. Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Olchowka, Jakub; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry [Unite de Catalyse et Chimie du Solide (UCCS) - UMR CNRS 8181, Universite de Lille Nord de France, USTL-ENSCL, Villeneuve d' Ascq (France)

    2013-04-15

    A new heterometallic uranyl zinc carboxylate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O, has been hydrothermally prepared (150 C, 24 h) by using 1,2,3,4,5,6-benzenehexacarboxylic acid (mellitic acid) as organic linker in order to form a three-dimensional network. Four of the six carboxylate groups of the mellitate ligand interact with mononuclear uranyl or zinc cations, which are eightfold (hexagonal bipyramid, UO{sub 8}) or sixfold [octahedron, ZnO{sub 2}(H{sub 2}O){sub 4}] coordinated, respectively. The remaining free carboxylate arms of the mellitate species preferentially interact through hydrogen bonds with water molecules trapped within the framework. Thermogravimetric and X-ray thermodiffraction (up to 800 C) analyses and in situ infrared spectroscopy (up to 210 C) indicated that both free and bound water species are evacuated from the structure in one step between 80 and 170 C, followed by its transformation into an unknown, anhydrous, poorly crystalline phase [UO{sub 2}Zn(mel)] up to 320 C. After the formation of an amorphous phase, the re-crystallization of oxides α-ZnU{sub 3}O{sub 10} and ZnO was observed from 460 C. The fluorescence spectrum of the as-synthesized uranyl zinc mellitate shows the six bands that are typical for vibronic couplings of the [O=U=O]{sup 2+} moiety. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Science.gov (United States)

    Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven

    2018-04-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  6. Examination of the Effects of Activated Carbon Produced from Coal Using Single-Step H3PO4/N2+H2O Vapor Activation on the Adsorption of Bovine Serum Albumin at Different Temperatures and pH Values

    Directory of Open Access Journals (Sweden)

    Atakan Toprak

    2017-12-01

    Full Text Available This study examined protein adsorption equilibrium and kinetics on activated carbon (AC that we obtained from coal by single-step H3PO4 activation under N2+H2O vapor at 800 °C. Surface properties, pore size distribution, and volumes of AC were determined using the volumetric method with N2 adsorption at 77 K. Also, the textural properties were characterized by SEM-EDAX and XRD. The zeta potential values were measured to elucidate the electrostatic interactions between the protein and AC. The obtained AC discrete system was also used as an adsorbent for adsorbing bovine serum albumin (BSA from aqueous solution. The effects of pH (4.0, 5.0, and 7.4 and temperatures (20, 30 and 40 °C on the adsorption of BSA on AC were examined. The surface area, micropore, mesopore and total pore volumes of AC were found to be 1175 m2/g, 0.477 cm3/g, 0.061 cm3/g and 0.538 cm3/g, respectively. The optimum temperature for AC in BSA adsorption was found to be 40 °C and the pH was found to be 4.0. The highest BSA adsorption was found to be 159 mg/g and pH to be 4.0. The experimental equilibrium data were compared with the Langmuir and Freundlich models and found to be compatible with both models. The adsorption process is best described by the pseudo-first-order kinetic model. As a result, it was found out that AC obtained by single step H3PO4/N2+H2O vapor activation is an effective adsorbent for the adsorption of BSA from aqueous solution.

  7. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    Science.gov (United States)

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  8. Desinfestação de substratos para produção de mudas, utilizando vapor de água Disinfesting substrate for transplants production employing hot water steam

    Directory of Open Access Journals (Sweden)

    João Bosco C. Silva

    2001-07-01

    Full Text Available O tratamento sanitário de substratos é uma operação importante no processo de produção de mudas e no cultivo de plantas em vasos ou outros contentores. Tradicionalmente tem-se utilizado o gás brometo de metila como agente desinfetante. Entretanto, a produção deste gás deverá ser abolida até o ano 2010, forçando-se a busca de novas opções. Desenvolveu-se na Embrapa Hortaliças um equipamento que utiliza o vapor de água à baixa pressão, produzido por uma caldeira industrial, com capacidade para evaporar 30 L/h de água, para aquecer o substrato contido em uma caixa metálica cilíndrica com capacidade de 2000 L. O vapor é aplicado no fundo da caixa que contém uma camada de brita coberta com uma tela metálica de malha de 2 mm, que favorece a distribuição uniforme do vapor por toda a massa de substrato. O tempo de aquecimento é de aproximadamente 3 horas e o calor armazenado durante este período mantém a massa de substrato aquecida a temperaturas pasteurizantes, por até 4 horas após a aplicação do vapor. Para testar a eficácia do sistema avaliou-se a sobrevivência dos patógenos Ralstonia solanacearum, Fusarium oxysporum, Sclerotinia sclerotiorum e Rhizoctonia solani. Aplicou-se vapor por uma hora, não considerando o período de aquecimento, e coletaram-se as amostras após uma, duas, três ou quatro horas o início da aplicação de vapor. O tratamento por uma hora, em adição ao período de aquecimento, resultou na eliminação dos patógenos.The disinfestation of substrate is an important process for transplanting production and for plant cultivation in pots or boxes. Traditionally, metyl bromide gas has been employed to eliminate microorganisms. However the production of bromide gas in Brazil will be interrupted by the year 2010 and it is necessary to search for new options. We have devised an equipment that utilizes hot steam water at low pressure produced into a boiler machine with the capacity of evaporating

  9. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)2ṡ6H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  10. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface.

    Science.gov (United States)

    Gon Ryu, Sam; Wan Lee, Hae

    2015-01-01

    The nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) must be promptly eliminated following its release into the environment because it is extremely toxic, can cause death within a few minutes after exposure, acts through direct skin contact as well as inhalation, and persists in the environment for several weeks after release. A mixture of hydrogen peroxide vapor and ammonia gas was examined as a decontaminant for the removal of VX on solid surfaces at ambient temperature, and the reaction products were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectrometry (NMR). All the VX on glass wool filter disks was found to be eliminated after 2 h of exposure to the decontaminant mixtures, and the primary decomposition product was determined to be non-toxic ethyl methylphosphonic acid (EMPA); no toxic S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (EA-2192), which is usually produced in traditional basic hydrolysis systems, was found to be formed. However, other by-products, such as toxic O-ethyl S-vinyl methylphosphonothioate and (2-diisopropylaminoethyl) vinyl disulfide, were detected up to 150 min of exposure to the decontaminant mixture; these by-products disappeared after 3 h. The two detected vinyl byproducts were identified first in this study with the decontamination system of liquid VX on solid surfaces using a mixture of hydrogen peroxide vapor and ammonia gas. The detailed decontamination reaction networks of VX on solid surfaces produced by the mixture of hydrogen peroxide vapor and ammonia gas were suggested based on the reaction products. These findings suggest that the mixture of hydrogen peroxide vapor and ammonia gas investigated in this study is an efficient decontaminant mixture for the removal of VX on solid surfaces at ambient temperature despite the formation of a toxic by-product in the reaction process.

  11. Investigation of OH dynamics in the argon sensitized pulse radiolysis of water vapor

    International Nuclear Information System (INIS)

    Bera, R.K.; Hanrahan, R.J.

    1986-01-01

    Reactions of OH radical were studied in systems containing 650 torr Ar and from 0.5 to 9 torr H 2 O using the method of pulse radiolysis-absorption spectroscopy. It was found that initial concentrations of OH radical increased as a function of water vapor pressure. Although loss of OH with time followed approximate second order kinetics, the raw data were fitted arbitrarily to a first order rate expression, because a second order fit requires knowledge of absolute initial OH concentrations. These can be computed from measured initial OH absorption if the extinction coefficient is known, but an accurate value was not available initially. The half-life for OH loss decreased at higher water pressures. Dependence of OH half-life on OH concentration occurs because homogeneous OH loss processes are second order in reaction intermediates, whose concentration increases with added H 2 O. A contribution by water in chaperoning OH/OH and OH/H combination is also important

  12. Synergistic effects for the TiO2/RuO2/Pt photodissociation of water

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, G; Harriman, A; Williams, D

    1983-07-01

    Compressed discs of naked TiO2 or TiO2 coated with a thin film of a noble metal (e.g. Pt) do not photodissociate water upon illumination with UV light, but small amounts of H2 are generated if the TiO2 has been reduced in a stream of H2 at 600 C. Discs prepared from mixtures of TiO2/RuO2 facilitate the UV photodissociation of water into H2 and O2 although the yields are very low. When a thin (about 9 nm) film of Pt is applied to the TiO2/RuO2 discs, the yields of H2 and O2 observed upon irradiation with UV light are improved drastically. 25 references.

  13. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  14. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Directory of Open Access Journals (Sweden)

    C. I. Garfinkel

    2018-04-01

    Full Text Available A series of simulations using the NASA Goddard Earth Observing System Chemistry–Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño–Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer–Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  15. Direct Synthesis of H{sub 2}O{sub 2} over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H{sub 2}O{sub 2}-ODS of Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng [Northeast Forestry Univ., Harbin (China); Liu, Guangliang [Univ. of Connecticut, Storrs (United States); Chen, Ping; Zhao, Zhixi [Xinjiang Normal Univ., Urumqi (China)

    2013-10-15

    Direct synthesis of H{sub 2}O{sub 2} and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au{sup 0} species for H{sub 2}O{sub 2} synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H{sub 2}O{sub 2} synthesis as CH{sub 3}OH/H{sub 2}O ratio of solvent changed. H{sub 2}O{sub 2} decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O{sub 2}/H{sub 2} ratio on H{sub 2}O{sub 2} concentration, H{sub 2} conversion and H{sub 2}O{sub 2} selectivity revealed a relationship between H{sub 2}O{sub 2} generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O{sub 2}/H{sub 2} ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H{sub 2} conversion and oxidative desulfurization selectivity of H{sub 2} were presented.

  16. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  17. Catalyst-free vapor-phase transport growth of vertically aligned ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Inst. of Semiconductor Technology, Technical Univ. Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Inst. of Applied Physics, Technical Univ. Braunschweig (Germany); Bertram, F.; Christen, J. [Dept. of Solid State Physics, Univ. of Magdeburg (Germany)

    2006-03-15

    ZnO nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Fabrication methods, especially for nanorods have been based mostly on catalyst-assisted growth methods that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on the growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources, without catalysis and at relatively low temperatures and growth pressure in a specially designed vapor-phase transport system. ZnO nanorods with widths of 80-900 nm and lengths of 4-12 {mu}m were obtained. Nanorod concentrations of up to 10{sup 9} cm{sup -2} with homogenous luminescence and high purity were noted. (orig.)

  18. Thermodynamics of the Li{sub 4}SiO{sub 4}/H{sub 2}O system

    Energy Technology Data Exchange (ETDEWEB)

    Alvani, C; Casadio, S [ENEA, Casaccia (Italy); Johnson, C

    1998-03-01

    The chemical interaction of He or He+0.1%H{sub 2} purge gases with Li{sub 4}SiO{sub 4} pebbles has been examined as a function temperature and partial pressure of water vapor by Temperature Programmed Reduction (TPR) and Temperature Programmed Desorption (TPD) measurements. The experimental conditions were selected to be representative of those envisaged occurring in the HCPB (Helium-Cooled Pebble Bed) blanket. At constant partial pressure of moisture, water adsorption on Li{sub 4}SiO{sub 4} decreases with increasing temperature up to 973K. Above that temperature water absorption increases due of the increasing water solubility of lithium hydroxide with temperature. Using these data, thermodynamic calculations have been carried out to evaluate the behavior of lithium orthosilicate in a moisture-containing environment. The evaluation was done over the 773 to 1173K temperature range. In general, the behavior of lithium orthosilicate was similar to earlier studies on lithium oxide except that the orthosilicate is not as strong in its deviations from ideality as the oxide. (author)

  19. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  20. The H2O/D2O exchange across vesicular lipid bilayers

    International Nuclear Information System (INIS)

    Engelbert, H.P.; Lawaczek, R.

    1985-01-01

    A new method to measure the water (D 2 O/H 2 O) permeation across vesicular lipid bilayers is described. The method is based on the solvent isotope effect of the light scattering which is a consequence of the different indices of refraction of D 2 O and H 2 O. Unilamellar lipid vesicles in excess of H 2 O are rapidly mixed with D 2 O or vice versa. As result of the H 2 O/D 2 O exchange across the vesicular bilayer the light scattering signal has a time dependent, almost single exponential component allowing the deduction of the exchange relaxation rate and, at known size, of the permeability coefficient. The experimental results are in accord with calculations from the Mie theory of light scattering for coated spheres. The method is applicable for large vesicles where the permeation is the rate-limiting step. Size separations are performed by a flow dialysis through a sequence of pore-membrane-filters. For dimyristoyl-lecithin bilayers the water permeability-coefficient is 1.9 . 10 -5 cm/s in the crystalline phase and increases by a factor of 10-100 in the liquid-crystalline state. The temperature dependence of the permeation exhibits a sharp change at the phase transition. For binary mixtures of lecithins this sharp change follows the solidus curve of the non-ideal phase diagram determined by spectroscopic techniques. (orig.)

  1. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  2. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  3. Trace water vapor determination in nitrogen and corrosive gases using infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, L.H.; Niemczyk, T.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry; Stallard, B.R.; Garcia, M.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01

    The generation of particles in gas handling systems as a result of corrosion is a major concern in the microelectronics industry. The corrosion can be caused by the presence of trace quantities of water in corrosive gases such as HCl or HBr. FTIR spectroscopy has been shown to be a method that can be made compatible with corrosive gases and is capable of detecting low ppb levels of water vapor. In this report, the application of FTIR spectroscopy combined with classical least squares multivariate calibration to detect trace H{sub 2}O in N{sub 2}, HCl and HBr is discussed. Chapter 2 discusses the gas handling system and instrumentation required to handle corrosive gases. A method of generating a background spectrum useful to the measurements discussed in this report, as well as in other application areas such as gas phase environmental monitoring, is discussed in Chapter 3. Experimental results obtained with the first system are presented in Chapter 4. Those results made it possible to optimize the design options for the construction of a dedicate system for low ppb water vapor determination. These designs options are discussed in Chapter 5. An FTIR prototype accessory was built. In addition, a commercially available evacuable FTIR system was obtained for evaluation. Test results obtained with both systems are discussed in Chapter 6. Experiments dealing with the interaction between H{sub 2}O-HCl and potential improvements to the detection system are discussed in Chapter 7.

  4. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    Science.gov (United States)

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  5. Photochemical degradation of diethyl phthalate with UV/H2O2

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Sun Xiaofeng; Xia Shengji; Rui Min; Simonnot, Marie-Odile; Causserand, Christel; Zhao Jianfu

    2007-01-01

    The decomposition of diethyl phthalate (DEP) in water using UV-H 2 O 2 process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H 2 O 2 oxidation alone, while UV-H 2 O 2 combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0 mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 μW/cm 2 and H 2 O 2 dosage of 20 mg/L. The effects of applied H 2 O 2 dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H 2 O 2 concentration

  6. Stratospheric H2O

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-01-01

    Documentation of the extreme aridity (approx. 3% relative humidity) of the lower stratosphere and the rapid decrease of mixing ratio with height just above the polar tropopause (20-fold in the 1st km) was begun by Dobson et al., (1946) in 1943. They recognized that this extreme and persistent aridity must be dynamically maintained else it would have been wiped out by turbulent diffusion. This led Brewer (1949) to hypothesize a stratospheric circulation in which all air enters through the tropical tropopause where it is freeze dried to a mass mixing ratio of 2 to 3 ppM. This dry air then spreads poleward and descends through the polar tropopauses overpowering upward transport of water vapor by diffusion which would otherwise be permitted by the much warmer temperatures of the polar tropopauses. Questions can indeed be raised as to the absolute magnitudes of stratospheric mixing ratios, the effective temperature of the tropical tropopause cold trap, the reality of winter pole freeze-dry sinks and the representativeness of the available observations suggesting an H 2 O mixing ratio maximum just above the tropical tropopause and a constant mixing ratio from the tropopause to 30 to 35 km. However, no model that better fits all of the available data is available, than does the Brewer (1949) hypothesis coupled with a lower stratosphere winter pole, freeze-dry sink, at least over Antarctica

  7. Mass spectrometric study of vaporization of (U,Pu)O2 fuel simulating high burnup

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Ohmichi, Toshihiko; Fukushima, Susumu; Handa, Muneo

    1985-08-01

    The vaporization behavior of (U,Pu)O 2 fuel simulatig high burnup was studied in the temperature range of 1,573 -- 2,173 K by high temperature mass spectrometry. The phases in the simulated fuel were examined by X-ray microprobe analysis. The relationship between chemical form and vaporization behavior of simulated fission product elements was discussed. Pd, Sr, Ba, Ce and actinide-bearing vapor species were observed, and it was clarified that Pd vapor originated from metallic inclusion and Sr and Ce vapors, from mixed oxide fuel matrix. The vaporization behavior of the actinide elements was somewhat similar to that of hypostoichiometric mixed oxide fuel. The behavior of Ba-bearing vapor species changed markedly over about 2,000 K. From the determination of BaO vapor pressures over simulated fuel and BaZrO 3 , it was revealed thermodynamically that the transformation of the chemical form of Ba about 2,000 K, i.e., dissolution of BaZrO 3 phase into fuel matrix, might be the reason of the observed vapor pressure change. (author)

  8. Observed Responses of Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings

    Science.gov (United States)

    Remsberg, Ellis; Damadeo, Robert; Natarajan, Murali; Bhatt, Praful

    2018-04-01

    This study focuses on responses of mesospheric water vapor (H2O) to the solar cycle flux at Lyman-α wavelength and to dynamical forcings according to the multivariate El-Nino/Southern Oscillation (ENSO) index. The zonal-averaged responses are for latitudes from 60°S to 60°N and pressure-altitudes from 0.01 to 1.0 hPa, as obtained from multiple linear regression analyses of time series of H2O from the Halogen Occultation Experiment for July 1992 to November 2005. The results compare very well with those from a separate simultaneous temporal and spatial (STS) method that also confirms that there are no significant sampling biases affecting both sets of results. Distributions of the seasonal amplitudes for temperature and H2O are in accord with the seasonal net circulation. In general, the responses of H2O to ENSO are anticorrelated with those of temperature. H2O responses to multivariate ENSO index are negative in the upper mesosphere and largest in the Northern Hemisphere; responses in the lower mesosphere are more symmetric with latitude. H2O responses to the Lyman-α flux (Lya) vary from strong negative values in the uppermost mesosphere to very weak, positive values in the tropical lowermost mesosphere. However, the effects of those H2O responses to the solar activity extend to the rest of the mesosphere via dynamical processes. Profiles of the responses to ENSO and Lya also agree reasonably with published results for H2O at the low latitudes from the Microwave Limb Sounder.

  9. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  10. Laser spectrometry applied to the simultaneous determination of the δ2H, δ17O, and δ18O isotope abundances in water

    International Nuclear Information System (INIS)

    Kerstel, E.R.T.; Trigt, R. van; Dam, N.; Reuss, J.; Meijer, H.A.J.

    2001-01-01

    We demonstrate the first successful application of infrared laser spectrometry to the accurate, simultaneous determination of the relative 2 H/ 1 H, 17 O/ 16 O, and 18 O/ 16 O isotope abundance ratios in natural water. The method uses a narrow line width color center laser to record the direct absorption spectrum of low-pressure gas-phase water samples (presently 10 μl liquid) in the 3μm spectral region. The precision of the spectroscopic technique is shown to be 0.7 per mille for δ 2 H and 0.5 per mille for δ 17 O and δ 18 O, while the calibrated accuracy for natural waters amounts to about 3 per mille and 1 per mille, respectively. (author)

  11. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  13. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  14. DETAILED ANALYSIS OF NEAR-IR WATER (H2O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    International Nuclear Information System (INIS)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.; Villanueva, G. L.; Mumma, M. J.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H 2 O were detected, six of them for the first time. We quantified the water production rate [ Q (H 2 O), (3.11 ± 0.14) × 10 29 s −1 ] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H 2 O. The production rates of ortho-water [ Q (H 2 O) ORTHO , (2.33 ± 0.11) × 10 29 s −1 ] and para-water [ Q (H 2 O) PARA , (0.87 ± 0.21) × 1029 s −1 ] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  15. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (LOVEJOY) with the GIANO/TNG Spectrograph

    Science.gov (United States)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J.R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 micron region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11+/- 0.14) x 10(exp 29)/s] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33+/- 0.11) x 10(exp 29)/s] and para-water [Q(H2O)PARA, (0.87+/-0.21) x 10(exp 29)/s] provide a measure of the ortho-to-para ratio (2.70+/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  16. Water oxidation by photosystem II: H(2)O-D(2)O exchange and the influence of pH support formation of an intermediate by removal of a proton before dioxygen creation.

    Science.gov (United States)

    Gerencsér, László; Dau, Holger

    2010-11-30

    Understanding the chemistry of photosynthetic water oxidation requires deeper insight into the interrelation between electron transfer (ET) and proton relocations. In photosystem II membrane particles, the redox transitions of the water-oxidizing Mn complex were initiated by nanosecond laser flashes and monitored by absorption spectroscopy at 360 nm (A(360)). In the oxygen evolution transition (S(3) + hν → S(0) + O(2)), an exponential decrease in A(360) (τ(O(2)) = 1.6 ms) can be assigned to Mn reduction and O(2) formation. The corresponding rate-determining step is the ET from the Mn complex to a tyrosine radical (Y(Z)(ox)). We find that this A(360) decrease is preceded by a lag phase with a duration of 170 ± 40 μs (τ(lag) at pH 6.2), indicating formation of an intermediate before ET and O-O bond formation and corroborating results obtained by time-resolved X-ray spectroscopy. Whereas τ(O(2)) exhibits a minor kinetic isotope effect and negligible pH dependence, formation of the intermediate is slowed significantly both in D(2)O (τ(lag) increase of ∼140% in D(2)O) and at low pH (τ(lag) of 30 ± 20 μs at pH 7.0 vs τ(lag) of 470 ± 80 μs at pH 5.5). These findings support the fact that in the oxygen evolution transition an intermediate is created by deprotonation and removal of a proton from the Mn complex, after Y(Z)(ox) formation but before the onset of electron transfer and O-O bond formation.

  17. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    Science.gov (United States)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  18. The crystal structure of Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Verena; Schlosser, Marc; Pfitzner, Arno [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    A reinvestigation of the alkali metal thiosulfates has led to the new phase Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. At first cesium thiosulfate monohydrate was obtained as a byproduct of the synthesis of Cs{sub 4}In{sub 2}S{sub 5}. Further investigations were carried out using the traditional synthesis reported by J. Meyer and H. Eggeling. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O crystallizes in transparent, colorless needles. The crystal structure of the title compound was determined by single crystal X-ray diffraction at room temperature: space group C2/m (No. 12), unit cell dimensions: a = 11.229(4), b = 5.851(2), c = 11.260(5) Aa, β = 95.89(2) , with Z = 4 and a cell volume of V = 735.9(5) Aa{sup 3}. The positions of all atoms including the hydrogen atoms were located in the structure refinement. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O is isotypic with Rb{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. Isolated tetrahedra [S{sub 2}O{sub 3}]{sup 2-} are coordinated by the alkali metal cations, and in addition they serve as acceptors for hydrogen bonding. For both Cs atoms the shortest distances are observed to oxygen atoms of the S{sub 2}O{sub 3}{sup 2-} anions whereas the terminating sulfur atom has its shortest contacts to the water hydrogen atoms. Thus, an extended hydrogen bonding network is formed. The title compound has also been characterized by IR spectroscopy. IR spectroscopy reveals the vibrational bands of the water molecules at 3385 cm{sup -1}. They show a red shift in the OH stretching and bending modes as compared to free water. This is due both to the S..H hydrogen bonding and to the coordination of H{sub 2}O molecules to the cesium atoms.

  19. U3Si2 behavior in H2O environments: Part II, pressurized water with controlled redox chemistry

    Science.gov (United States)

    Nelson, A. T.; Migdisov, A.; Wood, E. Sooby; Grote, C. J.

    2018-03-01

    Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is sparse in available literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles. This work examines the behavior of U3Si2 following exposure to pressurized H2O at temperatures from 300 to 350 °C. Testing was performed using two autoclave configurations and multiple redox conditions. Use of solid state buffers to attain a controlled water chemistry is also presented as a means to test actinide-bearing systems. Buffers were used to vary the hydrogen concentration between 1 and 30 parts per million H2. Testing included UN, U3Si5, and UO2. Both UN and U3Si5 were found to rapidly pulverize in less than 50 h at 300 °C. Uranium dioxide was included as a control for the autoclave system, and was found to be minimally impacted by exposure to pressurized water at the conditions tested for extended time periods. Testing of U3Si2 at 300 °C found reasonable stability through 30 days in 1-5 ppm H2. However, pulverization was observed following 35 days. The redox condition of testing strongly affected pulverization. Characterization of the resulting microstructures suggests that the mechanism responsible for pulverization under more strongly reducing conditions differs from that previously identified. Hydride formation is hypothesized to drive this transition. Testing performed at 350 °C resulted in rapid pulverization of U3Si2 in under 50 h.

  20. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  1. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    Science.gov (United States)

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  2. An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights.

    Science.gov (United States)

    Weckwerth, Tammy M.; Parsons, David B.; Koch, Steven E.; Moore, James A.; Lemone, Margaret A.; Demoz, Belay B.; Flamant, Cyrille; Geerts, Bart; Wang, Junhong; Feltz, Wayne F.

    2004-02-01

    The International H2O Project (IHOP_2002) is one of the largest North American meteorological field experiments in history. From 13 May to 25 June 2002, over 250 researchers and technical staff from the United States, Germany, France, and Canada converged on the Southern Great Plains to measure water vapor and other atmospheric variables. The principal objective of IHOP_2002 is to obtain an improved characterization of the time-varying three-dimensional water vapor field and evaluate its utility in improving the understanding and prediction of convective processes. The motivation for this objective is the combination of extremely low forecast skill for warm-season rainfall and the relatively large loss of life and property from flash floods and other warm-season weather hazards. Many prior studies on convective storm forecasting have shown that water vapor is a key atmospheric variable that is insufficiently measured. Toward this goal, IHOP_2002 brought together many of the existing operational and new state-of-the-art research water vapor sensors and numerical models.The IHOP_2002 experiment comprised numerous unique aspects. These included several instruments fielded for the first time (e.g., reference radiosonde); numerous upgraded instruments (e.g., Wyo-ming Cloud Radar); the first ever horizontal-pointing water vapor differential absorption lidar (DIAL; i.e., Leandre II on the Naval Research Laboratory P-3), which required the first onboard aircraft avoidance radar; several unique combinations of sensors (e.g., multiple profiling instruments at one field site and the German water vapor DIAL and NOAA/Environmental Technology Laboratory Doppler lidar on board the German Falcon aircraft); and many logistical challenges. This article presents a summary of the motivation, goals, and experimental design of the project, illustrates some preliminary data collected, and includes discussion on some potential operational and research implications of the experiment.

  3. Experimental Study of Effects of pH, Temperature and H2O2 on Gasoline Removal from Contaminated Water Using Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Hasti Hasheminejad

    2010-01-01

    Full Text Available Contamination of water with petroleum compounds is a serious environmental problem in Iran. Old fuel storage tanks, gasoline stations, and oil refineries are the main sources of gasoline leakage into water resources. In this study, the batch adsorption technique was used to investigate adsorption of petroleum compounds (gasoline on granular activated carbon. Experiments showed that the adsorption capacity of activated carbon is a function of pH, temperature, and H2O2 concentration in solution. Maximum adsorption of petroleum compounds was obtained at pH of 8. Adsorption of petroleum compounds was increased by decreasing temperature (due to decreasing van der Waals forces between the adsorbent and the adsorbate and H2O2 concentration in solution (due to the decrease in the initial concentration of the adsorbate by oxidation . In this experiment, the maximum equilibrium capacity of granular activated carbon was 129.05 mg COD/g GAC at pH 8 and at an ambient temperature of 10˚C. The experimental adsorption data were fitted to the Freundlich and Langmuir adsorption model. The correlation coefficients calculated indicate that the Freundlich model was best fitted. Also, the regression analysis was used with a correlation coefficient of 0.981 to develop a model for describing the relationship between absorption variation in equilibrium state, pH, temperature, and H2O2. On the whole, the correlation coefficient calculated by the proposed model was found to be higher than Freundlich’s.

  4. Chemical kinetics in H2O and D2O under hydrothermal conditions

    International Nuclear Information System (INIS)

    Ghandi, K.; Alcorn, C.D.; Legate, G.; Percival, P.W.; Brodovitch, J.-C.

    2010-01-01

    Muonium (Mu = μ + e - ) is a light analogue of the H-atom. Studies of Mu chemical kinetics have been extended to supercritical water, a medium in some designs of future generation nuclear reactors. The Supercritical-Water-Cooled Reactor (SCWR) would operate at higher temperatures than current pressurized water-cooled reactors, and the lack of knowledge of water radiolysis under supercritical conditions constitutes a technology gap for SCWR development. Accurate modeling of chemistry in a SCWR requires data on kinetics of reactions involved in the radiolysis of water. In this paper, we first review our measurements of kinetics in H 2 O and then describe new data for D 2 O under sub- and supercritical conditions. (author)

  5. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr22-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  6. Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    A. K. Smith

    2012-06-01

    Full Text Available The transportable ground based microwave radiometer MIAWARA-C monitored the upper stratospheric and lower mesospheric (USLM water vapor distribution over Sodankylä, Finland (67.4° N, 26.6° E from January to June 2010. At the end of January, approximately 2 weeks after MIAWARA-C's start of operation in Finland, a stratospheric sudden warming (SSW disturbed the circulation of the middle atmosphere. Shortly after the onset of the SSW water vapor rapidly increased at pressures between 1 and 0.01 hPa. Backward trajectory calculations show that this strong increase is due to the breakdown of the polar vortex and meridional advection of subtropical air to the Arctic USLM region. In addition, mesospheric upwelling in the course of the SSW led to an increase in observed water vapor between 0.1 and 0.03 hPa. After the SSW MIAWARA-C observed a decrease in mesospheric water vapor volume mixing ratio (VMR due to the subsidence of H2O poor air masses in the polar region. Backward trajectory analysis and the zonal mean water vapor distribution from the Microwave Limb Sounder on the Aura satellite (Aura/MLS indicate the occurrence of two regimes of circulation from 50° N to the North Pole: (1 regime of enhanced meridional mixing throughout February and (2 regime of an eastward circulation in the USLM region reestablished between early March and the equinox. The polar descent rate determined from MIAWARA-C's 5.2 parts per million volume (ppmv isopleth is 350 ± 40 m d−1 in the pressure range 0.6 to 0.06 hPa between early February and early March. For the same time interval the descent rate in the same pressure range was determined using Transformed Eulerian Mean (TEM wind fields simulated by means of the Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM. The average value of the SD-WACCM TEM vertical wind is 325 m d−1 while the along trajectory vertical displacement is 335 m d−1. The similar descent rates found indicate good

  7. Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes

    NARCIS (Netherlands)

    Coenen, K.T.; Gallucci, F.; Cobden, P.; van Dijk, E; Hensen, E.J.M.; van Sint Annaland, M.

    2017-01-01

    Thermogravimetric analysis and breakthrough experiments in a packed bed reactor were used to validate a developed adsorption model to describe the cyclic working capacity of CO2 and H2O on a potassium-promoted hydrotalcite, a very promising adsorbent for sorption-enhanced water-gas-shift

  8. Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes

    NARCIS (Netherlands)

    Coenen, K.T.; Gallucci, F.; Cobden, P.; van Dijk, E.; Hensen, E.J.M.; van Sint Annaland, M.

    2016-01-01

    Thermogravimetric analysis and breakthrough experiments in a packed bed reactor were used to validate a developed adsorption model to describe the cyclic working capacity of CO¬2 and H2O on a potassium-promoted hydrotalcite, a very promising adsorbent for sorption-enhanced water-gas-shift

  9. Li vaporization property of two-phase material of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Masuko, Yuki; Kato, Hirokazu; Yuyama, Hayato; Sakai, Yutaro [Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Mukai, Keisuke [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656 (Japan); Hosino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Course of Mechanical Engineering and Aeronautics and Astronautics, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2015-10-15

    Highlights: • We synthesized two phase materials based on Li{sub 2}SiO{sub 3} and Li{sub 2}TiO{sub 3}. • We investigated the Li vaporization property of the two-phase materials. • Li vaporization occurs significantly from only Li{sub 2}SiO{sub 3} grains in the vicinity of the surface of the pellets. • The Li vaporization is remarkable only for an early short time for the vaporization from Li{sub 2}SiO{sub 3} grains at the vicinity of the surface. • The second stable phase added functions effectively for inhibition of the Li vaporization. - Abstract: Li vaporization property of two-phase materials of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} in a working condition for the solid tritium breeder used in the demonstration power plant of fusion reactor was investigated, and the suppression mechanism of the vaporization was considered. The Li vaporization rate from the specimen pellet was measured by gravimetric method, and the change of Li concentration distribution in the pellet was analyzed by time-of-flight secondary ion mass spectrometer. Li was vaporized only from the Li{sub 2}SiO{sub 3} at the vicinity of the surface of the pellet. The remarkable vaporization of Li arose only in an early short time. The inhibition of the vaporization from the Li{sub 2}SiO{sub 3} was successful by adding the small amount of the stable secondary phase of Li{sub 2}TiO{sub 3}.

  10. Estimated Critical Conditions for UO(Sub 2)F(Sub 2)-H(Sub 2)O Systems in Fully Water-Reflected Spherical Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.

    1992-01-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  11. Estimated critical conditions for UO{sub 2}F{sub 2}--H{sub 2}O systems in fully water-reflected spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  12. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  13. Study of the solubility, viscosity and density in Na+, Zn2+/Cl− − H2O, Na+ − Zn2+ − (H2PO2)− − H2O, Na+, Cl−/(H2PO2)− − H2O, and Zn2+, Cl−/(H2PO2)− − H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15 K

    International Nuclear Information System (INIS)

    Adiguzel, Vedat; Erge, Hasan; Alisoglu, Vahit; Necefoglu, Hacali

    2014-01-01

    Highlights: • The physicochemical properties of ternary and one quaternary have been studied. • Reciprocal quaternary systems’ solubility and phase equilibrium have been studied. • In all systems the solid phases have been found. • It was found that Zn(H 2 PO 2 ) 2 salt contains 70% of the general crystallization field. - Abstract: The solubility and the physicochemical properties (density, viscosity) in the Na-Zn- Cl-H 2 O), (Na + Zn + H 2 PO 2 + H 2 O), (Na + Cl + H 2 PO 2 + H 2 O), and (Zn + Cl + H 2 PO 2 + H 2 O) ternaries, and in Na + , Zn 2+ /Cl − , (H 2 PO 2 ) − //H 2 O reciprocal quaternary systems at T = 273.15 K were investigated by using the isothermal method. The diagrams of ternary salts systems, (NaCl + ZnCl 2 + H 2 O), (NaCl + NaH 2 PO 2 + H 2 O), (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), are plotted in figures 1–4. However, whole ions of reciprocal quaternary salt systems are plotted in figure 5. Additionally, the density and viscosity values of ternary systems vs. their corresponding composition values in weight per cent are plotted in figures 6–10. At the (i) (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ii) (NaCl + ZnCl 2 + H 2 O), (iii) (NaCl + NaH 2 PO 2 + H 2 O), (iv) (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O) ternary systems the solid phase compositions have been determined as: (i) Zn(H 2 PO 2 ) 2H 2 O, Zn(H 2 PO 2 ) 2 , ZnCl 22H 2 O, (ii) NaCl, 2NaCl ⋅ ZnCl 22H 2 O, and ZnCl 22H 2 O, (iii) NaCl and NaH 2 PO 2H 2 O, (iv) Zn(H 2 PO 2 ) 2H 2 O and NaH 2 PO 2H 2 O, respectively. On the other hand reciprocal quaternary system was observed as: ZnCl 22H 2 O, 2NaCl ⋅ ZnCl 22H 2 O, Zn(H 2 PO 2 ) 2H 2 O, NaH 2 PO 2H 2 O, NaCl. According to results, the least soluble salt was Zn(H 2 PO 2 ) 2 . The crystallization field of this salt, being the largest in comparison with those of other salts, occupied 70% of the general crystallization field

  14. Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2-H2O-Ar atmospheres

    International Nuclear Information System (INIS)

    Li Siwei; Feng Zude; Mei Hui; Zhang Litong

    2008-01-01

    Hi-Nicalon fibers were exposed in 8% O 2 /78% Ar/14% H 2 O atmosphere for 1 h at 1300, 1400, 1500, 1600 deg. C, respectively. Residual tensile strength was evaluated by tensile test, phases in the fibers were identified using an X-ray diffractometer (XRD), morphology of the fracture surfaces and microstructure was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. Results indicated that residual tensile strength increased with increasing temperature from 1300 to 1500 deg. C, then decreased after annealing in 1600 deg. C. The grain size of β-SiC and the amount of the stacking faults increased under the elevated temperature as well. After annealing, a passive film with a structure of α-cristobalite crystals dispersed in amorphous SiO 2 phase formed on the fiber surface, the thickness of the film increased with the annealing temperature from 1300 to 1500 deg. C, after annealing in 1600 deg. C, fractional silica film spalled. Finally, relationship between the structural changes and the mechanical properties, the control effect of water vapor on formation and structural evolution of the passive film were discussed

  15. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  16. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  17. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbO-B2O3-SiO2 system.

    Science.gov (United States)

    Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M

    2013-07-15

    The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.

  18. A novel H2S/H2O2 fuel cell operating at the room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ayse Elif [Gazi University (Turkey)], email: aecsanli@gmail.com; Aytac, Aylin [Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar (Turkey)], email: aytaca@gazi.edu.tr

    2011-07-01

    This study concerns the oxidation mechanism of hydrogen sulfide and a fuel cell; acidic peroxide is used as the oxidant and basic hydrogen sulfide is the fuel. A solid state H2S/H2O2 stable fuel cell was produced at room temperature. A cell potential of 0.85 V was reached; this is quite remarkable in comparison to the H2S/O2 fuel cell potential of 0.85 V obtained at 850-1000 degree celsius. The hydrogen sulfide goes through an oxidation reaction in the alkaline fuel cell (H2S/H2O2 fuel cell) which opens up the possibility of using the cheaper nickel as a catalyst. As a result, the fuel cell becomes a potentially low cost technology. A further benefit from using H2S as the alkaline liquid H2S/H2O2 fuel cell, is that sulfide ions are oxidized at the anode, releasing electrons. Sulfur produced reacts with the other sulfide ions and forms disulfide and polysulfide ions in basic electrolytes (such as Black Sea water).

  19. Structure of Sr3V10O28.22H2O

    International Nuclear Information System (INIS)

    Nieto, J.M.; Salagre, P.; Medina, F.; Sueiras, J.E.; Solans, X.

    1993-01-01

    The crystal structure of hydrated strontium decavanadate, Sr 3 V 10 O 28 .22H 2 O, has been determined. It contains two types of strontium ions: the first is coordinated to seven water molecules which define a pentagonal bipyramid; the second bonds to five molecules of water and three O atoms of different decavanadate ions, thereby bridging between decavanadate ions to produce layers of formula [Sr 2 V 10 O 38 H 20 ] n on the crystallographic plane (100). The heptacoordinated Sr and the five molecules of water associated with it are located between the different layers. (orig.)

  20. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  1. The MgSeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1984-01-01

    The method of isothermal solubility at 25 deg C has been used to study MgSeO 4 -UO 2 SeO 4 -H 2 O system. Formation of the new compound Mg 2 (UO 2 ) 3 (SeO 4 ) 5 X32H 2 O, congruently soluble in water is stated. Thermographic and X-ray diffraction investigations of the prepared magnesium selenato-uranylate and products of its dehydration are conducted

  2. Thermodynamic analysis of behaviour of boiling water reactor coolant on the basis of solubility in Fe3O4-H2O-O2 system

    International Nuclear Information System (INIS)

    Zarembo, V.I.; Slobodov, A.A.; Kritskij, V.G.; Puchkov, L.V.; Sedov, V.M.

    1986-01-01

    The thermodynamic analysis of the behaviour of boiling water reactor coolant on the basis of solubility in Fe 3 O 4 -H 2 O-O 2 system is performed for the purpose of establishing the iron existence forms in non-sedimentated suspended corrosion product particles as well as iron concentration of corrosion origin in power plants. It is shown that the iron solubility in the considered system with temperature variation occurs through the maximum at 423 K. Below this temperature the crystal Fe(OH) 3 is responsible for its value, at higher temperatures - magnetite. The growth of equilibrium oxygen concentration from 0.1 to 1000 μg/kg H 2 O only slightly increases the magnetite solubility

  3. Initial oxidation of TiFe{sub 1−x}Mn{sub x} (x = 0–0.3) by low dose exposures to H{sub 2}O and O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shwartz, A. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Shamir, N., E-mail: noah.shamir@gmail.com [Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Froumin, N. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Zalkind, S.; Edry, I.; Haim, A. [Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mintz, M.H. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel)

    2014-10-15

    Highlights: • Thermodynamics of adsorption and initial oxidation of TiFe{sub 1−x}Mn{sub x} by H{sub 2}O versus O{sub 2}. • Explanation of different oxide formations. • Explanation of the role of the different constituents of the alloys in the processes. - Abstract: The very initial room-temperature oxidation processes of the ternary pseudo-binary TiFe{sub 1−x}Mn{sub x} (x = 0–0.3) intermetallics by trace amounts of H{sub 2}O vapor and O{sub 2} were studied utilizing XPS and AES techniques. Different reactivities of the two gases were obtained, with a lower oxidation ability of H{sub 2}O, relative to O{sub 2}, as anticipated from thermodynamic considerations. The exposure to O{sub 2} results in a two stage oxidation of the Ti ingredient, which first converts into a divalent TiO (up to exposures of about 2 L), then proceeds into a tetravalent TiO{sub 2} form. Unlike oxygen, water exposure produces only the divalent oxide through the whole exposure range studied (11 L). The Mn component in these compounds is oxidized only by O{sub 2} and not by H{sub 2}O. The Fe ingredient is not oxidized at all and remains in its metallic form up to exposures of 30 L.

  4. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    Science.gov (United States)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  5. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    Science.gov (United States)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  6. Environmental sciences: general. 2. Water Adsorption/Absorption by CsOH Particles

    International Nuclear Information System (INIS)

    Riggs, C.A.; Ghosh, T.K.; Tompson, R.V.; Loyalka, S.K.; Viswanath, D.S.

    2001-01-01

    Cesium hydroxide in aerosol form is likely to be a significant source of radio-cesium released during a reactor transient. Cesium hydroxide particles are hydrophilic and absorb/adsorb water rapidly. The result is a rapid growth of cesium hydroxide wetted agglomerates that can deposit on surfaces by gravitational settling. However, they can also react with iodine gas to form CsI according to Eq. (1). The rapid absorption/adsorption of water by CsOH may increase the rate of absorption of iodine by CsOH. Iodine may attach itself to adsorbed water molecules on CsOH and facilitate the reaction by bringing iodine to CsOH. Thus, the iodine removal mechanism from the pressurized water reactor containment atmosphere may change: I 2(g) + 4CsOH (s) ↔ 2CsI (s) + 2CsO (s) + 2H 2 O (l) . (1) Despite the importance of CsOH as an aerosol material released during a reactor transient, we have been unable to find any isotherm data of water on cesium hydroxide in the literature. The significant hydrophilic nature of CsOH, together with its being the strongest base currently known, present challenges to collection of water adsorption data. The objective in this research was to experimentally obtain isotherm data of water vapor on CsOH for a range of temperatures and pressures on macroscopic samples using an electro-balance. These data then may be used to predict the amount of water vapor adsorbed on CsOH at other temperatures and pressures by existing models. The adsorption apparatus using a Cahn 2000 electro-balance is shown in Fig. 1. The water adsorption/absorption data on CsOH at different relative pressures of water vapor were obtained gravimetrically. A detailed description of the experimental system is given in Hassan et al. An∼70-mg sample of CsOH.H 2 O (s) was placed onto a platinum weighing dish in the hang-down tube of the balance. The sample was regenerated by heating it at 100 deg. C under a vacuum of 3.5x10 -2 mm Hg for 24 h to remove adsorbed water and other gases

  7. Effects of water vapor introduction during Cu(In1-xGax)Se2 deposition on thin film properties and solar cell performance

    International Nuclear Information System (INIS)

    Ishizuka, S.; Sakurai, K.; Yamada, A.; Matsubara, K.; Shibata, H.; Kojima, T.; Niki, S.; Yonemura, M.; Nakamura, S.; Nakanishi, H.

    2006-01-01

    The effects of water vapor introduction during the growth of Cu(In 1-x Ga x )Se 2 , specifically CuInSe 2 (CISe), Cu(In,Ga)Se 2 (CIGSe), and CuGaSe 2 (CGSe) thin films were studied. We have developed thus far a novel technique to improve CIGSe (x∝0.5) cell performance by means of water vapor introduction during CIGSe deposition. In this study, we have examined the effectiveness of water vapor introduction for other x-compositions (CISe and CGSe). Variations in the electrical properties observed in CIGSe (x∝0.5), that is, increasing hole density and conductivity with water vapor introduction, were also observed in CISe and CGSe. Water vapor introduction affected solar cell performance as well; open circuit voltages, short circuit current densities, and efficiencies were improved. The improvements in cell performance are thought to be related to annihilation of donor defects arising from Se-vacancies by incorporation of oxygen from the water vapor. In addition to this, the sodium content in the CIGSe layers was found to depend on the partial pressure of water vapor during deposition. This result suggests that the improvement mechanism is also related with the so-called 'Na-effects'. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Water-Induced Degradation of Polymer Solar Cells Studied by (H2O)-O-18 Labeling

    DEFF Research Database (Denmark)

    Norrman, Kion; Gevorgyan, Suren; Krebs, Frederik C

    2009-01-01

    Water-induced degradation of polymer photovoltaics based on the active materials poly(3-hexylthiophene) (P3HT) or poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) was studied. The solar cell devices comprised a bulk heterojunction formed by the active material and [6,6]-phenyl......-C61-butyric acid methyl ester (PCBM) in a standard device geometry. The use of H218O in conjunction with time-of-flight secondary ion mass spectrometry enabled mapping of the parts of the device that were induced by water. A comparison was made between the two active materials and between devices...

  9. Simulation of the inhibition of water α-radiolysis via H2 addition

    International Nuclear Information System (INIS)

    Lertnaisat, Phantira; Katsumura, Yosuke; Mukai, Satoru; Umehara, Ryuji; Shimizu, Yuichi; Suzuki, Masashi

    2014-01-01

    The continuous formation of H 2 , O 2 , and H 2 O 2 observed in water during α-radiolysis may be suppressed by the addition of H 2 above the threshold hydrogen concentration (THC). Using the FACSIMILE simulation code, water radiolysis was reproduced in order to determine the THC and clarify the mechanism at room temperature. Using the reaction set and rate constants reported by Ershov and Gordeev together with the primary yields for water decomposition products generated using 12 MeV α-particles, the THC was found to be 165 μM. Further simulation results clearly showed that the value of THC is strongly dependent on the reaction set and rate constants. In addition, a possible mechanism involving a chain reaction governed by the two reactions OH + H 2H + H 2 O and H + H 2 O 2 → OH + H 2 O was proposed. Furthermore, the same inhibition effect was found when a high-temperature simulation (300degC) was performed, but the concentration range and THC were much smaller than the values obtained at room temperature. The importance of the reverse reaction OH + H 2H + H 2 O was also investigated. (author)

  10. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  11. Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selcuk University (Turkey); Advanced Technology Research and Application Center, Selcuk University (Turkey); Cabuk, Nihat [Department of Chemical Engineering, Selcuk University (Turkey)

    2012-08-31

    Poly(2-(diisopropylamino)ethyl methacrylate) (PDPAEMA) thin films were deposited on low temperature substrates by initiated chemical vapor deposition (iCVD) method using tertbutyl peroxide as an initiator. Very high deposition rates up to 38 nm/min were observed at low filament temperatures due to the use of the initiator. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy show the formation of PDPAEMA films with high retention of tertiary amine functionality which is responsible for pH induced changes in the wetting behavior of the surfaces. As-deposited PDPAEMA thin films on flat Si surface showed a reversible switching of water contact angle values between 87 Degree-Sign and 28 Degree-Sign ; after successive treatments of high and low pH water solutions, respectively. Conformal and non-damaging nature of iCVD allowed to functionalize fragile and rough electrospun poly(methyl methacrylate) fiber mat surfaces by PDPAEMA, which creates a surface with a switching behavior between superhydrophobic and approaching superhydrophilic with contact angle values of 155 {+-} 3 Degree-Sign and 22 {+-} 5 Degree-Sign , respectively. - Highlights: Black-Right-Pointing-Pointer Poly(2-diisopropylaminoethyl methacrylate) thin films were deposited by a dry process. Black-Right-Pointing-Pointer Initiated chemical vapor deposition can produce thin films on fragile substrates. Black-Right-Pointing-Pointer We report a reversible pH-induced transition from hydrophilic to super-hydrophobic.

  12. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  13. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-01-01

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  14. Effect of deuterium addition the vaporization of Li{sub 2}ZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tonegawa, Masahisa; Suzuki, Atsushi; Yasumoto, Masaru; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ. (Japan); Roux, N

    1998-03-01

    It has been proposed to add a small amount of H{sub 2} to inert purge gas for the purpose of enhancing the release of tritium from ceramic breeder materials. However, it is pointed out that the total pressure of the lithium-containing species becomes very large by addition of H{sub 2}. In this study, the partial pressures of vapor spices under D{sub 2} addition were measured by means of high temperature mass spectrometry. When D{sub 2} was introduced the formation of LiOD(g) was observed and the total pressure of lithium-containing species was higher than the case without D{sub 2} admission. From the measured partial pressures, the enthalpy of LiOD forming reaction; Li{sub 2}ZrO{sub 3}(s) + D{sub 2}O(g) = LiOD(g) + ZrO{sub 2}(s) was calculated. Moreover, the change of the total pressure of lithium-containing species under the condition that the He + 0.1 using the pressure of D{sub 2} and D{sub 2}O as parameters. (author)

  15. The δ2H and δ18O of tap water from 349 sites in the United States and selected territories

    Science.gov (United States)

    Coplen, Tyler B.; Landwehr, Jurate M.; Qi, Haiping; Lorenz, Jennifer M.

    2013-01-01

    Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.

  16. DETAILED ANALYSIS OF NEAR-IR WATER (H{sub 2}O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Villanueva, G. L.; Mumma, M. J., E-mail: sfaggi@arcetri.astro.it [NASA Goddard Space Flight Centre, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2016-10-20

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H{sub 2}O were detected, six of them for the first time. We quantified the water production rate [ Q (H{sub 2}O), (3.11 ± 0.14) × 10{sup 29} s{sup −1}] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H{sub 2}O. The production rates of ortho-water [ Q (H{sub 2}O){sup ORTHO}, (2.33 ± 0.11) × 10{sup 29} s{sup −1}] and para-water [ Q (H{sub 2}O){sup PARA}, (0.87 ± 0.21) × 1029 s{sup −1}] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  17. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale.

    Science.gov (United States)

    Cédat, Bruno; de Brauer, Christine; Métivier, Hélène; Dumont, Nathalie; Tutundjan, Renaud

    2016-09-01

    In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Muonium formation and the 'missing fraction' in vapors

    International Nuclear Information System (INIS)

    Fleming, D.G.; Arseneau, D.J.; Garner, D.M.; Senba, M.; Mikula, R.J.

    1983-06-01

    The vapor phase fractional polarizations of positive muons thermalizing as the muonium atom (Psub(M)) and in diamagnetic environments (Psub(D)) has been measured in H 2 O, CH 3 OH, C 6 H 14 , C 6 H 12 , CCl 4 , CHCl 3 , CH 2 Cl 2 and TMS, in order to compare with the corresponding fractions measured in the condensed phases. There is a marked contrast in every case, with the vapor phase results being largely understandable in terms of a charge exchange/hot atom model. Unlike the situation in the corresponding liquids, there is no permanent lost fraction in the vapor phase in the limit of even moderately high pressures (approximately 1 atm); at lower pressures, depolarization is due to hyperfine mixing and is believed to be well understood. For vapor phase CH 3 OH, C 6 H 14 , C 6 H 12 , and TMS the relative fractions are found to be pressure dependent, suggesting the importance of termolecular hot atom (or ion) reactions in the slowing-down process. For vapor phase H 2 O and the chloromethanes, the relative fractions are pressure independent. For CCl 4 , Psub(M) = Psub(D) approximately 0.5 in the vapor phase vs. Psub(D) = 1.0 in the liquid phase; fast thermal reactions of Mu likely contribute significantly to this difference in the liquid phase. For H 2 O, Psub(M) approximately 0.9 and Psub(D) approximately 0.1 in the vapor phase vs. Psub(D) approximately 0.6 and Psub(M) approximately 0.2 in the liquid phase. Water appears to be the one unequivocal case where the basic charge exchange/hot atom model is inappropriate in the condensed phase, suggesting, therefore, that radiation-induced 'spur' effects play a major role

  19. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)22H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    Science.gov (United States)

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)22H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.

  20. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  1. Summer carbon dioxide and water vapor fluxes across a range of northern peatlands

    Science.gov (United States)

    Humphreys, Elyn R.; Lafleur, Peter M.; Flanagan, Lawrence B.; Hedstrom, Newell; Syed, Kamran H.; Glenn, Aaron J.; Granger, Raoul

    2006-12-01

    Northern peatlands are a diverse group of ecosystems varying along a continuum of hydrological, chemical, and vegetation gradients. These ecosystems contain about one third of the global soil carbon pool, but it is uncertain how carbon and water cycling processes and response to climate change differ among peatland types. This study examines midsummer CO2 and H2O fluxes measured using the eddy covariance technique above seven northern peatlands including a low-shrub bog, two open poor fens, two wooded moderately rich fens, and two open extreme-rich fens. Gross ecosystem production and ecosystem respiration correlated positively with vegetation indices and with each other. Consequently, 24-hour net ecosystem CO2 exchange was similar among most of the sites (an average net carbon sink of 1.5 ± 0.2 g C m-2 d-1) despite large differences in water table depth, water chemistry, and plant communities. Evapotranspiration was primarily radiatively driven at all sites but a decline in surface conductance with increasing water vapor deficit indicated physiological restrictions to transpiration, particularly at the peatlands with woody vegetation and less at the peatlands with 100% Sphagnum cover. Despite these differences, midday evapotranspiration ranged only from 0.21 to 0.34 mm h-1 owing to compensation among the factors controlling evapotranspiration. Water use efficiency varied among sites primarily as a result of differences in productivity and plant functional type. Although peatland classification includes a great variety of ecosystem characteristics, peatland type may not be an effective way to predict the magnitude and characteristics of midsummer CO2 and water vapor exchanges.

  2. D2O, Computation of Thermodynamic and Transport Properties of Heavy Water

    International Nuclear Information System (INIS)

    Durmayaz, Ahmet

    2000-01-01

    1 - Description of program or function: A computer program for the fast computation of the thermodynamic and transport properties of heavy water (D 2 O) at saturation, in subcooled liquid and superheated vapor states. Specific volume (or density), specific enthalpy, specific entropy, constant-pressure specific heat and temperature at saturation are calculated by a number of piecewise continuous approximation functions of (and their derivatives are calculated with respect to) pressure whereas pressure at saturation is calculated by a piecewise continuous approximation function of temperature for heavy water. Density in subcooled liquid state, specific volume in super-heated vapor state, specific enthalpy, specific entropy and constant-pressure specific heat in both of these states are calculated by some piecewise continuous approximation functions of pressure and temperature for heavy water. The correlations used in the calculation of these thermodynamic properties of heavy water were derived by fitting some appropriate curves to the data given in the steam tables by Hill et al (1981). The whole set of correlations and the approximation method used in their derivation are presented by Durmayaz (1997). Dynamic viscosity and thermal conductivity for heavy water are calculated as functions of temperature and density with the correlations given by Hill et al (1981), by Matsunaga and Nagashima (1983) and by Kestin et al (1984). Surface tension for heavy water is calculated as a function of temperature with the correlation given by Crabtree and Siman-Tov (1993). 2 - Methods: A group of pressure-enthalpy (P-h) pairs can be given in an input data file or assigned in the main program without knowing the state in which fluid takes place. In this case, first, the enthalpies at saturation corresponding to the given pressure are computed. Second, the state is determined by comparing the given enthalpy to the saturation enthalpies. Then, the properties are computed. Program D 2 O

  3. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    Science.gov (United States)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung; Parks, II, James E.

    2017-12-26

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  4. Proton conducting system (ImH2)2SeO2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  5. On the basic substances used in the separation process by isotope exchange H2S - H2O, at two temperatures, in view of producing heavy water

    International Nuclear Information System (INIS)

    Popescu, V.

    1977-01-01

    In view of producing heavy water, the influence of the deuterium proportion in the basic substances, on the efficiency of the isotope exchange process H 2 S - H 2 O for two temperatures was studied. Heavy water is extracted from ordinary water and concentrated from 0.014 per cent to 5-15 per cent D 2 O by isotope bithermal exchange with the hydrogen sulphite. Theoretical and experimental research was carried out in laboratories and then applied on a pilot plant by designing and testing a drying equipment for hydrogen sulphite. The maximum H 2 S concentration rose to 99.84 per cent. The purity of the hydrogen sulphite resulting from the pilot plant, as well as the optimization of the installation for producing H 2 S depending on the deuterium distribution, make sure that the two methods for the preparation of sodium sulphite and hydrogen sulphite can be applied in industry. (author)

  6. Cross sections for Scattering and Mobility of OH- and H3 O+ ions in H2 O

    Science.gov (United States)

    Petrovic, Zoran; Stojanovic, Vladimir; Maric, Dragana; Jovanovic, Jasmina

    2016-05-01

    Modelling of plasmas in liquids and in biological and medical applications requires data for scattering of all charged and energetic particles in water vapour. We present swarm parameters for OH- and H3 O+, as representatives of principal negative and positive ions at low pressures in an attempt to provide the data that are not yet available. We applied Denpoh-Nanbu procedure to calculate cross section sets for collisions of OH- and H3 O+ ions with H2 O molecule. Swarm parameters for OH- and H3 O+ ions in H2 O are calculated by using a well tested Monte Carlo code for a range of E / N(E -electric field, N-gas density) at temperature T = 295 K, in the low pressure limit. Non-conservative processes were shown to strongly influence the transport properties even for OH- ions above the average energy of 0.2 eV(E / N >200 Td). The data are valid for low pressure water vapour or small amounts in mixtures. They will provide a basis for calculating properties of ion-water molecule clusters that are most commonly found at higher pressures and for modelling of discharges in liquids. Acknowledgment to Ministry of Education, Science and Technology of Serbia.

  7. Hydrothermal synthesis and structure of nickel(II) metavanadate monohydrate, NiV2O6.H2O

    International Nuclear Information System (INIS)

    Marcos, M.D.; Amoros, P.; Beltran-Porter, A.; Ramirez de Arellano, M.C.

    1995-01-01

    The structure of NiV 2 O 6 .H 2 O consists of infinite chains of [VO 4 ] tetrahedra running along the [100] direction connected by isolated [Ni 2 O 8 (H 2 O) 2 ] dimeric entities to build up a three-dimensional network. A valence-bond analysis allows the identification of the O atoms of the water molecules. (orig.)

  8. Influence of γ-radiation on the reactivity of montmorillonite towards H2O2

    International Nuclear Information System (INIS)

    Holmboe, Michael; Jonsson, Mats; Wold, Susanna

    2012-01-01

    Compacted and water saturated bentonite will be used as an engineered barrier in deep geological repositories for radioactive waste in many countries. Due to the high dose rate of ionizing radiation outside the canisters holding the nuclear waste, radiolysis of the interlayer and pore water in the compacted bentonite is unavoidable. Upon reaction with the oxidizing and reducing species formed by water radiolysis (OH • , e − (aq) , H • , H 2 O 2 , H 2 , HO 2 • , H 3 O + ), the overall redox properties in the bentonite barrier may change. In this study the influence of γ-radiation on the structural Fe(II)/Fe Tot ratio in montmorillonite and its reactivity towards hydrogen peroxide (H 2 O 2 ) was investigated in parallel experiments. The results show that under anoxic conditions the structural Fe(II)/Fe Tot ratio of dispersed Montmorillonite increased from ≤3 to 25–30% after γ-doses comparable to repository conditions. Furthermore, a strong correlation between the structural Fe(II)/Fe Tot ratio and the H 2 O 2 decomposition rate in montmorillonite dispersions was found. This correlation was further verified in experiments with consecutive H 2 O 2 additions, since the structural Fe(II)/Fe Tot ratio was seen to decrease concordantly. This work shows that the structural iron in montmorillonite could be a sink for one of the major oxidants formed upon water radiolysis in the bentonite barrier, H 2 O 2 .

  9. 557 GHz Observations of Water Vapor Outflow from VY Canis Majoris and W Hydrae

    Science.gov (United States)

    Harwit, Martin; Bergin, Edwin A.

    2002-02-01

    We report the first detection of thermal water vapor emission in the 557 GHz, 110-101 ground-state transition of ortho-H2O toward VY Canis Majoris. In observations obtained with the Submillimeter Wave Astronomy Satellite, we measured a flux of ~450 Jy, in a spectrally resolved line centered on a velocity vLSR=25 km s-1 with an FWHM of ~35 km s-1, somewhat dependent on the assumed line shape. We analyze the line shape in the context of three different radial outflow models for which we provide analytical expressions. We also detected a weaker 557 GHz emission line from W Hydrae. We find that these and other H2O emission-line strengths scale as suggested by Zubko and Elitzur.

  10. Hydrothermal synthesis and crystal structure of a new molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H2O)MoO4]·H2O (o-phen=o-phenanthroline)

    International Nuclear Information System (INIS)

    Zhang Quanzheng; Lu Canzhong; Yang Wenbin; Chen Shumei; Yu Yaqin; He Xiang; Yan Ying; Liu Jiuhui; Xu Xinjiang; Xia Changkun; Wu Xiaoyuan; Chen Lijuan

    2004-01-01

    A new one-dimensional molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H 2 O)MoO 4 ]·H 2 O (1) (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of Na 2 MoO 4 ·2H 2 O, MnSO 4 ·H 2 O, oxalic acid, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, TG analysis, IR spectrum and single-crystal X-ray diffraction. Compound 1 crystallizes in triclinic system, space group P-1 with a=7.0401(2) A, b=10.4498(2) A, c=10.5720(2) A, α=73.26(7) deg., β=83.34(8) deg., γ=77.33(9) deg., V=725.5089(0) A 3 , Z=2, and R 1 =0.0322 for 2337 observed reflections. Compound 1 exhibits one-dimensional chain structure. The chains are linked up via hydrogen bonding to 2D layers, which are further assembled through π-π stacking interactions to a 3D supermolecular structure

  11. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    Science.gov (United States)

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  12. Synthesis, crystal structure and magnetic properties of [Cu(mal(abpt(H2O].3/2H2O and [Cu2(sq(abpt 2].2H2O (mal = malonate, sq = squarate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole

    Directory of Open Access Journals (Sweden)

    Eno A. Ededet

    2011-04-01

    Full Text Available Two new mixed-ligand complexes of formula [Cu(mal(abpt(H2O].3/2H2O (1 and [Cu2(sq(abpt2].2H2O (2 [mal = malonate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole and sq = squarate], have been prepared and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 crystallizes in the monoclinic system, space group C2/c, with a = 14.0086(2 Å, b = 10.0980(2 Å, c = 25.630(4 Å; β = 97.5900(10 o, and Z = 8. Complex 2 crystallizes in the triclinic system, space group P-1 with a = 7.5696(15 Å, b = 8.4697(17 Å, c = 11.049(2 Å; β = 93.00(3o, α = 96.98(3, γ = 90.111(3 and Z = 1. Complex 1 consist of a neutral mononuclear [Cu(mal(abpt(H2O] unit and water molecule of crystallization in a distorted square pyramidal coordination sphere, while complex 2 is viewed as being made up of [Cu(sq(abpt2] units with the squarato ligand bridging the two copper(II cations. Variable temperature magnetic behaviour of the complexes reveals the existence of weak antiferromagnetic interaction for complex 1 and weak ferromagnetic intrachain interaction for complex 2.

  13. An equation state of h=h(s,p) type for water vapor

    International Nuclear Information System (INIS)

    Miyabe, Kiyoji; Fujii, Tetsu.

    1975-01-01

    Equations of specific enthalpy, temperature and the ratio of temperature to specific heat for water vapor as each respective function of specific entropy and pressure are presented in the region of entropy larger than its critical value

  14. Synthesis of CuO nanoflower and its application as a H2O2 sensor

    Indian Academy of Sciences (India)

    Administrator

    CuO; nanoflowers; electrochemical; H2O2. 1. Introduction. Cupric oxide (CuO) is an important transition metal oxide ... several high temperature superconductors and giant mag- ... precipitate was washed with ethanol and distilled water.

  15. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  16. New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2014-04-03

    In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

  17. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  18. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto

    2004-01-01

    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  19. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment.

    Science.gov (United States)

    Elmorsi, Taha M; Riyad, Yasser M; Mohamed, Zeinhom H; Abd El Bary, Hassan M H

    2010-02-15

    Decolorization of the Mordant red 73 (MR73) azo dye in water was investigated in laboratory-scale experiments using UV/H(2)O(2) and photo-Fenton treatments. Photodegradation experiments were carried out in a stirred batch photoreactor equipped with a low-pressure mercury lamp as UV source at 254 nm. The effect of operating parameters such as pH, [H(2)O(2)](,) [dye] and the presence of inorganic salts (NaNO(3), NaCl and Na(2)CO(3)) were also investigated. The results indicated that complete dye decolorization was obtained in less than 60 min under optimum conditions. Furthermore, results showed that dye degradation was dependent upon pH, [H(2)O(2)] and initial dye concentration. The presence of chloride ion led to large decreases in the photodegradation rate of MR73 while both nitrate and carbonate ions have a slight effect. The photo-Fenton treatment, in the presence of Fe powder as a source of Fe(2+) ions, was highly efficient and resulted in 99% decolorization of the dye in 15 min. Mineralization of MR73 dye was investigated by determining chemical oxygen demand (COD). In a 3h photoperiod "65%" of the dye was mineralized by the H(2)O(2)/UV process, while the photo-Fenton treatment was more efficient producing 85% mineralization over the same 3-h period.

  20. Adsorption study of CO and H2O on carbon materials, Ni and stainless steel

    International Nuclear Information System (INIS)

    Kato, S.

    1991-01-01

    Adsorption of CO and water vapor on single crystalline graphite, diamond and an amorphous carbon film at room temperature was investigated by low energy ion scattering (ISS) and compared with stainless steel and nickel surfaces. Even for a CO exposure up to 10 4 L, the C intensity stayed constant and no O peak appeared in the ISS spectra from graphite while Ni and O intensities from Ni surface changed strikingly. Intensities of FE and O signals from stainless steel seriously decrease and increase with increasing exposure of H 2 O, respectively, but did not reach saturation even at an exposure of 10 3 L. On the other hand, C and O intensities from carbon surfaces changed moderately to reach saturation at an exposure of some 100 L. These results indicate that CO and H 2 O do not adsorb significantly on carbon surfaces in contrast to nickel and stainless steel surfaces. As a by-product survival probabilities of scattered He + ions from graphite for the primary energy of 0.6-2 keV were measured to be in a range of 10 -4 to 10 -2 and the survival parameter was deduced to be 5.0 x 10 7 cm s -1 . (author)

  1. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  2. Photochemical degradation of diethyl phthalate with UV/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xu Bin [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)]. E-mail: gaonaiyun@mail.tongji.edu.cn; Sun Xiaofeng [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Xia Shengji [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Rui Min [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Simonnot, Marie-Odile [Laboratory of Chemical Engineering Science, CNRS-INPL, 1 rue Grandville, BP451, F-54001 Nancy Cedex (France); Causserand, Christel [Laboratory of Chemical Engineering, UMR 5503 CNRS INP, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Zhao Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2007-01-02

    The decomposition of diethyl phthalate (DEP) in water using UV-H{sub 2}O{sub 2} process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H{sub 2}O{sub 2} oxidation alone, while UV-H{sub 2}O{sub 2} combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0 mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 {mu}W/cm{sup 2} and H{sub 2}O{sub 2} dosage of 20 mg/L. The effects of applied H{sub 2}O{sub 2} dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H{sub 2}O{sub 2} concentration.

  3. CdO Doped Indium Oxide Thick Film as a Low Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2011-06-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CdCl2 for different intervals of time. The surface modified (10 min In2O3 thick film showed maximum response to H2S gas (10 ppm than pure In2O3 thick film at 150 oC. Cadmium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the thick films indicates the key role played by cadmium oxide on the surface of thick films. The selectivity, gas response and recovery time of the thick films were measured and presented.

  4. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Carcia, P. F.; McLean, R. S.; Groner, M. D.; Dameron, A. A.; George, S. M.

    2009-01-01

    Thin films grown by Al 2 O 3 atomic layer deposition (ALD) and SiN plasma-enhanced chemical vapor deposition (PECVD) have been tested as gas diffusion barriers either individually or as bilayers on polymer substrates. Single films of Al 2 O 3 ALD with thicknesses of ≥10 nm had a water vapor transmission rate (WVTR) of ≤5x10 -5 g/m 2 day at 38 deg. C/85% relative humidity (RH), as measured by the Ca test. This WVTR value was limited by H 2 O permeability through the epoxy seal, as determined by the Ca test for the glass lid control. In comparison, SiN PECVD films with a thickness of 100 nm had a WVTR of ∼7x10 -3 g/m 2 day at 38 deg. C/85% RH. Significant improvements resulted when the SiN PECVD film was coated with an Al 2 O 3 ALD film. An Al 2 O 3 ALD film with a thickness of only 5 nm on a SiN PECVD film with a thickness of 100 nm reduced the WVTR from ∼7x10 -3 to ≤5x10 -5 g/m 2 day at 38 deg. C/85% RH. The reduction in the permeability for Al 2 O 3 ALD on the SiN PECVD films was attributed to either Al 2 O 3 ALD sealing defects in the SiN PECVD film or improved nucleation of Al 2 O 3 ALD on SiN.

  5. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTx summary from 300° to 500°C

    Science.gov (United States)

    Bischoff, James L.

    1991-01-01

    Experimental data for densities of liquids and vapors on the two-phase surface of the system NaCl-H2O were compiled and evaluated to provide a complete summary between 300° and 500°C. The results are added to a previously published PTx summary compiled in the same manner to provide a PVTx summary of the present state of knowledge. Results are in table form of use to the understanding of two-phase behaviour in boiling hydrothermal systems and to theoretical modeling of this important system. 

  6. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization.

    Science.gov (United States)

    Matin, Atiyeh Rajabi; Yousefzadeh, Samira; Ahmadi, Ehsan; Mahvi, Amirhossein; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-03

    Although chlorination can inactivate most of the microorganisms in water but protozoan parasites like C. parvum oocysts and Giardia cysts can resist against it. Therefore, many researches have been conducted to find a novel method for water disinfection. Present study evaluated the synergistic effect of H2O2 and ferrate followed by UV radiation to inactivate Bacillus subtilis spores as surrogate microorganisms. Response surface methodology(RSM) was employed for the optimization for UV/H2O2/ferrate and H2O2/ferrate processes. By using central composite design(CCD), the effect of three main parameters including time, hydrogen peroxide, and ferrate concentrations was examined on process performance. The results showed that the combination of UV, H2O2 and ferrate was the most effective disinfection process in compare with when H2O2 and ferrate were used. This study indicated that by UV/H2O2/ferrate, about 5.2 log reductions of B. subtilis spores was inactivated at 9299 mg/l of H2O2 and 0.4 mg/l of ferrate concentrations after 57 min of contact time which was the optimum condition, but H2O2/ferrate can inactivate B. subtilis spores about 4.7 logs compare to the other process. Therefore, the results of this research demonstrated that UV/H2O2 /ferrate process is a promising process for spore inactivation and water disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mechano-chemical pathways to H2O and CO2 splitting

    Science.gov (United States)

    Vedadi, Mohammad H.; Haas, Stephan

    2011-10-01

    The shock-induced collapse of CO2-filled nanobubbles is investigated using molecular dynamics simulations based on a reactive force field. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water and formation of O2 molecules. The dominant pathways through which splitting of water molecules occur are identified.

  8. Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2008-08-01

    Full Text Available Binary homogeneous nucleation (BHN of sulphuric acid and water (H2SO4/H2O is one of the most important atmospheric nucleation processes, but laboratory observations of this nucleation process are very limited and there are also large discrepancies between different laboratory studies. The difficulties associated with these experiments include wall loss of H2SO4 and uncertainties in estimation of H2SO4 concentration ([H2SO4] involved in nucleation. We have developed a new laboratory nucleation setup to study H2SO4/H2O BHN kinetics and provide relatively constrained [H2SO4] needed for nucleation. H2SO4 is produced from the SO2+OH→HSO3 reaction and OH radicals are produced from water vapor UV absorption. The residual [H2SO4] were measured at the end of the nucleation reactor with a chemical ionization mass spectrometer (CIMS. Wall loss factors (WLFs of H2SO4 were estimated by assuming that wall loss is diffusion limited and these calculated WLFs were in good agreement with simultaneous measurements of the initial and residual [H2SO4] with two CIMSs. The nucleation zone was estimated from numerical simulations based on the measured aerosol sizes (particle diameter, Dp and [H2SO4]. The measured BHN rates (J ranged from 0.01–220 cm−3 s−1 at the initial and residual [H2SO4] from 108−1010 cm−3, a temperature of 288 K and relative humidity (RH from 11–23%; J increased with increasing [H2SO4] and RH. J also showed a power dependence on [H2SO4] with the exponential power of 3–8. These power dependences are consistent with other laboratory studies under similar [H2SO4] and RH, but different from atmospheric field observations which showed that particle number concentrations are often linearly dependent on [H2SO4]. These results, together with a higher [H2SO4] threshold (108–109 cm−3 needed to produce the unit J measured from the laboratory studies compared to the atmospheric conditions (106–107 cm−3, imply that H2SO4/H2O BHN alone is

  9. Application of UV/H2O2 system to treatment of wastewater arising from thermal treatment of oil-water emulsions

    Directory of Open Access Journals (Sweden)

    Ivanildo Hespanhol

    2009-12-01

    Full Text Available In this work it is presented the results of bench scale tests using Advanced Oxidation Process (AOP in a UV/H2O2 system, for the treatment of an industrial effluent with a high concentration of dissolved organic matter, resulted from thermal treatment of oil-water emulsions. Treatability tests were carried out in a batch photochemical system with recycle, and the raw effluent was characterized by the analysis of pH, turbidity, color, COD and TOC. Results from these assays shown that UV/H2O2 process is technically feasible resulting in TOC removal above 90%. However, for one log TOC removal from this effluent the energy required was about 455.5 kw.h.m-3, for an alpha relation of 10 mg H2O2/mg COT, resulting in a higher operational cost, considering the evaluated conditions.

  10. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  11. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

    Science.gov (United States)

    Yuan, Songhu; Fan, Ye; Zhang, Yucheng; Tong, Man; Liao, Peng

    2011-10-01

    A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.

  12. Kinetic model describing the UV/H2O2 photodegradation of phenol from water

    Directory of Open Access Journals (Sweden)

    Rubio-Clemente Ainhoa

    2017-01-01

    Full Text Available A kinetic model for phenol transformation through the UV/H2O2 system was developed and validated. The model includes the pollutant decomposition by direct photolysis and HO•, HO2• and O2 •- oxidation. HO• scavenging effects of CO3 2-, HCO3 -, SO4 2- and Cl- were also considered, as well as the pH changes as the process proceeds. Additionally, the detrimental action of the organic matter and reaction intermediates in shielding UV and quenching HO• was incorporated. It was observed that the model can accurately predict phenol abatement using different H2O2/phenol mass ratios (495, 228 and 125, obtaining an optimal H2O2/phenol ratio of 125, leading to a phenol removal higher than 95% after 40 min of treatment, where the main oxidation species was HO•. The developed model could be relevant for calculating the optimal level of H2O2 efficiently degrading the pollutant of interest, allowing saving in costs and time.

  13. Improved water vapour spectroscopy in the 4174–4300 cm−1 region and its impact on SCIAMACHY HDO/H2O measurements

    Directory of Open Access Journals (Sweden)

    R. A. Scheepmaker

    2013-04-01

    Full Text Available The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007 spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.

  14. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning; Wang, Yuxin; Cui, Lifeng

    2017-07-01

    In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn2O3 cubes through calcination with air at different temperature. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn2O3 catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn2O3 catalyst. Mn2O3 catalyst obtained by calcined at 700 °C (Mn2O3-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T98) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn2O3-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  15. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  16. Assessing interactions of hydrophilic nanoscale TiO{sub 2} with soil water

    Energy Technology Data Exchange (ETDEWEB)

    Priester, John H.; Ge, Yuan; Chang, Vivian [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States); Stoimenov, Peter K. [University of California, Santa Barbara, Department of Chemistry and Biochemistry (United States); Schimel, Joshua P. [University of California, Santa Barbara, Earth Research Institute (United States); Stucky, Galen D. [University of California, Santa Barbara, UC Center for the Environmental Implications of Nanotechnology (United States); Holden, Patricia A., E-mail: holden@bren.ucsb.edu [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States)

    2013-09-15

    The implications of manufactured nanoscale materials (MNMs) in unsaturated soil are mostly unknown. Owing to its widespread use, nanoscale (n) TiO{sub 2} is expected to enter soils where its accumulation could impact soil processes. Yet fundamental information is lacking regarding nTiO{sub 2} in situ wettability, i.e., interactions with soil water that relate to nTiO{sub 2} exposure and bioavailability. To probe nTiO{sub 2} interactions with soil water, we amended a natural soil with 20 mg per g of P25 nTiO{sub 2}, a high-production, hydrophilic MNM that, based on its small size (25 nm nominal), provides ample specific surface area (SSA) for water sorption. We then measured nTiO{sub 2}-amended soil SSA, and conducted a dynamic water vapor conditioning experiment. Early time-course water sorption into soil, with and without nTiO{sub 2}, was clearly diffusional. Over 9 months, soil water content asymptotically equilibrated. However, despite amending with nTiO{sub 2} levels that increased the soil SSA by 16 %, measured water sorption rates and endpoint soil water contents were mostly unchanged by P25 nTiO{sub 2}. Our results indicate that as-manufactured hydrophilic P25 nTiO{sub 2} was hydrophobic in soil, a finding relevant to nTiO{sub 2} bioavailability and transport.

  17. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  18. Development of a method for the study of H{sub 2} gas emission in sealed compartments containing canister copper immersed in O{sub 2}-free water

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Andreas; Chukharkina, Alexandra; Eriksson, Lena; Hallbeck, Bjoern; Hallbeck, Lotta; Johansson, Jessica; Johansson, Linda; Pedersen, Karsten [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2013-06-15

    Current models of copper corrosion indicate that copper is not subject to corrosion by water in itself, but that additional components, such as O{sub 2}, chloride or sulphide are needed to initiate a corrosive process. Of late however, a number of reports have suggested that copper may be susceptible to water-induced corrosion in the absence of external constituents affecting the process. The process has been proposed to rely the auto-ionization driven presence of the hydroxide ions in pure water, and to result in the development of atomic hydrogen (H), with subsequent release of H{sub 2} gas. A suggested equilibrium is reached at a partial pressure of H{sub 2} of about 1 mbar (0.1 kPa) in 73 deg C, and the corrosion reaction is proposed to be rate-limited by the supply of hydroxide ions from the water, a process being slower than proposed formation of water from a H{sub 2}-O{sub 2} reaction. In consequence, the presence of O{sub 2} in the system would result in no detectable release of H{sub 2} until all O{sub 2} was consumed, while the absence of O{sub 2} would lead to water-driven corrosion of copper proceeding until the H{sub 2} equilibrium is reached, at a partial H{sub 2} pressure of about 1 mbar. The proposed mechanism presents a novel aspect on copper corrosion processes. By extension, the suggested corrosion process may have implications for proposed strategies for long-term storage of spent nuclear fuel waste (SNF), which in part rely on the long-term (>105 years) integrity of copper canisters stored in anoxic water inundated environments (SKB 2010)

  19. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  20. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K

    International Nuclear Information System (INIS)

    Cao, Hong-yu; Zhou, Huan; Bai, Xiao-qin; Ma, Ruo-xin; Tan, Li-na; Wang, Jun-min

    2016-01-01

    Graphical abstract: Solubility diagram of the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system at T = (323.15 and 298.15) K. - Highlights: • Phase diagrams of Ca 2+ -H 2 PO 2 − -Cl − -H 2 O, Ca 2+ -Na + -H 2 PO 2 − -H 2 O at 323.15 K were obtained. • Incompatible double salt of NaCa(H 2 PO 2 ) 3 in Ca 2+ -Na + -H 2 PO 2 − -H 2 O system was determined. • Density diagram of the corresponding liquid were simultaneously measured. - Abstract: Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutritional supplement. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the (solid + liquid) phase equilibria of (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) and (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) ternary systems at T = 323.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of CaCl 2 ·2H 2 O and Ca(H 2 PO 2 ) 2 exist in the (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) system, and three salts of Ca(H 2 PO 2 ) 2 , NaH 2 PO 2 ·H 2 O and one incompatible double salt, NaCa(H 2 PO 2 ) 3 occur in the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system.

  1. H2O masers in star-forming regions

    International Nuclear Information System (INIS)

    Downes, D.

    1985-01-01

    Water vapour near star forming regions was first detected by Cheung et al. (1969) and shortly thereafter was recognised to be maser emission. In spite of this 15 year history of H 2 O observations, the problem of interpreting such strong H 2 O masers as W49 and Orion is still very acute. Not one of the models now available can explain in an unconstrained fashion why a very large maser flux can emanate from clouds of such small size. Whereas some models proposed to explain OH masers have retained their plausibility under the pressure of new observations, H 2 O models have not. The author outlines the background of the H 2 O problem, stating that the strongest of the masers discovered are still not satisfactorily explained today. (Auth.)

  2. Chemical kinetics in H{sub 2}O and D{sub 2}O under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Alcorn, C.D.; Legate, G. [Mount Allison Univ., Sackville, New Brunswick (Canada); Percival, P.W.; Brodovitch, J.-C. [Simon Fraser Univ., Burnaby, British Columbia (Canada)

    2010-07-01

    Muonium (Mu = μ{sup +}e{sup -}) is a light analogue of the H-atom. Studies of Mu chemical kinetics have been extended to supercritical water, a medium in some designs of future generation nuclear reactors. The Supercritical-Water-Cooled Reactor (SCWR) would operate at higher temperatures than current pressurized water-cooled reactors, and the lack of knowledge of water radiolysis under supercritical conditions constitutes a technology gap for SCWR development. Accurate modeling of chemistry in a SCWR requires data on kinetics of reactions involved in the radiolysis of water. In this paper, we first review our measurements of kinetics in H{sub 2}O and then describe new data for D{sub 2}O under sub- and supercritical conditions. (author)

  3. Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    Recently, single layer MoS2 with a direct band gap of 1.9 eV has been proposed as a candidate for two dimensional nanoelectronic devices. However, the synthetic approach to obtain high-quality MoS2 atomic thin layers is still problematic. Spectroscopic and microscopic results reveal that both single layers and tetrahedral clusters of MoS2 are deposited directly on the SiO2/Si substrate by chemical vapor deposition. The tetrahedral clusters are mixtures of 2H- and 3R-MoS2. By ex situ optical analysis, both the single layers and tetrahedral clusters can be attributed to van der Waals epitaxial growth. Due to the similar layered structures we expect the same growth mechanism for other transition-metal disulfides by chemical vapor deposition. © 2013 The Royal Society of Chemistry.

  4. Determination of the δ2H and δ18O of soil water and water in plant matter; RSIL lab code 1700

    Science.gov (United States)

    Revesz, Kinga M.; Buck, Bryan; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory lab code 1700 is to determine the δ2H/1H), abbreviated as δ2H, and the δ18O/16O), abbreviated as δ18O, of soil water and water in plant matter. This method is based on the observation that water and toluene form an azeotropic mixture at 84.1 °C. This temperature is substantially lower than the boiling points of water (100 °C) and toluene (110 °C), but water and toluene are immiscible at ambient temperature. The water content of a soil or plant is determined by weighing, drying, and reweighing a small amount of sample. Sufficient sample to collect 3 to 5 milliliters of water after distillation is loaded into a distillation flask. Sufficient toluene is added so that the sample is immersed throughout the entire distillation to minimize evaporation of water, which would affect the δ2H and δ18O values. The mixture of sample and toluene is heated in a flask to its boiling point (84.1 °C) so that water from the sample and toluene can distill together into a specially designed collection funnel. The temperature of 84.1 °C is maintained until the water has been quantitatively transferred to the collection funnel, at which time the temperature is raised to the boiling point of the remaining component (toluene, 110 °C). The collection funnel is maintained at ambient temperature so that the sample water and toluene can be separated physically. After separation, the sample water is purified by addition of paraffin wax to the container with the sample water, capping the container, and heating to approximately 60 °C to melt the wax. Trace amounts of toluene will dissolve in the wax, purifying the sample water for isotopic analysis. The isotopic composition of the purified water is then determined by equilibration with gaseous hydrogen or carbon dioxide, followed by dual-inlet isotope-ratio mass spectrometry. Because laser-absorption spectrometry is sensitive to organic compounds, such as trace toluene remaining in

  5. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  7. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    Science.gov (United States)

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  8. Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).

    Science.gov (United States)

    Zhang, Danni; Jia, Yongfeng; Ma, Jiayu; Li, Zhibao

    2011-11-15

    Low levels of arsenic can be effectively removed from water by adsorption onto various materials and searching for low-cost, high-efficiency new adsorbents has been a hot topic in recent years. In the present study, the performance of Friedel's salt (FS: 3CaO·Al(2)O(3)·CaCl(2)·10H(2)O), a layered double hydroxide (LDHs), as an adsorbent for arsenic removal from aqueous solution was investigated. Friedel's salt was synthesized at lower temperature (50°C) compared to traditional autoclave methods by reaction of calcium chloride with sodium aluminate. Kinetic study revealed that adsorption of arsenate by Friedel's salt was fast in the first 12h and equilibrium was achieved within 48 h. The adsorption kinetics are well described by second-order Lageren equation. The adsorption capacity of the synthesized sorbent for arsenate at pH 4 and 7 calculated from Langmuir adsorption isotherms was 11.85 and 7.80 mg/g, respectively. Phosphate and silicate markedly decreased the removal of arsenate, especially at higher pH, but sulfate was found to suppress arsenate adsorption at lower pH and the adverse effect was disappeared at pH ≥ 6. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption. The results suggest that Friedel's salt is a potential cost-effective adsorbent for arsenate removal in water treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Lei, L.; McCormick, M. P.; Anderson, J.

    2017-12-01

    Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.

  10. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    Science.gov (United States)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes (δ18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  11. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    Science.gov (United States)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  12. Relationship between interlayer hydration and photocatalytic water splitting of A'1-xNaxCa2Ta3O10.nH2O (A'=K and Li)

    International Nuclear Information System (INIS)

    Mitsuyama, Tomohiro; Tsutsumi, Akiko; Sato, Sakiko; Ikeue, Keita; Machida, Masato

    2008-01-01

    Partial replacement of alkaline metals in anhydrous KCa 2 Ta 3 O 10 and LiCa 2 Ta 3 O 10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A' 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O (A'=K and Li) samples were synthesized by ion exchange of CsCa 2 Ta 3 O 10 in mixed molten nitrates at 400 deg. C. In K 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x≤0.7 and x≥0.5, respectively. Upon replacement by Na + having a larger enthalpy of hydration (ΔH h 0 ), the interlayer hydration occurred at x≥0.3 and the hydration number (n) was increased monotonically with an increase of x. Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O showed a similar hydration behavior, but the phase was changed from I4/mmm (x 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity increasing in consistent with n, whereas Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity maximum at x=0.77, where the rates of H 2 /O 2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1). - Graphical abstract: The partial substitution of Na in the interlayer of anhydrous-layered perovskite has been found as useful structural modification toward highly active hydrated photocatalysts

  13. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.

    2005-01-01

    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  14. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  15. Synthesis, Crystal Structure and Water Vapor Adsorption Properties of a Porous Supramolecular Architecture

    Directory of Open Access Journals (Sweden)

    Rui Qiao

    2017-10-01

    Full Text Available A new complex, [Cu4(HL4(H2O14] (1, H3L·HCl = 5-((4-carboxypiperidin-1-ylmethylisophthalic acid hydrochloride, has been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and powder X-ray diffraction (PXRD. The result of the X-ray diffraction analysis reveals that the complex crystallizes in monoclinic, space group C2/c and three unique Cu(II atoms that are connected by partially deprotonated HL2− anion to form a cyclic structure. The rich hydrogen bonding and π-π non-covalent packing interactions extend cyclic units into a three-dimensional (3D supramolecular polymer. Moreover, the thermogravimetric (TG analysis and water vapor adsorption property of 1 were also discussed.

  16. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  17. Validation of the doubly-labeled water (H3H18O) method for measuring water flux and energy metabolism in tenebrionid beetles

    International Nuclear Information System (INIS)

    Cooper, P.D.

    1981-01-01

    Doubly-labeled water (H 3 H 18 O) has been used to determine water flux and energy metabolism in a variety of vertebrates. This study examines the applicability of this technique to arthropods. The theory of the technique depends upon the assumption that doubly-labeled water introduced into the animal's body water equilibrates with water and carbon dioxide by the action of carbonic anhydrase. Tritium ( 3 H) is lost from the animal only with water while oxygen-18 is lost with both water and carbon dioxide. The difference bwtween the rates of loss of the two isotopes is proportional to CO 2 loss rate. Validation of the use of tritiated water for measuring water flux was accomplished by comparing gravimetric measurements of water gain with flux rates determined by loss of tritiated water. At room humidity, an overestimate for influx calculated from labeled water calculations was found, averaging 12 mg H 2 O (g.d) -1 . Comparison of CO 2 loss rate determined isotopically with rates of CO 2 loss determined by standard metabolic rates also yielded overestimates for the isotopic technique, overestimates ranging between 20 and 30%. The relevance of this for studies using labeled water for studying water fluxes and free metabolism of free-ranging arthropods is discussed

  18. ZnO/SnO{sub 2} nanoflower based ZnO template synthesized by thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sin, N. D. Md., E-mail: diyana0366@johor.uitm.edu.my; Amalina, M. N., E-mail: amalina0942@johor.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Fakulti Kejuruteraan Elektrik, Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor (Malaysia); Ismail, Ahmad Syakirin, E-mail: kyrin-samaxi@yahoo.com; Shafura, A. K., E-mail: shafura@ymail.com; Ahmad, Samsiah, E-mail: samsiah.ahmad@johor.uitm.edu.my; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    The ZnO/SnO{sub 2} nanoflower like structures was grown on a glass substrate deposited with seed layer using thermal chemical vapor deposition (CVD) with combining two source materials. The ZnO/SnO{sub 2} nanoflower like structures had diameter in the range 70 to 100 nm. The atomic percentage of ZnO nanoparticle , SnO{sub 2} nanorods and ZnO/SnO{sub 2} nanoflower was taken using EDS. Based on the FESEM observations, the growth mechanism is applied to describe the growth for the synthesized nanostructures.

  19. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process

    International Nuclear Information System (INIS)

    Yuan Fang; Hu Chun; Hu Xuexiang; Wei Dongbin; Chen Yong; Qu Jiuhui

    2011-01-01

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H 2 O 2 process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H 2 O 2 process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R OH,UV , defined as the experimentally determined ·OH radical exposure per UV fluence. The R OH,UV values represent the background ·OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H 2 O 2 due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H 2 O 2 process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H 2 O 2 process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of ·OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H 2 O 2 process would be determined by parent compound degradation and toxicity changes.

  20. Visible-light CO{sub 2} photocatalytic reduction performance of ball-flower-like Bi{sub 2}WO{sub 6} synthesized without organic precursor: Effect of post-calcination and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhuxing; Yang, Zhenmei; Liu, Hongfeng [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wang, Haiqiang, E-mail: wanghaiqiang2008@126.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China)

    2014-10-01

    Graphical abstract: - Highlights: • Photocatalytic CO{sub 2} reduction on non-organic synthesized PB-Bi{sub 2}WO{sub 6} was investigated. • CO was detected as the major product. • Increased amount of CO was yielded in the condition with little water vapor. • Photocatalytic performance was enhanced with Bi{sub 2}WO{sub 6} after 550 °C post-annealing. • Renewing the catalysts used in CO{sub 2} photoreduction by water washing was achieved. - Abstract: Nanoplates-composed ball-flower-like Bi{sub 2}WO{sub 6} (PB-Bi{sub 2}WO{sub 6}) was synthesized by a hydrothermal method without any organic precursor and its performance in photocatalytic reduction of CO{sub 2} was investigated in a continuous-flow reaction system under visible light irradiation (420 nm < λ < 620 nm). CO was detected as the main product of this photocatalytic process and H{sub 2}O was found to suppress the conversion of CO{sub 2} to CO due to its competitive absorption with CO{sub 2} on the medium strength basic sites of Bi{sub 2}WO{sub 6}. PB-Bi{sub 2}WO{sub 6} annealed at 550 °C showed superior CO yield in the condition with little water vapor. It might be attributed to the enhanced crystallinity, significantly decreased recombination rate of photo-generated electrons and holes and more stable basic sites for strengthened CO{sub 2} adsorption, according to characterization results by XRD, SEM, UV–vis SRS, PL and CO{sub 2}-TPD. However, comparing with PB-Bi{sub 2}WO{sub 6}, the negative effect of H{sub 2}O was even more prominent on the annealed sample because of the reduced surface area. Yield decrease was observed during the irradiation time due to the adsorption of intermediates generated but fortunately washing with deionized water was found to be an effective way to renew the catalyst.

  1. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  2. An i.r. investigation on some calcium aluminate hydrates, Ca2Al(OH)6+X-.yH2O (= 3CaO.Al2O3.CaX2.nH2O, X- = univalent anion)

    NARCIS (Netherlands)

    Houtepen, C.J.M.; Stein, H.N.

    1976-01-01

    The i.r. spectra of some hydrated and dehydrated calcium aluminate hydrates of the type Ca2Al(OH)6+X-·yH2O with X- = Cl-, Br-, J-, ClO3-, NO3-, ClO4- (y = 2) and X- = BrO3-, JO3- (2 water with the anions

  3. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    Science.gov (United States)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  4. Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110)

    Science.gov (United States)

    Diebold, Ulrike

    2017-07-01

    The interaction of water with the single-crystalline rutile TiO2(110) surface has been the object of intense investigations with both experimental and computational methods. Not only is TiO2(110) widely considered the prototypical oxide surface, its interaction with water is also important in many applications where this material is used. At first, experimental measurements were hampered by the fact that preparation recipes for well-controlled surfaces had yet to be developed, but clear experimental evidence that water dissociation at defects including oxygen vacancies and steps emerged. For a perfect TiO2(110) surface, however, an intense debate has evolved whether or not water adsorbs as an intact molecule or if it dissociates by donating a proton to a so-called bridge-bonded surface oxygen atom. Computational studies agree that the energy difference between these two states is very small and thus depends sensitively on the computational setup and on the approximations used in density functional theory (DFT). While a recent molecular beam/STM experiment [Z.-T. Wang et al., Proc. Natl. Acad. Sci. U. S. A. 114(8), 1801-1805 (2017)] gives conclusive evidence for a slight preference (0.035 eV) for molecular water and a small activation energy of (0.36 eV) for dissociation, understanding the interface between liquid water and TiO2(110) arises as the next controversial frontier.

  5. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  6. Advanced oxidation technologies H{sub 2}O{sub 2}/UV evaluation in the treatment of effluent containing VCH (Vinylcyclohexene); Avaliacao do processo oxidativo avancado H{sub 2}O{sub 2}/UV no tratamento de efluente contendo VCH (Vinilciclohexeno)

    Energy Technology Data Exchange (ETDEWEB)

    Lenise, V.F.G.; Dezotti, M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica; Aquino Neto, F.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica

    2004-07-01

    The study of vinylcyclohexene (VCH) degradation by the advanced oxidation technology H{sub 2}O{sub 2} /UV was researched in a pilot plant containing two Germetec, PFR reactors, with 0.7 L of useful volume. VCH is a persistent organic compound generated by thermal dimerization of 1,3-butadiene. One of the reactors had a warming/colding jacket and a low-pressure mercury vapor lamp, germicidal, of 25 W and the another had a medium-pressure mercury vapor lamp of 1.7 KW. Synthetic effluents containing VCH, VCH and ethanol and real hydroxyl terminated polybutadiene (HTPB) effluent were researched under different temperature and pH conditions. The aqueous effluent generated in HTPB plant was composed by 10-100 mg/L of VCH, others organic compounds like ethanol, butadiene and polymer, acidic pH, residual peroxide and a mean content of soluble organic carbon of 25000 mg/L. After 30 minutes of H{sub 2}O{sub 2}/UV treatment with a germicidal lamp , VCH was completely degradated while in the reactor with a medium pressure lamp after 5 minutes the complete VCH degradation happened. The degradation of others organic compounds in the effluent was observed with soluble organic carbon content reduction about 80%. The Kinetics of VCH degradation was monitored by GC/MS. (author)

  7. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H2 evolution from water

    International Nuclear Information System (INIS)

    Kang Shizhao; Chen Lili; Li Xiangqing; Mu Jin

    2012-01-01

    A composite photocatalyst containing Eosin Y as a sensitizer, multiwalled carbon nanotubes as a supporter material or electron transfer channel, and CuO/NiO as an active center of H 2 evolution from water was fabricated and characterized with X-ray photoelectron spectroscopy and transmission electron microscope. Meanwhile, photocatalytic hydrogen evolution from water over this catalyst was explored using triethanolamine as a sacrificial reagent under visible irradiation. A rate of H 2 evolution of approximately 1.0 mmol g -1 h -1 was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of CuO/NiO, mass ratio of CuO to NiO, pH of solution, concentration of triethanolamine and dosage of Eosin Y, respectively. The results show that mixed metal oxides are a kind of promising active centers of H 2 evolution from water in the photocatalytic system studied.

  8. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H2 evolution from water

    Science.gov (United States)

    Kang, Shi-Zhao; Chen, Lili; Li, Xiangqing; Mu, Jin

    2012-06-01

    A composite photocatalyst containing Eosin Y as a sensitizer, multiwalled carbon nanotubes as a supporter material or electron transfer channel, and CuO/NiO as an active center of H2 evolution from water was fabricated and characterized with X-ray photoelectron spectroscopy and transmission electron microscope. Meanwhile, photocatalytic hydrogen evolution from water over this catalyst was explored using triethanolamine as a sacrificial reagent under visible irradiation. A rate of H2 evolution of approximately 1.0 mmol g-1 h-1 was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of CuO/NiO, mass ratio of CuO to NiO, pH of solution, concentration of triethanolamine and dosage of Eosin Y, respectively. The results show that mixed metal oxides are a kind of promising active centers of H2 evolution from water in the photocatalytic system studied.

  9. Treatment of hospital laundry wastewater by UV/H2O2 process.

    Science.gov (United States)

    Zotesso, Jaqueline Pirão; Cossich, Eneida Sala; Janeiro, Vanderly; Tavares, Célia Regina Granhen

    2017-03-01

    Hospitals consume a large volume of water to carry out their activities and, hence, generate a large volume of effluent that is commonly discharged into the local sewage system without any treatment. Among the various sectors of healthcare facilities, the laundry is responsible for the majority of water consumption and generates a highly complex effluent. Although several advanced oxidation processes (AOPs) are currently under investigation on the degradation of a variety of contaminants, few of them are based on real wastewater samples. In this paper, the UV/H 2 O 2 AOP was evaluated on the treatment of a hospital laundry wastewater, after the application of a physicochemical pretreatment composed of coagulation-flocculation and anthracite filtration. For the UV/H 2 O 2 process, a photoreactor equipped with a low-pressure UV-C lamp was used and the effects of initial pH and [H 2 O 2 ]/chemical oxygen demand (COD) ratio on COD removal were investigated through a randomized factorial block design that considered the batches of effluent as blocks. The results indicated that the initial pH had no significant effect on the COD removal, and the process was favored by the increase in [H 2 O 2 ]/COD ratio. Color and turbidity were satisfactorily reduced after the application of the physicochemical pretreatment, and COD was completely removed by the UV/H 2 O 2 process under suitable conditions. The results of this study show that the UV/H 2 O 2 AOP is a promising candidate for hospital laundry wastewater treatment and should be explored to enable wastewater reuse in the washing process.

  10. The Enhancement of H2O2/UV AOPs for the Removal of Selected Organic Pollutants from Drinking Water with Hydrodynamic Cavitation.

    Science.gov (United States)

    Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2016-12-01

    Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.

  11. Study of the reversible water vapour sorption process of MgSO{sub 4}.7H{sub 2}O and MgCl{sub 2}.6H{sub 2}O under the conditions of seasonal solar heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; De Boer, R. [Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven (Netherlands); Zondag, H.A.; Veldhuis, J.B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-08-15

    The characterization of the structural, compositional and thermodynamic properties of MgSO{sub 4}.7H{sub 2}O and MgCl{sub 2}.6H{sub O} has been done for seasonal heat storage using in-situ X-ray Diffraction and thermal analyses (TG/DSC) under practical conditions for seasonal heat storage (T{sub max} = 150C, p(H{sub 2}O)=13 mbar). This study showed that these two materials release heat after a dehydration/hydration cycle with energy densities of 0.38 GJ/m{sup 3} for MgSO{sub 4}.7H{sub 2}O and 0.71 GJ/m{sup 3} MgCl{sub 2}.6H{sub 2}O. The low heat release found for MgSO{sub 4}.7H2O is mainly attributed to the amorphization of the material during the dehydration performed at 13 mbar which reduces its sorption capacity during the rehydration. MgCl{sub 2}.6H{sub 2}O presents a high energy density which makes this material interesting for the seasonal heat storage in domestic applications. This material would be able to fulfil the winter heat demand of a passive house estimated at 6 GJ with a packed bed reactor of 8.5 m{sup 3}. However, a seasonal heat storage system based on the water vapour sorption process in MgCl{sub 2}.6H{sub 2}O should be carefully set with a restricted temperature of 40C for the hydration reaction to avoid the liquefaction of the material at ambient temperature which limits its performances for long term storage.

  12. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  13. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  14. Thermal decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O: Influence on structure, microstructure and hydrofluorination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Rivenet, M., E-mail: murielle.rivenet@ensc-lille.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Berrier, E. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Waele, I. de [Université de Lille, CNRS, UMR 8516 – LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille (France); Arab, M.; Amaraggi, D.; Morel, B. [Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Abraham, F. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-01-15

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}.2H{sub 2}O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and {sup 1}H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}, and UO{sub 3-x}(OH){sub 2x}·zH{sub 2}O, an amorphous phase found in air in the following of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2} dehydration. (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  15. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  16. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Haag, G.L.

    1981-08-01

    For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH) 2 .8H 2 O flakes to remove CO 2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH) 2 .8H 2 O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increaseing humidity as the particles curl and degrade. Results have indicted that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH) 2 .8H 2 O to BaCO 3 and not from the hydration of the commercial Ba(OH) 2 .8H 2 O (i.e., Ba(OH) 2 .7.50H 2 O) to Ba(OH) 2 .8H 2 O

  17. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  18. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    Science.gov (United States)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  19. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H)

    Science.gov (United States)

    Joshi, Suneel Kumar; Rai, Shive Prakash; Sinha, Rajiv; Gupta, Sanjeev; Densmore, Alexander Logan; Rawat, Yadhvir Singh; Shekhar, Shashank

    2018-04-01

    Rapid groundwater depletion from the northwestern Indian aquifer system in the western Indo-Gangetic basin has raised serious concerns over the sustainability of groundwater and the livelihoods that depend on it. Sustainable management of this aquifer system requires that we understand the sources and rates of groundwater recharge, however, both these parameters are poorly constrained in this region. Here we analyse the isotopic (δ18O, δ2H and tritium) compositions of groundwater, precipitation, river and canal water to identify the recharge sources, zones of recharge, and groundwater flow in the Ghaggar River basin, which lies between the Himalayan-fed Yamuna and Sutlej River systems in northwestern India. Our results reveal that local precipitation is the main source of groundwater recharge. However, depleted δ18O and δ2H signatures at some sites indicate recharge from canal seepage and irrigation return flow. The spatial variability of δ18O, δ2H, d-excess, and tritium reflects limited lateral connectivity due to the heterogeneous and anisotropic nature of the aquifer system in the study area. The variation of tritium concentration with depth suggests that groundwater above c. 80 mbgl is generally modern water. In contrast, water from below c. 80 mbgl is a mixture of modern and old waters, and indicates longer residence time in comparison to groundwater above c. 80 mbgl. Isotopic signatures of δ18O, δ2H and tritium suggest significant vertical recharge down to a depth of 320 mbgl. The spatial and vertical variations of isotopic signature of groundwater reveal two distinct flow patterns in the aquifer system: (i) local flow (above c. 80 mbgl) throughout the study area, and (ii) intermediate and regional flow (below c. 80 mbgl), where water recharges aquifers through large-scale lateral flow as well as vertical infiltration. The understanding of spatial and vertical recharge processes of groundwater in the study area provides important base-line knowledge

  20. Computational study on the mechanisms and energetics of trimethylindium reactions with H2O and H2S.

    Science.gov (United States)

    Raghunath, P; Lin, M C

    2007-07-19

    The reactions of trimethylindium (TMIn) with H2O and H2S are relevant to the chemical vapor deposition of indium oxide and indium sulfide thin films. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/[6-31G(d,p)+Lanl2dz]//B3LYP/[6-31G(d,p)+Lanl2dz] and CCSD(T)/[6-31G(d,p)+Lanl2dz] //MP2/[6-31G(d,p)+Lanl2dz] methods. The results of both methods are in good agreement for the optimized geometries and relative energies. When TMIn reacts with H2O and H2S, initial molecular complexes [(CH3)3In:OH2 (R1)] and [(CH3)3In:SH2 (R2)] are formed with 12.6 and 3.9 kcal/mol binding energies. Elimination of a CH4 molecule from each complex occurs with a similar energy barrier at TS1 (19.9 kcal/mol) and at TS3 (22.1 kcal/mol), respectively, giving stable intermediates (CH3)2InOH and (CH3)2InSH. The elimination of the second CH4 molecule from these intermediate products, however, has to overcome very high and much different barriers of 66.1 and 53.2 kcal/mol, respectively. In the case of DMIn with H2O and H2S reactions, formation of both InO and InS is exothermic by 3.1 and 30.8 kcal/mol respectively. On the basis of the predicted heats of formation of R1 and R2 at 0 K and -20.1 and 43.6 kcal/mol, the heats of formation of (CH3)2InOH, (CH3)2InSH, CH3InO, CH3InS, InO, and InS are estimated to be -20.6, 31.8, and 29.0 and 48.4, 35.5, and 58.5 kcal/mol, respectively. The values for InO and InS are in good agreement with available experimental data. A similar study on the reactions of (CH3)2In with H2O and H2S has been carried out; in these reactions CH3InOH and CH3InSH were found to be the key intermediate products.

  1. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S., E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084 (United States)

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  2. Kinetic and thermodynamic studies of reactional system (X-I-O-H) by high temperature mass spectrometry

    International Nuclear Information System (INIS)

    Roki, F.Z.

    2009-01-01

    High temperature mass spectrometry is used for analysis of vapors coming from iodine reaction with fission products in case of a severe nuclear accident in a pressurized water reactor. Two main ways are used, - (i) thermodynamic analysis of vaporization processes of CsOH, CsI and mixtures CsI-CsOH. - (ii) building a dedicated reactor for kinetic analysis of the recombination of atoms into these stables molecular species. The present study confirms the existence of Cs 2 IOH(g) molecule. Vapor pressures of gaseous molecules CsOH(g), Cs 2 O 2 H 2 (g) and Cs 2 IOH(g) have been determined. Molecular parameters of the mixed molecule have been estimated on the basis of the pure dimmers Cs 2 O 2 H 2 (g) and Cs 2 I 2 (g) and its enthalpy of formation are established. The acquisition of kinetic data needs a new reactor, the conception of which is presented in this work as well as qualification tests: thermal, flow regimes and pressure calibration tests. (author)

  3. Supramolecular assemblies in [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O complex – Structural, spectroscopic, magnetic and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowska, Agnieszka, E-mail: agnieszka.wojciechowska@pwr.edu.pl [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland); Kochel, Andrzej [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław (Poland); Duczmal, Marek [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland)

    2016-10-01

    The reaction of L-arginine and oxalate ions with copper(II) salts yields a new complex with formula of [Cu(L-Arg){sub 2}(H{sub 2}O)]·C{sub 2}O{sub 4}·6H{sub 2}O (1) (where L-Arg = L-arginine). Single crystals of 1 were synthesized by crystallization from aqueous solution. The complex properties were characterized by X-ray diffraction, spectroscopy (FT-IR, FT-Raman, NIR-Vis-UV and EPR) as well as thermal and magnetic methods. The square pyramidal (SP) geometry around Cu(II) ions in [Cu(L-Arg){sub 2}(H{sub 2}O)]{sup 2+} cation complex is formed by two cis-chelated L-arginine zwitterions and a water molecule coordinated in the apex of square pyramid. The trigonality distortion of SP geometry is relatively small, τ = 0.0087. The solid state EPR spectrum showed broad hyperfine splitting with g{sub ⊥} = 2.061 at 77 K. The copper centres distanced at 7.558(5) Å are joined in a single zig-zag structure via a chain based on the combination of Cu−O(5)−H(29)⋯O(2)−C1−O1−Cu hydrogen bonds along the b axis (d (O2O5) = 2.812 Å). Taking into account the structural features, the magnetic susceptibility data were best-fitted, giving the exchange parameter J = −0.16 cm{sup −1}. Complex 1 is thermally stable up to 66 °C, where it was observed to lose the crystallization water molecules with an 11.7% mass loss (calc. 11.5%). - Highlights: • Crystal and molecular structure of [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O crystals have been studied. • The magnetic interactions of Cu(II) centres are assisted by the formation of single zig-zag chain. • Role of oxalate ions in completed relatively small square pyramid distortion is described. • The cis-fashioned L-arginine created the stronger ligand field than trans-configuration.

  4. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  5. Raman study of the effect of water vapor during low-temperature annealing on the structure and electrophysical properties of YBa{sub 2}Cu{sub 3}O{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, I.B., E-mail: bobylev@imp.uran.ru; Ponosov, Yu.S.; Zyuzeva, N.A.

    2015-11-01

    The effects of an interaction of YBa{sub 2}Cu{sub 3}O{sub y} (123) with water vapors at a temperature 200 °C on the structure and electrophysical properties of the compound have been examined by Raman spectroscopy. It has been found that the penetration of water into the 123-type causes the transition of the compound from an oxide to a hydride-oxide-hydroxide, which is accompanied with transformation to the 124 pseudotype phase. Direct evidence has been obtained for the incorporation of OH{sup −}-groups in the 123-structure. After the interaction with water, the materials with high oxygen content (y ≥ 6.5) retain their superconductivity and exhibit two-magnon scattering in Raman spectra, which is not typical for them. Short-term recovery annealing followed by oxidation removes the water from the compound structure, which leads to the disappearance of the spin fluctuation spectra. At the same time, the structural defects are partially preserved. These manifest themselves through some peculiarities in the Raman spectra and are apparently pinning centers of magnetic vortices. A model of a splitting of the Cu–O chains and a formation of the 124-like phase in water-intercalated 123-structure has been proposed. This mechanism supposes the dissociation of the OH{sup −}-groups and the filling in the copper vacancies by protons. - Highlights: • Absorbing water at 200 °C, the Y-123 ceramics transforms to H{sub x}YBa{sub 2}Cu{sub 3}O{sub y}(OH){sub z}. • The incorporation of water in the Y-123 (y ≥ 6.5) leads to the well magnetic peak. • For the Y-123 with y < 6.5 the OH{sup −}-groups occupy the vacancies of several types. • The OH{sup −}-groups are oriented along the c-axis.

  6. Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties.

    Science.gov (United States)

    Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van

    2018-06-14

    To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

  7. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  8. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra

    Science.gov (United States)

    Barthlott, Sabine; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas; Kiel, Matthäus; Dubravica, Darko; García, Omaira E.; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Grutter, Michel; Plaza-Medina, Eddy F.; Stremme, Wolfgang; Strong, Kim; Weaver, Dan; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Mahieu, Emmanuel; Servais, Christian; Jones, Nicholas; Griffith, David W. T.; Smale, Dan; Robinson, John

    2017-01-01

    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; MUSICA/" target="_blank">ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, δD-pair distributions.

  9. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 νm

    KAUST Repository

    Li, Sijie; Farooq, Aamir; Hanson, Ronald Kenneth

    2011-01-01

    Making use of a newly available rapid-tuning diode laser operating at wavelengths up to 2.9 νm, an absorption-based temperature sensor was developed for in situ measurements in low-pressure flames. Based on the systematic analysis of H2O vapor

  10. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  11. The simulation of stratospheric water vapor in the NH summer monsoon regions in a suite of WACCM models

    Science.gov (United States)

    Wang, X.; Wu, Y.; Huang, Y.; Tilmes, S.

    2016-12-01

    Water vapor maxima are found in the upper troposphere lower stratosphere (UTLS) over Asian and North America monsoon regions during Northern Hemisphere (NH) summer months. High concentrations of stratospheric water vapor are associated with the upper-level anticyclonic circulation and they play an important role in the radiative forcing for the climate system. However, discrepancies in the simulation of stratospheric water vapor are found among different models. In this study, we use both observational data: Aura Microwave Limb Sounder satellite observations (MLS), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and chemistry climate model outputs: different configurations of the Whole Atmosphere Community Climate Model (WACCM), including standard configuration of WACCM, WACCM L110, specified chemistry (SC) WACCM and specified dynamics (SD) WACCM. We find that WACCM L110 with finer vertical resolution better simulates the stratospheric water vapor maxima over the summer monsoon regions. To better understand the mechanism, we examine the simulated temperature at around 100 hPa since 100 hPa is known to act as a dehydration mechanism, i.e. the warmer the temperature, the wetter the stratospheric water vapor. We find that both WACCM L110 and SD-WACCM better simulate the temperature at 100 hPa as compared to that of MERRA2. This suggests that improving model vertical resolution and dynamical processes in the UTLS is crucial in simulating the stratospheric water vapor concentrations.

  12. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.

    1988-01-01

    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  13. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H{sub 2} evolution from water

    Energy Technology Data Exchange (ETDEWEB)

    Kang Shizhao [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Chen Lili [Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li Xiangqing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Mu Jin, E-mail: mujin@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2012-06-01

    A composite photocatalyst containing Eosin Y as a sensitizer, multiwalled carbon nanotubes as a supporter material or electron transfer channel, and CuO/NiO as an active center of H{sub 2} evolution from water was fabricated and characterized with X-ray photoelectron spectroscopy and transmission electron microscope. Meanwhile, photocatalytic hydrogen evolution from water over this catalyst was explored using triethanolamine as a sacrificial reagent under visible irradiation. A rate of H{sub 2} evolution of approximately 1.0 mmol g{sup -1} h{sup -1} was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of CuO/NiO, mass ratio of CuO to NiO, pH of solution, concentration of triethanolamine and dosage of Eosin Y, respectively. The results show that mixed metal oxides are a kind of promising active centers of H{sub 2} evolution from water in the photocatalytic system studied.

  14. Study of the liquid vapor equilibrium in the bromine-hydrobromic acid-water system

    Science.gov (United States)

    Benizri, R.; Lessart, P.; Courvoisier, P.

    1984-01-01

    A glass ebullioscope was built and at atmospheric pressure, liquid-vapor equilibria relative to the Br2-HBr-H2O system, in the concentration range of interest for evaluation of the Mark 13 cycle was studied. Measurements were performed for the brome-azeotrope (HBr-H2O) pseudo-binary system and for the ternary system at temperatures lower than 125 C and in the bromine concentration range up to 13% wt.

  15. Hydration of DNA by tritiated water and isotope distribution: a study by 1H, 2H, and 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-01-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent 3 HHO. The combined effects of temperature (-6 to -40 0 C) and H 2 O/ 2 H 2 O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by 3 HHO (internal radiation source) localizes close to 3 H due to the short range and low energy of 3 H β rays

  16. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  17. Hydrogen-bonded Three-Dimensional Networks Encapsulating One-dimensional Covalent Chains: [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-Aminopyridine)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-aminopyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P, a = 7.675(2), b = 8.225(3), c = 10.845(3) (A), α= 86.996(4), β = 76.292(4),γ = 68.890(4)°, V = 620.0(3) (A)3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(Ⅰ)). The structure consists of [Cu(3-ampy)(H2O)4]2+ cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.

  18. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  19. Water-vapor-enhanced growth of Ge-GeOx core-shell nanowires and Si1-xGexOy nanowires

    International Nuclear Information System (INIS)

    Hsu, T-J; Ko, C-Y; Lin, W-T

    2007-01-01

    The effects of moist Ar on the growth of Ge-GeO x core-shell nanowires (Ge-GeO x NWs) and Si 1-x Ge x O y nanowires (SiGeONWs) on Si substrates without adding a metal catalyst via the carbothermal reduction of GeO 2 powders at 1100 deg. C were studied. No significant nanowires were grown in dry Ar at a flow rate of 100-300 sccm until a bit of water in the range of 0.5-2 ml was loaded into the furnace. More water suppressed the growth of nanowires because of the exhaustion of more graphite powder. The growth of Ge-GeO x NWs and SiGeONWs follows the vapor-solid and vapor-liquid-solid processes, respectively. The present study showed that the water vapor serves as an oxidizer as well as a reducer at 1100 deg. C in enhancing the growth of SiGeONWs and Ge-GeO x NWs, respectively. The growth mechanisms of Ge-GeO x NWs and SiGeONWs are also discussed

  20. Glass transition behaviour of the quaternary ammonium type ionic liquid, {[DEME][I] + H2O} mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Matsumoto, Hitoshi; Shimada, Osamu; Hanasaki, Tomonori; Yoshimura, Yukihiro

    2011-01-01

    By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H 2 O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H 2 O). Results were compared with the previous results of {[DEME][BF 4 ] + H 2 O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H 2 O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H 2 O} mixtures too, but the two-T g s regions lie towards the water-rich side of (77.5 to 85.0) mol% H 2 O. These clearly reflect the difference in the anionic effect between BF 4 - and I - on the water structure. The end of the glass-formation region of {[DEME][I] + H 2 O} mixtures is around x = 95.0 mol% H 2 O, and this is comparable to that of {[DEME][BF 4 ] + H 2 O} mixtures (x = 96.0 mol% H 2 O).

  1. LBA-ECO CD-10 H2O Profiles at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains a single text file which reports vertical profiles of H2O vapor concentrations measured at the Para Western (Santarem) - km 67,...

  2. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    Science.gov (United States)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  3. Mass transfer of H2O between petroleum and water: implications for oil field water sample quality

    International Nuclear Information System (INIS)

    McCartney, R.A.; Ostvold, T.

    2005-01-01

    Water mass transfer can occur between water and petroleum during changes in pressure and temperature. This process can result in the dilution or concentration of dissolved ions in the water phase of oil field petroleum-water samples. In this study, PVT simulations were undertaken for 4 petroleum-water systems covering a range of reservoir conditions (80-185 o C; 300-1000 bar) and a range of water-petroleum mixtures (volume ratios of 1:1000-300:1000) to quantify the extent of H 2 O mass transfer as a result of pressure and temperature changes. Conditions were selected to be relevant to different types of oil field water sample (i.e. surface, downhole and core samples). The main variables determining the extent of dilution and concentration were found to be: (a) reservoir pressure and temperature, (b) pressure and temperature of separation of water and petroleum, (c) petroleum composition, and (d) petroleum:water ratio (PWR). The results showed that significant dilution and concentration of water samples could occur, particularly at high PWR. It was not possible to establish simple guidelines for identifying good and poor quality samples due to the interplay of the above variables. Sample quality is best investigated using PVT software of the type used in this study. (author)

  4. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of an advanced Two-Micron triple-pulse IPDA lidar for carbon dioxide and water vapor measurements

    Science.gov (United States)

    Petros, Mulugeta; Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Antill, Charles; Remus, Ruben; Taylor, Bryant D.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed; Davis, Kenneth J.

    2018-04-01

    An advanced airborne triple-pulse 2-μm integrated path differential absorption (IPDA) lidar is under development at NASA Langley Research Center that targets both carbon dioxide (CO2) and water vapor (H2O) measurements simultaneously and independently. This lidar is an upgrade to the successfully demonstrated CO2 2-μm double-pulse IPDA. Upgrades include high-energy, highrepetition rate 2-μm triple-pulse laser transmitter, innovative wavelength control and advanced HgCdTe (MCT) electron-initiated avalanche photodiode detection system. Ground testing and airborne validation plans are presented.

  6. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers

    Directory of Open Access Journals (Sweden)

    N. Kämpfer

    2012-08-01

    Full Text Available In this study, we present middle atmospheric water vapor (H2O and ozone (O3 measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N, Onsala (57° N and Sodankylä (67° N during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground

  7. Modeling The Influence Of H2O On Metal Oxide Sensor Responses To CO

    International Nuclear Information System (INIS)

    Fort, A.; Mugnaini, M.; Pasquini, I.; Rocchi, S.; Vignoli, V.

    2009-01-01

    It is well know that the relative humidity largely affects the response of MOX gas sensors to the target gases. The influence of water vapor on MOX sensor operation has been deeply studied and many results can be found in the literature. Nevertheless the effect of water was not incorporated in the sensor models presented up to now. In this work the authors propose, on the basis of experimental evidence, a simplified model for SnO 2 sensors, able to account for the water contribution, when the target gas is CO. The authors start from a model already presented and tested for dry gases (CO and O 2 ), and add the water contribution, assuming that the direct reaction between CO and water can be neglected.

  8. Genotoxicity testing of samples generated during UV/H2O2 treatment of surface water for the production of drinking water using the Ames test in vitro and the Comet assay and the SCE test in vivo

    NARCIS (Netherlands)

    Penders, E.J.M.; Martijn, A.J.; Spenkelink, A.; Alink, G.M.; Rietjens, I.; Hoogenboezem, W.

    2012-01-01

    UV/H2O2 treatment can be part of the process converting surface water to drinking water, but would pose a potential problem when resulting in genotoxicity. This study investigates the genotoxicity of samples collected from the water treatment plant Andijk, applying UV/H2O2 treatment with an

  9. Vapor deposition of large area NpO2 and UO2 deposits

    International Nuclear Information System (INIS)

    Adair, H.L.; Gibson, J.R.; Kobisk, E.H.; Dailey, J.M.

    1976-01-01

    Deposition of NpO 2 and UO 2 thin films over an area of 7.5 to 10 cm diam has become a routine operation in preparation of fission chamber plates. Vacuum evaporation or electroplating has been used for this purpose. The ''paint brush'' technique has been used as well; however, uniformity requirements normally eliminate this procedure. Vapor deposition in vacuum appears to be the most suitable technique for preparing NpO 2 and UO 2 deposits of >200 cm 2 . This paper describes the procedures used in preparing uniform large area deposits of NpO 2 (approximately 300 cm 2 ) and UO 2 (approximately 2000 cm 2 ) by vacuum evaporation using electron bombardment heating and several substrate motion and heating methods to achieve uniformity and adhesion

  10. USGS48 Puerto Rico precipitation - A new isotopic reference material for δ2H and δ18O measurements of water

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Tarbox, Lauren V.; Lorenz, Jennifer M.; Scholl, Martha A.

    2014-01-01

    A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are−2.0±0.4 and−2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are−428 and−55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  11. Effect of air composition (N2, O2, Ar, and H2O on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Directory of Open Access Journals (Sweden)

    K. Katsumata

    2012-11-01

    Full Text Available We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar, and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS. Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar 2 2, suggesting similar relation for the pressure-broadening effects (PBEs among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4 although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4 for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301, and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past

  12. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  13. LBA-ECO CD-10 H2O Profiles at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a single text file which reports vertical profiles of H2O vapor concentrations measured at the Para Western (Santarem) - km 67, Primary Forest...

  14. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  15. [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltametry

    Science.gov (United States)

    Cady, Clyde W.; Shinopoulos, Katherine E.; Crabtree, Robert H.; Brudvig, Gary W.

    2010-01-01

    Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(H2O)](NO3)3 [terpy = 2,2′:6′,2″-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments will show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen. PMID:20372724

  16. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    Science.gov (United States)

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  17. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  18. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    Science.gov (United States)

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for nphotoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  19. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  20. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  1. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    Science.gov (United States)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive

  2. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  3. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  4. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W.

    2012-11-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar < O2 < N2, suggesting similar relation for the pressure-broadening effects (PBEs) among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301), and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past studies

  5. Magnesium hexafluoridozirconates MgZrF{sub 6}.5H{sub 2}O, MgZrF{sub 6}.2H{sub 2}O, and MgZrF{sub 6}. Structures, phase transitions, and internal mobility of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, Andrey V.; Gaivoronskaya, Kseniya A.; Slobodyuk, Arseny B.; Didenko, Nina A. [Institute of Chemistry, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2017-12-04

    The MgZrF{sub 6}.nH{sub 2}O (n = 5, 2 and 0) compounds were studied by the methods of X-ray diffraction and {sup 19}F, MAS {sup 19}F, and {sup 1}H NMR spectroscopy. At room temperature, the compound MgZrF{sub 6}.5H{sub 2}O has a monoclinic C-centered unit cell and is composed of isolated chains of edge-sharing ZrF{sub 8} dodecahedra reinforced with MgF{sub 2}(H{sub 2}O){sub 4} octahedra and uncoordinated H{sub 2}O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic <-> two-domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF{sub 6}.2H{sub 2}O comprises a three-dimensional framework consisting of chains of edge-sharing ZrF{sub 8} dodecahedra linked to each other through MgF{sub 4}(H{sub 2}O){sub 2} octahedra. The compound MgZrF{sub 6} belongs to the NaSbF{sub 6} type and is built from regular ZrF{sub 6} and MgF{sub 6} octahedra linked into a three-dimensional framework through linear Zr-F-Mg bridges. The peaks in {sup 19}F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable-temperature {sup 1}H NMR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Ni2Sr(PO42·2H2O

    Directory of Open Access Journals (Sweden)

    Lahcen El Ammari

    2010-12-01

    Full Text Available The title compound, dinickel(II strontium bis[orthophosphate(V] dihydrate, was obtained under hydrothermal conditions. The crystal structure consists of linear chains ∞1[NiO2/2(OH22/2O2/1] of edge-sharing NiO6 octahedra (overline{1} symmetry running parallel to [010]. Adjacent chains are linked to each other through PO4 tetrahedra (m symmetry and arranged in such a way to build layers parallel to (001. The three-dimensional framework is accomplished by stacking of adjacent layers that are held together by SrO8 polyhedra (2/m symmetry. Two types of O—H...O hydrogen bonds involving the water molecule are present, viz. one very strong hydrogen bond perpendicular to the layers and weak trifurcated hydrogen bonds parallel to the layers.

  7. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  8. Molecular simulation of thermodynamic and transport properties for the H{sub 2}O+NaCl system

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, Gustavo A.; Jiang, Hao; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Moultos, Othonas A.; Economou, Ioannis G. [Chemical Engineering Program, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar)

    2014-12-21

    Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H{sub 2}O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and the Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration.

  9. Molybdenum Doped SnO2 Thin Films as a Methanol Vapor Sensor

    Directory of Open Access Journals (Sweden)

    Patil Shriram B.

    2013-02-01

    Full Text Available The molybdenum doped SnO2 thin films were synthesized by conventional spray pyrolysis route and has been investigated for the methanol vapor sensing. The structural and elemental composition analysis of thin films was carried out by X- ray diffraction and Scanning Electron Microscopy (SEM and Energy Dispersive X-ray spectroscopy (EDAX.The XRD spectrum revealed that the thin films have the polycrystalline nature with a mixed phase comprising of SnO2 and MoO3. The scanning Electron Microscopy (SEM clears that the surface morphology observed to be granular, uniformly covering the entire surface area of the thin film. The methanol vapor sensing studies were performed in dry air at the different temperatures. The influence of the concentration of Molybdenum and operating temperature on the sensor performance has been investigated.

  10. Investigation of dehydration reaction of BaCl2.2H2O and SrCl2.6H2O by thermal analysis under pressure

    International Nuclear Information System (INIS)

    Homma, Tsuneyuki; Yamada, Tetsuo

    1978-01-01

    The dehydration reactions of BaCl 2 .2H 2 O and SrCl 2 .6H 2 O were investigated by the techniques of thermal analysis, i.e. thermogravimetry (TG and DTG) and differential thermal analysis (DTA) under pressures of 1, 4, 10 and 40 atm. For BaCl 2 .2H 2 O, the DTA curves showed two peaks at 1 atm and three or four peaks at pressures above 4 atm, and the TG curves showed two steps over the range of 1 -- 10 atm and 3 steps at 40 atm. For SrCl 2 .6H 2 O, the DTA curves showed five peaks at respective pressure, and the TG curves showed three steps at 1 atm and two steps at pressures above 4 atm. As a common effect of pressure to the dehydration of these two salts, DTG peaks and some of DTA peaks shifted to higher temperatures with a increase in pressure, but a few peaks remained unshifted on DTA curves in spite of increasing pressure. The peaks which corresponded to these unshifted peaks on DTA curves were not observed on DTG curves. The unshifted peaks on DTA curves were attributed to the endothermic reaction accompanied by the dissociation of coordination water. The DTA and TG curves suggested that both salts formed the intermediate state between anhydrous and monohydrate states. (auth.)

  11. Heavy-water (D2O) take-up-induced lattice expansion in the high-temperature proton conductor Ba3Ca1.18Nb1.82O9-δ

    International Nuclear Information System (INIS)

    Papathanassopoulos, K.; Wenzl, H.; Schober, T.

    1997-01-01

    Dimensional changes of the high-temperature proton conductor Ba 3 Ca 1.18 Nb 1.82 O 9-δ , when exposed to D 2 O vapor, were investigated using length-change and precision density measurements. Such information is essential for possible applications of proton conductors in solid oxide fuel cells and humidity and hydrogen sensors. A linear increase of the sample lengths with increases in the deuterium content was observed. Comparison of the present D 2 O data with those that were previously obtained for H 2 O showed that there was a small isotope effect in the lattice expansion. The fact that the length-change-versus-hydrogen-isotope-concentration curves were almost isotope independent supported the validity of the take-up reaction H 2 O(g) + V sm-bulletsm-bullet O + O x O right-reversible 2OH sm-bullet O , where V O is the vacancies in the oxygen sublattice and OH sm-bullet O is the proton that are embedded in the electron cloud of an oxygen atom. In regard to the latter equation, it was found that small islands of silver, palladium, nickel, and platinum act as catalytic promoters of the reaction and lead, for given heavy-water-steam exposure conditions, to an increase of water absorption of up to 100%, when compared with samples without the catalytic surface layers

  12. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  13. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  14. Homoepitaxial growth of a-plane GaN layers by reaction between Ga2O vapor and NH3 gas

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    Growth of high-quality a-plane GaN layers was performed by reaction between Ga 2 O vapor and NH 3 gas at a high temperature. Smooth a-plane GaN epitaxial layers were obtained on a-plane GaN seed substrates sliced from thick c-plane GaN crystals. Growth rate increased with increasing Ga 2 O partial pressure. An a-plane GaN layer with a growth rate of 48 μm/h was obtained. The X-ray rocking curve (XRC) measurement showed that the full widths at half maximum (FWHMs) of GaN(112-bar0) with the incident beam parallel and perpendicular to the [0001] direction were 29–43 and 29–42 arcsec, respectively. Secondary ion mass spectrometry (SIMS) measurement revealed that oxygen concentration decreased at a high temperature. These results suggest that growth of a-GaN layers using Ga 2 O vapor and NH 3 gas at a high temperature enables the generation of high-quality crystals. (author)

  15. Photodegradation and toxicity changes of antibiotics in UV and UV/H{sub 2}O{sub 2} process

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu Chun, E-mail: huchun@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Xuexiang, Hu; Dongbin, Wei; Yong, Chen; Jiuhui, Qu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2011-01-30

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H{sub 2}O{sub 2} process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H{sub 2}O{sub 2} process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R{sub OH,UV}, defined as the experimentally determined {center_dot}OH radical exposure per UV fluence. The R{sub OH,UV} values represent the background {center_dot}OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H{sub 2}O{sub 2} due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H{sub 2}O{sub 2} process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H{sub 2}O{sub 2} process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of {center_dot}OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H{sub 2}O{sub 2} process would be determined by parent compound degradation and toxicity changes.

  16. Features of the structure of phospho- and arsenouranic acids of the composition of HPUO2x4H2O and HAsUO6x4H2O

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Karyakin, N.V.; Chernorukov, G.N.

    1994-01-01

    The structure of crystal phases of the composition HPUO 6 x4H 2 O and HAsUO 6 x4H 2 O has been studied using the methods of IR spectroscopy, thermography, X-ray phase analysis and calorimetry. The nature and binding energy of water within the compounds mentioned are determined. 10 refs., 2 figs

  17. Aircraft profile measurements of 18O/16O and D/H isotope ratios of cloud condensate and water vapor constrain precipitation efficiency and entrainment rates in tropical clouds

    Science.gov (United States)

    Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.

    2011-12-01

    Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes

  18. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  19. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  20. Degradation of Pentachlorophenol in Aqueous Solution by the UV/ZrO 2 /H 2 O 2 Photocatalytic Process

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2015-12-01

    Full Text Available Pentachlorophenol (PCP, which is one of the resistant phenolic compounds, has been classified in the category of EPA’s priority pollutants due to its high toxicity and carcinogenic potential. Therefore, its removal from water and wastewater is very important. Various methods have been studied for removing the compound, among which advanced oxidation processes (AOPs have attracted much attention because of ease of application and high efficiency. Thus the aim of this study was to investigate the efficiency of the UV/ZrO2/H2O2 process, as an AOP, for PCP removal from aquatic environments. The effects of several parameters such as ultraviolet (UV exposure time, initial PCP concentration, pH, concentration of zirconium dioxide (ZrO2 nanoparticles, and H2O2 concentration were studied. Kinetics of the reaction was also detected. The concentration of the stated materials in the samples was determined using a spectrophotometer at 500 nm. The results showed that the highest efficiency (approximately 100% was reached at optimized conditions of pH 6, contact time of 30 minutes, initial PCP concentration of 20 mg/L, the nanoparticles concentration of 0.1 g/L and H2O2 concentration of 14.7 mM/L. Also, the process followed the first order kinetics reaction. The obtained results illustrated that the UV/ZrO2/H2O2 process has a high ability in removing PCP.

  1. [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4].4[H2O]: A new layered aluminum phosphate-oxalate

    International Nuclear Information System (INIS)

    Peng Li; Li Jiyang; Yu Jihong; Li Guanghua; Fang Qianrong; Xu Ruren

    2005-01-01

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H 3 N(CH 2 ) 4 NH 3 ] 2 [Al 4 (C 2 O 4 )(H 2 PO 4 ) 2 (PO 4 ) 4 ].4[H 2 O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31 P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, α=80.830(6) deg. , β=74.965(5) deg. , γ=78.782(6) deg. , Z=2, R 1[ I >2 σ ( I )] =0.0511 and wR 2(alldata) =0.1423. The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra

  2. Determination and modeling for the solubility of Na_2WO_4·2H_2O and Na_2MoO_4·2H_2O in the (Na"+ + MoO_4"2"− + WO_4"2"− + SO_4"2"− + H_2O) system

    International Nuclear Information System (INIS)

    Ning, Pengge; Xu, Weifeng; Cao, Hongbin; Xu, Hongbin

    2016-01-01

    Highlights: • The solubility of Na_2MoO_4·2H_2O and Na_2WO_4·2H_2O in Na_2MoO_4–Na_2WO_4–Na_2SO_4–H_2O were performed. • The solubility of sodium tungstate dihydrate in Na_2WO_4–Na_2SO_4–H_2O was determined. • The new model was established via regressing the published and the determined data. • The Pitzer parameter and the solubility product constant of the salt in solution were calculated. • The model was used to estimate the solubility of the sodium molybdate and sodium tungstate. - Abstract: The solubility of sodium tungstate dihydrate and sodium molybdate dihydrate in the (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) system was studied using experimental and calculated methods. The osmotic coefficient of sodium tungstate was fitted to calculate the thermodynamics parameters of (Na_2WO_4 + H_2O) system. The solubility of sodium tungstate dihydrate was determined using the dynamic method in Na_2WO_4–Na_2SO_4–H_2O to establish the new model which can provide an estimate the solubility of sodium tungstate dihydrate in various conditions, combined with the data published, the solubility of sodium tungstate dihydrate and the sodium molybdate dihydrate in quaternary system of (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) was estimated using the parameters of the two ternary systems of (Na_2WO_4 + Na_2SO_4 + H_2O) and (Na_2MoO_4 + Na_2SO_4 + H_2O). The results show that the AARD is always small and the calculated value is basically consistent with the experimental values for the system studied.

  3. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    Science.gov (United States)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  4. The reaction between H2 and O2 over tungsten carbide catalysts

    International Nuclear Information System (INIS)

    Guskey, G.J.; Boudart, M.; Frennet, A.

    1992-01-01

    The stationary-state reaction between H 2 and O 2 either in excess H 2 or O 2 has been studied in a flow recirculation reactor over unsupported powders of tungsten carbide with high specific surface area and microporous texture for up to 40 h. Areal rates, v a are first order in the concentration of the limiting reactant and zero order in the concentration of the excess reactant between 273 and 600 K and near atmospheric pressure. Rates are referred to the number of sites counted by titration of preadsorbed oxygen with H 2 at room temperature. This number is multiplied by the surface area per W atom to obtain v a . These tungsten carbides exhibit a microporous structure. A break in the Arrhenius diagram near 450 K is observed. Below 450 K either in excess H 2 or O 2 capillary condensation of product water causes the micropores of the catalyst to become blocked. Thus, the reaction occurs only in the mesopores which account for about 10% of the total specific surface area, S g . Above 450 K, water leaves the micropores and the apparent v a increases as active sites within the micropores become accessible to the reactants. In excess O 2 at 273 K, the first order rate constant of v a based on active area of mesopores, is two times higher for microporous αWC than that for platinum

  5. On employing H216O, H217O, H218O, and D216O lines as frequency standards in the 15-170 cm-1 window

    International Nuclear Information System (INIS)

    Furtenbacher, Tibor; Csaszar, Attila G.

    2008-01-01

    The protocol MARVEL, standing for measured active rotational-vibrational energy levels, is used to study high-accuracy measurements of rotational lines of four isotopologues of water, H 2 16 O, H 2 17 O, H 2 18 O, and D 2 16 O, obtained by spectroscopy in the far-infrared (FIR) region of 15-170 cm -1 by Matsushima et al. [Matsushima F, Odashima H, Iwasaki T, Tsunekawa S, Takagi K. Frequency measurement of pure rotational transitions of H 2 O from 0.5 to 5 THz. J Mol Struct 1995; 352/353, 371-8; Matsushima F, Nagase H, Nakauchi T, Odashima H, Takagi K. Frequency measurement of pure rotational transitions of H 2 17 O and H 2 18 O from 0.5 to 5 THz. J Mol Spectrosc 1999;193: 217-23; Matsushima F, Matsunaga M, Qian GY, Ohtaki Y, Wang RL, Takagi K. Frequency measurement of pure rotational transitions of D 2 O from 0.5 to 5 THz. J Mol Spectrosc 2001;206: 41-6; Matsushima F, Tomatsu N, Nagai T, Moriwaki Y, Takagi K. Frequency measurement of pure rotational transitions in the v 2 =1 state of H 2 O. J Mol Spectrosc 2006;235: 190-5]. MARVEL validates the high accuracy of most of the measured line positions. It results in a considerable number of energy levels with an average internal uncertainty of only 40 kHz (2σ). It also supports serious inaccuracy problems when Watson-type A-reduced Hamiltonians are used for predicting the highly accurate rotational measurements for water. Finally, MARVEL suggests a large number of para-water levels, for example 41 for H 2 16 O, which are candidates for becoming frequency standards in the FIR region of 15-170 cm -1 (the 0.5-5 THz window) when an accuracy of about 0.1 MHz is deemed to be sufficient

  6. Computer modeling of inhibition of α-radiolysis of water by H2 addition (NPC 2012 conference)

    International Nuclear Information System (INIS)

    Lertnaisat, Phantira; Katsumura, Yosuke; Mukai, Satoru; Umehara, Ryuji; Shimizu, Yuichi; Suzuki, Masaru

    2012-09-01

    It is known that α-radiolysis of water produces H 2 gas continuously. The addition of H 2 to water inhibits the water decomposition; H 2 evolution. In order to suppress the water decomposition, 25 cc H 2 STP/kg-H 2 O is added to the coolant water in PWR. However, the exact inhibition mechanism is still not made clear yet. In this project, the chemical kinetic simulation program, so called FASCIMILE, was used to reproduce the suppression of α-radiolysis of water by H 2 addition. By using three important factors; the decomposition (G-value), the reaction set and rate constants, and the dose rate, it is found that without hydrogen addition, the simulation shows the almost linear increase of molecular products; H 2 , H 2 O 2 , and O 2 . Nevertheless, as the additional hydrogen is added to the system, this behaviour of linear increase is shifted to longer time period. And up to certain concentration, the linear increase behaviour is completely suppressed and the molecular products reach the steady state condition at early time period and much lower concentration. The minimum concentration of H 2 which could completely suppress the decomposition of water is called Critical Hydrogen Concentration (CHC) and it is dose rate dependent value. The CHC is found to be dependent on the reaction set and rate constants. The simulation results show that the CHC at room temperature and dose rate of 1 kGy/s of the simulation done by using reaction set and rate constants obtained from Ershov et al. and AECL report 2009 are 165μM and 146μM, respectively. From the change of the behaviour of molecular products after reaching the CHC, the possible mechanism is proposed. First, the OH radical are formed via the reaction of H + H 2 O 2 → OH + H 2 O and e - aq + H 2 O 2 → OH+OH - . Then OH, which normally will react with H 2 O 2 to produced HO 2 , will react with the additional H 2 , which produce H to continue the chain reaction. The relation of chain reaction to the suppression of

  7. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  8. Chemical Reactions Between Fe and H2O up to Megabar Pressures and Implications for Water Storage in the Earth's Mantle and Core

    Science.gov (United States)

    Yuan, Liang; Ohtani, Eiji; Ikuta, Daijo; Kamada, Seiji; Tsuchiya, Jun; Naohisa, Hirao; Ohishi, Yasuo; Suzuki, Akio

    2018-02-01

    We investigated the phase relations of the Fe-H2O system at high pressures based on in situ X-ray diffraction experiments and first-principles calculations and demonstrate that FeHx and FeO are present at pressures less than 78 GPa. A recently reported pyrite-structured FeO2 was identified in the Fe-H2O system at pressures greater than 78 GPa after laser heating. The phase observed in this study has a unit cell volume 8%-11% larger than that of FeO2, produced in the Fe-O binary system reported previously, suggesting that hydrogen might be retained in a FeO2Hx crystal structure. Our observations indicate that H2O is likely introduced into the deep Earth through reaction between iron and water during the accretion and separation of the metallic core. Additionally, reaction between Fe and H2O would occur at the core-mantle boundary, given water released from hydrous subducting slabs that intersect with the metallic core. Accumulation of volatile-bearing iron compounds may provide new insights into the enigmatic seismic structures observed at the base of the lower mantle.

  9. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  10. Effect of sweep gas chemistry on vaporization of Li4SiO4

    International Nuclear Information System (INIS)

    Yamawaki, M.; Yamaguchi, K.

    1995-01-01

    Gas/solid equilibria in the system Li 4 SiO 4 -D 2 -D 2 O were studied by means of Knudsen effusion mass spectrometry. A Knudsen effusion mass spectrometer was modified to enable studies of reactions of hydrogen and/or water vapor with ceramic breeder materials. A gas inlet system was constructed to allow the introduction of gases into a platinum Knudsen cell, from which the equilibrated gaseous reaction products effuse. From the experimental results, it has been deduced that the equilibrium constants of vaporization reactions differ correspondingly to the nonstoichiometry of lithium orthosilicate. ((orig.))

  11. Ferromagnetic Coupling between Copper(II) Centers through the Diamagnetic Zinc(II) Ion: Crystal Structure and Magnetic Properties of [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)].0.5H(2)dmg.H(2)O (H(2)dmg = Dimethylglyoxime).

    Science.gov (United States)

    Ruiz, Rafael; Julve, Miguel; Faus, Juan; Lloret, Francesc; Muñoz, M. Carmen; Journaux, Yves; Bois, Claudette

    1997-07-30

    A new heterotrinuclear complex of formula [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)].0.5H(2)dmg.H(2)O (C(18)H(34)Cu(2)N(9)O(11)Zn, 1) (H(2)dmg = dimethylglyoxime) has been synthesized and its crystal structure determined by single-crystal X-ray diffraction. It crystallizes in the triclinic system, space group P&onemacr;, with a = 11.414(1) Å, b = 11.992(3) Å, c =12.567(10) Å, alpha = 91.27(6) degrees, beta = 111.46(2) degrees, gamma = 112.24(2) degrees, and Z = 2. The structure consists of a chain of neutral [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)] trinuclear units and noncoordinated H(2)dmg and water molecules. The configuration around the zinc atom is distorted trigonal bipyramidal with four oximate oxygens from two [Cu(Hdmg)(dmg)](-) fragments (each one acting as a bidentate ligand through its deprotonated oximate oxygens in cis positions) occupying one axial and the three equatorial positions and an additional oximate oxygen from a symmetry-related [Cu(Hdmg)(dmg)](-) fragment filling the remaining axial position. The environment around Cu(1) and Cu(2) is distorted square pyramidal with four oximate nitrogen atoms building the equatorial plane. An oxygen atom [O(9)] from a water molecule and an oximate oxygen from a symmetry-related [Cu(Hdmg)(dmg)](-) fragment occupy the apical position of the square pyramids around Cu(1) and Cu(2), respectively. The trinuclear units are repeated through inversion centers standing at the middle of the Zn(1).Zn(1)(i) and Cu(2).Cu(2)(ii) vectors leading to a chain which runs parallel to the diagonal of the ac-plane. The Cu(1).Cu(2), Zn(1).Zn(1)(i), and Cu(2).Cu(2)(ii) separations are 5.506(2), 3.390(2), and 3.930(2) Å, respectively. 1 exhibits a characteristic ferromagnetic behavior with a continuous increase of the chi(M)T product as the temperature is lowered from 300 to 2.0 K. The field dependence of the magnetization at 2.0 K is consistent with a low-lying quintet state. The only efficient exchange pathways responsible for the overall

  12. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Ho

    1994-02-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H 2 O 2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  13. Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO4)(H2O)4Cl]Cl·H2O.

    Science.gov (United States)

    Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang

    2018-06-05

    Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

  14. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    Science.gov (United States)

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  15. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  16. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Science.gov (United States)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  17. SIMULTANEOUS OBSERVATIONS OF SiO AND H{sub 2}O MASERS TOWARD KNOWN STELLAR H{sub 2}O MASER SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeheon [Yonsei University Observatory, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Cho, Se-Hyung [Korean VLBI Network Yonsei Radio Astronomy Observatory, Yonsei University, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Kim, Sang Joon, E-mail: jhkim@kasi.re.kr, E-mail: cho@kasi.re.kr, E-mail: sjkim1@khu.ac.kr [Department of Astronomy and Space Science, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-701 (Korea, Republic of)

    2013-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0, and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 152 known stellar H{sub 2}O maser sources using the Yonsei 21 m radio telescope of the Korean VLBI Network from 2009 June to 2011 January. Both SiO and H{sub 2}O masers were detected from 62 sources with a detection rate of 40.8%. The SiO-only maser emission without H{sub 2}O maser detection was detected from 27 sources, while the H{sub 2}O-only maser without SiO maser detection was detected from 22 sources. Therefore, the overall SiO maser emission was detected from 89 sources, resulting in a detection rate of 58.6%. We have identified 70 new detections of the SiO maser emission. For both H{sub 2}O and SiO maser detected sources, the peak and integrated antenna temperatures of SiO masers are stronger than those of H{sub 2}O masers in both Mira variables and OH/IR stars and the relative intensity ratios of H{sub 2}O to SiO masers in OH/IR stars are larger than those in Mira variables. In addition, distributions of 152 observed sources were investigated in the IRAS two-color diagram.

  18. Towards a Quantum Dynamical Study of the H_2O+H_2O Inelastic Collision: Representation of the Potential and Preliminary Results

    Science.gov (United States)

    Ndengue, Steve Alexandre; Dawes, Richard

    2017-06-01

    Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.

  19. Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results

    Directory of Open Access Journals (Sweden)

    S. V. Petelina

    2009-11-01

    Full Text Available This paper describes a methodology for water vapor retrieval in the mesosphere-lower thermosphere (MLT using 6.6 μm daytime broadband emissions measured by SABER, the limb scanning infrared radiometer on board the TIMED satellite. Particular attention is given to accounting for the non-local thermodynamic equilibrium (non-LTE nature of the H2O 6.6 μm emission in the MLT. The non-LTE H2O2 vibrational level populations responsible for this emission depend on energy exchange processes within the H2O vibrational system as well as on interactions with vibrationally excited states of the O2, N2, and CO2 molecules. The rate coefficients of these processes are known with large uncertainties that undermines the reliability of the H2O retrieval procedure. We developed a methodology of finding the optimal set of rate coefficients using the nearly coincidental solar occultation H2O density measurements by the ACE-FTS satellite and relying on the better signal-to-noise ratio of SABER daytime 6.6 μm measurements. From this comparison we derived an update to the rate coefficients of the three most important processes that affect the H2O2 populations in the MLT: a the vibrational-vibrational (V–V exchange between the H2O and O2 molecules; b the vibrational-translational (V–T process of the O2(1 level quenching by collisions with atomic oxygen, and c the V–T process of the H2O(010 level quenching by collisions with N2, O2, and O. Using the advantages of the daytime retrievals in the MLT, which are more stable and less susceptible to uncertainties of the radiance coming from below, we demonstrate that applying the updated H2O non-LTE model to the SABER daytime radiances makes the retrieved H2O vertical profiles in 50–85 km region consistent

  20. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2.

    Science.gov (United States)

    Yoon, Younggun; Chung, Hay Jung; Wen Di, Doris Yoong; Dodd, Michael C; Hur, Hor-Gil; Lee, Yunho

    2017-10-15

    This study assessed the inactivation efficiency of plasmid-encoded antibiotic resistance genes (ARGs) both in extracellular form (e-ARG) and present within Escherichia coli (intracellular form, i-ARG) during water treatment with chlorine, UV (254 nm), and UV/H 2 O 2 . A quantitative real-time PCR (qPCR) method was used to quantify the ARG damage to amp R (850 bp) and kan R (806 bp) amplicons, both of which are located in the pUC4K plasmid. The plate count and flow cytometry methods were also used to determine the bacterial inactivation parameters, such as culturability and membrane damage, respectively. In the first part of the study, the kinetics of E. coli inactivation and ARG damage were determined in phosphate buffered solutions. The ARG damage occurred much more slowly than E. coli inactivation in all cases. To achieve 4-log reduction of ARG concentration at pH 7, the required chlorine exposure and UV fluence were 33-72 (mg × min)/L for chlorine and 50-130 mJ/cm 2 for UV and UV/H 2 O 2 . After increasing pH from 7 to 8, the rates of ARG damage decreased for chlorine, while they did not vary for UV and UV/H 2 O 2 . The i-ARGs mostly showed lower rates of damage compared to the e-ARGs due to the protective roles of cellular components against oxidants and UV. The contribution of OH radicals to i-ARG damage was negligible in UV/H 2 O 2 due to significant OH radical scavenging by cellular components. In all cases, the ARG damage rates were similar for amp R versus kan R , except for the chlorination of e-ARGs, in which the damage to amp R occurred faster than that to kan R . Chlorine and UV dose-dependent ARG inactivation levels determined in a wastewater effluent matrix could be reasonably explained by the kinetic data obtained from the phosphate buffered solutions and the expected oxidant (chlorine and OH radicals) demands by water matrix components. These results can be useful in optimizing chlorine and UV-based disinfection systems to achieve ARG

  1. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  2. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O

    International Nuclear Information System (INIS)

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-01

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu(en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O (1) has been synthesized by reaction of Sb 2 O 3 , Na 2 WO 4 ·2H 2 O, CuCl 2 ·2H 2 O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW 9 O 33 ] 9− subunits sandwiching a hexagonal (Cu 2 Na 4 ) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu 2 Na 4 ) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu 2 Na 4 ) sandwiched tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu (en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu 2 Na 4 sandwiched) tungstoantimonate [Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ] 10− . • Ferromagnetic tungstoantimonate

  3. Hydroxyl and molecular H2O diffusivity in a haploandesitic melt

    Science.gov (United States)

    Ni, Huaiwei; Xu, Zhengjiu; Zhang, Youxue

    2013-02-01

    H2O diffusion in a haploandesitic melt (a high-silica and Fe-free andesitic melt, NBO/T = 0.173) has been investigated at 1 GPa in a piston-cylinder apparatus. We adopted a double diffusion couple technique, in which one couple was composed of a nominally anhydrous glass with 0.01 wt.% H2O and a hydrous glass with 5.7 wt.% H2O, and the other contained the same nominally anhydrous glass and a hydrous glass with 3.3 wt.% H2O. Both couples were annealed in a single experimental run and hence experienced exactly the same P-T history, which is crucial for constraining the dependence of H2O diffusivity on water content. H2O concentration profiles were measured by both Fourier transform infrared (FTIR) microspectroscopy and confocal Raman microspectroscopy. Nearly identical profiles were obtained from Raman and FTIR methods for profile length >1 mm (produced at 1619-1842 K). By contrast, for profile lengths <100 μm (produced at 668-768 K), FTIR profiles show marked convolution effects compared to Raman profiles. A comparison between the short FTIR and Raman profiles indicates that the real spatial resolution (FWHM) of FTIR analyses is about 28 μm for a 7 μm wide aperture on ˜200 μm thick glasses. While the short profiles are not reliable for quantitative modeling, the long diffusion profiles at superliquidus temperatures can be fit reasonably well by a diffusivity model previously developed for felsic melts, in which molecular H2O (H2Om) is the only diffusive species and its diffusivity (D) increases exponentially with the content of total water (H2Ot). However, there is noticeable misfit of the data at low H2Ot concentrations, suggesting that OH diffusivity (DOH) cannot be neglected in this andesitic melt at high temperatures and low water contents. We hence develop a new fitting procedure that simultaneously fits both diffusion profiles from a single experimental run and accounts for the roles of both OH and H2Om diffusion. With this procedure, DOH/D is constrained

  4. Final report on the small-scale vapor-explosion experiments using a molten NaCl--H2O system

    International Nuclear Information System (INIS)

    Anderson, R.P.; Bova, L.

    1976-04-01

    Vapor explosions were produced by injecting small quantities of water into a container filled with molten NaCl. Minimum explosion efficiencies, as evaluated from reaction-impulse measurements, were relatively large. Subsurface movies showed that the explosions resulted from a two-step sequence: an initial bulk-mixing phase in which the two liquids intermix on a large scale, but remain locally separated by an insulating gas-vapor layer; and a second step, immediately following breakdown of the gas layer, during which the two liquids locally fragment, intermix, and pressurize very rapidly. The experimental results were compared with various mechanistic models that had been proposed to explain vapor explosions. Early models seemed inconsistent with the results. More recent theories suggest that vapor explosions may be caused by a nucleation limit or by dynamic mixing combined with high surface-heat-transfer rates. Both types of models are consistent with the results

  5. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  6. Hydrated aluminophosphate (AlPO/sub 4/. 1. 5H/sub 2/O) with PO/sub 4/, AlO/sub 4/ and AlO/sub 4/(H/sub 2/O)/sub 2/ groups and encapsulated water

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, J.J.; Smith, J.V.

    1986-09-15

    Aluminium phosphate hydrate, AlPO/sub 4/ /sub ./ 1.5H/sub 2/O, M/sub r/=148.98, orthorhombic, Pbca, a=19.3525(13), b=9.7272(7), c=9.7621(8) A, V=1837.7(1) A/sup 3/, Z=16, D/sub x/=2.15 g cm/sup -3/, lambda(CuK..cap alpha..)=1.5418 A, ..mu..=68.2 cm/sup -1/, F(000)=1200, Tproportional to 295 K, R=0.033 for 1530 diffractions. A 4-connected framework contains PO/sub 4/ tetrahedra interposed between AlO/sub 4/ tetrahedra and AlO/sub 4/(H/sub 2/O)/sub 2/ octahedra at the nodes of cross-linked alternate 6/sup 3/ and 4.8/sup 2/ nets. A two-dimensional channel system, limited by 8-rings, lies between adjacent 6/sup 3/ nets. One H/sub 2/O of each octahedron lies in a 6-ring, and the other forms a continuous chain with a third H/sub 2/O which is held in place only by hydrogen bonds.

  7. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2 -H2 O into Fuels.

    Science.gov (United States)

    Zhang, Li; Kong, Guoguo; Meng, Yaping; Tian, Jinshu; Zhang, Lijie; Wan, Shaolong; Lin, Jingdong; Wang, Yong

    2017-12-08

    Photocatalytic CO 2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO 2 in the conversion of CO 2 -H 2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO 2 leads to activity 15 times higher (T=358 K; ca. 99 % CH 4 selectivity) in the conversion of CO 2 -H 2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO 2 by hydrogen atoms generated in situ by photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  9. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  10. Efficient Visible-Light-Driven Z-Scheme Overall Water Splitting Using a MgTa2O(6-x)N(y)/TaON Heterostructure Photocatalyst for H2 Evolution.

    Science.gov (United States)

    Chen, Shanshan; Qi, Yu; Hisatomi, Takashi; Ding, Qian; Asai, Tomohiro; Li, Zheng; Ma, Su Su Khine; Zhang, Fuxiang; Domen, Kazunari; Li, Can

    2015-07-13

    An (oxy)nitride-based heterostructure for powdered Z-scheme overall water splitting is presented. Compared with the single MgTa2O(6-x)N(y) or TaON photocatalyst, a MgTa2O(6-x)N(y)/TaON heterostructure fabricated by a simple one-pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt-loaded MgTa2O(6-x)N(y)/TaON as a H2-evolving photocatalyst, a Z-scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8% at 420 nm was constructed (PtO(x)-WO3 and IO3(-)/I(-) pairs were used as an O2-evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt-TaON or Pt-MgTa2O(6-x)N)y) as a H2-evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z-scheme overall water splitting systems ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  12. Effects of oxidation-nitridation in the presence of water vapor on ASTM A335 P92 steel using SEM-EDS and XPS characterization techniques

    Science.gov (United States)

    Orozco, J. C.; Kafarov, V.; Y Peña, D.; Alviz, A.

    2017-12-01

    This research studies the physical and chemical changes in steel ASTM A335 P92, produced from a typical refinery corrosion environment. The environment evaluated was oxidation-nitridation with the presence of water vapor. In this study five (5) exposure times were selected: 1, 20, 50, 100 and 200 hours; As well as two (2) analysis temperatures: 450 and 550°C. The working pressure used was one (1) atmosphere. Bearing in mind the kinetic study, the behaviour shown in ASTM A335 P92 steel describes an accelerated growth until 50 hours, after this time growth is less. For the tests carried out at 450°C, the kinetic constant was 2x10-8g2mm-4h-1, as well as for 550°C the calculated kinetic constant was 3.1×10-7g2mm-4h-1 through the SEM-EDS characterization techniques, it was possible to appreciate a good adhesion and homogeneity of the layers formed on the metal matrix until a time of exposure of 100 hours at 450 and 550°C, different from that evidenced to 200 hours of exposure where the layer formed near to the substrate showed detachment, this is attributed to the formation of hydroxides product of water vapor. Among the results obtained are the elemental composition, the presence of nitrides such as Si3N4, also NSiO2 and NSi2O, molybdenum oxides: MoO2 and MoO3 and iron oxides: FeO and Fe2O3 can be evidenced.

  13. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  14. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    Science.gov (United States)

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  15. Crystal and molecular structure of the coordination compounds of Er3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL21(NO3)2]2[Er(NO3)2(H2O)5]0.333(NO3)2.333 · 2.833H2O and its ethyl substituted derivative [ErL22(NO3)2][Er(NO3)5]0.5 · 0.5H2O

    International Nuclear Information System (INIS)

    Polyakova, I. N.; Baulin, V. E.; Ivanova, I. S.; Pyatova, E. N.; Sergienko, V. S.; Tsivadze, A. Yu.

    2015-01-01

    The coordination compounds of Er 3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL 2 1 (NO 3 ) 2 ] 2 [Er(NO 3 ) 2 (H 2 O) 5 ] 0.333 (NO 3 ) 2.333 · 2.833H 2 O (I) and its ethyl substituted derivative [ErL 2 2 (NO 3 ) 2 ][Er(NO 3 ) 5 ] 0.5 · 0.5H 2 O (II) are synthesized and their crystal structures are studied. I and II contain [ErL 2 (NO 3 ) 2 ] + complex cations of identical composition and close structure. The eight-vertex polyhedron of the Er atom in the shape of a distorted octahedron with two split trans vertices is formed by the O atoms of the phosphoryl groups of L ligands and nitrate anions. L ligands close nine-membered metallocycles. The structures contain spacious channels which are populated differently, namely, by disordered [Er(NO 3 ) 2 (H 2 O) 5 ] + complex cations, NO 3 − anions, and crystallization water molecules in I and disordered [Er(NO 3 ) 5 ] 2− complex anions and crystallization water molecules in II. The IR spectra of I and II are studied

  16. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichi; Singh, Prashant C. [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nihonyanagi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, Shoichi [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Chemistry, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan)

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  17. Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O′stannate(IV

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2015-05-01

    Full Text Available The tin(IV atom in the complex anion of the title salt, (C4H7N2[Sn(C2O4Cl3(H2O], is in a distorted octahedral coordination environment defined by three chlorido ligands, an oxygen atom from a water molecule and two oxygen atoms from a chelating oxalate anion. The organic cation is linked through a bifurcated N—H...O hydrogen bond to the free oxygen atoms of the oxalate ligand of the complex [Sn(H2OCl3(C2O4]− anion. Neighbouring stannate(IV anions are linked through O—H...O hydrogen bonds involving the water molecule and the two non-coordinating oxalate oxygen atoms. In combination with additional N—H...Cl hydrogen bonds between cations and anions, a three-dimensional network is spanned.

  18. Preparation of acid salt M(HPO4)2.nH2 O thin films

    International Nuclear Information System (INIS)

    Kassem, M.

    1998-01-01

    The layered crystalline powders of Titanium Phosphate with the formula Ti(HPO 4 ) 2 .nH 2 O (phase α when n=2, phase γ when n=1) were prepared by reaction of titanium three chloride with phosphoric acid under specific thermal conditions. Starting from these powders thin films have been prepared using some methods such as: Thermal evaporation, sol-gel and vapor phase transport. The results of X-ray diffraction and differential thermal deferential analysis show that the temperature plays an important role in the determination of the crystalline phases and the phase transition of the prepared films. (author). 7 refs

  19. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  20. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    Science.gov (United States)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  1. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    Science.gov (United States)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  2. Alanine water complexes.

    Science.gov (United States)

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  3. Superconductivity in Na{sub 1-x}CoO{sub 2}.yH{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinkiy, Philipp; Alff, Lambert [Institute for Materials Science, TU Darmstadt (Germany); Fritsch, Ingo; Habermeier, Hanns-Ulrich [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig (Germany)

    2010-07-01

    Sodium cobaltate (Na{sub 1-x}CoO{sub 2}) is a novel material with thermoelectric behavior, charge and spin ordered states dependent on the sodium content in the composition. A superconducting phase was found in water intercalated sodium cobaltate (Na{sub 1-x}CoO{sub 2}.yH{sub 2}O) with x=0.65-0.7 and y=0.9-1.3. The pairing state is still under debate, but there are some indications for a spin-triplet or p-wave superconducting pairing state. First films of Na{sub 1-x}CoO{sub 2}.yH{sub 2}O with a superconducting transition temperature near 5 K have been successfully grown. Here we report on thin films of Na{sub 1-x}CoO{sub 2} grown by pulsed laser deposition technique. The deposition parameters, sodium deintercalation and water intercalation conditions are tuned in order to obtain the superconducting phase. The instability of this phase might be an indication for triplet superconductivity, which is known to be affected strongly by impurities and defects.This observation is in agreement with the fact that so far also no superconducting thin films of the most famous triplet superconductor Sr{sub 2}RuO{sub 4} have been reported.

  4. Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics

    Science.gov (United States)

    Sohbatzadeh, F.; Soltani, H.

    2018-04-01

    The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.

  5. Aggregation and ecotoxicity of CeO{sub 2} nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoecke, Karen, E-mail: karen.vanhoecke@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, B-9000 Gent (Belgium); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, B-9000 Gent (Belgium); Van der Meeren, Paul [Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Smagghe, Guy [Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, B-9000 Gent (Belgium)

    2011-04-15

    The influence of pH (6.0-9.0), natural organic matter (NOM) (0-10 mg C/L) and ionic strength (IS) (1.7-40 mM) on 14 nm CeO{sub 2} NP aggregation and ecotoxicity towards the alga Pseudokirchneriella subcapitata was assessed following a central composite design. Mean NP aggregate sizes ranged between 200 and 10000 nm. Increasing pH and IS enhanced aggregation, while increasing NOM decreased mean aggregate sizes. The 48 h-E{sub r}C20s ranged between 4.7 and 395.8 mg CeO{sub 2}/L. An equation for predicting the 48 h-E{sub r}C20 (48 h-E{sub r}C20 = -1626.4 x (pH) + 109.45 x (pH){sup 2} + 116.49 x ([NOM]) - 14.317 x (pH) x ([NOM]) + 6007.2) was developed. In a validation study with natural waters the predicted 48 h-E{sub r}C20 was a factor 1.08-2.57 lower compared to the experimental values. - Research highlights: > Algal ecotoxicity of CeO{sub 2} nanoparticles (NPs) depends on pH and NOM concentration. > Increasing pH and ionic strength enhanced CeO{sub 2} nanoparticle aggregation. > Increasing NOM concentration decreased mean CeO{sub 2} aggregate size. > An empirical model to predict 48 h-E{sub r}C{sub 20} values of CeO{sub 2} NPs was developed. > The model was validated using natural surface waters with various characteristics. - CeO{sub 2} nanoparticle aggregation and toxicity depend on abiotic factors such as pH, NOM and IS. Effect concentrations can be predicted as a function of pH and NOM.

  6. Water Transport in MgSO4·7H2O during Dehydration in View of Thermal Storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Beckert, S.; Pel, L.; Stallmach, F.; Steiger, M.; Adan, O.C.G.

    2015-01-01

    The water phases in a MgSO4·7H2O crystal during heating were studied with the help of NMR. The thermogravimetric analysis (TGA) data showed that the heating rate has a strong effect on the dehydration process. NMR experiments showed that pore water, i.e., an aqueous solution of MgSO4, was produced

  7. Effect of hydration on the amide I band in the binary solvents dioxane-D2O and dioxane-H2O

    International Nuclear Information System (INIS)

    Kobayashi, M.; Kobayashi, M.

    1980-01-01

    Hydration of amides in aqueous solutions has been studied by measuring the infrared spectra of amides (benzamide, p-methoxybenzamide, and ropionamide) in dioxane-D 2 O and dioxane-H 2 O mixtures. The absorption due to the C=O stretching (or amide I band) exhibited a very remarkable red shift accompanied by a characteristic change of the band shape as the water content in the medium increased. The spectral change is attributed to the change of the hydration state at the carbonyl oxygen. In the aqueous mixtures, amide molecules participate in an equilibrium among various states of hydration. The weighted mean frequency of the ν/sub C = O/ absorption, anti ν/sub C = O/, varied in proportion to the water contained in the medium. The difference between the anti ν/sub C = O/ value in pure water and that in pure dioxane,Δ anti ν, was used as a measure of the maximum degree of hydration. It was larger for propionamide than for the aromatic amides, suggesting that the steric effect of the substituents is of major importance in hydration. The isotope effect, Δ anti ν/sub D 2 O//Δ anti ν/sub H 2 O/, in the range from 1.4 to 1.6 for all cases examined, indicated that stronger hydration of amides occurred with D 2 O than with H 2 O

  8. Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS2 (pyrite) on TiO2

    International Nuclear Information System (INIS)

    Ennaoui, A.; Fiechter, S.; Tributsch, H.; Giersig, M.; Vogel, R.; Weller, H.

    1992-01-01

    Ultrathin (10 to 20 nm thick), polycrystalline films of FeS 2 (pyrite) were grown on TiO 2 (anatase) by chemical vapor deposition. The FeS 2 films were characterized using optical absorption and high-resolution electron microscopy. Photoelectrochemical solar cells, using TiO 2 (anatase) coated with FeS 2 ultrathin films, generated high open-circuit photo-voltages, of up to 600 mV, compared with a single crystal of pyrite electrode (200 mV). The photoelectrochemical behavior shows a strong dependence of photovoltage and photocurrent on the pH of the solution. This paper reports that it is explained by electron injection from the conduction band of FeS 2 to the conduction band of TiO 2 . Regeneration of holes is taking place by electron transfer from the redox system in the electrolyte

  9. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  10. A Facile, Nonreactive Hydrogen Peroxide (H2O2) Detection Method Enabled by Ion Chromatography with UV Detector.

    Science.gov (United States)

    Song, Mingrui; Wang, Junli; Chen, Baiyang; Wang, Lei

    2017-11-07

    Hydrogen peroxide (H 2 O 2 ) is ubiquitous in the natural environment, and it is now widely used for pollutant control in water and wastewater treatment processes. However, current analytical methods for H 2 O 2 inevitably require reactions between H 2 O 2 and other reactants to yield signals and are thus likely subjective to the interferences of coexisting colored, oxidative, and reductive compounds. In order to overcome these barriers, we herein for the first time propose to analyze H 2 O 2 by ion chromatography (IC) using an ultraviolet (UV) detector. The proposal is based on two principles: first, that H 2 O 2 can deprotonate to hydroperoxyl ion (HO 2 - ) when eluent pH is higher than the acid-dissociation coefficient of H 2 O 2 (pK a = 11.6); and second, that after separation from other compounds via IC column, H 2 O 2 can be quantified by a UV detector. Under favorable operating conditions, this method has successfully achieved acceptable recoveries (>91%) of H 2 O 2 dosed to ultrapure and natural waters, a calibration curve with R 2 > 0.99 for a wide range of H 2 O 2 concentrations from 0.1 to 50 mg/L and a method detection limit of 0.027 mg/L. In addition, this approach was shown to be capable of distinguishing H 2 O 2 from anions (e.g., fluoride and chloride) and organics (e.g., glycolate) and monochloramine, suggesting that it is insensitive to many neighboring compounds as long as they do not react quickly with H 2 O 2 . Hence, this study proves the combination of IC and UV detector a facile and reliable method for H 2 O 2 measurement.

  11. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    Science.gov (United States)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  12. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  13. Solar processing of CO2 and H2O, routes for solar fuels

    International Nuclear Information System (INIS)

    Flammant, G.; Abanades, St.

    2008-01-01

    Complete text of publication follows: Concentrated solar energy provides heat in the temperature range 200 C - 3000 C for concentration ratio variation from 10 to 10 000 (three orders of magnitude). Consequently, solar-driven thermochemical processes may be proposed to produce hydrogen from water decomposition and to reduce carbon dioxide. This lecture gives an overview of such processes. High temperature thermochemical cycles for hydrogen production by water splitting are currently studied at PROMES lab, particularly 2-step and 3-step cycles based on the following reaction scheme, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + H 2 O → MOox + H 2 (low temperature non solar step). Volatile and non-volatile oxide cycles are developed from the chemical and the engineering points of view. A similar reaction scheme may be proposed to reduce carbon dioxide with concentrated solar energy (Fig. 1), it comes, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + CO 2 → MOox + CO (low temperature non solar step). As a result gas mixtures such as CO 2 /H 2 and CO/H 2 may be produced by solar energy. Such mixtures are the reactants for liquid fuels production (solar fuels)

  14. The Planck-Benzinger thermal work function in the condensation of water vapor

    Science.gov (United States)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  15. Synthesis of highly efficient Mn{sub 2}O{sub 3} catalysts for CO oxidation derived from Mn-MIL-100

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Cui, Lifeng, E-mail: lifeng.cui@gmail.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-07-31

    Highlights: • The morphology of porous Mn{sub 2}O{sub 3} cubes was inherited from Mn-MIL-100 template. • Mn{sub 2}O{sub 3} obtained at calcined temperature of 700 °C displayed high activity. • Enhanced activity is attributed to surface active oxygen, and reduction behavior. - Abstract: In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn{sub 2}O{sub 3} cubes through calcination with air at different temperature. The catalysts were characterized by N{sub 2} adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H{sub 2}-temperature program reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn{sub 2}O{sub 3} catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn{sub 2}O{sub 3} catalyst. Mn{sub 2}O{sub 3} catalyst obtained by calcined at 700 °C (Mn{sub 2}O{sub 3}-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 98}) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn{sub 2}O{sub 3}-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  16. YCu(TeO32(NO3(H2O3: a novel layered tellurite

    Directory of Open Access Journals (Sweden)

    Stuart J. Mills

    2016-08-01

    Full Text Available A new hydrated yttrium copper tellurite nitrate, yttrium(III copper(II bis[trioxidotellurate(IV] nitrate trihydrate, has been synthesized hydrothermally in a Teflon-lined autoclave and structurally determined using synchrotron radiation. The new phase is the first example containing yttrium, copper and tellurium in one structure. Its crystal structure is unique, with relatively strongly bound layers extending parallel to (020, defined by YO8, CuO4 and TeO3 polyhedra, while the NO3− anions and one third of the water molecules lie between those layers. The structural unit consists of [Cu2(TeO34]4− loop-branched chains of {Cu...Te...Cu...Te} squares running parallel to [001], which are linked further into layers only through Y(O,H2O8 polyhedra. Weak `secondary' Te bonds and O—H...O hydrogen-bonding interactions, involving water molecules and layer O atoms, link the layers and interlayer species. IR spectroscopic data are also presented.

  17. Using H2O2 as oxidant in leaching of uranium ores. The new research on the reaction of H2O2 with Fe2+

    International Nuclear Information System (INIS)

    Gao Xizhen

    1997-05-01

    The new research on the reaction of H 2 O 2 with Fe 2+ has been studied. Through determining the electric potential, pH and O 2 release during the mutual titration between H 2 O 2 solution and FeSO 4 solution, deduced the chemical equations of H 2 O 2 (without free hydroxyl) oxidizing FeSO 4 and Fe 2 (SO 4 ) 3 oxidizing H 2 O 2 . The research results show that acid is a catalytic agent for decomposing H 2 O 2 to be O 2 and H 2 O besides iron ions. The maximum oxidizing potential is up to about 640 mV. While using H 2 O 2 as an oxidant in uranium heap leaching and in-situ leaching, controlling electric potential can be regarded as a method for adjusting the feeding speed of H 2 O 2 to keep the electric potential below 500 mV, thus the H 2 O 2 decomposition can be reduced. (13 refs., 3 tabs., 1 fig.)

  18. Constraints on water vapor and sulfur dioxide at Ceres: Exploiting the sensitivity of the Hubble Space Telescope

    Science.gov (United States)

    Roth, Lorenz

    2018-05-01

    Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.

  19. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy.H2O]2.H2O

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu Suling; Tian Liang; Bai Jihai

    2008-01-01

    A new binuclear samarium (III) complex [Sm(p-BrBA) 3 bipy.H 2 O] 2 .H 2 O (p-BrBA = p-bromobenzoic acid; bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analysis, UV, IR, molar conductance and TG-DTG techniques. The structure of the complex was established by single crystal X-ray diffraction. It crystallizes in triclinic, space group P1-bar with a = 8.2476(7) A, b = 13.3483(10) A, c = 15.9035(13) A, α 73.9160(10) o , β = 78.9630(10) o , γ = 74.4770(10) o , Z = 1, D c 1.947 g cm -3 , F(000) = 910. The carboxylic groups are bonded to the samarium ion in two modes: bidentate bridging, monodentate. Each center Sm 3+ ion is eight-coordinated by one 2,2'-bipyridine molecular, four bidentate bridging and a monodentate carboxylic group, as well as one water molecular. The coordination polyhedron around each Sm 3+ ion can be described as bi-capped triangular prism geometry. The thermal decomposition behavior of the title complex in a static air atmosphere was investigated by TG-DTG and IR techniques

  20. Sequencing treatment of industrial wastewater with ultraviolet/H2O2 advanced oxidation and moving bed bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Mehrabani Ardekani

    2015-01-01

    Full Text Available Aims: The main purpose of this study was to determine the efficiency of a sequencing treatment including ultraviolet (UV/H 2 O 2 oxidation followed by a moving bed bioreactor (MBBR. Materials and Methods: Effect of solution pH, reaction time, and H 2 O 2 concentration were investigated for an industrial wastewater sample. The effluent of the advanced oxidation processes unit was introduced to the MBBR operated for three hydraulic retention times of 4, 8, and 12 h. Results: The optimum condition for industrial wastewater treatment via advanced oxidation was solution pH: 7, H 2 O 2 dose: 1000 mg/L and 90 min reaction time. These conditions led to 74.68% chemical oxygen demand (COD removal and 66.15% biochemical oxygen demand (BOD 5 removal from presedimentation step effluent that initially had COD and BOD 5 contents of 4,400 and 1,950 mg/L, respectively. Conclusion: Combination of UV/H 2 O 2 advanced oxidation with MBBR could result in effluents that meet water quality standards for discharge to receiving waters.

  1. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  2. ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water

    Directory of Open Access Journals (Sweden)

    Mehdi Rimaz

    2015-09-01

    Full Text Available A new and simple synthetic methodology for the preparation of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H-diones and 3-aryl-5-oxo-7-thioxo-7,8-dihydropyrimido[4,5-c]pyridazin-5(6H-ones by a one-pot three component reaction of barbituric acid or thiobarbituric acid with arylglyoxals in the presence of catalytic amount of ZrOCl2∙8H2O as green Lewis acid and hydrazine hydrate at ambient temperature in water was reported. All of these pyrimidopyridazines derivatives have one clustered water molecule in their molecular structure. The use of ZrOCl2∙8H2O catalyst is feasible because of its easy availability, convenient handling, high stability, simple recovery, reusability, good activity and eco-friendly.

  3. Theoretical study of the interaction of N2 with water molecules. (H2O)/sub n/:N2, n = 1--8

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-01-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H 2 O molecule with N 2 . The potential energy surface for H 2 O:N 2 is found to have a minimum corresponding to a HOH xxx N 2 structure with a weak ( -1 ) hydrogen bond. A second, less stable, configuration corresponding to a H 2 O xxx N 2 structure with N 2 bonded side on to the oxygen of H 2 O was found to be either a minimum or a saddle point in the potential energy surface depending on the level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H 2 O molecules with N 2 . Two types of clusters, one containing only HOH xxx N 2 interactions and the other containing both HOH xxxN 2 and H 2 O xxx N 2 interactions, were investigated for [N 2 :(H 2 O)/sub n/, n = 2--8

  4. Hydrogen-permeable TiO{sub 2}/SiO{sub 2} membranes formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heung Yong; Nam, Suk Woo; Yoon, Sung Pil [Korea Institute of Science and Technology, Seoul (Korea, Republic of)] [and others

    1994-12-31

    Thin films of TiO{sub 2}/SiO{sub 2} were deposited on the inner surface of the porous support tubes by the decomposition of tetraisopropyl titanate (TIPT) and tetraethyl orthosilicate (TEOS) at atmospheric pressure. Dense and hydrogen-permeable membranes were formed at 400-600{degrees}C. The permeation rate of H{sub 2} through the membrane at 600{degrees}C was about 0.3 cm{sup 3}(STP)/min-cm{sup 2}-atm and H{sub 2}/N{sub 2} permeation ratio was above 1000. The permeation properties of the membranes were investigated at various deposition temperatures and TIPT/TEOS concentrations. Decomposition of TIPT alone at temperatures above 400{degrees}C produced porous crystalline TiO{sub 2} films which were not H{sub 2}-selective. Decomposition of TEOS, however produced H{sub 2}-permeable SiO{sub 2} films at 400-600{degrees}C but film deposition rate was very low. Addition of TIPT to the TEOS stream significantly accelerated the deposition rate and produced highly H{sub 2}-selective films. Increasing the TEPT/TEOS ratios increased the deposition rate. The TiO{sub 2}/SiO{sub 2} membranes have the permeation properties comparable to those of SiO{sub 2} membranes. The TiO{sub 2}/SiO{sub 2} membranes were stable and did not show significant densification during the treatment at high temperature.

  5. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  6. Ion-Molecule Reaction of Gas-Phase Chromium Oxyanions: CrxOyHz- + H2O

    International Nuclear Information System (INIS)

    Gianotto, Anita Kay; Hodges, Brittany DM; Benson, Michael Timothy; Harrington, Peter Boves; Appelhans, Anthony David; Olson, John Eric; Groenewold, Gary Steven

    2003-01-01

    Chromium oxyanions having the general formula CrxOyHz- play a key role in many industrial, environmental, and analytical processes, which motivated investigations of their intrinsic reactivity. Reactions with water are perhaps the most significant, and were studied by generating CrxOyHz- in the gas phase using a quadrupole ion trap secondary ion mass spectrometer. Of the ions in the Cr1OyHz envelope (y = 2, 3, 4; z = 0, 1), only CrO2- was observed to react with H2O, producing the hydrated CrO3H2- at a slow rate (∼0.07% of the ion-molecule collision constant at 310 K). CrO3-, CrO4-, and CrO4H- were unreactive. In contrast, Cr2O4-, Cr2O5-, and Cr2O5H2- displayed a considerable tendency to react with H2O. Cr2O4- underwent sequential reactions with H2O, initially producing Cr2O5H2- at a rate that was ∼7% efficient. Cr2O5H2- then reacted with a second H2O by addition to form Cr2O6H4- (1.8% efficient) and by OH abstraction to form Cr2O6H3- (0.6% efficient). The reactions of Cr2O5- were similar to those of Cr2O5H2-: Cr2O5- underwent addition to form Cr2O6H2- (3% efficient) and OH abstraction to form Cr2O6H- (<1% efficient). By comparison, Cr2O6- was unreactive with H2O, and in fact, no further H2O addition could be observed for any of the Cr2O6Hz- anions. Hartree-Fock ab initio calculations showed that reactive CrxOyHz- species underwent nucleophilic attack by the incoming H2O molecules, which produced an initially formed adduct in which the water O was bound to a Cr center. The experimental and computational studies suggested that Cr2OyHz- species that have bi- or tricoordinated Cr centers are susceptible to attack by H2O; however, when the metal becomes tetracoordinate, reactivity stops. For the Cr2OyHz- anions the lowest energy structures all contained rhombic Cr2O2 rings with pendant O atoms and/or OH groups. The initially formed [Cr2Oy- + H2O] adducts underwent H rearrangement to a gem O atom to produce stable dihydroxy structures. The calculations indicated that

  7. Atmospheric Hydrodeoxygenation of Biomass Fast Pyrolysis Vapor by MoO3

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jensen, Peter Arendt; Le, Duy Michael

    2016-01-01

    was not significant at temperatures below 400 °C. At 450 °C catalyst temperature and 93 vol % H2 concentration, the wood pyrolysis vapor was more active toward cracking forming gas species instead of performing the desired HDO forming hydrocarbons. The lignin pyrolysis vapor was more resistant to cracking and yielded...... 16.2 wt %daf organic liquid, while achieving 52% degree of deoxygenation at 450 °C catalyst temperature under 89 vol % H2 concentration. The corresponding energy recovery in the liquid phase was 23.5%. The spent catalyst showed two deactivation routes, coke formation and reduction of MoO3 to MoO2......, which is inactive in HDO. The catalyst experienced severe reduction at temperatures higher than 400 °C. The yields of coke relative to the fed biomass were in the range of 3–4 wt %daf for lignin and 5–6 wt %daf for wood. Compared to untreated bio-oil the upgraded lignin organic liquid showed improved...

  8. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    Science.gov (United States)

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  9. Combination of sunlight irradiated oxidative processes for landfill leachate: heterogeneous catalysis (TiO2 versus homogeneous catalysis (H2O2

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Cobra Guimarães

    2013-04-01

    Full Text Available The objective of this work was to study the treatment of landfill leachate liquid in nature, after the use of a combination of advanced oxidation processes. More specifically, it compared heterogeneous catalysis with TiO2 to homogeneous catalysis with H2O2, both under photo-irradiated sunlight. The liquid used for the study was the leachate from the landfill of the city of Cachoeira Paulista, São Paulo State, Brazil. The experiments were conducted in a semi-batch reactor open to the absorption of solar UV radiation, with 120 min reaction time. The factors and their respective levels (-1, 0 and 1 were distributed in a experimental design 24-1 with duplicate and triplicate in the central point, resulting in an array with 19 treatment trials. The studied factors in comparing the two catalytic processes were: liquid leachate dilution, TiO2 concentration on the reactor plate, the H2O2 amount and pH level. The leachate had low photo-catalytic degradability, with NOPC reductions ranging from 1% to a maximum of 24.9%. When considering each factor alone, neither homogeneous catalysis with H2O2, nor heterogeneous catalysis with TiO2, could degrade the percolated liquid without significant reductions (5% level in total NOPC. On the other hand, the combined use of homogenous catalysis with H2O2 and heterogeneous catalysis H2O2 resulted in the greatest reductions in NOPC. The optimum condition for the NOPC reduction was obtained at pH 7, dilution of percolated:water at 1:1 (v v-1 rate; excess of 12.5% H2O2 and coating plate reactor with 0.025 g cm-2 TiO2.

  10. The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa

    Science.gov (United States)

    Tollan, Peter M. E.; Smith, Rachel; O'Neill, Hugh St. C.; Hermann, Jörg

    2017-12-01

    The water solubility in olivine ({C}_{{H}_2O}) has been investigated at 1050 °C and 3 GPa as a function of water activity ({a}_{{H}_2O}) at subsolidus conditions in the piston-cylinder apparatus, with {a}_{{H}_2O} varied using H2O-NaCl fluids. Four sets of experiments were conducted to constrain the effect of {a}_{{H}_2O} on the four main substitution mechanisms. The experiments were designed to grow olivine in situ and thus achieve global equilibrium (G-type), as opposed to hydroxylating olivine with a pre-existing point-defect structure and impurity content (M-type). Olivine grains from the experiments were analysed with polarised and unpolarised FTIR spectroscopy, and where necessary, the spectra have been deconvoluted to quantify the contribution of each substitution mechanism. Olivine buffered with magnesiowüstite produced absorbance bands at high wavenumbers ranging from 3566 to 3612 cm-1. About 50% of the total absorbance was found parallel to the a-axis, 30% parallel to the b-axis and 20% parallel to the c-axis. The total absorbance and hence water concentration in olivine follows the relationship of {C}_{{H}_2O}∝ {a_{{H}_2O}}^2 , indicating that the investigated defect must involve four H atoms substituting for one Si atom (labelled as [Si]). Forsterite buffered with enstatite produced an absorbance band exclusively aligned parallel the c-axis at 3160 cm-1. The band position, polarisation and observed {C}_{{H}_2O}∝ {a}_{{H}_2O} are consistent with two H substituting for one Mg (labelled as [Mg]). Ti-doped, enstatite-buffered olivine displays absorption bands, and polarisation typical of Ti-clinohumite point defects where two H on the Si-site are charge-balanced by one Ti on a Mg-site (labelled as [Ti]). This is further supported by {C}_{{H}_2O}∝ {a}_{{H}_2O} and a 1:1 relationship of molar H2O and TiO2 in these experiments. Sc-doped, enstatite-buffered experiments display a main absorption band at 3355 cm-1 with {C}_{{H}_2O}∝ {a_{{H}_2O}}^{0

  11. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  12. Removal of Malachite Green dye from aqueous solution using MnFe2O4/Al2O3 Nanophotocatalyst by UV/H2O2 process

    Directory of Open Access Journals (Sweden)

    Davood Kaviani

    2016-04-01

    Full Text Available Background & Aims of the Study: Malachite Green (MG is the most commonly used substance for dying cotton, food & pharmacy industries, paper, leather and silk. On inhalation it can cause difficult breathing, while on the direct contact it may cause permanent injury of the eyes of human and animals, burning sensations, nausea, vomiting, profuse sweating, mental confusion and methemoglobinemia; also it can causes cancer in livers. The aim of this study is  the removal of Malachite Green (MG dye from aqueous solutions, using MnFe2O4/Al2O3 nanophotocatalyst by UV/H2O2 process which was used as a low cost method. Materials & Methods: In this research, photocatalytic decomposition of malachite green in water was done by nanocatalyst MnFe2O4/Al2O3 in discontinuous photoreactor under UV light and the injection of H2O2. In order to identify and analyze the provided catalyst, SEM image and XRD diffraction pattern were used. The effect of operational factors in the photocatalytic decomposition of the desired pollutant such as pH, the initial thickness of the dye, the thickness of H2O2 and the quantity of the catalyst were investigated. Results: The finding showed that the right conditions for the elimination of the pollutant included pH equals 4, the initial thickness of the dye being 10 ppm, the thickness of H2O2 being 250ppm, the amount of catalyst being 50mg, the Correlation Coefficient being 0.998 and the dye removal was 94 percent at the end of the experiment. the reaction of Malachite green decomposition was in terms of kinetics investigated through integral method as well; also it showed the kinetic reaction is the first type and the constant speed rate is K=0.047 min-1 . Conclusions: According to the results, because of the complexity of dye structure, biological system was not able to remove the dye as efficient as hybrid system of advanced oxidation processes UV/H2O2 with nanophotocatalyst as an efficient way to remove the Malachite green dye

  13. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  14. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  15. The influence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3

    DEFF Research Database (Denmark)

    Zijlma, G. J.; Jensen, Anker Degn; Johnsson, Jan Erik

    2000-01-01

    Although it is known that both H2O and CO2 reduce the catalytic activity of CaO, the kinetics of NO formation catalysed by CaO are often obtained without the presence of H2O or CO2. In this work, the catalytic activity for NH3 oxidation with three types of calcined limestone was tested under...... fluidised bed combustion conditions by adding H2O (0-12 vol%) and CO2 (0-16 vol%). All three types of limestones are active catalysts for the oxidation of NH3. When water is added the activity decreases sharply and already at 3 vol% water the NH3 conversion is reduced by 50%. When the water addition...... is stopped the water desorbs and the activity is restored. Addition of CO2 did not result in a decrease in the oxidation of NH3. Blocking of the active sites by adsorption of H2O is the main cause of the deactivation. A model with a Langmuir adsorption type was developed and both NO and NH3 exit...

  16. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  17. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  18. Tritiated-water detection with a 2D(γ,n)1H monitor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.

    Tritiated process water is monitored by detecting the D 2 O component via the 2 D(γ,n) 1 H reaction. A probe containing a 1 to 7 mCi 24 Na (15 h) γ-source and six 3 He neutron detectors produces and monitors the 2 D(γ,n) 1 H reaction. A variety of probe configurations were examined for D 2 O detection sensitivity. The corresponding detection limits range from 6 to 280 μL for D 2 O droplets and 1 to 13 μL/cm for D 2 O streams, when 10-minute neutron counting with a 1 mCi γ-source is used. Results from two field applications illustrate the utility of the monitor

  19. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  20. Using H2O2 treatments for the degradation of cyanobacteria and microcystins in a shallow hypertrophic reservoir.

    Science.gov (United States)

    Papadimitriou, Theodoti; Kormas, Konstantinos; Dionysiou, Dionysios D; Laspidou, Chrysi

    2016-11-01

    Toxins produced by cyanobacteria in freshwater ecosystems constitute a serious health risk worldwide for humans that may use the affected water bodies for recreation, drinking water, and/or irrigation. Cyanotoxins have also been deemed responsible for loss of animal life in many places around the world. This paper explores the effect of H 2 O 2 treatments on cyanobacteria and microcystins in natural samples from a hypertrophic reservoir in microcosm experiments. According to the results, cyanobacteria were more easily affected by H 2 O 2 than by other phytoplanktonic groups. This was shown by the increase in the fractions of chlorophyll-a (a proxy for phytoplankton) and chlorophyll-b (a proxy for green algae) over total phytoplankton pigments and the decrease in the fraction of phycocyanin (a proxy for cyanobacteria) over total phytoplankton pigments. Thus, while an overall increase in phytoplankton occurred, a preferential decrease in cyanobacteria was observed with H 2 O 2 treatments over a few hours. Moreover, significant degradation of total microcystins was observed under H 2 O 2 treatments, while more microcystins were degraded when UV radiation was used in combination with H 2 O 2 . The combination of H 2 O 2 and ultraviolet (UV) treatment in natural samples resulted in total microcystin concentrations that were below the World Health Organization limit for safe consumption of drinking water of 1 μg/L. Although further investigation into the effects of H 2 O 2 addition on ecosystem function must be performed, our results show that the application of H 2 O 2 could be a promising method for the degradation of microcystins in reservoirs and the reduction of public health risks related to the occurrence of harmful algal blooms.

  1. The effect of the partial pressure of H2 gas and atomic hydrogen on diamond films deposited using CH3OH/H2O gas

    International Nuclear Information System (INIS)

    Lee, Kwon-Jai; Koh, Jae-Gui; Shin, Jae-Soo; Kwon, Ki-Hong; Lee, Chang-Hee

    2006-01-01

    Diamond films were deposited on Si(100) substrates by hot filament chemical vapor deposition (HFCVD) with a CH 3 OH/H 2 O gas mixture while changing the gas ratio. The films were analyzed with scanning electron microscopy (SEM), Raman spectroscopy, and optical emission spectroscopy (OES). The diamond films were grown with CH 3 OH being 52 % by volume of the gas mixture. The effect of atomic hydrogen on the film was different from that of the CH 4 /H 2 gas mixture. Analysis with OES during film growth indicated that among the thermally dissociated hydrogen radicals, only H α contributed to the etching of graphite.

  2. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  3. CaSeO4-0.625H2O - Water Channel Occupation in a bassanite Related Structure

    Energy Technology Data Exchange (ETDEWEB)

    S Fritz; H Schmidt; I Paschke; O Magdysyuk; R Dinnebier; D Freyer; W Voigt

    2011-12-31

    Calcium selenate subhydrate, CaSeO{sub 4} {center_dot} 0.625H{sub 2}O, was prepared by hydrothermal conversion of CaSeO{sub 4} {center_dot} 2H{sub 2}O at 463 K. From the single crystals obtained in the shape of hexagonal needles, 50-300 {micro}m in length, the crystal structure could be solved in a trigonal unit cell with space group P3{sub 2}21. The cell was confirmed and refined by high-resolution synchrotron powder diffraction. The subhydrate was characterized by thermal analysis and Raman spectroscopy.

  4. Effective Reuse of Electroplating Rinse Wastewater by Combining PAC with H2O2/UV Process.

    Science.gov (United States)

    Yen, Hsing Yuan; Kang, Shyh-Fang; Lin, Chen Pei

    2015-04-01

    This study evaluated the performance of treating electroplating rinse wastewater by powder activated carbon (PAC) adsorption, H2O2/UV oxidation, and their combination to remove organic compounds and heavy metals. The results showed that neither the process of PAC adsorption nor H2O2/UV oxidation could reduce COD to 100 mg/L, as enforced by the Taiwan Environmental Protection Agency. On the other hand, the water sample treated by the combined approach of using PAC (5 g/L) pre-adsorption and H2O2/UV post-oxidation (UV of 64 W, H2O2 of 100 mg/L, oxidation time of 90 min), COD and DOC were reduced to 8.2 mg/L and 3.8 mg/L, respectively. Also, the combined approach reduced heavy metals to meet the effluent standards and to satisfy the in-house water reuse criteria for the electroplating factory. The reaction constant analysis indicated that the reaction proceeded much more rapidly for the combined process. Hence, it is a more efficient, economic and environmentally friendly process.

  5. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    Science.gov (United States)

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  6. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H 2 O 2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H 2 O 2 (MW-H 2 O 2 ) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H 2 O 2 remained and refractory compounds were thus generated with high dosage of H 2 O 2 (0.6 g H 2 O 2 /g total solids (TS), 1.0 g H 2 O 2 /g TS) pretreatment. The residual H 2 O 2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H 2 O 2 at 0.2 g H 2 O 2 /g TS was used in MW-H 2 O 2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H 2 O 2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  7. Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Sung-Ryong; Choudhury, Moinul Haque; Kim, Won-Ho; Kim, Gon-Ho

    2010-01-01

    Plasma polymer coatings were deposited from hexamethyldisiloxane on polyethylene terephthalate (PET) substrates while varying the operating conditions, such as the Ar and O 2 flow rates, at a fixed radio frequency power of 300 W. The water vapor transmission rate (WVTR) of the untreated PET was 54.56 g/m 2 /day and was decreased after depositing the silicon oxide (SiO x ) coatings. The minimum WVTR, 0.47 g/m 2 /day, was observed at Ar and O 2 flow rates of 4 and 20 sccm, respectively, with a coating thickness of 415.44 nm. The intensity of the peaks for the Si-O-Si bending at 800-820 cm -1 and Si-O-Si stretching at 1000-1150 cm -1 varied depending on the Ar and O 2 flow rates. The contact angle of the SiO x coated PET increased as the Ar flow rate was increased from 2 to 8 sccm at a fixed O 2 flow rate of 20 sccm. It decreased gradually as the oxygen flow rate increased from 12 to 28 sccm at a fixed Ar carrier gas flow rate. The examination by atomic force microscopy revealed a correlation of the SiO x morphology and the water vapor barrier performance with the Ar and O 2 flow rates. The roughness of the deposited coatings increased when either the O 2 or Ar flow rate was increased.

  8. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  9. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li 2 O 2 ·H 2 O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li 2 O 2 ·H 2 O content on hydrogen peroxide decay contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system under conditions of experiments conducted has been shown. (paper)

  10. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    Science.gov (United States)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  11. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    RationaleAlthough laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits.MethodsA Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ17O, δ18O, and δ2H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales.ResultsCost-free LIMS for Lasers 2015 enables users to obtain improved δ17O, δ18O, and δ2H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ2HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale.ConclusionsLIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ2H, δ17O, and δ18O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits

  12. Adsorption and decomposition of H{sub 2}O on cobalt surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, F.F.; Ma, S.H., E-mail: msh8586@163.com; Jiao, Z.Y.; Dai, X.Q.

    2016-10-30

    Highlights: • Molecular water weakly binds to Co surfaces and it is feasible to desorption from the clean surfaces. • The presence of atomic oxygen has a prominent promotion effect on the dissociation of water into hydroxyl, especially on O-covered Co(110) no extra energy is needed to dissociate H{sub 2}O. • Distinctively, the presence of hydroxyl hinders the dissociation of water molecule. • The analysis of microscopic decomposition behaviors demonstrates that molecular water adsorbs dissociatively with the aid of pre-adsorbed oxygen atom, forming OH radicals chemisorbed on the considered surfaces. - Abstract: Water adsorption and dissociation on clean and O-covered Co(100), Co(110) and Co(111) surfaces are studied using the density functional theory calculations. The results indicate that molecular water weakly binds to the surfaces and is feasible to desorption from the clean surfaces. Moreover, the pre-adsorption of O atom increases the binding of water to the surfaces, and prominently decreases the activation barriers of water dissociation into OH, especially on Co(110) surface. In contrast, the activation barrier for OH dissociation is slightly affected in the presence of O atom. Overall, this study reveals that O-assisted H{sub 2}O favorably adsorbs dissociatively, forming OH chemisorbed on the surfaces, which further hinders H{sub 2}O dissociation, and also illustrates the fact that molecular water dissociation is structure-sensitive on metal surfaces.

  13. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  14. Regular in situ measurements of HDO/H216O in the northern and southern hemispherical upper troposphere reveal tropospheric transport processes.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Sanati, Shahrokh; Brenninkmeijer, Carl; Zahn, Andreas

    2013-04-01

    Atmospheric water in form of water vapor and clouds is an enormously crucial trace species. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010), carries huge amounts of latent heat, and is the major source of OH in the troposphere. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. In this context, water-isotopologues (here the isotope ratio HDO/H216O) can be used to study the atmospheric transport of water and in-cloud processes. As H216O and HDO differ in vapor pressure and molecular diffusion, fractionation occurs during condensation and rainout events. For that reason the ratio HDO/H216O preserves information about the transport and condensation history of an air mass. The tunable diode-laser absorption spectrometer ISOWAT was developed for airborne measurements of the water-isotopologue concentrations of H216O and HDO, probing fundamental rovibrational water-absorption lines at around 2.66 μm. Since April 2010 the spectrometer is regularly operated aboard the CARIBIC passenger aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa, Airbus 340-600), which measures ~100 trace gases and aerosol components in the UTLS (9-12 km altitude) on four long-distance flights per month. During several flights across the equator (Africa) or close to the equator (Venezuela and Malaysia) an increase of HDO/H216O from the subtropics towards the tropics was measured (by more than 100 permil) at an altitude of ~12 km. This isotopic gradient can partly be attributed to differences in humidity. In addition there is a humidity independent latitudinal gradient (by more than 50 permil), revealing the strong

  15. CO2 AND O3 ALTER PHOTOSYNTHESIS AND WATER VAPOR EXCHANGE FOR PINUS PONDEROSA NEEDLES

    Science.gov (United States)

    1. Effects of CO2 and O3 were determined for a key component of ecosystem carbon and water cycling: needle gas exchange (photosynthesis, conductance, transpiration and water use efficiency). The measurements were made on Pinus ponderosa seedlings grown in outdoor, sunlit, mesoc...

  16. Water vapor profiling using microwave radiometry

    Science.gov (United States)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  17. Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries.

    Science.gov (United States)

    Tian, Bingbing; Tang, Wei; Su, Chenliang; Li, Ying

    2018-01-10

    Potassium ion batteries (KIBs), because of their low price, may exhibit advantages over lithium ion batteries as potential candidates for large-scale energy storage systems. However, owing to the large ionic radii of K-ions, it is challenging to find a suitable intercalation host for KIBs and thus the rechargeable KIB electrode materials are still largely unexplored. In this work, a reticular V 2 O 5 ·0.6H 2 O xerogel was synthesized via a hydrothermal process as a cathode material for rechargeable KIBs. Compared with the orthorhombic crystalline V 2 O 5 , the hydrated vanadium pentoxide (V 2 O 5 ·0.6H 2 O) exhibits the ability of accommodating larger alkali metal ions of K + because of the enlarged layer space by hosting structural H 2 O molecules in the interlayer. By intercalation of H 2 O into the V 2 O 5 layers, its potassium electrochemical activity is significantly improved. It exhibits an initial discharge capacity of ∼224.4 mA h g -1 and a discharge capacity of ∼103.5 mA h g -1 even after 500 discharge/charge cycles at a current density of 50 mA g -1 , which is much higher than that of the V 2 O 5 electrode without structural water. Meanwhile, X-ray diffraction and X-ray photoelectron spectroscopy combined with energy dispersive spectroscopy techniques are carried out to investigate the potassiation/depotassiation process of the V 2 O 5 ·0.6H 2 O electrodes, which confirmed the potassium intercalation storage mechanisms of this hydrated material. The results demonstrate that the interlayer-spacing-enlarged V 2 O 5 ·0.6H 2 O is a promising cathode candidate for KIBs.

  18. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    OpenAIRE

    Sritharathikhun, Jaran; Krajangsang, Taweewat; Moollakorn, Apichan; Inthisang, Sorapong; Limmanee, Amornrat; Hongsingtong, Aswin; Boriraksantikul, Nattaphong; Taratiwat, Tianchai; Akarapanjavit, Nirod; Sriprapha, Kobsak

    2014-01-01

    This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtain...

  19. Effect of pH on particles size and gas sensing properties of In_2O_3 nanoparticles

    International Nuclear Information System (INIS)

    Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand

    2016-01-01

    In this work, indium oxide (In_2O_3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In_2O_3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In_2O_3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In_2O_3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In_2O_3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  20. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading