WorldWideScience

Sample records for water utilities

  1. China’s Water Utilization Efficiency: An Analysis with Environmental Considerations

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-05-01

    Full Text Available This paper estimates China’s water utilization efficiency using the directional distance function to take into account the environmental degradation affecting the economy. We further analyze the spatial correlation and the factors influencing the utilization efficiency using spatial panel data models. The results show that water utilization efficiency in China differs between provinces and regions. For example, water utilization efficiency in the eastern coastal provinces is significantly higher than that of inland provinces. The pattern of spatial auto-correlation Moran’s I index presents significant spatial auto-correlation and evident cluster tendencies in China’s inter-provincial water utilization. Factors that contribute to water utilization efficiency include economic development, technological progress, and economic openness. Negative factors affecting water utilization efficiency arise from industrial structure, government interference, and water resources endowment. In addition, the price of water resources is insignificant. The improvement of water utilization efficiency is essential to sustainable economic development. To raise the utilization efficiency of water resources, China should focus on transforming its industrial restructure, advancing technological development, enhancing economic openness, and encouraging entrepreneurial innovations. Moreover, establishing a mechanism to encourage water conservation and reduce wastewater pollution will further increase water utilization efficiency.

  2. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2014-01-01

    This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory ini...... legal design and the problems that it causes for the water utilities that want to be resource–efficient and have a low–carbon footprint.......This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory...... initiatives are shortly described. One of the solutions needed is a reduction of energy use in the water utilities by their utilisation of renewable sources – acting as energy–smart water utilities. Such utilities are described in section 3. The policy and law regulating the water utilities are important...

  3. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  4. Assessing the performance of urban water utilities in Mozambique ...

    African Journals Online (AJOL)

    Benchmarking analysis has become a strategic tool through which water regulators around the world measure the performance of water utilities. Since 2008, the Water Regulatory Council of Mozambique has been implementing a benchmarking framework to analyse the performance of urban water utilities. This paper ...

  5. Energy and water quality management systems for water utility's operations: a review.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-3] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION...-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water...

  7. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-01-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9101-9] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION... meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory...

  8. Water utilization in the Snake River Basin

    Science.gov (United States)

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  9. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  10. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  11. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9198-8] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... final in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  12. 75 FR 35458 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-06-22

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9165-6] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... fourth in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  13. Climate change adaptation in regulated water utilities

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Harou, J. J.; Characklis, G. W.; Ricalde, I.

    2017-12-01

    Concern about climate change impacts on water supply systems has grown in recent years. However, there are still few examples of pro-active interventions (e.g. infrastructure investment or policy changes) meant to address plausible future changes. Deep uncertainty associated with climate impacts, future demands, and regulatory constraints might explain why utility planning in a range of contexts doesn't explicitly consider climate change scenarios and potential adaptive responses. Given the importance of water supplies for economic development and the cost and longevity of many water infrastructure investments, large urban water supply systems could suffer from lack of pro-active climate change adaptation. Water utilities need to balance the potential for high regret stranded assets on the one side, with insufficient supplies leading to potentially severe socio-economic, political and environmental failures on the other, and need to deal with a range of interests and constraints. This work presents initial findings from a project looking at how cities in Chile, the US and the UK are developing regulatory frameworks that incorporate utility planning under uncertainty. Considering for example the city of Santiago, Chile, recent studies have shown that although high scarcity cost scenarios are plausible, pre-emptive investment to guard from possible water supply failures is still remote and not accommodated by current planning practice. A first goal of the project is to compare and contrast regulatory approaches to utility risks considering climate change adaptation measures. Subsequently we plan to develop and propose a custom approach for the city of Santiago based on lessons learned from other contexts. The methodological approach combines institutional assessment of water supply regulatory frameworks with simulation-based decision-making under uncertainty approaches. Here we present initial work comparing the regulatory frameworks in Chile, UK and USA evaluating

  14. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  15. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  16. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    Science.gov (United States)

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. © 2013.

  17. Urban water infrastructure asset management - a structured approach in four water utilities.

    Science.gov (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  18. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  19. Effective drinking water collaborations are not accidental: Interagency relationships in the international water utility sector

    International Nuclear Information System (INIS)

    Jalba, D.I.; Cromar, N.J.; Pollard, S.J.T.; Charrois, J.W.; Bradshaw, R.; Hrudey, S.E.

    2014-01-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. - Highlights: • Qualitative analysis of current water sector practices on interagency relations • Identification of suboptimal approaches to working with public health agencies • Effective strategies for developing and maintaining institutional collaborations • Supporting the implementation of WHO guidelines for drinking water quality

  20. Effective drinking water collaborations are not accidental: Interagency relationships in the international water utility sector

    Energy Technology Data Exchange (ETDEWEB)

    Jalba, D.I. [School of Medicine, Flinders University, GPO 2100, Adelaide, SA 5001 (Australia); Cromar, N.J., E-mail: nancy.cromar@flinders.edu.au [School of the Environment, Flinders University, GPO 2100, Adelaide, SA 5001 (Australia); Pollard, S.J.T. [Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Charrois, J.W. [Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Bradshaw, R. [Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Hrudey, S.E. [Analytical and Environmental Toxicology Division, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, AB T6G 2G3 (Canada)

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. - Highlights: • Qualitative analysis of current water sector practices on interagency relations • Identification of suboptimal approaches to working with public health agencies • Effective strategies for developing and maintaining institutional collaborations • Supporting the implementation of WHO guidelines for drinking water quality.

  1. Not business as usual for water utilities

    International Nuclear Information System (INIS)

    Rodgers, L.M.

    1990-01-01

    This article addresses the implementation of the requirements of the Safe Drinking Water Act (SDWA) Amendments of 1986 and their economic impacts to water utilities, financiers, stockholders and consumers. The author looks at various funding schemes, rate structure changes and potential mergers all designed to finance the compliance with new EPA standards

  2. Water and Sewage Utilities Sector (NAICS 2213)

    Science.gov (United States)

    Environmental regulation information for water utilities, including drinking and wastewater treatment facilities. Includes links to NESHAP for POTW, compliance information, and information about pretreatment programs.

  3. [Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China.

    Science.gov (United States)

    Zhang, Huan; Cao, Jun; Wang, Hua Bing; Song, Bo; Jia, Guo Dong; Liu, Zi Qiang; Yu, Xin Xiao; Zeng, Jia

    2018-05-01

    In Zhangbei County, Hebei Province, poplar-dominated shelterbelts are degraded to different extents. Water availability is the main limiting factor for plant survival in arid areas. The purpose of this study was to reveal the relationship between water availability and poplar degradation. Based on the hydrogen and oxygen stable isotope techniques, we explored the water sources of Populus simonii under different degradation degrees by comparing the isotopic values of P. simonii xylem water with that in potential water source, and calculated the utilization ratio of each water source. The results showed that the water sources of poplar trees varied with degradation degree. The water sources of P. simonii gradually transferred from the deep layer to the surface layer with the increases of degradation. P. simonii with no degradation mainly absorbed soil water in the range of 320-400 cm, with the utilization rate being 25.1%. P. simonii with slight degradation mainly used soil water at depth of 120-180, 180-240 and 240-320 cm. The total utilization rate of three layers was close to 50.0%, with less utilization of water from other layers. The moderately degraded P. simonii mainly used soil water at depth of 20-40, 40-60 and 60-80 cm. The utilization rate of each layer was 17.5%-20.9%, and the contribution rate of soil water under 120 cm was less than 10.0%. The severely degraded P. simonii mainly used water from surface soil layer (0-20 cm), with the utilization rate being 30.4%, which was significantly higher than that of other water sources. The water sources of poplar shelter forests were gradually shallower during the process of degradation. However, the low soil water content in the shallow layer could not meet the normal water demand of poplar, which would accelerate the degradation and even decline of poplar.

  4. Productivity growth and price regulation of Slovenian water distribution utilities

    Directory of Open Access Journals (Sweden)

    Jelena Zorić

    2010-06-01

    Full Text Available This paper aims to analyse the price regulation method and performance of thewater industry in Slovenia. A stochastic cost frontier model is employed to estimate and decompose the total factor productivity (TFP growth of water distribution utilities in the 1997-2003 period. The main goal is to find out whether the lack of proper incentives to improve performance has resulted in the low TFP growth of Slovenian water distribution utilities. The evidence suggests that cost inefficiencies are present in water utilities, which indicates considerable cost saving potential in the analysed industry. Technical change is found to have positively affected the TFP growth over time, while cost inefficiency levels remained essentially unchanged. Overall, the average annual TFP growth in the analysed period is estimated to be only slightly above zero, which is a relatively poor result. This can largely be contributed to the present institutional and regulatory setting that does not stimulate utilities to improve productivity. Therefore, the introduction of an independent regulatory agency and an incentive-based price regulation scheme should be seriously considered in order to enhance the performance of Slovenian water distribution utilities.

  5. Managing water utility financial risks through third-party index insurance contracts

    Science.gov (United States)

    Zeff, Harrison B.; Characklis, Gregory W.

    2013-08-01

    As developing new supply capacity has become increasingly expensive and difficult to permit (i.e., regulatory approval), utilities have become more reliant on temporary demand management programs, such as outdoor water use restrictions, for ensuring reliability during drought. However, a significant fraction of water utility income is often derived from the volumetric sale of water, and such restrictions can lead to substantial revenue losses. Given that many utilities set prices at levels commensurate with recovering costs, these revenue losses can leave them financially vulnerable to budgetary shortfalls. This work explores approaches for mitigating drought-related revenue losses through the use of third-party financial insurance contracts based on streamflow indices. Two different types of contracts are developed, and their efficacy is compared against two more traditional forms of financial hedging used by water utilities: Drought surcharges and contingency funds (i.e., self-insurance). Strategies involving each of these approaches, as well as their use in combination, are applied under conditions facing the water utility serving Durham, North Carolina. A multireservoir model provides information on the scale and timing of droughts, and the financial effects of these events are simulated using detailed data derived from utility billing records. Results suggest that third-party index insurance contracts, either independently or in combination with more traditional hedging tools, can provide an effective means of reducing a utility's financial vulnerability to drought.

  6. Report of the workshop Energy Utility and Solar Water Heater 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The title workshop was organized to increase the interest of energy utilities for the Solar Water Heater campaign by providing representatives of the utilities with information about the technical and marketing aspects of solar boilers, and to stimulate knowledge transfer between the energy utilities about the method, the possibilities and bottlenecks of solar water heater projects

  7. Human resources management in the water utilities of Hermosillo and Mexicali

    Directory of Open Access Journals (Sweden)

    Edmundo Loera Burnes

    2017-05-01

    Full Text Available

    This paper studies how the Human Resources Management Systems (HRMS influence the performance of water utilities in Mexico. The differentiated performance of the water utilities of the cities of Hermosillo and Mexicali were compared to their HRMS characteristics through the analysis of four categories: 1 Hiring policies, 2 Development and training, 3 Salaries, benefits and incentives, and 4 Sanctions systems. The main differences between these utilities are on categories 2 and 3, where Mexicali shows greater levels. The study provides a vision of water utilities from the point of view of HRMG, which has not been taken into account in previous research. Although Mexicali provides its workers with better training and incentives, it is observed that the influence of local governments and the excessive power of unions have led to weak HRMS that affect the performance of water utilities.

  8. Analysis of thermal water utilization in the northeastern Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2012-12-01

    Full Text Available The presented research aims at identification of thermal water users in NE Slovenia, at finding type and amountof the produced thermal water as well as its utilization practice. The energetic overview has been upgradedby a description of current observational monitoring practice and thermal waste water management, but technologicalproblems of thermal water use and their mitigation are discussed also. We have ascertained that 14 of 26active geothermalwells tap the Mura Formation aquifer in which the only reinjection well is perforated also. Totalthermal water abstraction summed to 3.29 million m3 in 2011. Cascade use of thermal water is abundant, whereindividual space and sanitary water heating is followed by heating of spa infrastructure and balneology. Greenhouseheating systems and district heating were also identified. Operational monitoring of these geothermal wellsis generally insufficient, and geothermal aquifers are overexploited due to decades of historical water abstraction.All these facts indicate the need for applying appropriate measures which will improve their natural conditions aswell as simultaneously enable further and even higher thermal water utilization in the future.

  9. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  10. Asset Management for Water and Wastewater Utilities

    Science.gov (United States)

    Renewing and replacing the nation's public water infrastructure is an ongoing task. Asset management can help a utility maximize the value of its capital as well as its operations and maintenance dollars.

  11. Utilization of Groundwater, Spring, and the Surface Water for Drinking Water Service for the People of Surakarta

    OpenAIRE

    Team PDAM Surakarta

    2004-01-01

    Case study: utilizing the groundwater, water resources, and surface of water to supply the drinking water for the inhabitants is Surakarta. Of the early target at 75%, the supply of drinking water for the inhabitants in Surakarta only achieves 44%. Because of this, the Regional Drinking Water ompany (PDAM) of Surakarta made a decision to: 1) utilize the debit of water production by making a deep well at a capacity of 30 liters a second for a short term, and on the basis of the study of water ...

  12. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  13. Water Utility Management Strategies in Turkey: The current situation and the challenges

    Science.gov (United States)

    Alp, E.; Aksoy, M. N.; Koçer, B.

    2013-12-01

    As the effects of climate change becomes more prominent, current challenges related to water and wastewater management is becoming more serious. Providing water that satisfies environmental and safety standards in terms of quantity and quality is needed to maintain human life without compromising the need of future generations. Besides providing safe and affordable water, necessary treatment should be achieved according to several important factors such as receiving body standards, discharge standards, water reuse options. Therefore, management of water becomes more crucial than ever that states have to provide accessibility of safe water with affordable cost to its citizens with the means of effective utility management, including water treatment facilities, wastewater treatment facilities, water supply facilities and water distribution systems. Water utilities encounter with several challenges related to cost, infrastructure, population, legislation, workforce and resource. This study aims to determine the current situation and the necessary strategies to improve utility management in Turkish municipalities in a sustainable manner. US Environment Protection Agency (EPA) has formed a tool on effective utility management that assists utilities to provide a solution for both current and future challenges. In this study, we used EPA's guidelines and developed a survey consists of 60 questions under 10 sub-topics (Product Quality, Employee & Leadership Development, Stakeholder Understanding & Support, Operational Optimization, Infrastructure Stability, Financial Viability, Community Sustainability, Customer Satisfaction, Operational Resiliency, and Water Resource Adequacy). This survey was sent to the managers of 25 metropolitan municipalities in Turkey to assess the current condition of municipalities. After the evaluation of the survey results for each topic, including the importance given by managers, facilities were rated according to their level of achievement

  14. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  15. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  16. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  17. Public-Private Partnership Enhances Water Utility's Performance in Armenia

    OpenAIRE

    Tokhmakhian, Zaruhi; Eiweida, Ahmed

    2011-01-01

    Public-Private Participation (PPP) schemes were successfully implemented in several water utilities in Armenia, yielding excellent results for the development of the water and wastewater sectors. Armenia is one of the few countries in the region to have had such a successful PPP experience. For many years after the collapse of the Soviet economy, most of the water supply and sanitation sys...

  18. Financing Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities

    Science.gov (United States)

    Free webinar series on Financing for Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities, hosted by EPA's Water Infrastructure and Resiliency Finance Center and Water Security Division.

  19. International Comparison of Water Resources Utilization Efficiency in the Silk Road Economic Belt

    Science.gov (United States)

    Yan, Long; Ma, Jing; Deng, Wei; Wang, Yong

    2018-03-01

    In order to get knowledge of the standard of water utilization of the Silk Road Economic Belt from international point of view, the paper analyzes the annual variation of water resources utilization in the Silk Road Economic Belt, and compares with other typical countries. The study shows that Water resources utilization efficiency has been greatly improved in recent 20 years and the water consumption per USD 10000 of GDP has been declined 87.97%. the improvement of industrial water consumption efficiency is the key driving factors for substantial decrease in water consumption.The comparison of water utilization and human development shows that the higher HDI the country is, the more efficient water utilization the country has. water consumption per USD 10000 of GDP in country with HDI>0.9 is 194m³, being 8.5% of that in country with HDI from 0.5 to 0.6. On the premise of maintaining the stable economic and social development of the Silk Road Economic Belt, the realization of the control target of total water consumption must depend on the strict control over the disorderly expansion of irrigated area, the change in the mode of economic growth, the implementation of the development strategy for new industrialization and urbanization, vigorous development of the processing industry with low water consumption as well as the high-tech and high value-added industry. Only in this way, the control target of total water consumption can be realized in the process of completing the industrialization task.

  20. THE UTILIZATION STRUCTURE OF THERMAL WATER WELLS AND ITS UNEXPLOITED CAPACITIES IN HUNGARY

    Directory of Open Access Journals (Sweden)

    BALÁZS KULCSÁR

    2014-12-01

    Full Text Available In order to mitigate Hungary’s vulnerability in energy supply and accomplish the renewable energy production targets, it is essential to discover exploitable alternative opportunities for energy production and step up the utilization of the available capacities. The purpose of this publication is to map up the utilization structure of the existing Hungarian thermal water wells, describe its changes over the past 16 years, reveal the associated reasons and define the unutilized well capacities that may contribute to increasing the exploitation of geothermal heat by municipalities. The studies have been conducted in view of the Cadaster of Thermal Water Wells of Hungary compiled in 1994, the well cadasters kept by the regional water management directorates, as well as the data of the digital thermal water cadaster of 2010. The calculations performed for the evaluation of data have been based on the ratios and respective utilization areas of the existing wells. In the past 150 years, nearly 1500 thermal water wells have been drilled for use by a broad range of economic operations. The principal goals of constructing thermal water wells encompass the use of water in balneology, water and heat supply to the agriculture, hydrocarbon research and the satisfaction of municipal water demands. In 1994, 26% of the facilities was operated as baths, 21% was used by agriculture, while 13% and 12% served communal and waterworks supply, respectively. Then in 2010, 31% of thermal water wells was continued to be used for the water supply of bathing establishments, followed by 20% for agricultural use, 19% for utilization by waterworks, 11% for observation purposes and 10% for communal use. During the 16 years between 1994 and 2010, the priorities of utilization often changed, new demands emerged in addition to the former utilization goals of thermal water wells. The economic landscape and changes in consumer habits have transformed the group of consumers, which

  1. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants.

    Science.gov (United States)

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-19

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.

  2. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  3. Application of nanotechnologies for solving ecological problems on produced water utilization

    International Nuclear Information System (INIS)

    Hajiyev, S.K.; Kalbaliyeva, E.S.; Kazimov, F.K.

    2010-01-01

    Utilization of produced water is connected with the problems of its purification, repeated use and following the corresponding ecological requirements.Constant growth of the amount of produced water in extracted fluid and contaminating components require improvement of existing methods of utilization and development of advanced technologies. In the result of development of nanocomposites on the base of metallic nanoparticles it has been achieved significant improvement of purification efficiency of produced water, as well as decrease of surface tension, viscosity, increase of corrosion resistance and protection against salt deposition.

  4. Human resources management in the water utilities of Hermosillo and Mexicali

    OpenAIRE

    Edmundo Loera Burnes; Alejandro Salazar Adams

    2017-01-01

    This paper studies how the Human Resources Management Systems (HRMS) influence the performance of water utilities in Mexico. The differentiated performance of the water utilities of the cities of Hermosillo and Mexicali were compared to their HRMS characteristics through the analysis of four categories: 1) Hiring policies, 2) Development and training, 3) Salaries, benefits and incentives, and 4) Sanct...

  5. The IBNET Water Supply and Sanitation Blue Book 2014 : The International Benchmarking Network for Water and Sanitation Utilities Databook

    OpenAIRE

    Danilenko, Alexander; van den Berg, Caroline; Macheve, Berta; Moffitt, L. Joe

    2014-01-01

    Well-run water utilities play an important role in ending poverty and boosting shared prosperity. Consumers need reliable access to high quality and affordable water and sanitation services. To deliver these basic services efficiently and effectively requires high-performing utilities that are able to respond to urban growth, to connect with the poor, and to improve wastewater disposal practices. The IBNET Water Supply and Sanitation Blue Book 2014 summarizes the water sector status from 2006...

  6. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    Science.gov (United States)

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  7. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    Science.gov (United States)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  8. New role for communication fibre optic cables in water utility for leak detection on main water pipeline

    Directory of Open Access Journals (Sweden)

    Graovac Radojica M.

    2015-01-01

    Full Text Available During construction of main water pipeline it is usual practice to lay fibre optic communication cable along water pipe. This cable is one of the up to date communication media which is used for the connection purposes of water control SCADA equipment as well as for establishing of telephone communication between water utility plants. By developing of new electronic equipment known as DTS (Distributed Temperature Sensing and DAS (Distributed Acoustic Sensing equipment it has been opened the possibility, with this equipment and by utilizing of dedicated optical fibres of optical fibre communication cable as a sensor, to detect leakage point by temperature monitoring or monitoring of acoustic changes along water pipeline (as detection of temperature change of soil at leakage point or detection of acoustic change at leakage point.

  9. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  10. When the 'soft-path' gets hard: demand management and financial instability for water utilities

    Science.gov (United States)

    Zeff, H. B.; Characklis, G. W.

    2014-12-01

    In the past, cost benefit analysis (CBA) has been viewed as an effective means of evaluating water utility strategies, particularly those that were dependent on the construction of new supply infrastructure. As water utilities have begun to embrace 'soft-path' approaches as a way to reduce the need for supply-centric development, CBA fails to recognize some important financial incentives affected by reduced water consumption. Demand management, both as a short-term response to drought and in longer-term actions to accommodate demand growth, can introduce revenue risks that adversely affect a utility's ability to repay debt, re-invest in aging infrastructure, or maintain reserve funds for use in a short-term emergency. A utility that does not generate sufficient revenue to support these functions may be subject to credit rating downgrades, which in turn affect the interest rate it pays on its debt. Interest rates are a critical consideration for utility managers in the capital-intensive water sector, where debt payments for infrastructure often account for a large portion of a utility's overall costs. Even a small increase in interest rates can add millions of dollars to the cost of new infrastructure. Recent studies have demonstrated that demand management techniques can lead to significant revenue variability, and credit rating agencies have begun to take notice of drought response plans when evaluating water utility credit ratings, providing utilities with a disincentive to fully embrace soft-path approaches. This analysis examines the impact of demand management schemes on key credit rating metrics for a water utility in Raleigh, North Carolina. The utility's consumer base is currently experiencing rapid population growth, and demand management has the potential to reduce the dependence on costly new supply infrastructure but could lead to financial instability that will significantly increase the costs of financing future projects. This work analyzes how 'soft

  11. Utilization of water power in the Hochsauerland District. Possibilities of utilizing water power plants while deriving profits for tourism. Wasserkraftnutzung im Hochsauerlandkreis. Moeglichkeiten zur Inwertsetzung der Wasserkraftanlagen im Rahmen einer touristischen Route

    Energy Technology Data Exchange (ETDEWEB)

    Peyrer, U.

    1994-01-01

    The idea of utilizing water power plants while driving profits for tourism intends to promote regional tourism and support the district at the same time. Since both precipitation and discharge conditions and the Hochsauerland relief provide favorable conditions for water power utilization, one finds various water wheel uses, i.e. corn mills or saw mills, water wheels for the metal-working industry, and hammer mills. This volume contains a comprehensive documentation of the water power plants in the Hochsauerland District. (BWI)

  12. Groundwater science in water-utility operations: global reflections on current status and future needs

    Science.gov (United States)

    Foster, Stephen; Sage, Rob

    2017-08-01

    The relevance of groundwater science to water-utility operations is analysed from a broad international perspective, identifying key concerns and specific opportunities for the future. The strategic importance worldwide of water utilities assuming the role of lead stakeholders for integrated groundwater resource management, recognizing their often considerable technical know-how and highly significant data holdings, is emphasized. Concurrently, the utilities themselves will need an ever-closer appreciation of groundwater-system behaviour if they are to manage efficiently their water-supply and wastewater operations.

  13. Access and utilization of water and sanitation facilities and their ...

    African Journals Online (AJOL)

    Introduction: Lack of safe water, sanitation and hygiene remains one of the most pressing global health issues of our time. Water and sanitation-related improvements are crucial in meeting the Global Sustainable Development Goals. This study was conducted to determine the access, utilization, and determinants of access ...

  14. Towards a benchmarking paradigm in European water utilities

    NARCIS (Netherlands)

    Marques, R.C.; de Witte, K.

    2010-01-01

    This article explains the benefits of using benchmarking tools in the public sector to drive up performance. The authors examine the case of European water utilities, focusing on four countries: Portugal, Belgium, The Netherlands and the UK. They argue for the creation of a European ‘observatory’ to

  15. Multi-purpose utilization and development of geothermal water: European overseas investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, T [Natl. Research Institute of Agricultural Engineering, Japan

    1978-01-01

    In order to investigate the agricultural utilization of geothermal waters, a fact-finding team visited France, Italy, Iceland, and Turkey. In France, it was seen that the development and utilization of geothermal waters is in accord with Japanese practices. The production and reinjection wells are drilled to a depth of 1800 m. They are spaced about 10 m apart at the surface and about 800 m apart at the bottom. This is accomplished by drilling at an angle. The hot water is produced at a rate of about 90 t/h. It is passed through a heat exchanger where it warms surface water to about 70/sup 0/C. The warmed water is then supplied for purposes of district heating, greenhouse culture, and fish farming. The used hot water is then returned to the producing stratum via the reinjection well. Iceland began the production of hot geothermal water in 1925, and, at present, 99% of the city of Reykjavik is heated geothermally. The deepest production wells at Reykjavik reach 2000 m. The water produced has a temperature of 90-103/sup 0/C, and is also used for agricultural purposes.

  16. INVESTIGATION OF QUANTIFICATION OF FLOOD CONTROL AND WATER UTILIZATION EFFECT OF RAINFALL INFILTRATION FACILITY BY USING WATER BALANCE ANALYSIS MODEL

    OpenAIRE

    文, 勇起; BUN, Yuki

    2013-01-01

    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  17. A New Framework for Assessing the Sustainability Reporting Disclosure of Water Utilities

    Directory of Open Access Journals (Sweden)

    Silvia Cantele

    2018-02-01

    Full Text Available Sustainability reporting is becoming more and more widespread among companies aiming at disclosing their contribution to sustainable development and gaining legitimacy from stakeholders. This is more significant for firms operating in a public services’ context and mainly when supplying a fundamental public resource, like water utilities. While the literature on sustainability reporting in the water sector is scant, there is an increasing need to study the usefulness and quality of its sustainability disclosures to adequately inform the stakeholders about the activities of water utilities to protect this fundamental resource and general sustainable development. This article presents a novel assessment framework based on a scoring technique and an empirical analysis on the sustainability reports of Italian water utilities carried out through it. The results highlight a low level of disclosure on the sustainability indicators suggested by the main sustainability reporting guidelines (Global Reporting Initiative, (GRI, and Sustainability Accounting Standard Board, (SASB; most companies tend to disclose only qualitative information and fail to inform about some material aspects of water management, such as water recycled, network resilience, water sources, and effluent quality. These findings indicate that sustainability reporting is mainly considered as a communication tool, rather than a performance measurement and an accountability tool, but also suggest the need for a new and international industry-specific sustainability reporting standard.

  18. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    Science.gov (United States)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  19. Application of Information Technology Solution for Early Warning Systems at Water Utilities

    Directory of Open Access Journals (Sweden)

    Bałut Alicja

    2018-01-01

    Full Text Available Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.

  20. Application of Information Technology Solution for Early Warning Systems at Water Utilities

    Science.gov (United States)

    Bałut, Alicja

    2018-02-01

    Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure) or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.

  1. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  2. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  3. Utility Leadership in Defining Requirements for Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    Sugnet, William R.; Layman, William H.

    1990-01-01

    It is appropriate, based on twenty five years of operating experience, that utilities take a position of leadership in developing the technical design and performance requirements for the next generations of nuclear electric generating plants. The U. S. utilities, through the Electric Power Research Institute, began an initiative in 1985 to develop such Utility requirements. Many international Utility organizations, including Korea Electric Power Corporation, have joined as full participants in this important Utility industry initiative. In light of the closer linkage among countries of the world due to rapid travel and telecommunications, it is also appropriate that there be international dialogue and agreement on the principal standards for nuclear power plant acceptability and performance. The Utility/EPRI Advanced Light Water Reactor Program guided by the ALRR Utility Steering Committee has been very successful in developing these Utility requirements. This paper will summarize the state of development of the ALRR Utility Requirements for Evolutionary Plants, recent developments in their review by the U. S. Nuclear Regulatory Commission, resolution of open issues, and the extension of this effort to develop a companion set of ALRR Utility Requirements for plants employing passive safety features

  4. Design features of the Light Water Breeder Reactor (LWBR) which improve fuel utilization in light water reactors (LWBR development program)

    International Nuclear Information System (INIS)

    Hecker, H.C.; Freeman, L.B.

    1981-08-01

    This report surveys reactor core design features of the Light Water Breeder Reactor which make possible improved fuel utilization in light water reactor systems and breeding with the uranium-thorium fuel cycle. The impact of developing the uranium-thorium fuel cycle on utilization of nuclear fuel resources is discussed. The specific core design features related to improved fuel utilization and breeding which have been implemented in the Shippingport LWBR core are presented. These design features include a seed-blanket module with movable fuel for reactivity control, radial and axial reflcetor regions, low hafnium Zircaloy for fuel element cladding and structurals, and a closely spaced fuel rod lattice. Also included is a discussion of several design modifications which could further improve fuel utilization in future light water reactor systems. These include further development of movable fuel control, use of Zircaloy fuel rod support grids, and fuel element design modifications

  5. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water

  6. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group

    1999-06-30

    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  7. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  8. Quantitative studies of water and sanitation utilities: a literature survey

    OpenAIRE

    Berg, Sanford V; Marques, Rui Cunha

    2010-01-01

    This paper performs a literature update of quantitative studies of water and sanitation services (WSS). There are 190 studies which use cost or production functions to evaluate the performance of WSS utilities. The studies examine (1) the scale, scope or density economies of utilities in a particular country or region, (2) the influence of ownership on efficiency, (3) the existence and power of incentives associated with different governance systems (including external regulation), and (4) pe...

  9. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    Science.gov (United States)

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  10. New role for communication fibre optic cables in water utility for leak detection on main water pipeline

    OpenAIRE

    Graovac Radojica M.; Marković Dragomir V.

    2015-01-01

    During construction of main water pipeline it is usual practice to lay fibre optic communication cable along water pipe. This cable is one of the up to date communication media which is used for the connection purposes of water control SCADA equipment as well as for establishing of telephone communication between water utility plants. By developing of new electronic equipment known as DTS (Distributed Temperature Sensing) and DAS (Distributed Acoustic Sensing) equipment it has been opened the...

  11. What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?

    Science.gov (United States)

    Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.

    2009-12-01

    “…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility

  12. Utilization of Weibull equation to obtain soil-water diffusivity in horizontal infiltration

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1982-06-01

    Water movement was studied in horizontal infiltration experiments using laboratory columns of air-dry and homogeneous soil to obtain a simple and suitable equation for soil-water diffusivity. Many water content profiles for each one of the ten soil columns utilized were obtained through gamma-ray attenuation technique using a 137 Cs source. During the measurement of a particular water content profile, the soil column was held in the same position in order to measure changes in time and so to reduce the errors in water content determination. The Weibull equation utilized was excellent in fitting water content profiles experimental data. The use of an analytical function for ν, the Boltzmann variable, according to Weibull model, allowed to obtain a simple equation for soil water diffusivity. Comparisons among the equation here obtained for diffusivity and others solutions found in literature were made, and the unsuitability of a simple exponential variation of diffusivity with water content for the full range of the latter was shown. The necessity of admitting the time dependency for diffusivity was confirmed and also the possibility fixing that dependency on a well known value extended to generalized soil water infiltration studies was found. Finally, it was shown that the soil water diffusivity function given by the equation here proposed can be obtained just by the analysis of the wetting front advance as a function of time. (Author) [pt

  13. The Key Components of Job Satisfaction in Malaysian Water Utility Industry

    OpenAIRE

    Khalizani Khalid; Hanisah M. Salim; Siew-Phaik Loke; Khalisanni Khalid

    2011-01-01

    Problem statement: This study aimed to examine the impacts of employees rewards and employees motivation on employees job satisfaction between public and private water utility organization in Malaysia. Approach: A total of 689 employees from both sectors participated. While hierarchical regression analysis was conducted to test the relationship between employees rewards, employees motivation and employees job satisfaction, gap analysis was utilized to determine the si...

  14. An analysis of strategy plan on business performance of a water utility : a Midvaal water company case study / Erven Sello Malatji

    OpenAIRE

    Malatji, Erven Sello

    2014-01-01

    The purpose of the research was to assess the strategic management process of a water utility in South Africa. The research focused on Midvaal Water Company, a section 21 water utility based in South Africa, North West Province town of Klerksdorp. The objectives of the study were; (a) to assess the organisational level of knowledge when it comes to SMP, (b) to determine different perceptions with regards to SMP between management and employees, (c) to determine the organisational profiles (ag...

  15. Are implicit policy assumptions about climate adaptation trying to push drinking water utilities down an impossible path?

    Science.gov (United States)

    Klasic, M. R.; Ekstrom, J.; Bedsworth, L. W.; Baker, Z.

    2017-12-01

    Extreme events such as wildfires, droughts, and flooding are projected to be more frequent and intense under a changing climate, increasing challenges to water quality management. To protect and improve public health, drinking water utility managers need to understand and plan for climate change and extreme events. This three year study began with the assumption that improved climate projections were key to advancing climate adaptation at the local level. Through a survey (N = 259) and interviews (N = 61) with California drinking water utility managers during the peak of the state's recent drought, we found that scientific information was not a key barrier hindering adaptation. Instead, we found that managers fell into three distinct mental models based on their interaction with, perceptions, and attitudes, towards scientific information and the future of water in their system. One of the mental models, "modeled futures", is a concept most in line with how climate change scientists talk about the use of information. Drinking water utilities falling into the "modeled future" category tend to be larger systems that have adequate capacity to both receive and use scientific information. Medium and smaller utilities in California, that more often serve rural low income communities, tend to fall into the other two mental models, "whose future" and "no future". We show evidence that there is an implicit presumption that all drinking water utility managers should strive to align with "modeled future" mental models. This presentation questions this assumption as it leaves behind many utilities that need to adapt to climate change (several thousand in California alone), but may not have the technical, financial, managerial, or other capacity to do so. It is clear that no single solution or pathway to drought resilience exists for water utilities, but we argue that a more explicit understanding and definition of what it means to be a resilient drinking water utility is

  16. Climate Narratives: Combing multiple sources of information to develop risk management strategies for a municipal water utility

    Science.gov (United States)

    Yates, D. N.; Basdekas, L.; Rajagopalan, B.; Stewart, N.

    2013-12-01

    Municipal water utilities often develop Integrated Water Resource Plans (IWRP), with the goal of providing a reliable, sustainable water supply to customers in a cost-effective manner. Colorado Springs Utilities, a 5-service provider (potable and waste water, solid waste, natural gas and electricity) in Colorado USA, recently undertook an IWRP. where they incorporated water supply, water demand, water quality, infrastructure reliability, environmental protection, and other measures within the context of complex water rights, such as their critically important 'exchange potential'. The IWRP noted that an uncertain climate was one of the greatest sources of uncertainty to achieving a sustainable water supply to a growing community of users. We describe how historic drought, paleo-climate, and climate change projections were blended together into climate narratives that informed a suite of water resource systems models used by the utility to explore the vulnerabilities of their water systems.

  17. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  18. Managing globalisation in public utilities : public service transnational corporations and the case of the global water industry

    OpenAIRE

    Finger, Matthias; Lobina, Emanuele

    1999-01-01

    Liberalisation, deregulation and privatisation of water and other public utilities have not produced the alleged efficiency gains of open international competition in public utilities, as the result has been restricted access to utilities rather than unleashed competition. Where water utilities have been privatised, TNCs have reproduced the typically monopolistic behaviour, enhancing concentration through vertical and horizontal integration, collusive conduct and other restrictive practices o...

  19. The Effects of Operational and Environmental Variables on Efficiency of Danish Water and Wastewater Utilities

    Directory of Open Access Journals (Sweden)

    Andrea Guerrini

    2015-06-01

    Full Text Available Efficiency improvement is one of three patterns a public utility should follow in order to get funds for investments realization. The other two are recourse to bank loans or to private equity and tariff increase. Efficiency can be improved, for example, by growth and vertical integration and may be conditioned by environmental variables, such as customer and output density. Prior studies into the effects of these variables on the efficiency of water utilities do not agree on certain points (e.g., scale and economies of scope and rarely consider others (e.g., density economies. This article aims to contribute to the literature by analysing the efficiency of water utilities in Denmark, observing the effects of operational and environmental variables. The method is based on two-stage Data Envelopment Analysis (DEA applied to 101 water utilities. We found that the efficiency of the water sector was not affected by the observed variables, whereas that of wastewater was improved by smaller firm size, vertical integration strategy, and higher population density.

  20. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  1. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities

    Science.gov (United States)

    Woldeyesus, Tibebe Argaw

    Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also

  2. Utilization of balance equipment in windsurf beginners off water training.

    OpenAIRE

    Frič, Čestmír

    2013-01-01

    Work name: Utilization of balance equipment in windsurf beginners off water training. Aim of work: To determin and evaluate significance of balance equipment in off water training. Method: The method of comparative experiment have been used in this thesis. Than the obtained data were evaluated. It was nessesary to create and compare two groups of people, compound of young healthy individuals in the age 20 - 30 both male and female. The only condition for the research was their zero experience...

  3. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  4. Development and utilization of spring water in small scale supply ...

    African Journals Online (AJOL)

    Development and utilization of spring water in small scale supply scheme for the Kogi State Polytechnic, Lokoja, central Nigeria. Joseph Omada. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 131-135. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  5. Assessment of management approaches in a public water utility: A case study of the Namibia water corporation (NAMWATER)

    Science.gov (United States)

    Ndokosho, Johnson; Hoko, Zvikomborero; Makurira, Hodson

    More than 90% of urban water supply and sanitation services in developing countries are provided by public organizations. However, public provision of services has been inherently inefficient. As a result a number of initiatives have emerged in recent years with a common goal to improve service delivery. In Namibia, the water sector reform resulted in the creation of a public utility called the Namibia Water Corporation (NAMWATER) which is responsible for bulk water supply countrywide. Since its inception in 1998, NAMWATER has been experiencing poor financial performance. This paper presents the findings of a case study that compared the management approaches of NAMWATER to the New Public Management (NPM) paradigm. The focus of the NPM approach is for the public water sector to mirror private sector methods of management so that public utilities can accrue the benefits of effectiveness, efficiency and flexibility often associated with private sector. The study tools used were a combination of literature review, interviews and questionnaires. It was found out that NAMWATER has a high degree of autonomy in its operations, albeit government approved tariffs and sourcing of external financing. The utility reports to government annually to account for results. The utility embraces a notion of good corporate culture and adheres to sound management practices. NAMWATER demonstrated a strong market-orientation indicated by the outsourcing of non-core functions but benchmarking was poorly done. NAMWATER’s customer-orientation is poor as evidenced by the lack of customer care facilities. NAMWATER’s senior management delegated operational authority to lower management to facilitate flexibility and eliminate bottlenecks. The lower management is in turn held accountable for performance by the senior management. There are no robust methods of ensuring sufficient accountability indicated by absence of performance contracts or service level agreements. It was concluded that

  6. Standardization of advanced light water reactors and progress on achieving utility requirements

    International Nuclear Information System (INIS)

    Marston, T.U.; Layman, W.H.; Bockhold, G. Jr.

    1992-01-01

    This paper reports that for a number of years, the U.S. utilities had led an industry-wide effort to establish a technical foundation for the design of the next generation of light water reactors in the United States. Since 1985, this utility initiative has been effected through a major technical program managed by the Electric Power Research Institute (EPRI); the U.S. Advanced Light Water Reactor (ALWR) Program. In addition to the U.S. utility leadership and sponsorship, the ALWR Program also has the participation and sponsorship of a number of international utility companies and close cooperation with the U.S. Department of Energy (DOE). The NPOC Strategic Plan for Building New Nuclear Plants creates a framework within which new standardized nuclear plants may be built. The Strategic Plan is an expression of the nuclear energy industry's serious intent to create the necessary conditions for new plant construction and operation. The industry has assembled a comprehensive, integrated list of actions that must be taken before new plants will be built and assigns responsibility for managing the various issues and sets time-tables and milestones against which we must measure progress

  7. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  8. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  9. Possibilities of utilization of water hyacinth for making water hyacinth-cement boards

    International Nuclear Information System (INIS)

    1981-01-01

    Portland cement when casted in the form of thin sheets, alone is too brittle and rigid to develop enough serviceable value. An additional fibrous material reinforces such a cement product and improves its tensile strength. The fibrous material forms a continuos phase in a cement base. The use of fibres as a reinforcing material has been known to man from the days of ancient civilisation when he first started making sunbaked mud bricks. It was found that if the mix contained fibrous material, the bricks became stronger on drying. Asbestos fibre is predominantly used in various asbestos cement products as a reinforcing material since it is fibrous, non-combustible and has sufficient tensile strength. When mixed with 10-20% asbestos fibres, the cement gives a strong material which is commonly available as corrugated or plain sheets used for building and other purposes. As a part of the project on utilization of water hyacinth, RRL, Jorhat, undertook investigations on the possibilities of making water hyacinth-cement sheets similar to asbestos-cement sheets. Another objective of this investigation was to develop a technology for making boards from water hyacinth and cement for rural housing and other purposes in a scale appropriate to the rural sector. Water hyacinth fibre has certain similarities with asbestos fibre. For example, both are polymers as well as fibrous. However, asbestos fibre is non-combustible whilst water hyacinth fibre is combustible. This of course does not pose any difficulty since the fibres remain in a cement matrix in the form of a sheet which is almost completely impervious. For the same reason the decomposition due to weathering and microbial action is also arrested. Crysotile asbestos, which is primarily used for making asbestos-cement sheets, makes fibres very rapidly in water as does pulp from water hyacinth. This characteristic of water hyacinth pulp is definitely a disadvantage in paper making in modern high speed machines but may be of

  10. Modeling regulated water utility investment incentives

    Science.gov (United States)

    Padula, S.; Harou, J. J.

    2014-12-01

    This work attempts to model the infrastructure investment choices of privatized water utilities subject to rate of return and price cap regulation. The goal is to understand how regulation influences water companies' investment decisions such as their desire to engage in transfers with neighbouring companies. We formulate a profit maximization capacity expansion model that finds the schedule of new supply, demand management and transfer schemes that maintain the annual supply-demand balance and maximize a companies' profit under the 2010-15 price control process in England. Regulatory incentives for costs savings are also represented in the model. These include: the CIS scheme for the capital expenditure (capex) and incentive allowance schemes for the operating expenditure (opex) . The profit-maximizing investment program (what to build, when and what size) is compared with the least cost program (social optimum). We apply this formulation to several water companies in South East England to model performance and sensitivity to water network particulars. Results show that if companies' are able to outperform the regulatory assumption on the cost of capital, a capital bias can be generated, due to the fact that the capital expenditure, contrarily to opex, can be remunerated through the companies' regulatory capital value (RCV). The occurrence of the 'capital bias' or its entity depends on the extent to which a company can finance its investments at a rate below the allowed cost of capital. The bias can be reduced by the regulatory penalties for underperformances on the capital expenditure (CIS scheme); Sensitivity analysis can be applied by varying the CIS penalty to see how and to which extent this impacts the capital bias effect. We show how regulatory changes could potentially be devised to partially remove the 'capital bias' effect. Solutions potentially include allowing for incentives on total expenditure rather than separately for capex and opex and allowing

  11. Economical utilization of hot water - an important precondition for an efficient utilization of waste heat in milk cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E; Pflug, C

    1985-01-01

    Indispensable both in the field of hydroecological and energy policies is the economical utilization of hot water. Hydroecological process analyses in specialized dairy cattle plants have shown that the specific mean annual abstraction of hot water (50/sup 0/C) may be reduced to 14 l per cow and per day. The proportionate contribution of different operational sectors and methods to arrive at the standards are pointed out. Economizing dairy cattly plants reducing hot water consumption as indicated and reaching average milking outputs of >= 1 l per cow and per day may thus bridge the summer season by heat recovery processes producing a sufficient quantity of hot water and allowing a shutdown of all heating units. At present the majority of dairy cattle plants cannot yet dispense with supplementary water during the remaining months. The hot water consumption rate is highest at the end of shifts. In double-shifted dairy cattle plants the estimated maximum hourly consumption amounts to 12 per cent of the average daily consumption. (orig.).

  12. Scenario-based water resources planning for utilities in the Lake Victoria region

    Science.gov (United States)

    Mehta, Vishal K.; Aslam, Omar; Dale, Larry; Miller, Norman; Purkey, David R.

    Urban areas in the Lake Victoria (LV) region are experiencing the highest growth rates in Africa. As efforts to meet increasing demand accelerate, integrated water resources management (IWRM) tools provide opportunities for utilities and other stakeholders to develop a planning framework comprehensive enough to include short term (e.g. landuse change), as well as longer term (e.g. climate change) scenarios. This paper presents IWRM models built using the Water Evaluation And Planning (WEAP) decision support system, for three towns in the LV region - Bukoba (Tanzania), Masaka (Uganda), and Kisii (Kenya). Each model was calibrated under current system performance based on site visits, utility reporting and interviews. Projected water supply, demand, revenues and costs were then evaluated against a combination of climate, demographic and infrastructure scenarios up to 2050. Our results show that water supply in all three towns is currently infrastructure limited; achieving existing design capacity could meet most projected demand until 2020s in Masaka beyond which new supply and conservation strategies would be needed. In Bukoba, reducing leakages would provide little performance improvement in the short-term, but doubling capacity would meet all demands until 2050. In Kisii, major infrastructure investment is urgently needed. In Masaka, streamflow simulations show that wetland sources could satisfy all demand until 2050, but at the cost of almost no water downstream of the intake. These models demonstrate the value of IWRM tools for developing water management plans that integrate hydroclimatology-driven supply to demand projections on a single platform.

  13. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  14. The clean water act -- (Federal Water Pollution Control Act), what it means to utilities

    Energy Technology Data Exchange (ETDEWEB)

    Talt, L.A. [Howard and Howard Attorneys, Bloomfield Hills, MI (United States)

    1996-10-01

    Departing from previous policy, in August 1993 the USEPA`s Water Office recommended that the agency regulate a proposed electric power plant`s cooling pond as a water of the US. At issue was a proposal by Florida Power corp. to build a new electric power plant in Polk County, Florida. A 2,600 acre cooling pond to collect heated and discharged water was included in the proposal. Region 4 USEPA staff asked USEPA Headquarters in Washington, DC to decide whether the pond was exempt from the CWA or a water of the US. The pond could be a habitat for migratory birds according to a memo prepared by Region 4 staff. The USEPA Water Office used the presence of migratory birds to claim a nexus to interstate commerce and therefore concluded that the pond should be regulated under the CWA. Electric power industry proponents have argued that an overly expansive definition of waters of the US may result in any new power plant being required to construct cooling towers. Cooling towers are said to be a more expensive and wasteful method to cool heated water. Region 4 ultimately recanted its earlier position after considerable discussions with various other Environmental Protection Agency offices and, no doubt industry pressure. Florida Power Corp. was not required to obtain an NPDES permit for the cooling pond. The lesson of Florida Power Corp. is that the regulatory environment for utilities can be uncertain under the Clean Water Act even in the face of a relatively straightforward exemption from regulation.

  15. Effects of Geographic Diversification on Risk Pooling to Mitigate Drought-Related Financial Losses for Water Utilities

    Science.gov (United States)

    Baum, Rachel; Characklis, Gregory W.; Serre, Marc L.

    2018-04-01

    As the costs and regulatory barriers to new water supply development continue to rise, drought management strategies have begun to rely more heavily on temporary conservation measures. While these measures are effective, they often lead to intermittent and unpredictable reductions in revenues that are financially disruptive to water utilities, raising concerns over lower credit ratings and higher rates of borrowing for this capital intensive sector. Consequently, there is growing interest in financial risk management strategies that reduce utility vulnerabilities. This research explores the development of financial index insurance designed to compensate a utility for drought-related losses. The focus is on analyzing candidate hydrologic indices that have the potential to be used by utilities across the US, increasing the potential for risk pooling, which would offer the possibility of both lower risk management costs and more widespread implementation. This work first analyzes drought-related financial risks for 315 publicly operated water utilities across the country and examines the effectiveness of financial contracts based on several indices both in terms of their correlation with utility revenues and their spatial autocorrelation across locations. Hydrologic-based index insurance contracts are then developed and tested over a 120 year period. Results indicate that risk pooling, even under conditions in which droughts are subject to some level of spatial autocorrelation, has the potential to significantly reduce the cost of managing financial risk.

  16. Colombia - Expanding Services to Low-Income Areas Comparing Private and Public Water Utilities

    OpenAIRE

    Sotomayor, Maria Angelica

    2003-01-01

    Colombia is one of the most active Latin American countries in incorporating private sector participation (PSP) in managing water utilities. One of the community's main concerns is that reforms that treat water and sanitation services as an economic asset rather than as a social good and that allow providers to apply commercial (profit-oriented) criteria, may tend to restrict access to the...

  17. Utilization of water soluble plastics for radiological control within nuclear power plants

    International Nuclear Information System (INIS)

    Smith, R.J.; Deltete, C.P.; Homyk, W.A.; Kasprzak, L.; Robinson, P.J.

    1989-01-01

    The utilization of plastic products for radioactive contamination control within nuclear power facilities currently results in relatively large volumes of waste requiring disposal as low-level radioactive waste. The utilization of a polymer resin product that possesses comparable physical attributes to currently utilized plastic materials, but which is water soluble, has significant potential to reduce the volume of plastic waste requiring disposal as radwaste. Such a volume reduction will reduce overall plant )ampersand M costs, reduce the overall waste volume allocation utilization, and improve the regulatory perception of any plant realizing a volume reduction through plastic source minimization. This potential reduction in waste volume (and associated availability of the Low-level Waste Policy Amendments Act disposal allocation for other purposes), combined with potential economic benefits summarized above, has led to the undertaking of a detailed evaluation, presented in this paper

  18. Decision making for multiple utilization of water resources in New Zealand

    Science.gov (United States)

    Memon, Pyar Ali

    1989-09-01

    The Clutha is the largest river in New Zealand. The last two decades have witnessed major conflicts centered on the utilization of the water resources of the upper Clutha river. These conflicts have by no means been finally resolved. The focus of this article is on institutional arrangements for water resource management on the Clutha, with particular reference to the decision-making processes that have culminated in the building of the high dam. It critically evaluates recent experiences and comments on future prospects for resolving resource use conflicts rationally through planning for multiple utilization in a climate of market led policies of the present government. The study demonstrates the inevitable conflicts that can arise within a public bureaucracy that combines dual responsibilities for policy making and operational functions. Hitherto, central government has been able to manipulate the water resource allocation process to its advantage because of a lack of clear separation between its two roles as a policy maker and developer. The conflicts that have manifested themselves during the last two decades over the Clutha should be seen as part of a wider public debate during the last two decades concerning resource utilization in New Zealand. The Clutha controversy was preceded by comparable concerns over the rising of the level of Lake Manapouri during the 1960s and has been followed by the debate over the “think big” resource development projects during the 1980s. The election of the fourth Labour government in 1983 has heralded a political and economic policy shift in New Zealand towards minimizing the role of public intervention in resource allocation and major structural reforms in the relative roles of central and regional government in resource management. The significance of these changes pose important implications for the future management of the Clutha.

  19. User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs

    Science.gov (United States)

    Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.

    2008-01-01

    This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.

  20. Risk management for drinking water safety in low and middle income countries - cultural influences on water safety plan (WSP) implementation in urban water utilities.

    Science.gov (United States)

    Omar, Yahya Y; Parker, Alison; Smith, Jennifer A; Pollard, Simon J T

    2017-01-15

    We investigated cultural influences on the implementation of water safety plans (WSPs) using case studies from WSP pilots in India, Uganda and Jamaica. A comprehensive thematic analysis of semi-structured interviews (n=150 utility customers, n=32 WSP 'implementers' and n=9 WSP 'promoters'), field observations and related documents revealed 12 cultural themes, offered as 'enabling', 'limiting', or 'neutral', that influence WSP implementation in urban water utilities to varying extents. Aspects such as a 'deliver first, safety later' mind set; supply system knowledge management and storage practices; and non-compliance are deemed influential. Emergent themes of cultural influence (ET1 to ET12) are discussed by reference to the risk management, development studies and institutional culture literatures; by reference to their positive, negative or neutral influence on WSP implementation. The results have implications for the utility endorsement of WSPs, for the impact of organisational cultures on WSP implementation; for the scale-up of pilot studies; and they support repeated calls from practitioner communities for cultural attentiveness during WSP design. Findings on organisational cultures mirror those from utilities in higher income nations implementing WSPs - leadership, advocacy among promoters and customers (not just implementers) and purposeful knowledge management are critical to WSP success. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  2. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties

  3. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  4. Water treatment system for utilities: Phase 1 -- Technology assessment. Interim report

    International Nuclear Information System (INIS)

    Janss, T.M.; Tucker, R.E.

    1997-12-01

    A conceptual design for a water treatment system to reduce pollutants in manhole and vault water is presented as an alternative to current water disposal practices. Runoff and groundwater seepage that collects in vaults and manholes contains, or is likely to contain, concentrations of pollutants in excess of regulatory guidelines. Pollutants commonly present in storm water runoff consist of lead, cadmium, oil, grease and asbestos. The conceptual design presents the basis for a water treatment system that will reduce pollutant concentrations to levels below regulatory thresholds. The water treatment system is relatively inexpensive, small and simple to operate. A strainer is used to remove gross particulates, which are then stored for disposal. Utilizing centrifugal force, vault and manhole water is separated into constituent fractions including fine particulates, inorganics and oils. Fine particulates are stored with gross particulates for disposal. Chemical fixation is used to stabilize inorganics. Organic substances are stored for disposal. The water treatment system uses a granular activated carbon filter as an effluent polish to adsorb the remaining pollutants from the effluent water stream. The water can be discharged to the street or storm drain and the pollutants are stored for disposal as non-hazardous waste. This system represents a method to reduce pollutant volumes, reduced disposal costs and reduce corporate environmental liability. It should be noted that the initial phase of the development process is still in progress. This report is presented to reflect work in progress and as such should be considered preliminary

  5. Research on the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River

    Science.gov (United States)

    Wang, Y.; Fang, D., VI; Xu, J.; Dong, Q.

    2017-12-01

    The Lancang-Mekong River is an important international river, cascaded hydropower stations development in which attracts the attention of downstream countries. In this paper, we proposed a coordination framework for water resources utilization on the interests of mutual compensation to relieve the conflict of upstream and downstream countries. Firstly, analyze the benefits and risks caused by the cascaded hydropower stations development and the evolution process of water resources use conflict between upstream and downstream countries. Secondly, evaluate the benefits and risks of flood control, water supply, navigation and power generation based on the energy theory of cascaded hydropower stations development in Lancang-Mekong River. Thirdly, multi-agent cooperation motivation and cooperation conditions between upstream and downstream countries in Lancang-Mekong River is given. Finally, the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River is presented. This coordination framework for water resources utilization can increase comprehensive benefits in Lancang-Mekong River.

  6. Explanation of asymmetric dynamics of human water consumption in arid regions: prospect theory versus expected utility theory

    Science.gov (United States)

    Tian, F.; Lu, Y.

    2017-12-01

    Based on socioeconomic and hydrological data in three arid inland basins and error analysis, the dynamics of human water consumption (HWC) are analyzed to be asymmetric, i.e., HWC increase rapidly in wet periods while maintain or decrease slightly in dry periods. Besides the qualitative analysis that in wet periods great water availability inspires HWC to grow fast but the now expanded economy is managed to sustain by over-exploitation in dry periods, two quantitative models are established and tested, based on expected utility theory (EUT) and prospect theory (PT) respectively. EUT states that humans make decisions based on the total expected utility, namely the sum of utility function multiplied by probability of each result, while PT states that the utility function is defined over gains and losses separately, and probability should be replaced by probability weighting function.

  7. The Legal Conditions for Water Utilities Eco-Innovation as Energy Smart Water Utilities

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2013-01-01

    Welfare and green growth rest havely on an appropriate supply of safe water, the provision of adequate sewage, and on energy services. These services are interdependent, as water is an integral part of electric-power generation. Energy is also an integrated part of water services, as satisfying w...

  8. Biostimulants and Its Potential Utilization in Functional Water-soluble Fertilizers

    Directory of Open Access Journals (Sweden)

    ZHANG Qiang

    2018-02-01

    Full Text Available Biostimulants are becoming widely applied and extended in the fertilizer industry, because of their effects on soil improvement, anti-stress ability enhancement and root growth promotion, which can increase efficient uptake and utilization of soil nutrients, crop yield and quality.This review introduced the concepts of biostimulants, and summarized the functions and related mechanisms of commonly-applied biostimulants in the market, i.e.humic acid, amino acid, seaweed extracts and plant-growth-promoting bacteria(PGPR. The properties and applied characteristics of different organic wastes containing some biostimulating compounds as the main material of functional water soluble fertilizers (WSFin the industry were presented. The technical keys to compound these organic wastes with some bio-active substances to produce the functional WSF were explored, with the aims to support the value -added utilization of organic wastes, reduce the use of fertilizers, and promote crops忆 quality and quantity.

  9. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water.

    Science.gov (United States)

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O

    2004-07-01

    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system.

  10. Optimal Size for Utilities? Returns to Scale in Water: Evidence from Benchmarking

    OpenAIRE

    Nicola Tynan; Bill Kingdom

    2005-01-01

    Using data from 270 water and sanitation providers, this Note investigates the relationship between a utility's size and its operating costs. The current trend toward transferring responsibility for providing services to the municipal level is driven in part by the assumption that this will make providers more responsive to customers' needs. But findings reported here suggest that smaller ...

  11. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  12. Economical Feasibility of Utilizing Photovoltaics for Water Pumping in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmet Z. Sahin

    2012-01-01

    Full Text Available Energy and water are the two major need of the globe which need to be addressed for the sustenance of the human beings on this planet. All the nations, no matter most populous, developed and developing need to diversify the means and ways of producing energy and at the same time guarding the environment. This study aims at techno economical feasibility of producing energy using PV solar panels and utilizing it to pump-water at Dhahran, Riyadh, Jeddah, Guriat, and Nejran regions in Saudi Arabia. The solar radiation data from these stations was used to generate electricity using PV panels of 9.99 kW total capacity. Nejran region was found to be most economical in terms of minimal payback period and cost of energy and maximum internal rate of return whereas PV power production was concerned. Water-pumping capacity of the solar PV energy system was calculated at five locations based on the PV power production and Goulds model 45J series of pumps. Monthly total and annual total water pumping capacities were determined. Considering the capital cost of combined solar PV energy system and the pump unit a cost analysis of water pumping for a well of 50 m total dynamic head (TDH was carried out. The cost of water pumping was found to vary between 2 and 3 /m3.

  13. Sodium-water reaction data needed by a utility for design assessment purposes

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, P R [Fast Reactor Engineering, Barnwood, Gloucester (United Kingdom)

    1978-10-01

    Worldwide LMFBR experience has shown that LMFBR steam generator water/steam leakage into sodium can severely reduce steam generator availability and cause lengthy plant outages. Utility assessment LMFBR designs prior to placing an order to construct are likely to give emphasis to matters that can affect steam generator integrity, reliability and total operating cost. The data needed in carrying out such assessments is described. (author)

  14. Sodium-water reaction data needed by a utility for design assessment purposes

    International Nuclear Information System (INIS)

    Bolt, P.R.

    1978-01-01

    Worldwide LMFBR experience has shown that LMFBR steam generator water/steam leakage into sodium can severely reduce steam generator availability and cause lengthy plant outages. Utility assessment LMFBR designs prior to placing an order to construct are likely to give emphasis to matters that can affect steam generator integrity, reliability and total operating cost. The data needed in carrying out such assessments is described. (author)

  15. Study benefit value of utilization water resources for energy and sustainable environment

    Science.gov (United States)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  16. The utilization of a pressurized-graphite/water/oxygen mixture for irradiated graphite incineration

    International Nuclear Information System (INIS)

    Antonini, G.; Perotin, J.P.; Charlot, P.

    1992-01-01

    The authors demonstrate the interest of the utilization of a pressurized-graphite/water/oxygen mixture in the incineration of irradiated graphite. The aqueous phase comes in the form of a three-dimensional system that traps pressurized oxygen, the pulverulent solid being dispersed at the liquid/gas interfaces. These three-phasic formulations give the following advantages: reduction of the apparent viscosity of the mixture in comparison with a solid/liquid mixture at the same solid concentration; reduction of the solid/liquid interactions; self-pulverizability. thus promoting reduction of the flame length utilization of conventional burners; reduction of the flue gas flow rate; complete thermal destruction of graphite. (author)

  17. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang

    2017-12-01

    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  18. Reorganization of water utilities - regionalization, an opportunity to increase their efficiency A comparative literature - Albania Case

    Directory of Open Access Journals (Sweden)

    Julian Naqellari

    2017-03-01

    Full Text Available The purpose of this research is the study and analysis of factors affecting the need for reorganization of entities engaged in water supply services. From this perspective, the research seeks to identify international practices made in this regard and how they can be adapted to water utilities in Albania. The objective of this paper is to show that regionalization of water utilities is a successful development direction not only of studied literature but also practice in Albania. The study is based on sources of information taken from primary and secondary sources. The selected method for collecting and processing information from primary sources is the empirical method through direct surveys and questionnaires, whereas from secondary sources is descriptive and analytical method. As secondary sources, we are consulted and referred to academic resources, such as articles, books, studies and reports carried out and published by national organizations, local and foreign companies in this field.

  19. Appraising longitudinal trends in the strategic risks cited by risk managers in the international water utility sector, 2005-2015.

    Science.gov (United States)

    Chalker, Rosemary T C; Pollard, Simon J T; Leinster, Paul; Jude, Simon

    2018-03-15

    We report dynamic changes in the priorities for strategic risks faced by international water utilities over a 10year period, as cited by managers responsible for managing them. A content analysis of interviews with three cohorts of risk managers in the water sector was undertaken. Interviews probed the focus risk managers' were giving to strategic risks within utilities, as well as specific questions on risk analysis tools (2005); risk management cultures (2011) and the integration of risk management with corporate decision-making (2015). The coding frequency of strategic (business, enterprise, corporate) risk terms from 18 structured interviews (2005) and 28 semi-structured interviews (12 in 2011; 16 in 2015) was used to appraise changes in the perceived importance of strategic risks within the sector. The aggregated coding frequency across the study period, and changes in the frequency of strategic risks cited at three interview periods identified infrastructure assets as the most significant risk over the period and suggests an emergence of extrinsic risk over time. Extended interviews with three utility risk managers (2016) from the UK, Canada and the US were then used to contextualise the findings. This research supports the ongoing focus on infrastructure resilience and the increasing prevalence of extrinsic risk within the water sector, as reported by the insurance sector and by water research organisations. The extended interviews provided insight into how strategic risks are now driving the implementation agenda within utilities, and into how utilities can secure tangible business value from proactive risk governance. Strategic external risks affecting the sector are on the rise, involve more players and are less controllable from within a utility's own organisational boundaries. Proportionate risk management processes and structures provide oversight and assurance, whilst allowing a focus on the tangible business value that comes from managing strategic

  20. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    Science.gov (United States)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of

  1. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers

  2. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  3. Why Do Some Water Utilities Recycle More than Others? A Qualitative Comparative Analysis in New South Wales, Australia.

    Science.gov (United States)

    Kunz, Nadja C; Fischer, Manuel; Ingold, Karin; Hering, Janet G

    2015-07-21

    Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.

  4. Advanced light water reactor utility requirements document: Volume 1--ALWR policy and summary of top-tier requirements

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The U.S. utilities are leading an industry wide effort to establish the technical foundation for the design of the Advanced Light Water Reactor (ALWR). This effort, the ALWR Program, is being managed for the U.S. electric utility industry by the Electric Power Research Institute (EPRI) and includes participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy (DOE). The cornerstone of the ALWR Program is a set of utility design requirements which are contained in the ALWR Requirements Document. The purpose of the Requirement Document is to present a clear, complete statement of utility desires for their next generation of nuclear plants. The Requirements Document covers the entire plant up to the grid interface. It therefore is the basis for an integrated plant design, i.e., nuclear steam supply system and balance of plant, and it emphasizes those areas which are most important to the objective of achieving an ALWR which is excellent with respect to safety, performance, constructibility, and economics. The document applies to both Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The Requirements Document is organized in three volumes. Volume 1 summarizes AlWR Program policy statements and top-tier requirements. The top-tier design requirements are categorized by major functions, including safety and investment protection, performance, and design process and constructibility. There is also a set of general design requirements, such as simplification and proven technology, which apply broadly to the ALWR design, and a set of economic goals for the ALWR program. The top-tier design requirements are described further in Volume 1 and are formally invoked as requirements in Volumes 2 and 3

  5. Capture and corruption in public utilities. The cases of water and electricity in Sub-Saharan Africa

    Energy Technology Data Exchange (ETDEWEB)

    Auriol, Emmanuelle [Toulouse School of Economics, 21 Allees de Brienne, 31000 Toulouse (France); Blanc, Aymeric [Agence Francaise de Developpement, 5 rue Roland Barthes, 75598 Paris Cedex 12 (France)

    2009-06-15

    The paper focuses on public utilities services located in poor countries with a special attention to capture and corruption issues. It confronts the optimal policy of Auriol and Picard [Privatization in Developing Countries and the Government Budget Constraint, Nota di Lavoro 75.2002. Fondazione Eni Enrico Mattei, Milan, Italy] regarding private sector involvement in public utilities with empirical evidence on water and electricity in Sub-Saharan Africa (SSA). As predicted by the theory, the participation of private unregulated firms in the supply of services for the middle class and poor people is fairly common in SSA. By contrast, services for rich people are provided by public utilities. Theory suggests that their prices should be high so that the public firms make a profit. Yet piped water and electricity are subsidized. This suggests that there is a problem of capture by the ruling elite. Since ruling elites design privatization programs, there is concern about their optimality. The paper shows that the social cost of corrupted privatization is non-monotone in the opportunity cost of public funds. Because of the fiscal loss it represents, privatizing profit centers of public firms entails huge social costs in very poor countries. (author)

  6. Capture and corruption in public utilities. The cases of water and electricity in Sub-Saharan Africa

    International Nuclear Information System (INIS)

    Auriol, Emmanuelle; Blanc, Aymeric

    2009-01-01

    The paper focuses on public utilities services located in poor countries with a special attention to capture and corruption issues. It confronts the optimal policy of Auriol and Picard [Privatization in Developing Countries and the Government Budget Constraint, Nota di Lavoro 75.2002. Fondazione Eni Enrico Mattei, Milan, Italy] regarding private sector involvement in public utilities with empirical evidence on water and electricity in Sub-Saharan Africa (SSA). As predicted by the theory, the participation of private unregulated firms in the supply of services for the middle class and poor people is fairly common in SSA. By contrast, services for rich people are provided by public utilities. Theory suggests that their prices should be high so that the public firms make a profit. Yet piped water and electricity are subsidized. This suggests that there is a problem of capture by the ruling elite. Since ruling elites design privatization programs, there is concern about their optimality. The paper shows that the social cost of corrupted privatization is non-monotone in the opportunity cost of public funds. Because of the fiscal loss it represents, privatizing profit centers of public firms entails huge social costs in very poor countries. (author)

  7. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    Directory of Open Access Journals (Sweden)

    Nyoman Suwartha

    2012-05-01

    Full Text Available The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recharge pond and river at three sampling point to determine existing water quality of the pond. The results showed that recharge rate of the pond between dry season (3.2 mm/day and wet season (6.1 mm/day are considered as insignificant different. The water balance of the recharge pond shows an excessive rate. Various physics and chemical parameters (turbidity, color, TDS, pH, and  Cl are found to have concentration lower than the water quality standard. The results suggest that the pond surface water is remain suitable to be recharged into aquifer zone so that sustaining ground water conservation campaign, and it is potential to be utilized as an additional  raw water source for domestic water demand of UI Campus Depok.

  8. Utilization of low temperature geothermal water in traditional and advanced agricultural applications

    International Nuclear Information System (INIS)

    Rossi, L.; Pacciaroni, F.

    1992-01-01

    The locations of large amounts of low temperature geothermal sources (30 to 80 degrees C) have been identified in Italy and in many European countries; one of the most interesting utilization of these sources is greenhouse heating. Surplus investment in comparison with conventional heating systems is justified only by the application of low cost technologies for well completion, heating distribution and waste heat treatment. In the last few years, many efforts have been made in the development of these technologies and selection of more profitable crops. Since 1984, ENEA (Italian Agency for Energy, New Technologies and the Environment) has carried out experimental work in two geothermal stations located in Canino (VT) and in Gorgo di Latisana (UD). In these plants, a number of greenhouses enveloped with plastic film are provided with different heating systems; the combination of soil and forced air heating is preferred. Plastic pipes, buried in the soil, are used as soil heating for horticulture and fruit production. For plot plant cultivation, soil heating is obtained by plastic pipes half-buried in a concrete floor. Asparagus cultivation is carried out with buried pipes. No additional heating with conventional fuel is provided in any greenhouse. During these years, ENEA has developed heating and water distribution technologies: current industrial components are generally utilized. Moreover, ENEA has recently completed an advanced automatic control system able to control geothermal greenhouses, manage water distribution, save energy and optimize environmental conditions

  9. Utilization of low temperature geothermal water in traditional and advanced agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L.; Pacciaroni, F.

    1992-12-31

    The locations of large amounts of low temperature geothermal sources (30 to 80 degrees C) have been identified in Italy and in many European countries; one of the most interesting utilization of these sources is greenhouse heating. Surplus investment in comparison with conventional heating systems is justified only by the application of low cost technologies for well completion, heating distribution and waste heat treatment. In the last few years, many efforts have been made in the development of these technologies and selection of more profitable crops. Since 1984, ENEA (Italian Agency for Energy, New Technologies and the Environment) has carried out experimental work in two geothermal stations located in Canino (VT) and in Gorgo di Latisana (UD). In these plants, a number of greenhouses enveloped with plastic film are provided with different heating systems; the combination of soil and forced air heating is preferred. Plastic pipes, buried in the soil, are used as soil heating for horticulture and fruit production. For plot plant cultivation, soil heating is obtained by plastic pipes half-buried in a concrete floor. Asparagus cultivation is carried out with buried pipes. No additional heating with conventional fuel is provided in any greenhouse. During these years, ENEA has developed heating and water distribution technologies: current industrial components are generally utilized. Moreover, ENEA has recently completed an advanced automatic control system able to control geothermal greenhouses, manage water distribution, save energy and optimize environmental conditions.

  10. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  11. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  12. Evaluation of alternative institutional arrangements in public utilities

    Directory of Open Access Journals (Sweden)

    Ermishina Anna, V.

    2015-06-01

    Full Text Available Since early 2000s a policy of attracting private operators to public utilities, which should help to increase productivity, reduce costs, and as a result, reduce utility prices takes place in Russia. The aim of the study is to identify the relationship between institutional arrangements and pricing for water and wastewater services. Applying statistical and cluster analysis to empirical data on water utilities in 13 largest cities has revealed the differences in the level and dynamics of prices for water and wastewater services in the group of public utilities and public private water utilities. In 2011-2014 the level and growth price rates in the group of public private partnerships were higher than in group of municipal water utilities. Thus, the involvement of private operators has not yet lead to the expected reduction in prices.

  13. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  14. Experimental Assessment of Water Sprays Utilization for Controlling Hydrogen Sulfide Releases in Confined Space

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhao

    2015-01-01

    Full Text Available This paper reported the utilization of water spray for controlling H2S release in a confined space, which is especially important in industry. A typical spray tower was modified to simulate the confined space for people's enterable routine operation (e.g., pump room, in which the dilution capacity of water sprays can also be evaluated. This work consists of two parts: the first part focuses on the influences of different operating conditions on chemical dilution capacities of water sprays in mechanisms; the second one is comparison between two nozzle configurations for evaluating their feasibilities of practical application. Water sprays express eligible performance for H2S release control even though their dilution capacity was weakened at high gaseous concentrations and rates of releases. The presence of Na2CO3 can significantly improve absorption effectiveness of H2S in water and the optimal Na2CO3 additive was found to be 1.0 g·L−1 in this test. Compared with Na2CO3, adjusting water flow rate may be an effective strategy in enhancing dilution capacity of water sprays due to the fact that larger flow rate led to both less dilution time (TD and dilution concentration (CD. Furthermore, multinozzle configuration is more efficient than single-nozzle configuration under the same water consumption.

  15. Drinking water sources, availability, quality, access and utilization for goats in the Karak Governorate, Jordan.

    Science.gov (United States)

    Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne

    2015-01-01

    Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.

  16. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  17. Surf Zone Hydrodynamics and its Utilization in Biotechnical Stabilization of Water Reservoir Banks

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2014-01-01

    Full Text Available The water reservoir banks are eroded mainly by two factors. The first one is wave action (i.e. wave abrasion affecting the bank in direction from the reservoir. The second one is the influence of water flowing downward over the bank surface in direction from land into the reservoir (e.g. rainfall. The determination of regular altitudinal emplacement of proper designed particular biotechnical stabilization elements is the most important factor on which the right functionality of whole construction depends. Surf zone hydrodynamics solves the wave and water level changes inside the region extending from the wave breaking point to the limit of wave up-rush. The paper is focused on the utilization of piece of knowledge from a part of sea coast hydrodynamics and new approach in its application in the conditions of inland water bodies when designing the biotechnical stabilization elements along the shorelines. The “reinforced grass carpets” as a type of biotechnical method of bank stabilization are presented in the paper; whether the growth of grass root system is dependent on presence or absence of geomats in the soil structure and proceeding of their establishment on the shorelines.

  18. Mox fuel utilization in ATR

    OpenAIRE

    下村 和生; 川太 徳夫

    1987-01-01

    ATR, a heavy-water moderated boiling-light-water cooled reactor developed in Japan, is a unique reactor with out-standing flexibility regarding nuclear fuel utilization, because it has superior properties concerning the utilization of plutonium, recovered uranium and depleted uranium. The development of this type of reactor is expected to contribute both to the stable supply of energy and to the establishment of plutonium utilization in Japan. Much effort has been and will be made on the deve...

  19. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  20. The differences in healthcare utilization for dental caries based on the implementation of water fluoridation in South Korea.

    Science.gov (United States)

    Cho, Myung-Soo; Han, Kyu-Tae; Park, Sohee; Moon, Ki Tae; Park, Eun-Cheol

    2016-11-08

    There were some debates about the water fluoridation program in South Korea, even if the program had generally substantial effectiveness. Because the out-of-pocket expenditures for dental care were higher in South Korea than in other countries, an efficient solution was needed. Therefore, we examined the relationship between the implementation of water fluoridation and the utilization of dental care. We used the National Health Insurance Service National Sample Cohort. In this study, data finally included 472,250 patients who were newly diagnosed with dental caries during 2003-2013. We performed survival analysis using cox proportional hazard model, negative binomial-regression, and regression analyses using generalized estimating equation models. There were 48.49 % outpatient dental care visit during study period. Individuals with water fluoridation had a lower risk of dental care visits (HR = 0.949, 95 % CI = 0.928-0.971). Among the individuals who experienced a dental care visit, those with water fluoridation program had a lower number of dental care visits (β = -0.029), and the period of water fluoridation had an inverse association with the dental care expenditures. The implementation of water fluoridation programs and these periods are associated with reducing the utilization of dental health care. Considering these positive impacts, healthcare professionals must consider preventive strategies for activating water fluoridation programs, such as changes in public perception and relations, for the effective management of dental care in South Korea.

  1. Abstracts of the Seminar on Modern State of Water Resources of Tajikistan - Problems and Perspectives of Rational Utilization

    International Nuclear Information System (INIS)

    2003-01-01

    This publication contains the abstracts of papers presented at the Seminar on Modern State of Water Resources of Tajikistan - Problems and Perspectives of Rational Utilization, held in Dushanbe in 2003

  2. Present status of seawater desalination and problems of nuclear utilization. Aiming at coping with global shortage of water

    International Nuclear Information System (INIS)

    2006-07-01

    With recent global population increase and economic and life level improvement, water demand increases tremendously and in 2025 water scarcity will occur in almost the half of countries and regions in the world. Nuclear desalination is highly expected to cope with this issue. The Japan Atomic Industrial Forum (JAIF) established special committee on seawater desalination problems to discuss possibilities of nuclear desalination introduction. Present status of seawater desalination and problems of nuclear utilization were reviewed and the committee recommended the necessity of establishing medium and long-term plan on international business development of nuclear desalination and also the start of basic research on problems of nuclear utilization such as technical and institutional limits and efficient applicability of nuclear energy. (T. Tanaka)

  3. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  4. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  5. Urban ecology and the municipal utilities

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    1998-01-01

    Current management of municipal utilities for energy, water and solid waste is often in conflict with the ideas of ecological demonstrationprojects. The writer argue there is a need of transformation within municipal utilities and a need of new planning tools......Current management of municipal utilities for energy, water and solid waste is often in conflict with the ideas of ecological demonstrationprojects. The writer argue there is a need of transformation within municipal utilities and a need of new planning tools...

  6. Cost benefit analysis of outsourcing initiatives/strategy at water utilities corporation (Botswana) / G Mogomotsi

    OpenAIRE

    Mogomotsi, G

    2016-01-01

    After the Water Utilities Corporation adopted outsourcing as a policy initiative and operational directive various non-core functions were outsourced. This raises obvious questions as to why the Corporation suddenly decided to do this. Does the Corporation indeed benefit in terms of value addition from outsourced functions? Some of the pertinent questions include: To what extent did policy guidelines and operational measures govern the said outsourcing initiatives? What are the...

  7. Utilization of air conditioner condenser as water heater in an effort to energy conservation

    Science.gov (United States)

    Sonawan, Hery; Saputro, Panji; Kurniawan, Iden Muhtar

    2018-04-01

    This paper presents an experimental study of utilization of air conditioner condenser as water heater. Modification of existing air conditioner system is an effort to harvest waste heat energy from condenser. Modification is conducted in order to test the system into two mode tests, first mode with one condenser and second mode with two condensers. Harvesting the waste heat from condenser needs a theoretical and practice study to see how much the AC performance changes if modifications are made. It should also be considered how the technique of harvesting waste heat for water heating purposes. From the problem, this paper presents a comparison between AC performance before and after modification. From the experiment, an increase in compressor power consumption is 4.3% after adding a new condenser. The hot water temperature is attained to 69 °C and ready for warm bath. The increase in power consumption is not too significant compared to the attainable hot water temperature. Also seen that the value of condenser Performance Factor increase from 5.8 to 6.25 or by 7.8%.

  8. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  9. An approach to link water resource management with landscape art to enhance its aesthetic appeal, ecological utility and social benefits

    Science.gov (United States)

    Mukherjee, Anita; Sen, Somnath; Paul, Saikat Kumar

    2017-04-01

    Landscape art or land art is the discourse of scientific application of artistic skill to integrate man-made structures with the natural landscape for planning, design, management, preservation and rehabilitation of natural and built environment. It does beautification of the landscape enhancing its utility for habitats. Availability of water with acceptable quality is crucial for economic growth, social peace and equality and of course for environmental sustainability. Development of new and growth of existing urban and suburban units are obvious. It postulates the increase of population density and percent of the impervious area in an urban unit. The demand for water is increasing with progressive concentration of population, the volume and velocity of surface runoff increase and the travel time decreases. At the same time, an increase in the volume of gray water not only contaminate water bodies, it also reduces the quantity of available freshwater transforming a portion of blue and green water to gray one and would intensify the pressure on water resources of the area. Therefore, to meet the incremental pressure of demand for and pollution of water collection, treatment and reuse of wastewater, both sewage and storm water, are on the requirement to improve urban water security. People must be concerned not to stifle urban lives with concrete; rather must provide all basic amenities for achieving a higher standard of life than the previous one with the essence of natural green spaces. The objective of the study is to propose a conceptual design and planning guidelines for developing urban and suburban drainage network and reuse of surface runoff and sewage water utilizing less used natural water bodies, such as paleo-channels or lakes or moribund channels as retention or detention basin. In addition to wastewater management, the proposal serves to promote the aesthetics of environmental engagement, ecological utility and restoration of moribund channels

  10. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  11. Scope for utilizing gamma radiation for microbiological control of sewage waste-water in India

    International Nuclear Information System (INIS)

    Lewis, N.F.

    1975-01-01

    Conventional methods, including the activated sludge process, the trickling filter process and oxidation pond process, of treating sewage waste in India, do not adequately ensure safe utilization of the secondary effluent for land irrigation purposes. Preliminary findings indicate that gamma radiation in the range of 0.1-0.3 Mrad effectively destroys pathogens in the secondary effluent, thereby making available very large quantities of water for land irrigation and industrial purposes. (author)

  12. How an existing telecommunications network can support the deployment of smart meters in a water utility?

    Directory of Open Access Journals (Sweden)

    Samuel de Barros Moraes

    2015-12-01

    Full Text Available This case study, based on interviews and technical analysis of a Brazilian water utility with more than 10 million clients, aims to understand what kind of adjusts on a telecommunications network, developed for operational and corporate use, demands to support a smart metering system, identifying this synergies and challenges.

  13. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    Science.gov (United States)

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  14. Domestic Water Utilization and Its Determinants in the Rural Areas of Oyo State, Nigeria Using Multivariate Analysis

    OpenAIRE

    T. O. Ogunbode; I. P. Ifabiyi

    2017-01-01

    Investigation into water utilization and its determinants in the rural areas is salient to a result-oriented management of this resource. Thus, a research was conducted to assess the pattern of domestic water uses and its determinant in the rural areas of Oyo State, Nigeria. A multistage sampling technique was applied to select 124 villages from 25 out of the 33 LGAs in Oyo State, Nigeria with 5 villages from each. Ten structured questionnaire were administered in each of the selected village...

  15. Utilization technology on slurried ash

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Yoshio; Yasuda, Minoru; Furuki, Yasuhiko [The Coal Mining Research Centre, Japan, Tokyo, Japan; Electric Power Development Co., Ltd., Tokyo (Japan))

    1987-08-01

    Three research results of the utilization technology on slurried ash were reported. As for the utilization as the fly ash quick setting (FQS) backfill grout for tail void in shield works of tunneling, grout blending was simplified, the blended solution of cement, clay, additives and water was stabilized, and a favorable workability and long term durability were obtained. As for the utilization as the material of a SMW (soil mixing wall) method for continuous walls in long shaft digging, a fly ash-gypsum-cement (FGC) stabilizer showed an excellent workability and remarkably high water-tightness as compared with conventional cement bentonite. As for the utilization as the material of an injection method of overlay mats in foundation works of light weight structures on the sea bed mud foundation, since a FGC concrete weight in water was remarkably light as 0.7t/m{sup 3}, no both large mold form strength and vibration compacting were required. 10 figs., 8 tabs.

  16. Fuel cell heat utilization system; Nenryo denchi netsuriyo sochi

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Omura, T. [Tokyo (Japan)

    1995-07-04

    In the conventional fuel cell heat utilization system, the waste heat is recovered to be utilized by either the waste heat recovery heat exchanger or the waste heat recovery steam. In the employment of the waste heat recovery heat exchanger system, however, the utility value is decreased when the temperature of the waste heat is lowered. Contrarily, in the employment of the waste heat recovery steam system, the supplementary water requirement is increased corresponding to the amount of waste heat recovery steam, resulting in the cost increase for water treatment. This invention solves the problem. In the invented fuel cell heat utilization system, a pressurized water from the steam separator is introduced into the second circuit to utilize directly the heat in the heat utilization system without employing the heat exchanger. If a blowdown valve is installed between the second circuit heat utilization system and the steam separator, the heat loss due to the blowdown can be reduced, since the low temperature water is blown down after being utilized in the heat utilization system. 4 figs.

  17. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water

    International Nuclear Information System (INIS)

    Wang Huajun; Zhao Jun; Chen Zhihao

    2008-01-01

    Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 deg. C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases

  18. Better utilization of ground water in the Piedmont and mountain region of the southeast

    Science.gov (United States)

    Heath, Ralph C.

    1979-01-01

    The development of water supplies for domestic consumption, and for those commercial and industrial uses requiring relatively pure water, has followed a pattern in the Piedmont and mountain areas of the southeast similar to that in most other humid areas. The first settlers utilized seepage springs on hillsides. Such springs occur along steep slopes where the water table intersects the land surface. As the population of the region grew, it became increasingly necessary to resort to shallow dug wells for domestic water supplies. Such wells also served as sources of water for the villages that developed, in time, around crossroad taverns. Seepage springs and dug wells are a satisfactory source of water in a virgin environment but are quickly polluted by careless waste-disposal practices. Thus disposal of domestic wastes in shallow pits resulted in epidemics of water-borne diseases as the villages grew into towns. This resulted in the third phase of water-supply development, which consisted of installing water lines and supplying water to homes from town-owned wells. In time, some of these wells became polluted and others failed to supply adequate water for the increasing needs of the larger urban areas. In the fourth phase these areas met their needs by drawing water from nearby streams. By the early years of this century it was possible to make this water palatable and relatively safe as a result of improvement in filtration methods. Streams, of course, have highly variable rates of flow and, as towns grew into small cities, the minimum flow of many streams was not adequate to meet the water-supply needs. This problem was solved in the fifth phase by building dams on the streams. We are still in this phase as we build larger and larger reservoirs to meet our growing water needs. Thus, through five phases of growth in the Piedmont and mountains we have advanced from the point where ground water was the sole source of supply to the point where it is the forgotten

  19. The Nuclear option for U.S. electrical generating capacity additions utilizing boiling water reactor technology

    International Nuclear Information System (INIS)

    Garrity, T.F.; Wilkins, D.R.

    1993-01-01

    The technology status of the Advanced Boiling Water (ABWR) and Simplified Boiling Water (SBWR) reactors are presented along with an analysis of the economic potential of advanced nuclear power generation systems based on BWR technology to meet the projected domestic electrical generating capacity need through 2005. The forecasted capacity needs are determined for each domestic North American Electric Reliability Council (NERC) region. Extensive data sets detailing each NERC region's specific generation and load characteristics, and capital and fuel cost parameters are utilized in the economic analysis of the optimal generation additions to meet this need by use of an expansion planning model. In addition to a reference case, several sensitivity cases are performed with regard to capital costs and fuel price escalation

  20. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  1. CONCRETE SUPPORT DESIGN FOR MISCELLANEOUS ESF UTILITIES

    International Nuclear Information System (INIS)

    Misiak, T.A.

    1999-01-01

    The purpose and objective of this analysis is to design concrete supports for the miscellaneous utility equipment used at the Exploratory Studies Facility (ESF). Two utility systems are analyzed: (1) the surface collection tanks of the Waste Water System, and (2) the chemical tracer mixing and storage tanks of the Non-Potable Water System. This analysis satisfies design recommended in the Title III Evaluation Reports for the Subsurface Fire Water System and Subsurface Portion of the Non-Potable Water System (CRWMS M andO 1998a) and Waste Water Systems (CRWMS M andO 1998b)

  2. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  3. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  4. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    Science.gov (United States)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  5. Trading Water Conservation Credits: A Coordinative Approach for Enhanced Urban Water Reliability

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2016-12-01

    Water utilities in arid and semi-arid regions are increasingly relying on water use efficiency and conservation to extend the availability of supplies. Despite spatial and institutional inter-dependency of many service providers, these demand-side management initiatives have traditionally been tackled by individual utilities operating in a silo. In this study, we introduce a new approach to water conservation that addresses regional synergies—a novel system of tradable water conservation credits. Under the proposed approach, utilities have the flexibility to invest in water conservation measures that are appropriate for their specific service area. When utilities have insufficient capacity for local cost-effective measures, they may opt to purchase credits, contributing to fund subsidies for utilities that do have that capacity and can provide the credits, while the region as whole benefits from more reliable water supplies. While similar programs have been used to address water quality concerns, to our knowledge this is one of the first studies proposing tradable credits for incentivizing water conservation. Through mathematical optimization, this study estimates the potential benefits of a trading program and demonstrates the institutional and economic characteristics needed for such a policy to be viable, including a proposed web platform to facilitate transparent regional planning, data-driven decision-making, and enhanced coordination of utilities. We explore the impacts of defining conservation targets tailored to local realities of utilities, setting credit prices, and different policy configurations. We apply these models to the case study of water utility members of the Bay Area Water Supply and Conservation Agency. Preliminary work shows that the diverse characteristics of these utilities present opportunities for the region to achieve conservation goals while maximizing the benefits to individual utilities through more flexible coordinative efforts.

  6. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  7. Rapid quantitative estimation of chlorinated methane utilizing bacteria in drinking water and the effect of nanosilver on biodegradation of the trichloromethane in the environment.

    Science.gov (United States)

    Zamani, Isaac; Bouzari, Majid; Emtiazi, Giti; Fanaei, Maryam

    2015-03-01

    Halomethanes are toxic and carcinogenic chemicals, which are widely used in industry. Also they can be formed during water disinfection by chlorine. Biodegradation by methylotrophs is the most important way to remove these pollutants from the environment. This study aimed to represent a simple and rapid method for quantitative study of halomethanes utilizing bacteria in drinking water and also a method to facilitate the biodegradation of these compounds in the environment compared to cometabolism. Enumeration of chlorinated methane utilizing bacteria in drinking water was carried out by most probable number (MPN) method in two steps. First, the presence and the number of methylotroph bacteria were confirmed on methanol-containing medium. Then, utilization of dichloromethane was determined by measuring the released chloride after the addition of 0.04 mol/L of it to the growth medium. Also, the effect of nanosilver particles on biodegradation of multiple chlorinated methanes was studied by bacterial growth on Bushnell-Haas Broth containing chloroform (trichloromethane) that was treated with 0.2 ppm nanosilver. Most probable number of methylotrophs and chlorinated methane utilizing bacteria in tested drinking water were 10 and 4 MPN Index/L, respectively. Chloroform treatment by nanosilver leads to dechlorination and the production of formaldehyde. The highest growth of bacteria and formic acid production were observed in the tubes containing 1% chloroform treated with nanosilver. By combining the two tests, a rapid approach to estimation of most probable number of chlorinated methane utilizing bacteria is introduced. Treatment by nanosilver particles was resulted in the easier and faster biodegradation of chloroform by bacteria. Thus, degradation of these chlorinated compounds is more efficient compared to cometabolism.

  8. Distribution and utilization of 15N in cowpeas injected into the stem under influence of water deficit.

    Science.gov (United States)

    Götz K-P; Herzog, H

    2000-01-01

    Investigations were carried out on Vigna unguiculata L. Walp. to estimate the distribution and utilization of 15N in different organs after stem injection during vegetative, flowering and pod filling stage. During flowering effects of water deficit were also examined. In well watered plants, within 4 days after injection, 65% of 15N accumulated in leaves. This was drastically reduced to 42% by water deficit. 15N accumulation in stems increased under water deficit. The translocation of 15N from the stem base to roots were not altered by water deficit. During pod filling 62% of recovered 15N in the plants had accumulated in seeds, 24% in leaves and 11% in stems within 4 days, whereas the uptake of nitrogen in pod walls and roots remained low (2%). These results demonstrate that the method of injecting very small quantities (1 mg/plant) of 15N into the stem base allows an exact and detailed quantitative assessment of N translocation/distribution with regard to different organs, different growth stages and different treatments.

  9. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  10. Strontium isotope study of coal utilization by-products interacting with environmental waters.

    Science.gov (United States)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2012-01-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Utility Bill Insert for Wastewater Services

    Science.gov (United States)

    Intended for use by wastewater and water supply utilities, one side of the utility bill insert has information for customers that discharge to sanitary sewer systems; the other side is for customers with septic systems.

  12. Studies in utilization of fertilizer and soil nitrogen by carrots

    International Nuclear Information System (INIS)

    Moussa, A.G.; Markgraf, G.; Geissler, T.

    1985-01-01

    Pot experiments were conducted to determine the extent of fertilizer N utilization by carrots, using double-labelled 15 N-ammonium nitrate. The degree of soil N utilization was also studied. The residual effect of nitrogen in the individual variants was determined in spinach grown as succeeding crop. Under the experimental conditions, N utilization was highest at high water supply (100 % of water capacity). Due to the daily rhythm of pot watering to approximately 100 % of water capacity, gas exchange (air and oxygen) was ensured as well, providing optimum growth conditions. At medium nitrogen rates (12.5 g N/m 2 ), carrots took up 44.5 % of the fertilizer N on sand and 54.5 % on loess soil. When water supply decreased to 70 % of the water capacity, utilization of fertilizer N declined to 26 % on sand and 43.8 % on loess soil. Spinach grown as succeeding crop took up more soil N than fertilizer N. (author)

  13. Radiation treatment of organic substances which are difficult to decompose for utilizing sewage water again. Radiation decomposition of lignin

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Sawai, Taruko; Tanabe, Hiroko

    1996-01-01

    The sewerage model projects utilizing sewage-treated water and the sewerage model project for the future city executed in Tokyo are described. It is important to obtain the treated water which is suitable to purposes by setting up the target for control and reducing the organic contamination which is difficult to decompose. In fiscal year 1995, as to the decomposing treatment of lignin by radiation, the effect of reducing coloring and the influence when actual flowing-in sewage and treated water coexist were examined. The experimental samples were lignin aqueous solution, synthetic sewage and flowing-in sewage, treated water, and the mixture of treated water and synthetic sewage. The measurement of water quality is explained. The γ ray irradiation with a Co-60 source was carried out. The results of respective samples are reported. When total organic carbon was at the level in flowing-in sewage and treated water, irradiation was effective for eliminating coloring. The soluble organic substances which are difficult to decompose were efficiently decomposed by irradiation. (K.I.)

  14. Analysis of changes in the utilization of thermal water and geothermal energy in the north great plain region (Northeastern Hungary

    Directory of Open Access Journals (Sweden)

    Kulcsár Balázs

    2012-01-01

    Full Text Available Probably, the most urgent problem of mankind in the 21st century to find a way to satisfy the energy demand of the world’s population - having reached seven billion people in 2011 - preferably from renewable sources, by endeavoring to apply environmentally sparing methods. From Hungary’s perspective, it is a goal of priority significance, as it is an area that is not abound in fossil energy resources, and thus becoming increasingly exposed to the energy policies of the producer countries. If Hungary, which has favorable endowments in the field of renewable energy resources, lays larger emphasis on the application and processing of environmental industry technologies, the economic vulnerability of the country can be mitigated. This study discusses the distribution of the utilization of geothermal energy and its carrying medium, thermal water among the sectors of the economy, as well as its changes over time, the utilization potentials of alternative energies in the northeastern region of Hungary. This region has outstanding facilities in the field of thermal water and geothermal energy resources, yet their utilization rate - with respect to the available thermal water capacities - is rather low. It is a consequence of the regulatory requirements posed on operators, high investment and maintenance costs, the general shortage of resources, the difficult situation of the industries and municipalities, as well as the fact that the solid and liquid media of energy storage lying at depths of thousands of meters, the methods and potentials of exploitations, their sustainability are not or are just partly known.

  15. Utilization of waste waters in fish production: preliminary results from fish culture studies in floating cages in a sewage pond, New Bussa, Nigeria

    OpenAIRE

    Otubusin, S.O.; Olatunde, A.A.

    1993-01-01

    The utilization of waste waters in aquaculture were briefly reviewed. At the National Institute for Freshwater Fisheries Research (NIFFR), stocking density (20 to 160 fish/m super(3)) experiments using Sarotherodon galilaeus (without supplementary feeding) in floating cages were carried out in a sewage pond (0.4ha surface area). Cage culture of S. galilaeus was observed to have potentials in waste waters aquaculture. Recommendations were made on the execution of an intergrated waste water ...

  16. Physicochemical characteristics of undrainable water dams utilized ...

    African Journals Online (AJOL)

    pH, electro-conductivity and total dissoved solutes (TDS) were measured in-situ from three reservoirs (Gathathini, Lusoi and Kianda dams) differing in their habitat characteristics. Water samples were collected for determination of the ionic concentartions of the reservoirs. Water quality status differed markedly between sites, ...

  17. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  18. Generation of electricity and combustible gas by utilization of agricultural waste in Nara canal area water board

    International Nuclear Information System (INIS)

    Joyo, P.; Memon, F.; Sohag, M.A.

    2005-01-01

    Biomass in an important source of energy, however, it is not fully utilized in Sindh. The various types of biomass normally used for the generation of energy are extensively available in the province. These are forest debris and thinning; residue from wood products industry; agricultural waste; fast-growing trees and crops; wood and wood waste; animal manures and non-hazardous organic portion of municipal solid waste. Since agriculture is pre-dominant in Sindh, it has a large amount of agricultural waste available in most of the areas. Agriculture wastes like rice husk, wheat straw, cotton stalks, and sugarcane bagasse can be utilized to produce gas and afterwards electricity. Pakistan Agricultural Research Council (PARC) has found that at most of the locations of Sindh, agricultural waste is available more than the energy requirements of that particular area. Biomass can also generate electricity (or heat) in one of the several processes, can be used in a piston driven engine, high efficiency gas turbine generator or a fuel cell to produce electricity. Biomass gasifies have gained attention for their efficiency, economy and environment-friendly. The Nara Canal Area Water Board is facing acute problem of electricity in the O and M of its drainage network and running of tube wells. The frequent breakdown and irregular supply of power is badly affecting in the management of drainage system and control of rising water-table, however, it is anticipated that the generation of electricity through biomass can address this acute problem and greatly help in controlling water logging and salinity in Sindh. (author)

  19. Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents.

    Science.gov (United States)

    Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S

    2016-01-01

    Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  1. UTILIZING CREEKS FOR INTEGRATED RURAL COASTAL ...

    African Journals Online (AJOL)

    Osondu

    2013-02-09

    Feb 9, 2013 ... This study examines the Utilization of Creeks for Integrated Coastal Development of Ilaje ... utilization, poor fishing techniques, poor sources of water and navigation routes, and manual ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.3 .... together, implement, monitor and evaluate.

  2. Managing Expectations: Results from Case Studies of US Water Utilities on Preparing for, Coping with, and Adapting to Extreme Events

    Science.gov (United States)

    Beller-Simms, N.; Metchis, K.

    2014-12-01

    Water utilities, reeling from increased impacts of successive extreme events such as floods, droughts, and derechos, are taking a more proactive role in preparing for future incursions. A recent study by Federal and water foundation investigators, reveals how six US water utilities and their regions prepared for, responded to, and coped with recent extreme weather and climate events and the lessons they are using to plan future adaptation and resilience activities. Two case studies will be highlighted. (1) Sonoma County, CA, has had alternating floods and severe droughts. In 2009, this area, home to competing water users, namely, agricultural crops, wineries, tourism, and fisheries faced a three-year drought, accompanied at the end by intense frosts. Competing uses of water threatened the grape harvest, endangered the fish industry and resulted in a series of regulations, and court cases. Five years later, new efforts by partners in the entire watershed have identified mutual opportunities for increased basin sustainability in the face of a changing climate. (2) Washington DC had a derecho in late June 2012, which curtailed water, communications, and power delivery during a record heat spell that impacted hundreds of thousands of residents and lasted over the height of the tourist-intensive July 4th holiday. Lessons from this event were applied three months later in anticipation of an approaching Superstorm Sandy. This study will help other communities in improving their resiliency in the face of future climate extremes. For example, this study revealed that (1) communities are planning with multiple types and occurrences of extreme events which are becoming more severe and frequent and are impacting communities that are expanding into more vulnerable areas and (2) decisions by one sector can not be made in a vacuum and require the scientific, sectoral and citizen communities to work towards sustainable solutions.

  3. CROSS DRIFT ALCOVE/NICHE UTILITIES ANALYSIS

    International Nuclear Information System (INIS)

    S. Goodin

    1999-01-01

    The purpose of this analysis is to provide the design basis and general arrangement requirements of the non-potable water, waste water, compressed air and ventilation (post excavation) utilities required in support of the Cross Drift alcoves and niches

  4. Utilization of the Space food in Space Agriculture

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Hashimoto, Hirofumi; Space Agriculture Task Force

    2012-07-01

    It is important that we think about the utilization of the Space food in the space agriculture. In addition, these studies may lead the food problem on the earth on the solution. This study thought about the utilization of the food and thought about doing a stem and the root of vegetables performed water culture of with food. I order Japan Food Research Laboratories to do the nutritional analysis of the root of a lettuce cultivated by water culture. The analysis items were lipid, carbohydrates, energy, protein, water, ash, Na, P, Fe, Ca, K, Mg, Cu, Zn, Mn, vitamin B12, vitamin C, vitamin D, dietary fiber(water soluble or insoluble). Most were water, but, as for the root of the lettuce, it was revealed that it was rich in a mineral (calcium, iron and magnesium).To eat the root of the lettuce will be good nutritional supply of minerals (calcium, iron) in the space life. In the result, water and mineral supply could make good use of in low calorie at loots of the lettuce. We want to think about the utilization of each food more in future.

  5. Perceptions of climate-related risk among water sector professionals in Africa-Insights from the 2016 African Water Association Congress.

    Science.gov (United States)

    Connolly, Katherine; Mbutu, Mwaura; Bartram, Jamie; Fuente, David

    2018-04-23

    The ability of water and wastewater utilities to provide safe and reliable water and sanitation services now and in the future will be determined, in part, by their resilience to climate change. Investment in infrastructure, planning, and operational practices that increase resilience are affected, in turn, by how water sector professionals perceive the risks posed to utilities by climate change and its related impacts. We surveyed water sector professionals at the 2016 African Water Association's Congress in Nairobi, Kenya to assess their perceptions of climate-specific and general risks that may disrupt utility service. We find that water sector professionals are most concerned about climate-specific and general risks that affect utility water supplies (quantity), followed by adequacy of utility infrastructure. We also find that professionals tend to rank climate-specific risks as less concerning than general risks facing utilities. Furthermore, non-utility professionals are more concerned about climate-specific risks and climate change in general than utility professionals. These findings highlight the multiple, competing risks utilities face and the need for adaptation strategies that simultaneously address climate-specific and general concerns of utilities. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. STRATEGY WATER-BASED CONDENSER : An Experimental Scale Model for Hybrid Passive Cooling Systems to Improve Indoor Temperature and Hot Water Utilities in Surabaya-Indonesia

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2003-01-01

    Full Text Available This paper makes a case of energy saving research, to system water-based condenser for the use of energy efficient with involvement of forced fluid hybrid passive cooling and water heating in building systems. Our argument is based on the fact that series of water copper pipes are to be cooled enough by nocturnal radiant cooling of the night cool air to lower the indoor air temperature at the daytime. We describe the model of working to which we use and to which we believe that series of cool water copper pipes as evaporator allows effectively reducing the energy used for indoor cooling and for water heating utilization. We then measure the model indoor temperature, and water temperature inside the series of copper pipes. Kinds of water coolant used for cooling are an essential factor. Finally, we will discuss some of the achieving of the effective cooled water, setting up the pipes water-based condenser hybrid system on the top of the outside roof as well as setting up the evaporator coils at ceiling. Abstract in Bahasa Indonesia : Penulisan ini merupakan suatu penelitian pada golongan sistem penghematan energi yang berupakan kondensor dengan bahan media air dengan bantuan tenaga gerak pompa atau tanpa tenaga pompa air. Pipa-pipa yang berisi air yang diletakkan diatas atap terbuka untuk mendapatkan air yang dingin melalui proses konduksi, konveksi, dan radiasi dari udara alami sepanjang malam, dimana media air yang telah dingin tersebut untuk dimanfaatkan sebagai media pendingin ruangan dengan melalukan ke pipa-pipa dalam ruangan--diatas plafon, sebagai evapurator. Selain media air akan diteliti air pendingin radiator (water coolent apakah akan mendapatkan efek pendinginan yang melebihi media air. Juga akan diteliti cara proses mendapatkan media air dingin, yaitu proses dengan air tenang (still water dan air bergerak (forced fluid, sistim mana yang lebih efektif dalam mendapatkan media air dingin dan percepatan mendapatkan air dingin. Kata

  7. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    Energy Technology Data Exchange (ETDEWEB)

    Nydahl, J.E.; Carlson, B.O. [Univ. of Wyoming, Laramie, WY (United States)

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  8. U. S. Utility Leadership in Requirements For Passive Reactors

    International Nuclear Information System (INIS)

    Kim, Jcng H.; Layman, William H.

    1991-01-01

    Utility leadership from both U.S. utilities and international utilities, is a key element in the U. S. Advanced Light Water Reactor Program. International utilities have played a very import Design reviews by the utilities participating in the ALRR Program will ensure that all of the utility requirements are met while design work is being carried out. Our mission is to achieve NRC certification of designs that reflect the needs of the utilities and we believe that this will play an important role in the resurgence of nuclear plant construction in the United States. As stated in the Nuclear Power Oversight Committee's Strategic Plan For Building New Nuclear Power Plants : 'The extensive operating experience with today's light water reactors (LWRs), and the promise shown in recent technical developments, leads the industry to the conclusion that the next nuclear plants ordered in the United States will be advanced light water reactors (A LWRs). Two types are under development : units of large output (1300 MW) called 'evolutionary' A LWRs and units of mid-size output (600 MW) called 'Passive' A LWRs. The term 'passive' refers to the safety features which depend more on natural processes such as gravity and buoyancy than on powered equipment such as pumps

  9. PATTERNS UTILIZED IN THE SIMULATION OF UNDERGROUND WATER FLOW AND THE TRANSPORTATION OF POLLUTANTS IN THE BAHLUI DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Ionut Minea

    2012-03-01

    Full Text Available ABSTRACT. – Patterns utilized in the simulation of underground water flow and the transportation of pollutants in the Bahlui drainage basin. In the actual context of accelerate economic development, the excessive exploatation of water resources from the underground and the contamination of these with different water pollutants has become a major problem which has enetered the attention of many researchers. For the evaluation of an underground water flow and pollutants transport sistem we have chosen the package of programs MODFLOW which includes a whole series of applications,such as MOC3D, MT3D, MT3DMS, PEST, UCODE, PMPATH, which allow simulations and multiple recalibrations of the capacity of recharging of the aquifers, the flowing of the water towards wells and drillings the transport of a pollutant agent in the underground or the evaluation of the exchange of water between the hidrographic network and aquifers. The sistem targets both the evaluation of the modelation of the underground flowing and the simulation of a punctual polluation of the canvas of groundwater scenery, in the meadow of the river Bahlui, west from Letcani village.

  10. In-Situ Resource Utilization: Water Extraction from Regolith

    Data.gov (United States)

    National Aeronautics and Space Administration — Several technologies are being evaluated to extract water from a variety of water-bearing extraterrestrial soils, including near-surface granular and hard hydrated...

  11. Demonstration of thermal water utilization in agriculture

    International Nuclear Information System (INIS)

    Berry, J.W.; Miller, H.H. Jr.

    1974-01-01

    A 5-yr demonstration project was conducted to determine benefits and identify harmful effects of using waste heat in condenser cooling water (90 0 F-110 0 F) for agricultural purposes. Initial phases emphasized use and evaluation of warm water for spring frost protection, irrigation, and plant cooling in summer. Row crops, and fruit and nut trees were used in the evaluation. Undersoil heating was demonstrated on a 1.2-acre soil plot. Two and one half inch plastic pipes were buried 26 in deep and 5 ft on center, connecting to 6-in. steel headers. Warm water was circulated through the grid, heating soil on which row crops were grown. Crop production was evaluated in a 22 x 55-ft plastic greenhouse constructed on a portion of the undersoil heat grid. The greatest potential benefit of waste heat use in agriculture is in the area of greenhouse soil heating. Monetary benefits from industrial waste heat appear achievable through proper management

  12. Water Pumping Stations, File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer plants, sewer pumpstations, water plants, water tanks http://www.harfordcountymd.gov/gis/Index.cfm, Published in 2011, 1:1200 (1in=100ft) scale, Harford County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Water Pumping Stations dataset current as of 2011. File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer...

  13. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    Science.gov (United States)

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.

  14. Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean.

    Science.gov (United States)

    Dinasquet, Julie; Richert, Inga; Logares, Ramiro; Yager, Patricia; Bertilsson, Stefan; Riemann, Lasse

    2017-06-01

    The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Utility Computing: Reality and Beyond

    Science.gov (United States)

    Ivanov, Ivan I.

    Utility Computing is not a new concept. It involves organizing and providing a wide range of computing-related services as public utilities. Much like water, gas, electricity and telecommunications, the concept of computing as public utility was announced in 1955. Utility Computing remained a concept for near 50 years. Now some models and forms of Utility Computing are emerging such as storage and server virtualization, grid computing, and automated provisioning. Recent trends in Utility Computing as a complex technology involve business procedures that could profoundly transform the nature of companies' IT services, organizational IT strategies and technology infrastructure, and business models. In the ultimate Utility Computing models, organizations will be able to acquire as much IT services as they need, whenever and wherever they need them. Based on networked businesses and new secure online applications, Utility Computing would facilitate "agility-integration" of IT resources and services within and between virtual companies. With the application of Utility Computing there could be concealment of the complexity of IT, reduction of operational expenses, and converting of IT costs to variable `on-demand' services. How far should technology, business and society go to adopt Utility Computing forms, modes and models?

  16. Modeling Water Utility Investments and Improving Regulatory Policies using Economic Optimisation in England and Wales

    Science.gov (United States)

    Padula, S.; Harou, J. J.

    2012-12-01

    Water utilities in England and Wales are regulated natural monopolies called 'water companies'. Water companies must obtain periodic regulatory approval for all investments (new supply infrastructure or demand management measures). Both water companies and their regulators use results from least economic cost capacity expansion optimisation models to develop or assess water supply investment plans. This presentation first describes the formulation of a flexible supply-demand planning capacity expansion model for water system planning. The model uses a mixed integer linear programming (MILP) formulation to choose the least-cost schedule of future supply schemes (reservoirs, desalination plants, etc.) and demand management (DM) measures (leakage reduction, water efficiency and metering options) and bulk transfers. Decisions include what schemes to implement, when to do so, how to size schemes and how much to use each scheme during each year of an n-year long planning horizon (typically 30 years). In addition to capital and operating (fixed and variable) costs, the estimated social and environmental costs of schemes are considered. Each proposed scheme is costed discretely at one or more capacities following regulatory guidelines. The model uses a node-link network structure: water demand nodes are connected to supply and demand management (DM) options (represented as nodes) or to other demand nodes (transfers). Yields from existing and proposed are estimated separately using detailed water resource system simulation models evaluated over the historical period. The model simultaneously considers multiple demand scenarios to ensure demands are met at required reliability levels; use levels of each scheme are evaluated for each demand scenario and weighted by scenario likelihood so that operating costs are accurately evaluated. Multiple interdependency relationships between schemes (pre-requisites, mutual exclusivity, start dates, etc.) can be accounted for by

  17. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    Science.gov (United States)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  18. Implementation of utilities operation and maintenance experience into the European pressurized water reactor design

    International Nuclear Information System (INIS)

    Zaiss, W.; Lallier, M.

    1999-01-01

    Since 1992 Electricite de France EDF and German Utilities GU work together with Nuclear Power International NPI, a subsidiary of Framatome and Siemens, in the development of the future European Pressurized Water Reactor EPR. The EPR is an evolutionary concept, based on the French N4 plants and the German KONVOI plants. From the beginning, experienced operation and maintenance people from the precursor plants participate at the design process. Their experience will lead to a plant, which is not only characterised by low investment costs, but also by good operability, high availability and low operation and maintenance costs. No expensive back-fittings should be necessary after commissioning, to reach these availability and maintenance targets. The utility specialists give design requirements for outage performance, system design, and layout. These design requirements are really determining the system performances, and not what was design basis before. It does not necessarily lead to system increases. Mainly it is a shifting of the emphasis to other items. There are even cases, where the system performances can be reduced. Mostly very small modifications, which are nearly cost neutral when implemented early in the design, have big impact on the further operation. If there are big cost influences, a sound balance between investment and gained availability is made together with the designers. There is very fruitful discussion between designers and operators, which is highly estimated by both sides. In this frame also new, revolutionary ideas are coming up, which are going mostly in the direction of investment cost reduction, without loosing operation freedom. It is the first time in Europe, that designers and operators are working so close together. It is also the first time, that the management and the decision making is dominated by the utilities. (author)

  19. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  20. Water Service Areas - MDC_WaterServiceArea

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The Water and Sewer Service Area layer was derived from the original paper based sketches which contained both water and sewer utility boundary information. This...

  1. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  2. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  3. 25 CFR 175.62 - Utility actions pending the appeal process.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Utility actions pending the appeal process. 175.62 Section 175.62 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Appeals § 175.62 Utility actions pending the appeal process. Pending an appeal, utility...

  4. A study of water in glass by an autoradiographic method that utilizes tritiated water

    International Nuclear Information System (INIS)

    Knickerbocker, S.H.; Brown, S.D.; Joshi, S.B.

    1983-01-01

    This chapter determines water concentration and spatial distribution in glass by an autoradiographic method that makes use of tritiated water as the tagged species. Describes the method and presents some typical results. Lists advantages and disadvantages associated with the method and examines other methods that might be used for the study of water in glass. Discusses dry glass preparation, the addition of tritiated water to glass, glass preparation, film selection, and film analysis. Shows tritium autoradiography to be a valuable technique for measuring the content and spatial distribution of water in inorganic glasses. Finds that the technique yields unique information, particularly in regard to spatial distribution, when compared with techniques of IR spectroscopy, SIMS, SIPS, NRRA, ESR and NMR. Points out that large areas (e.g., several square inches) of sample can be mapped in a single exposure. Notes that the spatial resolution of water in the glass network can be 10 -7 m, so very accurate diffusion profiles are obtainable

  5. Resource Guide to Effective Utility Management and Lean

    Science.gov (United States)

    Water and wastewater utilities are critical to the environmental, economic, and social well being of our nation’s communities, as they work to ensure that the public continues to enjoy the benefits of clean and safe water.

  6. THE UTILIZATION OF THE WATER RESOURCES OF NISTRU RIVER WITHIN THE REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    V. MOCREAC

    2016-03-01

    Full Text Available On the basis of the studies regarding the water funds, the regimes and characteristics of the flow of river Nistru, those internal larger and smaller ones, taking into consideration what basins exist and the ones with perspective can demonstrate the hydroenergetic potential values of the Republic of Moldova currently and for an extended period of time.The basic variant of the scheme of arrangement on Nistru r. on the basis of the requirements of today’s impact on the environment, the ecological flows, hydroenergetic equipments chosen for the parameters of sufficient operation, and the hydrotechnical unit must have an appearance of a complex utilization. The assurances of the flows and head of the hydro-electric plants with operation in cascade on rivers is caused by the strength of given data and the hydrologic calculations after interstate normatives applied now.

  7. Sustainable Water Infrastructure

    Science.gov (United States)

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  8. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities

    Science.gov (United States)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.

    2003-04-01

    Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration, dilution, sorption, and biodegradation that can significantly improve the raw water quality (Tufenkji et al, 2002; Kuehn and Mueller, 2000; Kivimaki et al, 1998; Stuyfzand, 1998). Transport through alluvial aquifers is associated with a number of water quality benefits, including removal of microbes, pesticides, total and dissolved organic carbon (TOC and DOC), nitrate, and other contaminants (Hiscock and Grischek, 2002; Tufenkji et al., 2002; Ray et al, 2002; Kuehn and Mueller, 2000; Doussan et al, 1997; Cosovic et al, 1996; Juttner, 1995; Miettinen et al, 1994). In comparison to most groundwater sources, alluvial aquifers that are hydraulically connected to rivers are typically easier to exploit (shallow) and more highly productive for drinking water supplies (Doussan et al, 1997). Increased applications of RBF are anticipated as drinking water utilities strive to meet increasingly stringent drinking water regulations, especially with regard to the provision of multiple barriers for protection against microbial pathogens, and with regard to tighter regulations for disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs). In the above context, research was conducted to document the water quality benefits during RBF at three major river sources in the mid-western United States, specifically with regard to DBP precursor organic matter and microbial pathogens. Specific objectives were to: 1. Evaluate the merits of RBF for removing/controlling DBP precursors and certain other drinking water contaminants (e.g. microorganisms). 2. Evaluate whether RBF can improve finished drinking water quality by removing and/or altering natural organic matter (NOM) in a

  9. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  10. Social Norms in Water Services: Exploring the Fair Price of Water

    Directory of Open Access Journals (Sweden)

    Ossi Heino

    2015-02-01

    Full Text Available The aim of this article is to analyse price fairness in water services. Although a considerable amount of literature has been published on water pricing, these studies have mainly approached the question from instrumental and rational perspectives. Little attention has been paid to the human side of water pricing. Therefore, the general objective of this research is to shed light on these softer factors, filling the gap in knowledge of the emotional connections with water services. In this research, we explored peopleʼs ideas and views about water pricing by conducting 74 interviews in 11 municipalities in Finland. The results suggest that people are not just rational consumers of a good but also have emotional ties to water utilities and municipal decision-making. The general attitude towards a water utility is confident and sympathetic if its operations and municipal decision-making processes are considered as fair, and conversely, unsympathetic if operations and decision-making are considered unfair. This is a topical issue as many water utilities are facing pressures to increase water prices; being fair appeared to be a crucial way to gain appreciation and support through difficult times. Because fairness seems to be an emergent property of social experiences, special attention should be paid to the 'soft side' of water services.

  11. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water.

    Science.gov (United States)

    Ouyang, Hailong; Hu, Chunxiang

    2017-05-31

    Biocrusts are model ecosystems of global change studies. However, light and non-rainfall water (NRW) were previously few considered. Different biocrust types further aggravated the inconsistence. So carbon-exchange of biocrusts (cyanobacteria crusts-AC1/AC2; cyanolichen crust-LC1; chlorolichen crust-LC2; moss crust-MC) utilizing NRW at various temperatures and light-intensities were determined under simulated and insitu mesocosm experiments. Carbon input of all biocrusts were negatively correlated with experimental temperature under all light-intensity with saturated water and stronger light with equivalent NRW, but positively correlated with temperature under weak light with equivalent NRW. LCPs and R/Pg of AC1 were lowest, followed in turn by AC2, LC2 and MC. Thus AC1 had most opportunities to use NRW, and 2.5 °C warming did cause significant changes of carbon exchange. Structural equation models further revealed that air-temperature was most important for carbon-exchange of ACs, but equally important as NRW for LC2 and MC; positive influence of warming on carbon-input in ACs was much stronger than the latter. Therefore, temperature effect on biocrust carbon-input depends on both moisture and light. Meanwhile, the role of NRW, transitional states between ACs, and obvious carbon-fixation differences between lichen crusts should be fully considered in the future study of biocrusts responding to climate change.

  12. Improvement in fuel utilization in pressurized heavy water reactors due to increased heavy water purity

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    This paper reports that in a pressurized heavy water reactor (PHWR), the reactivity of the reactor and, consequently, the discharge burnup of the fuel depend on the isotopic purity of the heavy water used in the reactor. The optimal purity of heavy water used in PHWRs, in turn, depends on the cost of fabricated uranium fuel and on the incremental cost incurred in improving the heavy water purity. The physics and economics aspects of the desirability of increasing the heavy water purity in PHWRs in India were first examined in 1978. With the cost data available at that time, it was found that improving the heavy water purity from 99.80% to 99.95% was economically attractive. The same problem is reinvestigated with current cost data. Even now, there is sufficient incentive to improve the isotopic purity of heavy water used in PHWRs. Admittedly, the economic advantage that can be derived depends on the cost of the fabricated fuel. Nevertheless, irrespective of the economics, there is also a fairly substantial saving in natural uranium. That the increase in the heavy water purity is to be maintained only in the low-pressure moderator system, and not in the high-pressure coolant system, makes the option of achieving higher fuel burnup with higher heavy water purity feasible

  13. Water conservation, recycling, and reuse: US northeast

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.

    1984-10-01

    This paper focuses upon present and future possibilities for water conservation, recycling, and reuse in New England and Middle Atlantic states. Telephone interviews and questionnaires sent to trade associations, public utility commissions, federal, state and other agencies were used to supplement information gathered in the literature. Water intake and consumptive demands in 1980 were calculated for industrial, electric utility, agricultural, and residential sectors. Corresponding information for the year 2000 were estimated using data from utilities, public utility commissions, and the US Bureau of Economic Affairs. Water supplies were estimated using the concept of safe yield. Assuming reductions in water use by industries, agriculture and by private residences in the year 2000, it was found that many users, particularly the electric utility sector, would still experience serious water supply shortfalls in several industrialized states. 20 references, 14 tables.

  14. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  15. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  16. Utility service quality - telecommincations, electricity, water

    Energy Technology Data Exchange (ETDEWEB)

    Holt, L. [Florida Univ., Gainesville, FL (United States). Public Utility Research Center

    2005-09-01

    This survey of quality-of-service issues raised by regulation identifies 12 steps for promoting efficient sector performance. First, regulators must identify objectives and prioritize them. Inter-agency coordination is often required to establish targets. Regulators must also determine a process for selecting measures and an appropriate method for evaluating them. Finally, performance incentives must be established and outcomes periodically reviewed. Telecommunications, electricity, and water all have multiple dimensions of quality that warrant careful attention. (Author)

  17. Diel production and microheterotrophic utilization of dissolved free amino acids in waters off southern California

    International Nuclear Information System (INIS)

    Carlucci, A.F.; Craven, D.B.; Henrichs, S.M.

    1984-01-01

    Diel patterns of dissolved free amino acid (DFAA) concentration and microheterotrophic utilization were examined in the spring and fall of 1981 in euphotic waters from the base of the mixed layer off the southern California coast. The average depths of the isotherms sampled were 19.2 m for spring and 9.0 for fall. Total DFAA levels were generally higher in the spring than in the fall, 18 to 66 nM and 14 to 20 nM, respectively. Two daily concentration maxima and minima were observed for total DFAAs as well as for most individual DFAAs. Maxima were usually measured in the mid-dark period and in the early afternoon; minima were typically observed in early morning and late afternoon. Bacterial cell numbers reached maximal values near midnight in both seasons. The increases coincided with one of the total DFAA maxima. The second total DFAA maximum occurred in early to midafternoon, during the time of maximum photosynthetic carbon production and rapid dissolved amino acid utilization. Microbial metabolism (incorporation plus respiration) of selected 3 H-amino acids was 2.7 to 4.1 times greater during the daylight hours. DFAA turnover times, based on these metabolic measurements, ranged between 11 and 36 h for the amino acids tested, and rates were 1.7 to 3.7 times faster in the daylight hours than at night. DFAA distributions were related to primary production and chlorophyll a concentrations. Amino acids were estimated to represent 9 to 45% of the total phytoplankton exudate. Microheterotrophic utilization or production of total protein amino acids was estimated as 3.6 μg of C liter -1 day -1 in spring and 1.9 μg of C liter -1 day -1 in the fall. Assimilation efficiency for dissolved amino acids averaged 65% for marine microheterotrophs

  18. Water Resilience

    Science.gov (United States)

    The Drinking Water and Wastewater Resiliency site provides tools and resources for drinking water and wastewater utilities in the full spectrum of emergency management which includes prevention, mitigation, preparedness, response and recovery.

  19. Utilization of hot exhaust water from power station to marine cultivation to increase product. Hatsudensho onhaisui no suisan zoyoshoku eno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, K [The University of Tokyo, Tokyo (Japan). Faculty of Agriculture

    1990-07-20

    A large quantity of waste sea water, exhausted after having been used as cooling water in the thermal and unclear power stations, is higher by about 7 centigrade in temperature than that when taken in. Its utilization to the marine cultivation to increase product was explained in present status and points of problem. Among aquatic animals to like high temperature, those, valuavle from the viewpoint of fishery, are bred in different places. Upon breeding spawn to fry young fish, there are two methods of using it, ie., as species to be cultivated or let go in the water flow, and for the production of edible fish, high in price, such as sea bream, yellowtail and lobster. In any case, hot exhaust water gives effect of having fish quickly grow, and stimulating spawn and fry young fish in sexual ripeness. For example, ear shell and prawn are 5 to 6 times in elongation of shell length and 9 times even in weight, respectively, as large as those in case of natural sea water. While there are problems in costing required for pumping hot exhaust water up in the cultivation on land, and temperature adjustment in summer and winter, and water quality control in the crawl cultivation at the water takeout, which must be going to be solved for the commercialization and industrialization. 10 figs., 1 tab.

  20. Handbook for the Institutional and Financial Implementation of Water Utilities.

    Science.gov (United States)

    1984-05-01

    course. As industrialization occurred, the riparia " concept was expanded to allow use of adequate quantities of water for manufac- turing. Each riparian...laws including those concerned with zoning regulations, health and sanitation standards, I.... and the control of water pollution. 4. Financial...water flows by gravity. Groundwater - Subsurface water occupying the saturation zone , from which wells and springs are fed. Hardness - A characteristic

  1. Utilization of secondary energy - major uses in the fermentation and beverage industries

    Energy Technology Data Exchange (ETDEWEB)

    Koch, H J

    1986-01-01

    With 18,5% the fermentation and beverage industry (not including liquors, wine and champagne) has the highest share of energy consumption within the food industry. At the same time, these two branches dispose of high secondary energy potentials which remain to be exploited yet. Secondary energy utilization primarily consists in the economic cooling of wort providing for the utilization of process water (80-82/sup 0/C), utilization of air-containing or air-void water vapors from wort boiling processes for technological heating processes, utilization of refrigerator super-heat enthalpies, the use of energy, conserving high-short heaters for larger units, in particular, and utilization of flue gas enthalpies with gaseous energy sources as the most efficient ones.

  2. Multi utility - a successful conception for energy supply companies?; Multi-Utility - Erfolgskonzept fuer Energieversorger? Zusammenwachsen der Maerkte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C. [LBD-Beratungsgesellschaft mbH, Berlin (Germany)

    2003-06-02

    Multi-utility is seen as the most promising marketing strategy for energy companies. In the future, experts say, only the combined supply of electricity, natural gas, water, waste management and services will allow companies to grow. But are today's multi-utility-products answering the needs of the customers? The author goes further into this question and finds the answer: Multi-utility needs to be further developed. Only products from growth and competition markets can generate additional margins. (orig.) [German] Multi-Utility gilt als die Marketingstrategie fuer Energieversorger. Nur wer zukuenftig Strom, Gas, Wasser, Entsorgung und Service aus einer Hand anbietet, heisst es in der Branche, kann im Markt wachsen. Doch inwieweit entspricht das heutige Multi-Utility-Angebot wirklich dem Kundenbeduerfnis? Die Verfasserin geht dieser Frage nach und kommt zu dem Schluss: Die Multi-Utility-Palette muss weiterentwickelt werden. Nur mit Produkten aus Wachstums- und Wettbewerbsmaerkten kann zusaetzliche Marge generiert werden. (orig.)

  3. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    International Nuclear Information System (INIS)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-01-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  4. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    Energy Technology Data Exchange (ETDEWEB)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  5. Simulation of the impact of financial incentives on solar energy utilization for space conditioning and water heating: 1985

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H C

    1979-01-01

    Financial incentives designed to accelerate the use of solar energy for heating, cooling, and water heating of buildings have been proposed by both state and federal legislative bodies in the U.S.A. Among the most frequently mentioned incentives are sales and property tax exemptions, tax deductions and credits, rapid amortization provisions, and interest rate subsidies. At the present time there is little available information regarding the ability of such incentives to advance the rate of solar energy utilization. This paper describes the derivation and use of a computer simulation model designed to estimate solar energy use for space conditioning and water heating for given economic, climatic, and technological conditions. When applied to data from the Denver, Colorado metropolitan area, the simulation model predicts that sales tax exemptions would have little impact over the next decade, interest rate subsidies could more than double solar energy use, and the other proposed incentives would have an intermediate impact.

  6. Regulation of the re utilization of water in refineries - analysis of the european and american models, and perspectives for the Brazilian scenery; Regulamentacao do reuso da agua em refinarias - analise dos modelos europeu e americano e perspectivas para o cenario nacional

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Fernanda Leite; Szklo, Alexandre

    2006-07-01

    The present work analyses the european and american experiences in the re utilization of water in refineries and to point out perspectives for the regulation of water re utilization in Brazil, by using the present management instruments of the hydraulic resources.

  7. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  8. [Assessment of ecological environment benefits of reclaimed water reuse in Beijing].

    Science.gov (United States)

    Fan, Yu-Peng; Chen, Wei-Ping

    2014-10-01

    With the rapid development of the social economy and the sustained growth of population, China is facing increasingly serious water problems, and reclaimed water utilization has become an effective measure to solve water shortage problem and to control further deterioration of the ecological environment. Reclaimed water utilization can not only save a lot of fresh water, but also reduce the environmental impact of wastewater discharge, and thus has great ecological environmental benefits, including resource, environmental and human health benefits and so on. This study used the opportunity cost method to construct an evaluation system for ecological environmental benefits of reclaimed water utilization, and Beijing was taken as an example to conduct an estimation of ecological environmental benefits of reclaimed water utilization. Research results indicated that the reclaimed water utilization in Beijing had considerable environmental benefits for ¥ 1.2 billion in 2010, in which replacement of fresh water accounted for the largest share. The benefits of environmental improvement and groundwater recharge were large, while the other benefits were small or negative. The ecological environment benefits of reclaimed water utilization in Beijing was about 1.8 times that of its direct economic benefits, showing that reclaimed water utilization was in accordance with sustainable development. Related methods and results will provide scientific basis to promote the development of reclaimed water utilization in our country.

  9. Federal Disaster Funding Opportunities for Water and Wastewater Utilities through the Drinking Water and Clean Water State Revolving Funds

    Science.gov (United States)

    The following provides a checklist that will help you take advantage of Drinking Water State Revolving Funds. For more detailed information on Drinking Water SRF, see DWSRF in Fed FUNDS. For more information on Clean Water SRF, see CWSRF in Fed FUNDS.

  10. Selective intake of down-pit water and separating potable water from water-bearing seams at the Rydultowy mine

    Energy Technology Data Exchange (ETDEWEB)

    Musiolik, H; Sikora, A; Murek, R

    1987-06-01

    Discusses problems of pit water selection. Describes the method of water intake, down-pit transport, pumping the separated potable water and its treatment at the Rydultowy mine. Stresses the usefulness of pit water selection in view of the existing shortage of potable water. Geologic and mining conditions at the mine are described along with the amount of water influx into the mine. Advantages arising from mine water utilization are outlined.

  11. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  12. Utilization of Geothermal Energy in Slovakia

    OpenAIRE

    Gabriel Wittenberger; Ján Pinka

    2005-01-01

    Owing to favourable geological conditions, Slovakia is a country abundant in occurrence of low-enthalpy sources. The Slovakian government sponsors new renewable ecological energy sources, among which belongs the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supp...

  13. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Chen Deming; Xu Gang

    2007-01-01

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  14. Public Waters Inventory Maps

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme is a scanned and rectified version of the Minnesota DNR - Division of Waters "Public Waters Inventory" (PWI) maps. DNR Waters utilizes a small scale...

  15. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  16. Treatment and utilization of waste waters of surface mines in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Khmel' , N S

    1981-01-01

    Waste water of brown coal surface mines in the Dnieper basin is characterized. The water's pH value is 7, alkalinity ranges from 5.1 to 5.9 mg equivalent/1, it has no odor, a low mineralization level ranging from 1000 to 1100 mg/l. Concentration of mechanical impurities (suspended matter) ranges from 90 to 900 mg/l, and its maximum level can reach 5000 mg/l. An improved design of tanks in which waste water from surface mines is treated, and mechanical impurities settle, is proposed. Conventional design of a water sedimentation tank consists of a long ditch in which suspended matter settles, and a rectangular water reservoir at its end. In the improved version the long ditch is enlarged in some places to create additional tanks and to reduce velocity of flowing waste water. This improvement increases the amount of suspended matter which settles in the ditch and in its enlarged zones. When water reaches the rectangular sedimentation tank at the end of the system its suspended matter content is reduced to 40-45 mg/l. Formulae used to calculate dimensions of water treatment system, gradient of the ditch and size of sedimentation tank are presented. Methods of discharging treated waste water to surface water, rivers and stagnant waters, are evaluated. (In Russian)

  17. 30 CFR 817.180 - Utility installations.

    Science.gov (United States)

    2010-07-01

    ... PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.180 Utility installations. All underground mining activities shall be conducted in a manner...; oil, gas, and coal-slurry pipelines, railroads; electric and telephone lines; and water and sewage...

  18. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  19. Analysis of ecological environment impact of coal exploitation and utilization

    Science.gov (United States)

    Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi

    2018-02-01

    Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.

  20. Heterotrophic utilization of acetate and glucose in Swartvlei, South Africa

    International Nuclear Information System (INIS)

    Robarts, R.D.

    1979-01-01

    The utilization of dissolved organic compounds in Swartvlei was measured by the addition of single concentrations of 14 C-labelled acetate and glucose to water samples. The results indicated acetate uptake was greatest in the aerobic zone while glucose was predominantly utilized in the anaerobic zone. With the exception of two months, integral glucose uptake was usually greater than the uptake of acetate. In August and September 1971 acetate was indicated as being utilized predominantly by flagellates and in December 1971 by dinoflagellates. During the remainder of the study, bacteria were assumed to be responsible for the uptake of acetate. The extensive weed beds which surround the upper reaches of Swartvlei may be a major source of acetate and glucose in the pelagic water column

  1. View of atomic energy utilization in 21st century

    International Nuclear Information System (INIS)

    Kondo, Shunsuke

    1998-01-01

    In five years from 1991 to 1996, the energy consumption in the world increased by the yearly rate of 1.5%, and in 1996, it reached about 8.4 billion t in terms of petroleum. The proportion that nuclear energy takes in it was 7.4%, following 39% of petroleum, 27% of coal and 24% of natural gas. In electric power generation field, nuclear power took 17% in the whole world, and 30% in Japan in 1995. As of the end of 1996, the nuclear power generation facilities in the world were 434 plants of 365 GWe output, and 51 plants of 43 GWe output were in operation in Japan. As the technologies of utilizing nuclear energy, there are the utilization of nuclear fission reaction, nuclear fusion reaction and radio-isotopes. In this report, the utilization of nuclear fission reaction is taken up. Pressurized water reactor, boiling water reactor, heavy water (CANDU) reactor and gas-cooled reactor, and nuclear fuel cycle are briefly explained. As for the performance of nuclear power generation, safety, reliability and economical efficiency are reported. The factors which exert effects to the development of nuclear energy utilization are the acceptance by public, economical efficiency and environmental problems. The range of possible installation capacity and the subjects for hereafter are described. (K.I.)

  2. Water chemistry guidelines for BWRs

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Jones, R.L.; Welty, C.S.

    1984-01-01

    Guidelines for BWR water chemistry control have been prepared by a committee of experienced utility industry personnel sponsored by the BWR Owners Group on IGSCC Research and coordinated by the Electric Power Research Institute. The guidelines are based on extensive plant operational experience and laboratory research data. The purpose of the guidelines is to provide guidance to the electric utility industry on water chemistry control to help reduce corrosion, especially stress corrosion cracking, in boiling water reactors

  3. Drinking Water Treatability Database (TDB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities,...

  4. 生态环境用水权的界定和分配%Study on the Definition and Allocation of the Rights to Water Utilization in the Ecological Environment

    Institute of Scientific and Technical Information of China (English)

    谢永刚; 李云玲

    2005-01-01

    With the rapid development of population and economy, the conflict between the supply and demand of water resources is becoming outstanding increasingly. In China, many people concern about the problems of ecological environment water expenditure. However, owningto the shortage of water resources and indefinite water rights, "the hustle effect" of per capita water resource is appeared. Moreover, it caused a series of environment problems. This article differentiates and analyzes the relevant concepts about the ecological environment, and puts forward the defined concept of the rights to the ecological environment water utilization. In addition, it points out the characteristic of those rights, and does elementary study on the allocation principle, methods, and steps on the rights.

  5. Heat transmission systems for heating and potable water. New requirements and problem solutions for hygiene, safety and improved heat utilization. Waermeuebertragungssysteme fuer Heizung und Trinkwasser. Neue Anforderungen und Problemloesungen bezueglich Hygiene, Sicherheit und besserer Waermenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, R

    1989-10-01

    In the past, additional demands were made on heat transmission systems regarding hygienic requirements in potable water heating plant for hospitals, hotels, sanatoriums and old-age homes, safety requirements to protect the potable water from the penetration of hazardous substances and requirements for improved heat utilization through return flow cooling and condensate cooling in the district heating. Where potable water heaters are concerned, safety radiators for heat transfer which comply with the requirements of DIN 1988 Part 2 and Part 4, as well as water heaters with permanent disinfection which are legionnaires' disease-proof, are now available for use in hospitals, old age homes and sanatoriums. For the district heating sector, improved range systems with low concentration in the hot water sector as well as condensate heat utilizing systems have been further developed in the steam heating sector. (orig.).

  6. Integrated centralized utility services to a chemical complex on Jurong Island, Singapore.

    Science.gov (United States)

    Yan, Y G; Wong, P C Y; Tan, C G; Tang, K F

    2003-01-01

    SUT pioneered centralized utility services for the chemical industry on Jurong Island, which are cost-effective due to economies of scale, reliable due to inter-connection of satellite operations, and customer tailored for special requirements. The utility services range from the supply of steam and water, wastewater treatment, incineration, terminalling, service corridor to fire fighting. Among the services, water management achieves the complete cycle from wastewater treatment to effluent recycling.

  7. ECOLO-HOUSE in the heavy snow-fall region. Ground-water and wasted-wood become resources by utilizing storage-tank; Yukiguni ECOLO-HOUSE. Chikunetsuso wo riyoshita chikasui oyobi mokushitsu gomi no shigenka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Fukumuro, S [Yamagata University, Yamagata (Japan)

    1997-11-25

    This paper reports living comfort in summer by operating a groundwater utilization system using a hot water storage tank and a floor air conditioning system. The groundwater utilization system is a system for room cooling by using groundwater and for supplying water for living use. The system operates as follows: groundwater is passed through a coil-type heat exchanger having pipes each 100 m long laid in parallel for a total length of 200 m, the heat exchanger being installed in a hot water storage tank; the water is used to cool water in the storage tank in summer; and the water is warmed up in the storage tank in winter, further heated by an oil boiler to be used as hot water for cooking and bathing. In the floor air conditioning system, cold water in the water storage tank (warm water in winter) is pumped up by a circulation pump, and passed through the floor air conditioning circuit having a pipe with a total length of 400 m at a flow rate of 14 liters per minute. The system is of a closed circuit in which the water is re-heated by a wood burning boiler in winter and returned to the hot water storage tank. The amount of supplied cold heat from groundwater to the hot water tank obtained on a daily average is 90W. About 20% of the monthly cumulative cold heat amount dissipated from the floor circuit is the monthly cumulative cold heat amount supplied from the groundwater circuit to the hot water storage tank. 1 ref., 10 figs., 1 tab.

  8. Water for fish, water for power : finding a balance

    International Nuclear Information System (INIS)

    1998-08-01

    The impact of British Columbia Hydro's operations on the 100 different species and sub-species of fish found in the rivers of BC is discussed. The utility operates 30 hydroelectric facilities and 31 reservoirs in 6 major river basins and 27 watersheds. Three-quarters of the hydroelectricity is produced at major installations on the Peace and Columbia river systems. This booklet describes how, in their water use planning and decision-making, the utility considers impacts on aquatic and terrestrial habitats, flood control, domestic water supply and transport, as well as aesthetic requirements and recreational use. figs

  9. Mechanistic Study of Utilization of Water-Insoluble Saccharomyces cerevisiae Glucans by Bifidobacterium breve Strain JCM1192.

    Science.gov (United States)

    Keung, Hoi Yee; Li, Tsz Kai; Sham, Lok To; Cheung, Man Kit; Cheung, Peter Chi Keung; Kwan, Hoi Shan

    2017-04-01

    Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast ( Saccharomyces cerevisiae ) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1 H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-β-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% β-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter ( malEFG1 ) and pullulanase ( aapA ) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics. IMPORTANCE In general, Bifidobacterium strains are genetically intractable

  10. Wasted Heat Engine Utilization in Central AC Condenser Type Water Chiller for Economical Energy Water Heaters

    Directory of Open Access Journals (Sweden)

    I Made Rasta

    2012-11-01

    Full Text Available Central AC type water chiller is a refrigeration machine that release heat to environment. Heat energy that released to environment comes from room heat load that absorbed by machine and heat from compressor. The best form in using this loss energy is heat recovery water heater technology, where this machine will take heat from condenser by a heat exchanger to heating water. Refrigerant will flow in the heat exchanger before entering condenser, after that refrigerant flow to other components such as, expansion valve, evaporator, compressor and than return again to condenser, this process will be cycling regularly (closed cycle. Based on experimental and analysis result especially for AC with capacity 2 Pk, and tank capacity 75 liter, with water heater recovery device obtained that: (1 Compressor power consumption decrease from 1.66 kW to 1.59kW. (2 Heat rejected from condenser and used by water heater has ratio 4.683 kJ/s and 1.59 kJ/s, with water heater efficiency is 32.2%. (3 Maximum water temperature can be reached are in range 34oC – 47.5oC in 10-150 minutes and flow rate is 0.5 – 2.5 liter /min

  11. Program on MOX fuel utilization in light water reactors

    International Nuclear Information System (INIS)

    Kenda, Hirofumi

    2000-01-01

    MOX fuel utilization program by the Japanese electric power companies was released in February, 1997. Principal philosophy for MOX fuel design is that MOX fuel shall be compatible with Uranium fuel and behavior of core loaded with MOX fuel shall be similar to that of conventional core. MOX fuel is designed so that geometry and nuclear capability of MOX fuel are equivalent to Uranium fuel. (author)

  12. Relationship between Water and Carbon Utilization under Different Straw Mulching and Plant Density of Summer Maize in North China Plain

    Science.gov (United States)

    Liu, Quanru; Du, Shoujian; Yin, Honglian; Wang, Juan

    2018-03-01

    To explore the relationship between water and carbon utilization and key factors to keep high water use efficiency (WUE), a 2-yr experiment was conduct by covering 0 and 0.6 kg m-2 straw to the surface of soil with plant densities of 1.0 × 105, 7.5 × 104, and 5.5 × 104 plants ha-1 in North China Plain during summer maize growing seasons of the 2012 and 2013. Results showed that straw mulching not only increased grain yield (GY), WUE, and carbon efficient ratio (CER) but also inhibited CO2 emission significantly. WUE positively correlated with CER, GY and negative correlated with evapotranspiration (ET) and CO2 emission. CER had the larger direct effect on WUE compared with ET and CO2 emission. The results indicate that straw mulching management in summer maize growing seasons could make sense for inhibiting CO2 emission.

  13. Access and utilization of water and sanitation facilities and their ...

    African Journals Online (AJOL)

    Elias Nyanza;ola

    This study was conducted to determine the access, utilization and determinants ... Results: A total of 175 households participated in the study. ..... et al., 2013; Mukoonyo et al., 2007) it is among the first studies to contribute to the evidence base.

  14. Central Asia's raging waters the prospects of water conflict in Central Asia

    OpenAIRE

    Hartman, William B.

    2007-01-01

    This thesis examines the prospects of conflict caused by water scarcity in Central Asia. The thesis analyzes the three most recent political eras of Central Asia, Tsarist Russia, the Soviet Union and independence, utilizing indicators of water tensions including: water quality, water quantity, the management of water for multiple uses, the political divisions and geopolitical setting, state institutions and national water ethos. Although water is not likely to be the sole cause of a majo...

  15. Some Interesting Facts about Water and Water Conservation

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  16. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    Science.gov (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  17. Investigating water meter performance in developing countries: A ...

    African Journals Online (AJOL)

    High levels of water losses in distribution systems are the main challenge that water utilities in developing countries currently face. The water meter is an essential tool for both the utility and the customers to measure and monitor consumption. When metering is inefficient and coupled with low tariffs, the financial ...

  18. CLASSICS Are we Utilizing our Water Resources Wisely?

    Indian Academy of Sciences (India)

    IAS Admin

    the benefit of his countrymen shines through every page of this lucid and ... people aware of the value of water since no part of the cost in providing it was charged ..... Public should have access to information so collected by official agencies.

  19. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  20. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  1. A narrative method for analyzing transitions in urban water management: The case of the Miami-Dade Water and Sewer Department

    Science.gov (United States)

    Treuer, Galen; Koebele, Elizabeth; Deslatte, Aaron; Ernst, Kathleen; Garcia, Margaret; Manago, Kim

    2017-01-01

    Although the water management sector is often characterized as resistant to risk and change, urban areas across the United States are increasingly interested in creating opportunities to transition toward more sustainable water management practices. These transitions are complex and difficult to predict - the product of water managers acting in response to numerous biophysical, regulatory, political, and financial factors within institutional constraints. Gaining a better understanding of how these transitions occur is crucial for continuing to improve water management. This paper presents a replicable methodology for analyzing how urban water utilities transition toward sustainability. The method combines standardized quantitative measures of variables that influence transitions with contextual qualitative information about a utility's unique decision making context to produce structured, data-driven narratives. Data-narratives document the broader context, the utility's pretransition history, key events during an accelerated period of change, and the consequences of transition. Eventually, these narratives should be compared across cases to develop empirically-testable hypotheses about the drivers of and barriers to utility-level urban water management transition. The methodology is illustrated through the case of the Miami-Dade Water and Sewer Department (WASD) in Miami-Dade County, Florida, and its transition toward more sustainable water management in the 2000s, during which per capita water use declined, conservation measures were enacted, water rates increased, and climate adaptive planning became the new norm.

  2. MARS and its applications at Northeast Utilities

    International Nuclear Information System (INIS)

    Khalil, Y.F.; Raines, J.C.

    1992-01-01

    The MAAP Accident Response System (MARS) for Northeast Utilities Millstone Unit 1 (MP-1) has been jointly developed by Northeast Utilities (NU) and Fauske ampersand Associates, Inc. (FAI). Millstone Unit 1 is a 2011-MW(thermal) boiling water reactor (BWR)/3 with a Mark-I containment. MARS/MP1 is user-friendly computer software that is structured to provide Northeast Utilities management and engineering staff with key insights during actual or simulated accidents. Times to core uncovery, vessel failure, and containment failure are among the figures of merit that can be obtained from this system. MARS/MP1 can predict future conditions of the MP-1 plant based on current plant data and their trends (time-dependent plant data). The objective of this paper is to present the research and development effort of the MARS/MP1 software at Northeast Utilities

  3. Water transparency drives intra-population divergence in Eurasian Perch (Perca fluviatilis).

    Science.gov (United States)

    Bartels, Pia; Hirsch, Philipp E; Svanbäck, Richard; Eklöv, Peter

    2012-01-01

    Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.

  4. Impact of Federal tax policy and electric utility rate schedules upon the solar building/electric utility interface. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, S.L.; Wirtshafter, R.M.; Abrash, M.; Anderson, B.; Sullivan, P.; Kohler, J.

    1978-10-01

    An analysis is performed to show that a utility solar-passive strategy can be used rather effectively in aiding the utility to obtain more efficient load factors and lower costs. The objectives are to determine the impact of active and passive solar energy designs for space conditioning and hot water heating for the residential sector upon the diurnal and annual load curves for several utilities, to assess the effect of present utility pricing policies, and to examine alternative pricing schemes, as well as Federal and state tax credits, as they may affect the optimal sizing and configuration of active solar and passive solar building components. The methodology, the systems model, an overall building design, building cost determination, and a description of TRNSYS are presented. The major parameters discussed that distinguish variation in the cost-effectiveness of particular building design fall into 5 categories: the weather, building configurations, building costs, utility costs and rates, and financial parameters (inclusive of tax credits for solar and energy conservation investment). Five utilities are studied: Colorado Springs Department of Public Utilities; Public Service Co. of New Mexico; New England Electric System; Pacific Gas and Electric; and Georgia Power Co.

  5. On the development of an innovative gas-fired heating appliance based on a zeolite-water adsorption heat pump; system description and seasonal gas utilization efficiency

    International Nuclear Information System (INIS)

    Dawoud, Belal

    2014-01-01

    The main objective of this work is to introduce an innovative hybrid heating appliance incorporating a gas condensing boiler and a zeolite-water adsorption heat pump. The condensing boiler is applied to drive the zeolite-water heat pump for the heating base-load and to assist the heat pump in the so called “mixed operation” mode, in which both the heat pump and the condensing boiler are working in series to cover medium heating demands. Peak heating demands are covered by the condensing boiler in the so called “direct heating” mode. The three operation modes of the hybrid heating appliance have been technically described. In addition, the laboratory test conditions for estimating the seasonal heating performance according to the German Guideline VDI 4650-2 have been introduced. For both heating systems 35/28 °C and 55/45 °C, which represent the typical operating conditions of floor and high temperature radiating heating systems in Europe, seasonal heating gas utilization efficiencies of 1.34 and 1.26 have been measured, respectively with a ground heat source. In two field test installations in one-family houses in Germany, the introduced heating appliance showed 27% more seasonal gas utilization efficiency for heating and domestic hot water production, which is equivalent to a CO 2 -emission reduction of 20% compared to the gas condensing boiler technology

  6. Utilization of water by buffaloes in adapting to a wet-tropical environment

    International Nuclear Information System (INIS)

    Ranawana, S.S.E.; Tilakaratne, M.; Srikandakumar, A.

    1984-01-01

    In a series of experiments some of the characteristics that might enable water buffaloes to adapt to hot and humid environments were investigated. Total body water and water turnover were related to measurements of respiratory and cutaneous evaporation rates and to rectal temperature. These measurements were made during different seasons in animals maintained in several agro-ecological zones. Water turnover was measured in unweaned Murrah buffalo calves; in growing, pregnant and lactating Surti buffaloes grazed under coconut with wallowing denied and drinking water restricted; in Murrah buffaloes and in Zebu and European cattle during different seasons in the 'wet zone', and on Murrah, Surti and Lanka buffaloes compared under 'dry-zone' conditions. Rates of water turnover in milk-fed buffalo calves were low but in adult buffaloes were higher than in other domestic ruminants. Water turnover was higher at higher air temperatures and during the monsoon when forage contained more water. Lactation and grazing in the sun also increased water turnover. A high rate of cutaneous water loss in buffaloes, apparently due to passive diffusion rather than to true sweating, may have contributed to the high water turnover in this species. A relatively labile body temperature enabled buffaloes to 'store' body heat which was dissipated quickly by wallowing, which was shown to be a major route of heat loss and to help in the maintenance of skin condition. If allowed adequate water for drinking and wallowing, buffaloes can apparently withstand hot humid environments but, in contrast to camels, sheep and goats, they seem unable to conserve water and their productivity is affected by any restriction of water supply. (author)

  7. Enhancing effects of picocyanobacteria on growth and hydrocarbon consumption potential of the associated oil-utilizing bacteria

    International Nuclear Information System (INIS)

    Radwan, S.S.; Al-Hasan, R.H.; Salamah, S.

    2004-01-01

    Marine surface waters around the world are rich in unicellular cyanobacteria or picocyanobacteria. This paper presents the results of a study which focused on the interaction of microorganisms in naturally occurring marine consortium active in hydrocarbon attenuation. Picocyanobacteria are minute phototrophs which accumulate hydrocarbons from water without any potential for oxidizing these compounds. This study demonstrates that the picocyanobacteria are part of a microbial consortia floating on the water surface of the Arabian Gulf. The consortia are include a rich population of oil-utilizing true bacteria whose growth and activities are improved in the presence of cyanobacterial partners. Each gram of picocyanobacterial biomass was associated with 10 8 - 10 12 cells of oil-utilizing bacteria. Studies have shown that oil-utilizing bacteria grow better in the presence of their partner picocyanobacteria. In addition, the oil-utilizing bacteria resulted in more powerful hydrocarbon attenuation in the presence of picocyanobacteria. Picocyanobacterial cells accumulate hydrocarbon from water without biodegrading it. The oil-utilizing bacteria grew on hydrocarbons for a source of carbon and energy. It was concluded that the oil-polluted environment of the Arabian Gulf can be cleaned effectively by the cooperative activities of this oil consuming group of bacteria composed of symbiotic microorganisms floating in the Gulf waters. 17 refs., 1 tab., 6 figs

  8. Utilization of date syrup as a tablet binder, comparative study

    OpenAIRE

    Alanazi, Fars Kaed

    2010-01-01

    The aim of this study was to investigate the possibility of using dates syrup as a tablet binder. Dates syrup (40%, 50%, 60% w/w dates syrup:water) was utilized for the granulation of sodium bicarbonate and calcium carbonate as examples for water-soluble and water-insoluble materials; correspondingly. Those two materials represent examples of bulky drugs as well. Starch paste (10% w/w starch in water) and sucrose syrup (50% w/w sucrose in water), the well-known tablet binders, were used in th...

  9. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  10. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  11. Multi-criteria decision analysis : A strategic planning tool for water loss management

    NARCIS (Netherlands)

    Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K.

    2011-01-01

    Water utilities particularly in the developing countries continue to operate with considerable inefficiencies in terms of water and revenue losses. With increasing water demand and scarcity, utilities require effective strategies for optimum use of available water resources. Diverse water loss

  12. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    Science.gov (United States)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  13. Targeting water and energy conservation using big data

    Science.gov (United States)

    Escriva-Bou, A.; Pulido-Velazquez, M.; Lund, J. R.

    2016-12-01

    Water conservation is often the most cost effective source of additional water supply for water stressed regions to maintain supply reliability with increasing population and/or demands, or shorter-term droughts. In previous research we demonstrated how including energy savings of conserved water can increase willingness to adopt conservation measures, at the same time that increases energy and GHG emissions savings. But the capacity to save water, energy and GHG emissions depends fundamentally in the economic benefits for customers and utilities. Utilities have traditionally used rebates, subsidies or incentives to enhance water conservation. But the economic benefits originated by these rebates depend on the actual savings of the water, energy and GHG emissions. A crucial issue that is not considered in the financial analysis of these rebates is the heterogeneity in water consumption, resulting in rebating households that actually do not need improvements in certain appliances. Smart meters with end-use disaggregation allow to consider this heterogeneity and to target rebates. By using an optimization approach that minimizes water and energy residential costs—accounting for retrofit costs and individual benefits according to previous levels of consumption—we are able to assess economically optimal rebate programs both for customers and utilities. Three programs are considered: first, same economic incentives are provided to all households and then they do their optimal decisions; second, traditional appliance-focused rebates are assessed; and third, utilities provide only rebates to those households that maximize water, energy or GHG emissions savings. Results show that the most economically efficient options for households are not the best options for utilities, and that traditional appliance-focused rebates are much less optimal than targeted rebates.

  14. Estimating the Determinants of Residential Water Demand in Italy

    Directory of Open Access Journals (Sweden)

    Giulia Romano

    2014-09-01

    Full Text Available The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured climatic and geographical features, precipitation and altitude exerted a strongly significant negative effect on water consumption, while temperature did not influence water demand. Further, data show that small towns in terms of population served were characterized by lower levels of consumption. Water utilities ownership itself did not have a significant effect on water consumption but tariffs were significantly lower and residential water consumption was higher in towns where the water service was managed by publicly owned water utilities. However, further research is needed to gain a better understanding of the connection between ownership of water utilities and water prices and water consumption.

  15. Let justice roll down like waters: Faith-based advocacy and water for ...

    African Journals Online (AJOL)

    The Paper essentially addresses the ecumenical importance of water as well as its overall utility to mankind. It argues that life is obviously meaningless without the commodity as every living creature derives his or her relevance from water. Furthermore, it recognizes that water has been a source of economic rejuvenation to ...

  16. Levers supporting tariff growth for water services: evidence from a contingent valuation analysis.

    Science.gov (United States)

    Guerrini, Andrea; Vigolo, Vania; Romano, Giulia; Testa, Federico

    2018-02-01

    The backwardness of the water utilities sector necessitates urgent investment in infrastructure to improve water quality and efficiency in water supply networks. A policy of tariff growth represents the main source to sustain such investments. Therefore, customer engagement in the form of willingness to pay (WTP) is highly desirable by water utilities to obtain social legitimization and support. This study examines the determinants of consumers' WTP for improvement programs for three drinking water issues: quality of water sources, renewal of water mains, and building of new wastewater treatment plants. The study is based on a survey conducted among a sample of 587 customers of a water utility located in the province of Verona in the north of Italy. The contingence valuation method is used to measure WTP. Specifically, an ordinal logistic regression model yields the following significant determinants of WTP: quality of water and services provided, preference for privatization of the water utility, sustainable consumption of water, and some socio-demographic variables. The findings provide interesting insights into the drivers of WTP as well as managerial recommendations for water utilities. In particular, the findings show that water utilities need to improve service and water quality to increase customers' acceptance of tariff growth. In addition, utilities should invest in customer education and communication activities focusing on specific age groups (e.g., older customers) to enhance their WTP. Finally, communication strategies should reinforce the possible role of liberalization and privatization in supporting infrastructure investments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Variability in leaf surface features and water efficiency utilisation in ...

    African Journals Online (AJOL)

    The C4 form was found to be more efficient with respect to water utilization efficiency. Keywords: alloteropsis semialata; botany; characteristics; distribution; grasses; leaves; photosynthetic rate; plant physiology; south africa; stomatal resistance; transpiration rate; transvaal highveld; water use efficiency; water utilization ...

  18. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  19. Electric and gas utility marketing of residential energy conservation case studies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  20. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    Science.gov (United States)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  1. Utilization of solar energy through photosynthesis and artificial water photolysis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The plants build up organic matter with a carbon content of the order of 1011 t/year by means of photochemistry. Energy farming for the production of liquid or gaseous fuel is discussed. Yet the abiotic photolysis of water with production of hydrogen is preferable. By means of synthetic, asymmetric, photochemically active, membranes the primary products of water photolysis could be spatially separated so that their recombination is prevented.(author)

  2. 2012 Guidelines for Water Reuse

    Science.gov (United States)

    This manual is a revision of the "2004 Water Reuse Guidelines." This document is a summary of reuse guidelines, with supporting information, for the benefit of utilities of utilities and regulatory agencies, particularly EPA.

  3. Method of decommissioning nuclear reactor building by utilizing sea water buyoancy

    International Nuclear Information System (INIS)

    Iwashima, Sumio; Ogoshi, Shigeru; Kobari, Shin-ichi.

    1989-01-01

    Upon dismantling nuclear reactor buildings, peripheral yards are excavated and channels leading to sea shore are formed. Since the outer walls of the reactor buildings are made of iron-reinforced concretes, the opening poritons are grouted with concretes to attain a tightly such closed structure that radioactive wastes, etc. in the inside are not flown out upon reactor discommisioning. Peripheral buildings at relatively low level of radiation contaminations are dismantled and withdrawn. The fundations of the nuclear reactor buildings were dug out and jacked to separate base rocks and the reactor buildings. Then, sea water is introduced into the water channels to entirely float up the buildings. A water gate is disposed in the water channel on the side of sea shore to control the level of sea water. The buildings are moved and guided to the sea shore and towed to a site optimum as a permanent storage area and then burried in that place. The operation period for the discommissioning work can greatly be shortened and the radiation dose and the amount of the wastes can be reduced. (T.M.)

  4. Water-Chemistry and Its Utility Systems in CCP Power Units (Review)

    Science.gov (United States)

    Larin, B. M.

    2018-01-01

    Damageability of heat transfer surfaces of waste heat recovery steam generators (HRSG) of combined- cycle plants (CCP) can be reduced due to an increase in the quality of make-up and feed water, the use of phosphate-alkaline or amino compound water chemistry (WC), and improved chemical quality control of the heat carrier and make-up water preparation techniques. Temporary quality standards for the heat medium developed by the All-Russia Thermal Engineering institute (VTI) for CCP power units are presented in comparison with the IAPWS standards; preferences for the choice of a WC type for some power units commissioned in Russia in the first decade of this century are shown; and operational data on the quality of feed, boiler water, and steam for two large CCP-450 and CCP-425 power units are given. The state and prospects for the development of chemical-technological monitoring systems and CCP water treatment plants are noted. Estimability of some CCP diagnostic parameters by measuring specific electric conductivity and pH is shown. An extensive bibliography on this topic is given.

  5. GIS UTILITY FOR HYDROLOGICAL IMPACT EVALUATION CAUSED BY DAMAGES OF WATER SUPPLY NETWORK IN RURAL AREAS. APPLICATIONS IN BAIA MARE DEPRESSION

    Directory of Open Access Journals (Sweden)

    RADU ALEXANDRU MARIAN

    2012-11-01

    Full Text Available GIS utility for hydrological impact evaluation caused by damages of water supply network in rural areas. Applications in Baia Mare Depression. Occurrence of a failure within the water supply network is an element of risk with important hydrological implications. Although at first glance you might think that a pipe diameter of only 20 cm can generate large effects, however, in case of significant damage or even burst pipe, a good part of high water flow in the pipe (approx. 25 m3/h on average in the Baia Mare associated with a long duration of failure (several hours may be in the drain area, impact on the local community. Regarding rural settlements, surface drainage allow a quantity of water retention tank underground infiltration but in many cases lack of a sewage system effectively contribute to increased negative consequences related to such damage (flooding farms, roads, crops compromise of flooding or drought in the event of damage to the hot water supply pipe and so on. This paper focuses on the role of Geographic Information Systems (GIS to assess the impact of runoff induced by damages in rural areas. The study therefore spatial aspect, through GIS, on the one hand runoff along the flow path with the start point of the network fault location and view previous hydrological conditions of the terrain, and on the other hand the impact of runoff the rural community. Study area Dumbrăviţa settlement located in Baia Mare Depression. This village is part of water supply system to the south and southeast of Baia Mare.

  6. Double-Shell Tank (DST) Utilities Specification

    International Nuclear Information System (INIS)

    SUSIENE, W.T.

    2000-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  7. The utilization of ultisol soil for horticulture crops cultivation

    Science.gov (United States)

    Sumono; Parinduri, SM; Huda, N.; Ichwan, N.

    2018-02-01

    Ultisol soil is a marginal soil commonly used for palm oil cultivation in Indonesia, its very potential for cultivation of horticulture crops. The utilization of ultisol soil can be done with adding compost with certain proportions. The research aimed to know best proportion of ultisol soil and compost, and proportion of water concentration, and its relationship with fresh and dry weight of horticulture crops . The research was divided 3 steps. The first, mixed ultisol soil and compost with certain proportion and flooding until steady. The second, watering with different concentration to soil mixture. The last, studied its relationship with fresh and dry weight of crops. The result show that physical properties and nutrient content of ultisol soil was increasing with adding compost. SC4 (70% soil and 30% compost) is the best composition to soil mixture. Watering with different concentration show that trend decreased from reference and the bulk density and porosity decreased not significantly at the significant level ∝ = 0.05. Watering affect mass of pakcoynot significantly at the significant level ∝ = 0.05. Hence, ultisol soil was a potential marginal soil to utilizing as a media for cultivating horticulture crops.

  8. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    OpenAIRE

    Tomasz Cichoń; Jadwiga Królikowska

    2016-01-01

    A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing ar...

  9. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  10. A Water-Service Challenge

    Science.gov (United States)

    Roman, Harry T.

    2011-01-01

    It is important to let students see the value of mathematics in design--and how mathematics lends perspective to problem solving. In this article, the author describes a water-service challenge which enables students to design a water utility system that uses surface runoff into an open reservoir as the potable water source. This challenge…

  11. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  12. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  13. Control board and utility system for cell complex

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Silva, A.C.; Souza, A.S.F. de; Souza, M.L.M. de; Rautenberg, F.A.

    1986-01-01

    To attend necessities of hot cells operation and process control for isotope production in IEN cyclotron (Brazilian-CNEN) a utility system, such as, electricity, water, vacuum, air, and gas, and control board was constructed, which advantages are presented. (M.C.K.)

  14. Nitrogen and water utilization by trickle fertigated garlic using the neutron gauge and 15N technologies

    International Nuclear Information System (INIS)

    Mohammad, M.J.; Al-Omari, M.; Zuraiki, S.; Qawasmi, W.

    2002-01-01

    lowest value was obtained with the zero N rate. The N content was lower with the soil application treatments. A similar trend was obtained for the total N uptake. The soil application treatment gave a Ndff value, which was lower than the fertigated treatments for the whole plant. Fertilizer utilization by fruits was lowest for the soil application treatments compared to the fertigation treatments. No significant differences were obtained among the fertigation treatments themselves. Weekly water consumption ranged from about 10 mm at the beginning of the growing season to about 37 mm at mid season. The crop coefficient Kc was about 0.5 at the earlier growth stages; then it increased to 0.95 at growth stages of the maximum growth. Water use efficiency was the highest for the N2 fertigation treatments. The fertigation treatment (N2) had a higher water use efficiency than the soil application of the similar rate. The maximum water depletion was observed in the top 30 cm. (author)

  15. Study on the Potential Development of Rainwater Utilization in the Hilly City of Southern China

    Science.gov (United States)

    Fu, Xiaoran; Liu, Jiahong; Shao, Weiwei; Zhang, Haixing

    2017-12-01

    Aimed at the current flood problems and the contradiction between supply and demand of water resources in the southern cities of China, the comprehensive utilization of Urban Rainwater Resources (URRs) is a significant solution. At present, the research on the comprehensive utilization system of urban rainwater resources in China is still immature, especially the lack of a comprehensive method for the comprehensive utilization of the rainwater and flood resources in the south. Based on the current mode for utilization of URRs at home and abroad, Fenghuang County in Hunan Province was taken as a case of study, which is a typical mountainous city in the southern China. And the potential development of URRs was simulated and evaluated with a comparison of before and after the exploitation and utilization of URRs in this paper. The reduction effect of flood and waterlogging on the ancient city area is analyzed from SWMM. The simulation results show that the potential of exploitation and utilization of URRs in Fenghuang county is remarkable under the mode of exploitation and utilization which is given priority to flood prevention and control, and the annual development potential is 4.865×105 m3. The rainwater utilization measures of flood control effect is obvious with this mode, and the relevant research results can provide theoretical and technical support for enhancing urban water security capability, water conservation capacity, and disaster mitigation of urban flood.

  16. Water management of Republic of Macedonia

    International Nuclear Information System (INIS)

    1999-01-01

    The Republic of Macedonia is one of the countries that do not have sufficient water resources, and their shortage has been already felt during certain periods. The problem already mentioned as global: uneven distribution in time, space and quality are the main characteristics of the water resources. The water management a branch of the economy dealing with management, utilization, protection and planning of the water resources is considered a key implementation of all strategic plans for development of one country. The basic goal of the water management is to fully utilize the water resources in order to reach the most effective and most economic resolution of problems related to the water resources. The problem of pollution and wastage of water, which is more acute at times of intensive technological development of the society, is rapidly depleting supplies water and makes us seriously thinking no just our own survival, but also that of future generations. The concept of sustainable development means future planning for utilizing and protecting water resources bearing in mind not only the generations to come. In the book available water resources in Republic of Macedonia, current condition of the existing water management facilities - dams and reservoirs, as well as irrigation systems are presented. Also, the book deals with the water quality condition and activities for ecological water protection, including relevant measures for protection of catchment areas and the soil from erosion. In addition projects under construction are given. Namely, in the Republic of Macedonia two high dams and a small hydro system are under construction, as well as rehabilitation of three large irrigation schemes

  17. Do manatees utilize infrasonic communication or detection?

    Science.gov (United States)

    Gerstein, Edmund; Gerstein, Laura; Forsythe, Steve; Blue, Joseph

    2004-05-01

    Some researchers speculate Sirenians might utilize infrasonic communication like their distant elephant cousins; however, audiogram measurements and calibrated manatee vocalizations do not support this contention. A comprehensive series of hearing tests conducted with West Indian manatees yielded the first and most definitive audiogram for any Sirenian. The manatee hearing tests were also the first controlled underwater infrasonic psychometric tests with any marine mammal. Auditory thresholds were measured from 0.4 to 46 kHz, but detection thresholds of possible vibrotactile origin were measured as low as 0.015 kHz. Manatees have short hairs on their bodies that may be sensitive vibrotactile receptors capable of detecting particle displacement in the near field. To detect these signals the manatee rotated on axis, exposing the densest portion of hairs toward the projector. Manatees inhabit shallow water where particle motion detection may be more useful near the water's surface, where sound pressures are low due to the Lloyd mirror effect. With respect to intraspecific communication, no infrasonic spectra have been identified in hundreds of calibrated calls. Low source levels and propagation limits in shallow-water habitats suggest low-frequency manatee calls have limited utility over long distances and infrasonic communication is not an attribute shared with elephants.

  18. Organized Communities and Potable Water Public Utilities in Colombia: Advocacy for the Third Economic Option Based on the Common-pool Resources Theory

    Directory of Open Access Journals (Sweden)

    Jhonny Moncada Mesa

    2013-11-01

    Full Text Available Based on the theory and institutional principles proposed by Elinor Ostrom, this paper explores whether Colombian organized communities are able to provide potable water public utility in a sustainable manner and manage it as a common-pool resource (CPR. For this purpose, a set of Colombian community aqueducts is selected and compared against the eight principles proposed by this theory. The results have shown that, in general it complies with institutional principles but it also highlights difficulties, particularly in regards to the "minimal recognition of organization rights" principle.

  19. Nationwide water availability data for energy-water modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zemlick, Katie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  20. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  1. Agricultural utilization of industrial thermal effluents

    International Nuclear Information System (INIS)

    Guillermin, P.; Delmas, J.; Grauby, A.

    1976-01-01

    An assessment is made of the utilization of thermal effluent for agricultural purpose (viz. early vegetables, cereals, trees). Heated waters are being used in field experiments on soil heating, improvement of agricultural procedures and crop yields. Thermal pollution cannot be removed yet it is reduced to acceptable limits. New prospects are open to traditional agriculture, leading towards a more competitive industrial model [fr

  2. IFC to CityGML Transformation Framework for Geo-Analysis : A Water Utility Network Case

    NARCIS (Netherlands)

    Hijazi, I.; Ehlers, M.; Zlatanova, S.; Isikdag, U.

    2009-01-01

    The development of semantic 3D city models has allowed for new approaches to town planning and urban management (Benner et al. 2005) such as emergency and catastrophe planning, checking building developments, and utility networks. Utility networks inside buildings are composed of pipes and cables

  3. Utility applications and broadband networks

    Energy Technology Data Exchange (ETDEWEB)

    Chebra, R.; Taylor, P.

    2003-02-01

    A detailed analytical model of a cable network that would be capable of providing utilities with such services as automatic meter reading, on-line ability to remotely connect and disconnect commodity service, outage notification, tamper detection, direct utility-initiated load control, indirect user prescribed load control, and user access to energy consumption information, is described. The paper provides an overview of of the zones of focus that must be addressed -- market assessment, competitive analysis, product identification, economic model development, assessment of skill set requirements, performance monitoring and tracking, and various technical issues -- to identify any gaps in the organisation's ability to fully develop such a plan. Developers of the model field tested it in 1995 using some benchmarks that were available at that time, and found that the benefit afforded by direct labor saving was not sufficient to cover the capital expenditure of the advanced utility gateway connected to the cable network. However, since 1995 the unanticipated shift in the derived consumer value from a host of cable-based communications services has rendered these original projections irrelevant. Since national communications organizations concentrate on 'tier one' or at best 'tier two' cities (roughly corresponding to the NFL franchise cities and baseball farm team cities), the uncovered rural and suburban areas of the country create a significant digital divide within the population. The developers of the model contend that these unserviced areas provide utilities, especially municipal utilities, with an excellent opportunity to step into the gap and provide a full range of services that includes water, electricity and communications. The proposed model provides the foundation for utilities upon which to base their ultimate implementation decisions.

  4. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    Directory of Open Access Journals (Sweden)

    Tomasz Cichoń

    2016-06-01

    Full Text Available A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing are still the factors responsible for significant differences in the water balance in the apartment buildings.

  5. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities

    NARCIS (Netherlands)

    Spiller, Marc; McIntosh, Brian S.; Seaton, Roger A.F.; Jeffrey, Paul J.

    2015-01-01

    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is

  6. Comparative water and N fertilizer utilization in fertigation v/s soil application under drip and macro sprinkler systems of spring potatoes utilizing 15N in Central Beqaa, Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Atallah, T.; Hajhasan, S.; Chranek, A.

    2002-01-01

    The experiment aimed at studying the impact of type of fertilizer application and irrigation techniques on the yield parameters of spring potatoes by using 15 N. In 1997 and 1998, a potato crop (Spunta) was planted in a clayey soil in Tell Amara, Central Beqaa, in a randomized block design. It consisted of five treatments and four replicates. The goal of the research was to study the effect of three rates of N fertigation (N1=240, N2=360, N3=480 kg N/ha for 1997 and N1=120, N2=240, N3=360 kg N/ha for 1998) on potato performance and production, comparing full fertigation with conventional fertilizer application and irrigated with drip and macro sprinkler. Water demands and irrigation were scheduled according to the mean annual potential evapotranspiration in 1997 and Class A pan in 1998, and monitored by the neutron probe and tensiometers. The results show that, at harvest, both crops followed the same yield pattern. The highest tuber yield was obtained from N1 and the lowest from N3. These values were 58 ton/ha for 1997 and 32.5 ton/ha for the 1998 trial. The 1998 spring crop was more efficient in terms of N utilization. The reduction of N input in N1 resulted in 90% N-fertilizer recovery. In the treatment with soil N application, drip irrigation saved up to 50% of water and improved the efficiency of removed N. Starting from the 89th day after planting, sprinklers caused a significant difference in NO3- concentration leached beyond 60 cm depth. Thus, fertigation was superior with regard to fertilizer and water saving and it decreased the risk of N building up in the soil and shallow groundwater resulting in pollution. (author)

  7. Endophytic and epiphytic hydrocarbon-utilizing bacteria associated with root nodules of legumes

    International Nuclear Information System (INIS)

    Dashti, N.; Khanafer, M.; Radwan, S.S.

    2005-01-01

    During their withdrawal from Kuwait in 1991, the Iraqi forces damaged and set fire to approximately 700 oil wells. Oil gushed from the wells for a period of 7 months, resulting in oil lakes which covered about 50 square km of the Kuwaiti desert and posing an environmental problem. Most of the crude oil has been pumped out, leaving the lake bottoms polluted with oil to depths reaching 20 to 25 cm. The oily areas have been mediated through indigenous hydrocarbon-utilizing microorganisms, but recovery is slow. Rhizospheres of crop plants, including legumes, are rich in oil-utilizing bacteria. Cultivation of broad beans in oily desert samples has enhanced oil biodegradation. This paper discussed the evidence that rhizobium strains inside the nodules on roots of broad beans are active in hydrocarbon utilization, and that the nodules are also colonized on their entire surfaces with oil-utilizing bacteria. Nodule-associated hydrocarbon utilizers appear to contribute together with rhizospheric hydrocarbon utilizers to the phytoremediation of oily soil. Broad beans were removed from soil and their root surfaces were sterilized to eliminate rhizospheric microorganisms. Plants with intact nodules were tested for their potential of attenuating to crude oil in water. Plants were divided into 2 groups: control plants in which all nodules were removed; and experimental plants which were used directly without further treatment. To isolate rhizobium from inside the nodules, fresh nodules were washed, sterilized and homogenized in sterile water. Bacterial strains were tested for their hydrocarbon utilization potential by streaking cell suspensions on the surface of sterile inorganic mediums containing 1 per cent of crude oil or of individual pure aliphatic and aromatic test hydrocarbons. All bacterial isolates were tested for growth on a solid Ashbery's nitrogen free medium. Results indicated that hydrocarbons were more efficiently eliminated from water supporting disinfected

  8. Infrastructures of Consumption. Environmental Innovation in the Utility Industries

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Chappels, H.; Shove, E.

    2005-01-01

    This book examines the ongoing environmental restructuring of consumption and provision in energy, water, and waste systems. In accounting for the distinctive environmental qualities, technical features, and institutional dynamics of utility systems this book challenges contemporary

  9. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Science.gov (United States)

    2010-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...

  10. Capture and Utilization of Water From Rain: The Way for Sustainable School

    Directory of Open Access Journals (Sweden)

    Jamila El Tugoz

    2017-05-01

    Full Text Available Currently, issues related to environmental preservation and responsible use of water, have become a global concern, which has driven the increasing number of public policies aimed at promoting sustainable practices. In this context, it addresses the implementation of a system harnessing rainwater for non-potable purposes in a school unit. This article aimed to evaluate the results obtained from the use of tanks to capture and use of rainwater in a state school of Paraná, in the city of Marechal Cândido Rondon. It is a descriptive exploratory research, qualitative and quantitative approach. Based on data from historical series water consumption of the College Eron Domingues, a relationship between the consumption of water and the monthly rainfall for the period was established. The results confirmed the efficiency of the capture of rain water system, reducing the consumption of treated water supplied by the Water and Sewage Company, up 57.2%. Thus, while stimulating in students an awareness focused on sustainability, inclusion of knowledge and environmental practices at school, comprise the prospect of a multiplier effect on society.

  11. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  12. Adsorption of 1-naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer

    Science.gov (United States)

    So, Juhyok; Pang, Cholho; Dong, Hongxing; Jang, Paeksan; U, Juhyok; Ri, Kumchol; Yun, Cholyong

    2018-05-01

    Surface molecularly imprinting polymer (SMIP) was utilized in the removal of a residual pesticide (carbaryl (CBL)) in water and simulated fruit juice. Being the crosslinking agent, ethylene glycol dimethacrylate (EGDMA) was copolymerized with the monomer, methacrylic acid (MAA) and CBL as the template molecules on the surface of the silica gel particles to produce the SMIP adsorbents. The SMIP adsorbents showed good selectivity and good adsorption capacity for CBL in the competitive adsorptions with two structurally related carbamate pesticides. The effect of the pretreatment solvents on the adsorption capacity of the SMIP adsorbent was investigated with the results of the numerical simulations. The adsorption isotherms and the adsorption kinetics were well described by the Freundlich equilibrium model and the pseudo-second-order kinetic model, respectively. Scatchard plot analysis revealed that there were two classes of binding sites populated in the SMIP adsorbents. In addition, the good selective adsorption of CBL by the SMIP adsorbent in a simulated fruit juice containing vitamin C and fructose indicated the great potential of the SMIP adsorbents to remove residual pesticide in food industry and processing industry for agricultural products.

  13. Multiattribute utility theory without expected utility foundations

    NARCIS (Netherlands)

    Wakker, P.P.; Miyamoto, J.

    1996-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities.

  14. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    Stiggelbout, A.M.; Wakker, P.P.

    1995-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities.

  15. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  16. Framework for Shared Drinking Water Risk Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peplinski, William John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Roger [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Binning, David [AEM Corp., Herndon, VA (United States); Meszaros, Jenny [AEM Corp., Herndon, VA (United States)

    2017-01-01

    Central to protecting our nation's critical infrastructure is the development of methodologies for prioritizing action and supporting resource allocation decisions associated with risk-reduction initiatives. Toward this need a web-based risk assessment framework that promotes the anonymous sharing of results among water utilities is demonstrated. Anonymous sharing of results offers a number of potential advantages such as assistance in recognizing and correcting bias, identification of 'unknown, unknowns', self-assessment and benchmarking for the local utility, treatment of shared assets and/or threats across multiple utilities, and prioritization of actions beyond the scale of a single utility. The constructed framework was demonstrated for three water utilities. Demonstration results were then compared to risk assessment results developed using a different risk assessment application by a different set of analysts.

  17. Study on Utilization of an Artesian Well as a Source of Water Supply at Raw Water Backup System (GBA01)

    International Nuclear Information System (INIS)

    Santosa Pujiarta; Yuyut Suraniyanto; Amril; Setyo Budi Utomo

    2012-01-01

    Raw water supply system (GBA01) is a unit of ponds used as a provider of raw water for secondary cooling system and free mineral water production systems. Source of raw water pond has been supplied from PAM Puspiptek with water conductivity between 126-310 μS / cm and a pH of 6 to 8, and this condition is maintained because there is no other source that is used to supply water to the reactor cooling water supply. This conductivity is always unstable, if during the dry season the conductivity is low trend, but in the rainy season the conductivity will be increase because the water contains a lot of mud. And one more problem that is important is if the PAM Puspiptek failed to supply fresh water to the reactor. So to handling and anticipate these things, necessary to optimize the deep well former Interatom legacy as a backup water supply for raw water supply system of the reactor. With a conductivity of 136 μS / cm, pH 7,4 and total hardness 37 ppm, the water from deep wells can be used as a backup supply of secondary raw water cooling system. (author)

  18. Research and development of radiation utilizations in 1981 at JAERI

    International Nuclear Information System (INIS)

    1981-01-01

    There is the field of radiation utilization such as the application of the effect of radiation on matters and the techniques of measurement and analysis utilizing the properties of radiation, in addition to the use of atomic energy as heat or electric power. The fields of application of radiation utilization are very wide, and are closely related to the health and daily life of people. The Japan Atomic Energy Research Institute has performed the research and development on radiation utilization regarding radiochemistry, the application of irradiation, and the production and industrial utilization of radioisotopes. Also, the research of the radiation resistance of organic materials used for nuclear facilities, the development of organic materials, and the production of tritium have become necessary. In this booklet, the recent results of radiation utilization in the JAERI are summarized. The research and development of ion exchange membranes, organic glasses, the fixation of living body activators and water paints, the techniques of utilizing irradiation, the techniques of radioisotope productions and utilization, and the techniques related to the development of atomic energy are reported. (Kako, I.)

  19. Expected utility without utility

    OpenAIRE

    Castagnoli, E.; Licalzi, M.

    1996-01-01

    This paper advances an interpretation of Von Neumann–Morgenstern’s expected utility model for preferences over lotteries which does not require the notion of a cardinal utility over prizes and can be phrased entirely in the language of probability. According to it, the expected utility of a lottery can be read as the probability that this lottery outperforms another given independent lottery. The implications of this interpretation for some topics and models in decision theory are considered....

  20. Basic feasibility study on utilization for geopressured thermal reservoir in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and discussions were given on a project to implement district heating, greenhouse heating, and binary power generation by utilizing geothermal resources in Hungary. Hungary has deep earth pressure type hot water areas distributed, that flow hot water of about 90 to 180 degrees C by the bed pressure. The areas that can utilize the hot water were extracted and investigated by using literatures and data. The project plans district heating of about 15,000 households using the geothermal water, heating of greenhouses equivalent to 100,000 m{sup 2}, gas engine power generation by using the flowing fluid pressure and combustion of the generated methane gas, and binary power generation by using the geothermal water. As a result of the discussions, it was revealed that the energy saving effect would save 5,008 Ktoe in 20 years as converted to crude oil, and the greenhouse effect gas reducing effect would reduce 14.2 million t-CO2 in 20 years. The total project cost would be about 16.62 billion yen. The internal profit rate of this project is 11.34%, largely exceeding the opportunity cost, and indicating the financial effect possibility. (NEDO)

  1. Water for energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Human civilization has always rested on access to water, and, more specifically, on its utilization. This study aims to contribute to a better understanding of the critical linkages between water and energy and the impact on both of climate change. It identifies areas of opportunity where investment and new regulations are needed, to ensure sustainable global development.

  2. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    Science.gov (United States)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present

  3. Utilization of the ultraviolet rays in drinking water and wastewater treatment

    International Nuclear Information System (INIS)

    Davoli, D.; Alava, F.; Conio, O.; Giacosa, D.

    2001-01-01

    According with the Who (World Health Organization, Geneve) Guidelines for drinking-water quality- second edition (1993), the Italian normative DPR 236/88 and the European directive 98/83/CE underline the importance of the microbiological safety of the drinking water, relating it to the absence of parasites and microorganisms potentially dangerous for public health. The radiant energy impact on the microorganism constituent materials, particularly with the nucleic acids, destabilising the hydrogen bonds among the nitrogenous bases and forming covalent bonds, especially among pyrimidinic bases; intensive irradiation could cause even the denaturation of nucleic acids. In many European countries UV disinfection is becoming more and more spread for drinking water disinfection; no statistics about UV treatment in Italy are available, even if at the moment UV process concerns mainly drinking water and small plants. This survey presents the chlorination as a good system for bacterial removal, but UV treatment with comparable efficiency and cost does not show the formation of toxic by-products and is easier to maintain and to check up [it

  4. Electric utilities in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, L.S. [Smith Barney Inc., New York, NY (United States)

    1998-10-01

    A century ago--in the year J.J. Thomson discovered the electron--electricity, gas and traction companies battled for markets, and corrupt city councils demanded their fair share of the take. One tycoon became so disgusted with the confusion and dishonesty that he decided to bribe the legislature to set up an honest, state-run regulatory agency that would bring order to chaos. But he was found out. The scandal set back the cause of regulation until 1907, the year in which the electric washing machine and the vacuum cleaner were invented. By then, electricity sales had septupled from 1897 levels, and three states had established utility regulation. In the coming decade, 1997 to 2007, the utility business could undergo similar dramatic change, but it will move toward less regulation and more competition during a period of slow growth. Management will have to work harder to achieve success, however, because much of the profits will have to come not from a growing market but from the pockets of competitors. By 2007, electricity will constitute a component of a larger energy and utility services industry that sells electricity, natural gas and possibly water, propane and telecommunications. Customized service will meet the needs of consumers of all sizes. The dominant firm in the industry, the virtual utility, may look more like a financial organization or a mass marketer than the traditional converter of raw material to energy. Emphasis on market-based pricing should lead to more efficient use of resources. If the process works right, the consumer wins.

  5. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    . In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  6. Unutilized energy utilizing systems. ; Power and levelling measures and unutilized energies. Miriyo energy katsuyo system. ; Denryoku fuka heijunka taisaku to miriyo energy

    Energy Technology Data Exchange (ETDEWEB)

    Kuromoto, E. (The Tokyo Electric Power Co. Inc., Tokyo (Japan))

    1993-02-12

    This paper explains quantitatively performance of heat storage tanks contributing largely to levelling power loads, and promoting and spreading more effective use of unutilized energies. A model case was used to compare differences in effectiveness of unutilized energy utilization with and without use of heat storage tanks. The heat demand used was a value in a day with a peak room cooling demand, and a heat supply system using water heat source heat pumps that utilize sewage treated water was used to manufacture cold water. As a result, the effective utilization rate of unutilized energy was increased to about 1.3 times when heat storage tanks were used. Effectiveness of a heat storage tank comes from its capability that excess amount of cold water manufactured during nighttime when heat demand falls by utilizing sewage treated water is stored in the heat storage tank, and the stored cold water can be supplied being mixed with cold water manufactured during daytime when heat demand rises sharply in daytime. Because sewage treated water has its annual temperature difference stabilized at about 10[degree]C, a heat pump utilizing the sewage treated water can reduce power required to produce heat of 1 Gcal by about 40% during room heating and about 15% during room cooling over the heating tower type heat pump. 8 figs., 1 tab.

  7. Utilizing remote sensing data for modeling water and heat regimes of the Black Earth Region territory of the European Russia

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Uspensky, Sergey

    2014-05-01

    At present physical-mathematical modeling processes of water and heat exchange between vegetation covered land surfaces and atmosphere is the most appropriate method to describe peculiarities of water and heat regime formation for large territories. The developed model of such processes (Land Surface Model, LSM) is intended for calculation evaporation, transpiration by vegetation, soil water content and other water and heat regime characteristics, as well as distributions of the soil temperature and humidity in depth utilizing remote sensing data from satellites on land surface and meteorological conditions. The model parameters and input variables are the soil and vegetation characteristics and the meteorological characteristics, correspondingly. Their values have been determined from ground-based observations or satellite-based measurements by radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10. The case study has been carried out for the part of the agricultural Central Black Earth region with coordinates 49.5 deg. - 54 deg. N, 31 deg. - 43 deg. E and a total area of 227,300 km2 located in the steppe-forest zone of the European Russia for years 2009-2012 vegetation seasons. From AVHRR data there have been derived the estimates of three types of land surface temperature (LST): land surface skin temperature Tsg, air-foliage temperature Ta and efficient radiation temperature Ts.eff, emissivity E, normalized vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, cloudiness and precipitation. From MODIS data the estimates of LST Tls, E, NDVI and LAI have been obtained. The SEVIRI data have been used to build the estimates of Tls, Ta, E, LAI and precipitation. Previously developed method and technology of above AVHRR-derived estimates have been improved and adapted to the study area. To check the reliability of the Ts.eff and Ta estimations for named seasons the error statistics of their definitions has been analyzed through

  8. Systematic tracking, visualizing, and interpreting of consumer feedback for drinking water quality.

    Science.gov (United States)

    Dietrich, Andrea M; Phetxumphou, Katherine; Gallagher, Daniel L

    2014-12-01

    Consumer feedback and complaints provide utilities with useful data about consumer perceptions of aesthetic water quality in the distribution system. This research provides a systematic approach to interpret consumer complaint water quality data provided by four water utilities that recorded consumer complaints, but did not routinely process the data. The utilities tended to write down a myriad of descriptors that were too numerous or contained a variety of spellings so that electronic "harvesting" was not possible and much manual labor was required to categorize the complaints into majors areas, such as suggested by the Drinking Water Taste and Odor Wheel or existing check-sheets. When the consumer complaint data were categorized and visualized using spider (or radar) and run-time plots, major taste, odor, and appearance patterns emerged that clarified the issue and could provide guidance to the utility on the nature and extent of the problem. A caveat is that while humans readily identify visual issues with the water, such as color, cloudiness, or rust, describing specific tastes and odors in drinking water is acknowledged to be much more difficult for humans to achieve without training. This was demonstrated with two utility groups and a group of consumers identifying the odors of orange, 2-methylisoborneol, and dimethyl trisulfide. All three groups readily and succinctly identified the familiar orange odor. The two utility groups were much more able to identify the musty odor of 2-methylisoborneol, which was likely familiar to them from their work with raw and finished water. Dimethyl trisulfide, a garlic-onion odor associated with sulfur compounds in drinking water, was the least familiar to all three groups, although the laboratory staff did best. These results indicate that utility personnel should be tolerant of consumers who can assuredly say the water is different, but cannot describe the problem. Also, it indicates that a T&O program at a utility would

  9. Water balance of goats in Jeneponto - South Sulawesi under sunlight exposure and water restriction

    Directory of Open Access Journals (Sweden)

    Djoni Prawira Rahardja

    2007-10-01

    Full Text Available Water balance of 5 does of Kacang goat of Jeneponto was studied under the condition of sunlight exposure and water restriction. The study was conducted in dry season with 4 consecutive treatments of 10 d with 4-5 d of adjustment period between two consecutive treatments: (1 indoor and unrestricted water; (2 indoor and restricted water; (3 10 h outdoor–and unrestricted water; (4 10 h outdoor – restricted water. The maximum air temperature of outdoor was 39.3OC, and it was 30OC in the indoor environment. In all treatments, the animals were placed in the individual crates. The plasma volume of the goats was higher under sunlight exposure, but it decreased by water restriction, while hematocrite value indicated a reverse responses. Sunlight exposure did not significantly decrease the intake and digestion of organic matter, but water restriction affected significantly and this effect was higher under sunlight exposre. The proportions of water loss through every avenue were maintained relatively constant either under water restriction or sunlight exposure in which the respration rate increased significantly. The findings suggest that sunlight exposure with unrestricted water resulted in a positive water balance without a significant change in organic matter intake and utilization. Water restriction resulted in a negative water balance, reducing organic matter intake and utilization. As the adaptive mechanisms, the goat appeared to be able to withstand in the harsh environment of Jeneponto by expanding plasma volume, increasing body temperature and respiration rate.

  10. Preparation and utilization of water washed cottonseed meal as wood adhesives

    Science.gov (United States)

    Cotton fiber and cottonseed are the two major products of cotton crop. The ratio of fiber and cotton is 100/150. Cotton fiber represents 85- 90% of cotton's total economic value. Thus, enhanced utilization of cottonseed products as industrial raw materials would greatly benefit cotton growers and pr...

  11. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    Science.gov (United States)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  12. Utilization of coal-water fuels in fire-tube boilers

    International Nuclear Information System (INIS)

    Sommer, T.M.; Melick, T.A.

    1991-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, has been awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. This paper reports on the program which consists of five tasks. Task 1 provides for the design and retrofit of the host boiler to fire coal-water slurry. Task 2 is a series of optimization tests that will determine the effects of adjustable parameters on boiler performance. Task 3 will perform about 1000 hours of proof-of-concept system tests. Task 4 will be a comprehensive review of the test data in order to evaluate the economics of slurry conversions. Task 5 will be the decommissioning of the test facility if required

  13. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  14. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  15. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  16. Water-hammer prevention, mitigation, and accommodation: a perspective

    International Nuclear Information System (INIS)

    Kim, J.H.

    1987-01-01

    The purpose of this paper is to present an industry perspective on water hammer, revisit the issues, and renew interest in this area with aim to prevent, mitigate, and accommodate water hammer. Water hammer keeps recurring in nuclear power plants and damages plant components and impacts on plant operations and availability through forced outages of plants. The implication is that water hammer in nuclear power plants still needs attention and is a problem that has not been fundamentally resolved. The paper displays statistics of the reported water hammer events between 1969 and 1985. The consequences of these water hammer events were: pipe support damage (hangers, anchors, and snubbers), 60%; component damage (piping, pumps, and valves), 17%; reactor trip, 10%; and plant shutdown, 7%. Reactor trips and plant shutdowns account for 17% of the event consequences. At the request of the nuclear utility industry, a workshop on water hammer was sponsored by the Electric Power Research Institute (EPRI), with cosponsorship from Northeast Utility Service Company, Yankee Atomic Electric Company, and Boston Edison Company, which drew some 90 specialists representing 28 utility companies as well as other nuclear industry, academia, and the NRC. The workshop recommendations are summarized

  17. Solution of environmental protection problems and complex utilization of raw materials during mining and processing of uranium ores

    International Nuclear Information System (INIS)

    Litvinenko, V.G.; Savva, P.P.

    1993-01-01

    Consideration is given to the complex of measures taken in Priargunsky industrial mine-chemical association and directed to environment protection, complex utilization of raw materials during mining and processing of uranium ores. These measures include: 1) reduction of toxic chemical agent effluents into atmosphere due to introduction of new methods and gas cleaning systems; 2) rational use of water resources owing to application of circulating water supply systems, waste waters treatment and effective control of the state of water consumption by industrial enterprises; 3) utilization of gangue and industrial solid wastes

  18. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    Smith, P.F.

    1992-01-01

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  19. Reuse of drainage water in the Nile Delta; monitoring, modelling and analysis; final report Reuse of Drainage Water Project

    NARCIS (Netherlands)

    Staring Centrum, Instituut voor Onderzoek van het LandelijkGebied

    1995-01-01

    The effects of reusing drainage water have been evaluated and other options to increase the water utilization rate in Egypt explored. The results are an operational network for monitoring drainage water discharges and salinity along the major drains, a database for monitored drainage water

  20. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  1. Water and Wastewater Rate Hikes Outpace CPI

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Water and wastewater treatment and delivery is the most capital-intensive of all utility services. Historically underpriced, water and wastewater rates have exhibited unprecedented growth in the past fifteen years. Steep annual increases in water and wastewater rates that outpace the Consumer Price Index (CPI) have increasingly become the norm across the United States. In this paper, we analyze water and wastewater rates across U.S. census regions between 2000 and 2014. We also examine some of the driving factors behind these rate increases, including drought, water source, required infrastructure investment, population patterns, and conservation effects. Our results demonstrate that water and wastewater prices have consistently increased and have outstripped CPI throughout the study period nationwide, as well as within each census region. Further, evaluation of the current and upcoming challenges facing water and wastewater utilities suggests that sharp rate increases are likely to continue in the foreseeable future.

  2. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  3. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    J. Miyamoto (John); P.P. Wakker (Peter)

    1996-01-01

    textabstractMethods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities and simplifying decompositions of multiattribute

  4. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  5. Two-Sides of the Same Coin: Communicating Climate Change Science to Water Utilities and Stakeholders in Florida and Hawai'i

    Science.gov (United States)

    Keener, V. W.; Staal, L.

    2011-12-01

    The NOAA-funded Regional Integrated Sciences and Assessment (RISA) programs act as boundary organizations that both conduct and translate academic climate research in the physical and social sciences for a variety of stakeholder applications, including for local and state governments, natural resource managers, non-climate scientists, and community members. For the past six years, I have worked with two RISAs-one in the southeast United States, and recently in the Pacific region. In confronting the most immediate impacts of climate change, Florida and Hawai'i are both currently dealing with saltwater intrusion effects on infrastructure and water supply, sea level rise impacts on vulnerable coastlines, and expect the problems to worsen in the future. Both RISAs have focused on water resource sustainability as a topic of interest, and held workshops on climate variability and change impacts for water utilities and a wider range of relevant stakeholders. Methods that have been used to communicate climate science, projected impacts, and risk have included: working groups/collaborative learning, scientific presentations and presentations of relevant case studies, beach management planning, in-depth interviews, and educational radio spots. Despite the similarities in the types of issues being confronted, stakeholders in each location have responded with differing levels of acceptance, which has resulted in the usage of different methods of communication of the same types of climate science information. This talk will focus on the success of a variety of different methods in communicating similar information on comparable risks to different audiences.

  6. Utilizing the fluidized bed to initiate water treatment on site

    International Nuclear Information System (INIS)

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-01-01

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes)

  7. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  8. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Theregowda, Ranjani B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Hsieh, Ming-Kai [Tamkang Univ., Taipei (Taiwan). Waer Resources Management and Policy Research Center; Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  9. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  10. Utilization of ultrasonic atomization for dust control in underground mining

    Science.gov (United States)

    Okawa, Hirokazu; Nishi, Kentaro; Kawamura, Youhei; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    This study examined dust suppression using water particles generated by ultrasonic atomization (2.4 MHz) at low temperature (10 °C). Green tuff (4 µm), green tuff (6 µm), kaolin, and silica were used as dust samples. Even though ultrasonic atomization makes fine water particles, raising relative air humidity immediately was difficult at low temperature. However, remaining water particles that did not change to water vapor contributed to suppression of dust dispersion. Additionally, the effect of water vapor amount (absolute humidity) and water particles generated by ultrasonic atomization on the amount of dust dispersion was investigated using experimental data at temperatures of 10, 20, and 30 °C. Utilization of ultrasound atomization at low temperature has the advantages of low humidity increments in the working space and water particles remaining stable even with low relative air humidity.

  11. Utilization of immobilized urease for waste water treatment

    Science.gov (United States)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  12. Reallocation of Water Resources in the Arab Region: An Emerging Challenge in Water Governance

    OpenAIRE

    Kannan Ambalam

    2014-01-01

    Water is an integral part of ecosystems. It is essential to earth’s living creatures and central to maintaining the earth’s ecosystems. In most part of the world, both water quantity andquality problems are becoming more acute, since the limited available water resource are being over-utilized and stressed beyond the sustainability point. The contemporary globalwater crises including inefficient use and lack of equitable distribution are mainly due to the crises of governance. Water governanc...

  13. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  14. Survey on a possibility of geothermal utilization in Tomakomai City; 1980 nendo Tomakomaishi ni okeru chinetsu riyo kanosei ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-11-01

    This paper describes a possibility of geothermal utilization in Tomakomai City. The Tomakomai area has an extremely great amount of hot water existing in deep layers, leading to a consideration that it is very highly possible to develop the hot water. As seen from the underground structure and ground temperature gradient in the Tomakomai sedimentary basin, the development depth would be considerably great, being assumed to be about 2,000 meters. The acquisition amount per well is estimated 100 m{sup 3}/hour or more at 65 degrees C. Rise in petroleum price in the future is an unavoidable fate, hence geothermal water utilization has a fully bright future. The water has relatively low temperature, and is effective for use in room heating, hot water supply, and agricultural and livestock industries. It is worth considering utilization as a local energy system. It has also large secondary effects. According to the latest trial calculation, the unit price for hot water for room heating and hot water supply would be 10 to 20 yen per 1,000 kilo-calories. If the same amount of hot water should be supplied from a boiler, fossil fuel of 20,470 kl/year would be required. If converted by using a kerosene price of 75 yen per liter, the cost would be 1.3 billion 35 million yen, comparatively higher than the geothermal water utilization. (NEDO)

  15. Solar water heaters in China. A new day dawning

    International Nuclear Information System (INIS)

    Han, Jingyi; Mol, Arthur P.J.; Lu, Yonglong

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current 'Home Appliances Going to the Countryside' project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises. (author)

  16. The Politics of Pipes: The Persistence of Small Water Networks in Post-Privatization Manila

    Science.gov (United States)

    Cheng, Deborah

    This project examines the politics of water provision in low-income areas of large, developing cities. In the last two decades, water privatization has become a global paradigm, emerging as a potential means for addressing the urban water crisis. In Manila, the site of the world's largest water privatization project, service to low-income areas has improved significantly in the post-privatization era. But whereas expansion of a water utility typically involves the replacement of informal providers, the experience in Manila demonstrates that the rapid connection of low-income areas actually hinges, in part, on the selective inclusion and exclusion of these smaller actors. Based on an ethnography of the private utilities and community-based providers, I use the persistence of small water networks as a lens for exploring the limits of water privatization in Manila. I focus on what I call micro-networks---community-built infrastructure that extends the formal, private utilities into low-income neighborhoods that the utilities do not wish to serve directly. In such a setup, the utility provides water only as far as the community boundary; beyond that, the micro-network operator constructs internal infrastructure, monitors for leakage and theft, and collects bills. But while these communities may gain access to safer water, they are also subject to higher costs and heightened disciplinary measures. By tracing the ways in which the utilities selectively use micro-networks to manage sub-populations, I show how the utilities make low-income spaces more governable. Delegating localized water management to micro-network operators depoliticizes the utilities' roles, shifting the sociopolitical difficulties of water provision to community organizations, while allowing the utilities to claim that these areas are served. This research leads to three related arguments. First, the persistence of small water networks highlights lingering inequities in access to water, for micro

  17. Concepts for reducing nuclear utility inventory carrying costs

    International Nuclear Information System (INIS)

    Graybill, R.E.; DiCola, F.E.; Solanas, C.H.

    1985-01-01

    Nuclear utilities are under pressure to reduce their operating and maintenance expenses such that the total cost of generating electricity through nuclear power remains an economically attractive option. One area in which expenses may be reduced is total inventory carrying cost. The total inventory carrying cost consists of financing an inventory, managing the inventory, assuring quality, engineering of acceptable parts specifications, and procuring initial and replenishment stock. Concepts and methodology must be developed to reduce the remaining expenses of a utility's total inventory carrying cost. Currently, two concepts exist: pooled inventory management system (PIMS), originally established by General Electric Company and a group of boiling water reactor owners, and Nuclear Parts Associates' (NUPA) shared inventory management program (SIMP). Both concepts share or pool parts and components among utilities. The SIMP program objectives and technical activities are summarized

  18. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  19. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  20. Water. Sleeping Energy source; Wasser. Energiequelle im Dornroeschenschlaf

    Energy Technology Data Exchange (ETDEWEB)

    Mardo, Dietrich

    2009-12-11

    The intelligent utilization of water power is so old as human civilization. An intelligent further development of advanced technologies is still sleeping. Suitable kinds of utilization and advanced technology attempts are presented in this contribution. Some are more likely exotic, but the water giants of Assuan and the three-canyons project in China present themselves more and more as a ticking environmental bomb. (orig./GL)

  1. Soil and water nitrate levels in relation to fertilizer utilization in Yugoslavia

    International Nuclear Information System (INIS)

    Filipovic, R.; Stevanovic, D.

    1980-01-01

    The results of a number of field experiments and monitoring of drainage canals close to intensive agricultural production involving the application of mineral fertilizers are reported. The object was to determine whether the pollution potential of underground and derived surface waters by nitrates and phosphates could be expressed as a function of the applied doses of fertilizer, method of application, climate, soil, etc. Analytical data indicated that, in surface waters adjacent to fertilized land, nitrate levels were higher than those of surface waters adjacent to unfertilized land. Preliminary results on the distribution of NO 3 down the soil profile following the application of 15 N-labelled ammonium nitrate to maize indicated downward movement of the labelled nitrate below the 100-cm depth. Application of organic matter with the fertilizer apparently retarded the leaching process. Soil-surface drainage water was characterized by high P/N ratios. (author)

  2. System dynamics model of Suzhou water resources carrying capacity and its application

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2010-06-01

    Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.

  3. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  4. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. High-level water purifying technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H; Tsukiashi, K [Meidensha Corp., Tokyo (Japan)

    1993-07-01

    Research and development have been carried out on a high-level water purifying system using ozone and activated charcoals to supply drinking water free of carcinogenic matters and odors. This system comprises a system to utilize ozone by using silent discharge and oxygen enriching device, and a living organism/activated charcoal treatment system. The latter system utilizes living organisms deposited on activated charcoal surfaces to remove polluting substances including ammonia. The treatment experimenting equipment comprises an ozone generating system, an ozone treating column, an activated charcoal treating column, an ozone/activated charcoal control device, and a water amount and quality measuring system. An experiment was carried out using an experimental plant with a capacity of 20 m[sup 3]/day on water taken from the sedimentation process at an actual water purifying plant. As a result, trihalomethane formation potential was removed at about 40% in the ozone treatment, and at 70% in the whole treatment combining the ozone and living organism/activated charcoal treatments. For parameterization of palatability of water, a method is being studied that utilizes nuclear magnetic resonance to investigate degrees of water cluster. The method is regarded promising. 1 ref., 4 figs.

  6. Analysis of strategies for improving uranium utilization in pressurized water reactors. Annual technical progress report for FY 1980

    International Nuclear Information System (INIS)

    Sefcik, J.A.; Driscoll, M.J.; Lanning, D.D.

    1981-01-01

    Systematic procedures have been devised and applied to evaluate core design and fuel management strategies for improving uranium utilization in Pressurized Water Reactors operated on a once-through fuel cycle. A principal objective has been the evaluation of suggested improvements on a self-consistent basis, allowing for concurrent changes in dependent variables such as core leakage and batch power histories, which might otherwise obscure the sometimes subtle effects of interest. Two levels of evaluation have been devised: a simple but accurate analytic model based on the observed linear variations in assembly reactivity as a function of burnup; and a numerical approach, embodied in a computer program, which relaxes this assumption and combines it with empirical prescriptions for assembly (or batch) power as a function of reactivity, and core leakage as a function of peripheral assembly power. State-of-the-art physics methods, such as PDQ-7, were used to verify and supplement these techniques

  7. Kleinke's "Bleeding Edge" sees utility role for providers.

    Science.gov (United States)

    Johnson, D E

    1998-10-01

    Hospitals will evolve into units of health care delivery systems that will eventually resemble utilities, like water and the telephone, according to a new book. Donald E.L. Johnson reviews Bleeding Edge: The Business View of Health Care in the New Century, by J.D. Kleinke, and discusses the strategic implications of Kleinke's predictions.

  8. Analysis of systems for hot water supply with solar energy utilization

    International Nuclear Information System (INIS)

    Zlateva, M.

    2001-01-01

    The results from the analysis of the hot water consumption of a group of hotels in the Black See resort Albena are presented. Structural schemes of hot water solar systems with flat plate collectors have been synthesized. By the synthesis have been analyzed the type of the consumers, the operating period, the existing heating plants, the auxiliary energy source - electricity. The change of the solar fraction by different performance of the system have been investigated. A comparative analysis of the alternative solutions has been fulfilled. The most advantageous solution has been chosen on the basis of the evaluation of the pay-back period, the life cycle savings and the benefit-cost ratio. The effect of the changing economic characteristics on the economic efficiency have been investigated. The risk for the investments has been examined. It had been proved that for the conditions in Bulgarian Black See region the use of solar energy for hot water producing is economic reasonable. (author)

  9. Utilization of water resources in Pelagonija region to meet the needs of REK 'Bitola'

    International Nuclear Information System (INIS)

    Madzharoski, Atanas; Cvetkovska, Bisera

    2001-01-01

    In this report a complex use of the water resources for water supplying of one the biggest industrial objects in Republic of Macedonia - the thermal power plants at REK-Bitola is shown. Water, beside the coal represents a basic raw material in the technological process for electric power production at the TPP. Three systems are built for water supplying with raw water, that are composed in one part and there is a possibility for them to be enlarged. The way of use and distribution of waters from the systems in accordance with the needs of the company is shown, taking care for rational and economical use of the water. An enlargement is performed on the systems with what safety in water supply is greater the functionality of the systems is better, and with that a rationality and economical effects are obtained. (Original)

  10. Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2008-01-01

    The South African electrical utility, ESKOM, currently focuses its demand side management (DSM) initiatives on controlling electrical load between 18:00 and 20:00 each day, which is the utility's peak demand period. Funding is provided to energy service companies (ESCo's) to implement projects that can achieve load shifting out of this period. This paper describes how an improved in line water heating concept developed in previous studies was implemented into several real life industrial sanitary water heating systems to obtain the DSM load shift required by ESKOM. Measurements from a selection of these plants are provided to illustrate the significant load reductions that are being achieved during 18:00-20:00. The measured results also show that the peak load reduction is achieved without adversely affecting the availability of sufficient hot water to the persons using the showering and washing facilities served by the water heating system. A very good correlation also exists between these measured results and simulations that were done beforehand to predict the DSM potential of the project. The in line water heater concept provides an improved solution for DSM at sanitary water heating systems due to the stratified manner in which hot water is supplied to the tanks. This provides an improved hot water supply to users when compared to conventional in tank heating systems, even with load shifting being done. It also improves the storage efficiency of a plant, thereby allowing the available storage capacity of a plant to be utilized to its full extent for load shifting purposes

  11. [Effect of a supplemental Aspergillus niger phytase on the utilization of plant phosphorus by rainbow trout (Oncorhynchus mykiss)].

    Science.gov (United States)

    Rodehutscord, M; Becker, A; Pfeffer, E

    1995-01-01

    Effects of a supplemental Aspergillus niger-phytase on digestibility and utilization of dietary phosphorus (P) were studied in three experiments with rainbow trout. P concentration in the diets was 4.8 and 5.8 g/kg DM, respectively. The P contained in the diet originated solely from plants, mainly soy-products. Digestibility of P was studied using the stripping method and hydrochloride insoluble ash as marker. Utilization was studied in growth trials by use of the comparative body analysis. At a water temperature of 15 degrees C, both digestibility and utilization of P were increased from 25 to 57% and from 17 to 49%, respectively when 1000 U/kg phytase were supplemented. Feed consumption and gain of trout were significantly increased. At a water temperature of 10 degrees C, utilization of P was also increased from 6 to 25%. However, feed consumption and gain of trout were very low at this water temperature and not influenced by the supplemental phytase.

  12. A regional approach to the Co-Production of climate information for water utilities- Managing Messages, Approaches, Benefits, and Lessons learned

    Science.gov (United States)

    Yates, D. N.; Kaatz, L.

    2016-12-01

    Over the past decade, water utility managers across Colorado have joined together to advance their understanding of the role of climate information in their planning process. In an unprecedented step, managers from 5 different organizations and agencies pooled their resources and worked collaboratively to better understand the ever evolving role of science in helping understand risks, uncertainties, and opportunities that climate uncertainty and change might bring to this semi-arid region. The group developed an ongoing educational process to better understand climate projections (Scale); cohesively communicate with customers and the media (Communication); provided institutional coverage to an often contentious topic (Safety); and helped coordinate with other investigations and participants to facilitate education and training (Collaboration); and pooled finances, staff, and expert resources (Resources). We will share this experience and give examples of concrete outcomes.

  13. El Centro Geothermal Utility Core Field Experiment environmental-impact report and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The City of El Centro is proposing the development of a geothermal energy utility core field experiment to demonstrate the engineering and economic feasibility of utilizing moderate temperature geothermal heat, on a pilot scale, for space cooling, space heating, and domestic hot water. The proposed facility is located on part of a 2.48 acre (1 hectare) parcel owned in fee by the City in the southeastern sector of El Centro in Imperial County, California. Geothermal fluid at an anticipated temperature of about 250/sup 0/F (121/sup 0/C) will heat a secondary fluid (water) which will be utilized directly or processed through an absorption chiller, to provide space conditioning and water heating for the El Centro Community Center, a public recreational facility located approximately one-half mile north of the proposed well site. The geothermal production well will be drilled to 8500 feet (2590m) and an injection well to 4000 feet (1220m) at the industrially designated City property. Once all relevant permits are obtained it is estimated that site preparation, facility construction, the completion and testing of both wells would be finished in approximately 26 weeks. The environmental impacts are described.

  14. Reduction of water losses in the water utilities and in industrial plants. Senkung der Wasserverluste in oeffentlichen Versorgungen und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bolte, O.G.; Hammerer, M.; Heide, G.F.; Heydenreich, M.; Hoch, W.; Holtschulte, H.; Lienhard, K.; Sewerin, P.

    1987-01-01

    Although municipal and rural supply structures have little changed in principle, the reduction of water losses has become a topical subject to be coped with. The paper deals with the causes and implications of water losses, the influx analysis, water loss analysis, influx analysis in the case of large-scale water supply systems, the pressure feeding method, the detection of leaks with the help of correlation analyses, the quantitave measurement of drinking water supplies and a method serving to detect least defects. In each case reference is made to the limitations of the respective methods and processes. With 95 figs..

  15. Feasibility study and economic analysis on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-07-01

    Even though natural uranium is a more easily usable fuel in heavy water reactors, thorium fuel cycles have also been considered owing to certain attractive features of the thorium fuel cycle in heavy water reactors. The relatively higher fission neutron yield per thermal neutron absorption in 233 U combined with the very low neutron absorption cross section of heavy water make it possible to achieve breeding in a heavy water reactor operating on Th- 233 U fuel cycle. Even if the breeding ratio is very low, once a self-sustaining cycle is achieved, thereafter dependence on uranium can be completely eliminated. Thus, with a self-sustaining Th- 233 U fuel cycle in heavy water reactors, a given quantity of natural uranium will be capable of supporting a much larger installed generating capacity to significantly longer period of time. However, since thorium does not contain any fissile isotope, fissile material has to be added at the beginning. Concentrated fissile material is considerably more expensive than the 235 U contained in natural uranium. This makes the fuel cycle cost higher with thorium fuel cycle, at least during the initial stages. The situation is made worse by the fact that, because of its higher thermal neutron absorption cross section, thorium requires a higher concentration of fissile material than 238 U. Nevertheless, because of the superior nuclear characteristics of 233 U, once uranium becomes more expensive, thorium fuel cycle in heavy water reactors may become economically acceptable. Furthermore, the energy that can be made available from a given quantity of uranium is considerably increased with a self-sustaining thorium fuel cycle

  16. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ISSUES ON THE ROLE OF EFFICIENT WATER PRICING FOR SUSTAINABLE WATER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Simona FRONE

    2012-06-01

    Full Text Available This paper aims to highlight some of the main issues raised by developing and implementing the most appropriate approach to water pricing, and to induce a sustainable water management. Therefore, we define the concept and utility of water demand management as one objective of efficient water pricing. Next we analyse the basic economics and some important theoretical insights of water pricing. We further with state the main four inter-correlated principles of sustainable water pricing (full-cost recovery, economic efficiency,equity and administrative feasability and the trends and challenges of their actual implementing in the water pricing policy of Romania and other EU countries. We end with a review of opinions, personal conclusions and recommendations on the actual opportunity, effectiveness and role of efficient water pricing in fulfilling the goals of sustainabilty.

  18. Utilization of geothermal energy in the USSR

    International Nuclear Information System (INIS)

    Kononov, V.I.; Dvorov, I.M.

    1990-01-01

    This paper reports that at present geothermal energy is utilized in the USSR mostly for district heating, and for industrial and agricultural purposes. The populations of 7 towns have district heating that is supplied by thermal waters. The population supplied totals about 125,000 people. The total area of greenhouses is 850,000 m 2 . Electric energy generated at geothermal power stations still remains negligible with the installed capacity of the single Pauzhetka station (Kamchatka) being 11 MW. another station at Mutnovka is currently under construction and is expected to be producing 50 MW by 1992 and 200 MW by 1998. The proven geothermal resources in the USSR provide hope for a significant increase in the utilization of the earth's deep heat in the near future

  19. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  20. Community drinking water quality monitoring data: utility for public health research and practice.

    Science.gov (United States)

    Jones, Rachael M; Graber, Judith M; Anderson, Robert; Rockne, Karl; Turyk, Mary; Stayner, Leslie T

    2014-01-01

    Environmental Public Health Tracking (EPHT) tracks the occurrence and magnitude of environmental hazards and associated adverse health effects over time. The EPHT program has formally expanded its scope to include finished drinking water quality. Our objective was to describe the features, strengths, and limitations of using finished drinking water quality data from community water systems (CWSs) for EPHT applications, focusing on atrazine and nitrogen compounds in 8 Midwestern states. Water quality data were acquired after meeting with state partners and reviewed and merged for analysis. Data and the coding of variables, particularly with respect to censored results (nondetects), were not standardized between states. Monitoring frequency varied between CWSs and between atrazine and nitrates, but this was in line with regulatory requirements. Cumulative distributions of all contaminants were not the same in all states (Peto-Prentice test P water as the CWS source water type. Nitrate results showed substantial state-to-state variability in censoring (20.5%-100%) and in associations between concentrations and the CWS source water type. Statistical analyses of these data are challenging due to high rates of censoring and uncertainty about the appropriateness of parametric assumptions for time-series data. Although monitoring frequency was consistent with regulations, the magnitude of time gaps coupled with uncertainty about CWS service areas may limit linkage with health outcome data.

  1. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  2. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  3. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes

    International Nuclear Information System (INIS)

    Karakaya, Ahmet; Ozilgen, Mustafa

    2011-01-01

    Energy utilization and carbon dioxide emission during the production of fresh, peeled, diced, and juiced tomatoes are calculated. The energy utilization for production of raw and packaging materials, transportation, and waste management are also considered. The energy utilization to produce one-ton retail packaged fresh tomatoes is calculated to be 2412.8 MJ, whereas when the tomatoes are converted into paste, the energy utilization increases almost twofold; processing the same amount into the peeled or diced-tomatoes increases the energy utilization seven times. In case of juice production, the increase is five times. The carbon dioxide emission is determined by the source of energy used and is 189.4 kg/t of fresh tomatoes in the case of retail packaging, and did not change considerably when made into paste. The carbon dioxide emission increased twofold with peeled or diced-tomatoes, and increased threefold when juiced. Chemical fertilizers and transportation made the highest contribution to energy utilization and CO 2 emission. The difference in energy utilization is determined mainly by water to dry solids ratio of the food and increases with the water content of the final product. Environmentally conscious consumers may prefer eating fresh tomatoes or alternatively tomato paste, to minimize carbon dioxide emission. -- Highlights: → Energy utilization for producing one-ton retail packaged fresh tomatoes was 2412.8 MJ → Energy utilization was 2 folds with paste, 7 times with peeled or diced-tomatoes, 5 times with juice. → Energy utilization increases with water content of the final product. → Transportation, packaging, evaporation and chemicals are the major energy consumers. → Carbon dioxide emission is determined by the source of energy.

  4. Time-Of-Travel Tool Protects Drinking Water

    Science.gov (United States)

    The Lower Susquehanna Source Water Protection (SWP) Partnership utilizes the Incident Command Tool for Drinking Water Protection (ICWater) to support the Pennsylvania Department of Environmental Protection (PADEP) with real-time spill tracking information.

  5. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  6. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  7. Identifying water price and population criteria for meeting future urban water demand targets

    Science.gov (United States)

    Ashoori, Negin; Dzombak, David A.; Small, Mitchell J.

    2017-12-01

    Predictive models for urban water demand can help identify the set of factors that must be satisfied in order to meet future targets for water demand. Some of the explanatory variables used in such models, such as service area population and changing temperature and rainfall rates, are outside the immediate control of water planners and managers. Others, such as water pricing and the intensity of voluntary water conservation efforts, are subject to decisions and programs implemented by the water utility. In order to understand this relationship, a multiple regression model fit to 44 years of monthly demand data (1970-2014) for Los Angeles, California was applied to predict possible future demand through 2050 under alternative scenarios for the explanatory variables: population, price, voluntary conservation efforts, and temperature and precipitation outcomes predicted by four global climate models with two CO2 emission scenarios. Future residential water demand in Los Angeles is projected to be largely driven by price and population rather than climate change and conservation. A median projection for the year 2050 indicates that residential water demand in Los Angeles will increase by approximately 36 percent, to a level of 620 million m3 per year. The Monte Carlo simulations of the fitted model for water demand were then used to find the set of conditions in the future for which water demand is predicted to be above or below the Los Angeles Department of Water and Power 2035 goal to reduce residential water demand by 25%. Results indicate that increases in price can not ensure that the 2035 water demand target can be met when population increases. Los Angeles must rely on furthering their conservation initiatives and increasing their use of stormwater capture, recycled water, and expanding their groundwater storage. The forecasting approach developed in this study can be utilized by other cities to understand the future of water demand in water-stressed areas

  8. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J

    2015-01-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  9. Proceedings: On-line monitoring of corrosion an water chemistry for the electric power utility industry: An EPRI workshop held during the 12th International Corrosion Congress

    International Nuclear Information System (INIS)

    Licina, G.

    1994-03-01

    A two-day EPRI workshop on On-line Monitoring of Corrosion and Water Chemistry for the Electric Power Utility Industry included discussions on a variety of methods for the online monitoring of corrosion and water chemistry in a power plant environment. The workshop was held September 22 and 23, 1993 in Houston, Texas, as a part of the 12th International Corrosion Congress sponsored by NACE International. Methods in various stages of development, from laboratory demonstrations to in-plant monitoring, were presented by authors from all over the world. Recent developments in corrosion monitoring and the detection of specific chemical species in power plant environments have utilized a variety of electrochemical methods (both AC and DC), electrical resistance techniques, and potential drop techniques to evaluate crack extension. Other approaches, such as Raman spectroscopy of corroding surfaces, Specific ion detectors, and X-ray fluorescence and ion chromatography to analyze corrosion products have been demonstrated in the laboratory. Techniques that were described in the twenty-three technical papers included: Electrochemical noise, Electrical resistance, Field signature method, Linear polarization resistance, Neutron activation, Corrosion potential monitoring, Electrochemical detection of biofilm activity, Analysis of corrosion products by X-ray fluorescence, Potential drop method for assessing environmentally assisted crack growth, Harmonic impedance spectroscopy, Contact electric resistance, Conductivity and hydrogen sensors, Solid state methods for tracking oxygen and pH, and Raman spectroscopy. Individual papers are indexed separately

  10. Implementation & Analysis of Integrated Utility System in Developing Nation like India

    Directory of Open Access Journals (Sweden)

    Rajan Gupta

    2016-07-01

    Full Text Available Public utility systems are prevalent around the world but are struggling in developing nations like India to work efficiently. Integration of different utilities can be a possible solution on the technology front, so that more requests can be handled with lesser problems. This study provides the implementation design and benefits of an already proposed integration system by the same authors. It is found that Data Storage, Access Time, Transaction Cost, security cost and server’s busy time can become more effective if the implementation of integration system can be put in place. The working prototype is based on three utilities (Gas, Power & Water of Delhi-NCR, India.

  11. Pareto utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  12. Water scarcity, market-based incentives, and consumer response

    Science.gov (United States)

    Krause, K.; Chermak, J. M.; Brookshire, D. S.

    2003-04-01

    Water is an increasingly scarce resource and the future viability of many regions will depend in large part on how efficiently resources are utilized. A key factor to this success will be a thorough understanding of consumers and the characteristics that drive their water use. In this research test and find support for the hypothesis that residential water consumers are heterogeneous. We combine experimental and survey responses to test for statistically significant consumer characteristics that are observable factors of demand for water. Significant factors include "stage of life" (i.e., student versus workforce versus retired), as well as various social and cultural factors including age, ethnicity, political affiliation and religious affiliation. Identification of these characteristics allows us to econometrically estimate disaggregated water demand for a sample of urban water consumers in Albuquerque, New Mexico, USA. The results provide unique parameter estimates for different consumer types. Using these results we design an incentive compatible, non-linear pricing program that allows individual consumers to choose a fixed fee/commodity charge from a menu that not only allows the individual to maximize his or her utility, while meeting the conservation goals of the program. We show that this program, with the attention to consumer differences is more efficient than the traditional "one size fits all" programs commonly employed by many water utilities.

  13. Multiunit water resource systems management by decomposition, optimization and emulated evolution : a case study of seven water supply reservoirs in Tunisia

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water

  14. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    Science.gov (United States)

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  15. 14 CFR 23.237 - Operation on water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Operation on water. 23.237 Section 23.237... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Ground and Water Handling Characteristics § 23.237 Operation on water. A wave height, demonstrated to be safe for operation, and any...

  16. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    Directory of Open Access Journals (Sweden)

    Pan Ji

    Full Text Available A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing. To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10 had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  17. Geohydrology and water utilization in the Willcox Basin, Graham and Cochise Counties, Arizona

    Science.gov (United States)

    Brown, S.G.; Schumann, Herbert H.

    1969-01-01

    The Willcox basin is an area of interior drainage in the northern part of Sulphur Springs Valley, Cochise and Graham Counties, Ariz. The basin comprises about 1,500 square miles, of which the valley floor occupies about 950 square miles. The basin probably formed during middle and late Tertiary time, when the area was subjected to large-scale faulting accompanied by the uplift of the mountain ranges that presently border it. During and after faulting, large quantities of alluvium were deposited in the closed basin. The rocks in the basin are divided into two broad groups--the rocks of the mountain blocks, of Precambrian through Tertiary age, and the rocks of the basin, of Tertiary and Quaternary age. The mountain blocks consist of igneous, metamorphic, and sedimentary rocks; the water-bearing characteristics of these rocks depend primarily on their degree of weathering and fracturing. Even in areas where these rocks are fractured and jointed, only small amounts of water have been developed. The rocks of the basin consist of moderately consolidated alluvium, poorly consolidated alluvium, and unconsolidated alluvium. The water-bearing characteristics of the moderately and poorly consolidated alluvium are not well known. The unconsolidated alluvium underlies most of the valley floor and consists of two facies, stream deposits and lake beds associated with the old playa. The lenticular sand and gravel layers interbedded in silt- and clay-size material of the unconsolidated alluvium constitute the principal aquifer in the basin. The other aquifers, which yield less water, consist of beds of poorly to moderately consolidated sand- and gravel-size material; these beds occur in both the poorly consolidated and moderately consolidated alluvium. In the Stewart area the median specific capacity of wells per 100 feet of saturated unconsolidated alluvium was 20 gallons per minute, and in the Kansas Settlement area the specific capacity of wells penetrating the poorly and

  18. Utilizing Earth Observations for Reaching Sustainable Development Goals in Water, Sanitation and Public Health

    Science.gov (United States)

    Akanda, A. S.; Hasan, M. A.; Nusrat, F.; Jutla, A.; Huq, A.; Alam, M.; Colwell, R. R.

    2016-12-01

    The United Nations Sustainable Development Goals call for universal and equitable access to safe and affordable drinking water, improvement of water quality, and adequate and equitable sanitation for all, with special attention to the needs of women and girls and those in vulnerable situations (Goal 6). In addition, the world community also aims to end preventable deaths of newborns and children under 5 years of age, and end the epidemics of neglected tropical diseases and combat hepatitis, water-borne diseases and other infectious diseases (Goal 3). Water and sanitation-related diseases remain the leading causes of death in children under five, mostly in South Asia and sub-Saharan Africa, due to diarrheal diseases linked to poor sanitation and hygiene. Water scarcity affects more than 40 per cent of the global population and is projected to rise substantially. More than 80 per cent of wastewater resulting from human activities is also discharged into rivers or sea without any treatment and poor water quality controls. As a result, around 1.8 billion people globally are still forced to use a source of drinking water that is fecally contaminated. Earth observation techniques provide the most effective and encompassing tool to monitor both regional and local scale changes in water quality and quantity, impacts of droughts and flooding, and water resources vulnerabilities in delta regions around the globe. University of Rhode Island, along with partners in the US and Bangladesh, is using satellite remote sensing datasets and earth observation techniques to develop a series of tools for surveillance, analysis and decision support for various government, academic, and non-government stakeholder organizations in South-Asia to achieve sustainable development goals in 1) providing safe water and sanitation access in vulnerable regions through safe water resources mapping, 2) providing increasing access to medicine and vaccines through estimation of disease burden and

  19. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H., II; Polka, R.; Schoenmackers

    1996-04-01

    A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

  20. Utilization of portable effluent wastewater in brick manufacturing

    International Nuclear Information System (INIS)

    EI-Mahllawy, M.S.; El-Sokkary, T.M.

    2005-01-01

    Portable wastewater is produced from sedimentation and filtration tanks in portable water treatment plants. Usually, this useless wastewater is drained into River Nile Canal and not to the sewer system causing a potential pollution. Wastewater has been taken from Portable Treatment Plant located at Qalubia Province, Delta, Egypt. Evaluation of raw materials was carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analyses (DTA and TGA) as well as plasticity and drying sensitivity coefficient (DSC) measurements. Technological properties of fired bricks were investigated according to Egyptian and American Specifications. The obtained experimental results encourage substitution of the drained portable wastewater for the tap water in bricks manufacturing. Thus, utilization of the studied portable effluent wastewater in such industry is possible and fulfills the double target of saving drinking water used in clay bricks manufacturing, rather than its environmental pollution prevention. Keywords: Portable wastewater, tap water, clay building bricks, physicomechanical properties

  1. Climate Variability and Access to and Utilization of Water Resources ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The team will collect climate and hydrological data, and conduct household surveys in three informal neighborhoods (Nonghin, Polesgo, Nioko II) in Ougadougou, covering approximately 35 000 people. The methods used to analyze and interpret the quantitative data gathered on the availability and quality of water will be ...

  2. Maintenance Management in Network Utilities Framework and Practical Implementation

    CERN Document Server

    Gómez Fernández, Juan F

    2012-01-01

    In order to satisfy the needs of their customers, network utilities require specially developed maintenance management capabilities. Maintenance Management information systems are essential to ensure control, gain knowledge and improve-decision making in companies dealing with network infrastructure, such as distribution of gas, water, electricity and telecommunications. Maintenance Management in Network Utilities studies specified characteristics of maintenance management in this sector to offer a practical approach to defining and implementing  the best management practices and suitable frameworks.   Divided into three major sections, Maintenance Management in Network Utilities defines a series of stages which can be followed to manage maintenance frameworks properly. Different case studies provide detailed descriptions which illustrate the experience in real company situations. An introduction to the concepts is followed by main sections including: • A Literature Review: covering the basic concepts an...

  3. Calcium carbonate in the removal of iron and lead from dilute waste water

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E; Randall, J; Goodban, A; Waiss, A Jr

    1977-01-01

    The utility of powdered CaCO/sub 3/ in the removal of lead and iron from dilute aqueous waste waters has been demonstrated and the results successfully applied to treat industrial waste water from a lead battery plant. The reclaimed water is suitable for recycling to the plant and is now being utilized with consequent economic advantages.

  4. Water Network Tool for Resilience (WNTR) User Manual

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new Python package designed to simulate and analyze resilience of water distribution networks to a variety of disaster scenarios. WNTR can help water utilities to explore the capacity of their systems to handle disasters and gui...

  5. Coordinating water conservation efforts through tradable credits: A proof of concept for drought response in the San Francisco Bay area

    Science.gov (United States)

    Gonzales, Patricia; Ajami, Newsha; Sun, Yujie

    2017-09-01

    Water utilities are increasingly relying on water efficiency and conservation to extend the availability of supplies. Despite spatial and institutional interdependency of many utilities, these demand-side management initiatives have traditionally been tackled by individual utilities operating in isolation. In this study, we introduce a policy framework for water conservation credits that enables collaboration at the regional scale. Under the proposed approach, utilities have the flexibility to invest in water conservation measures that are appropriate for their specific service area. When utilities have insufficient capacity for local cost-effective measures, they may opt to purchase credits, contributing to fund subsidies for utilities that do have that capacity and can provide the credits, while the region as a whole benefits from more reliable water supplies. This work aims to provide insights on the potential impacts of a water conservation credit policy framework when utilities are given the option to collaborate in their efforts. We model utility decisions as rational cost-minimizing actors subject to different decision-making dynamics and water demand scenarios, and demonstrate the institutional characteristics needed for the proposed policy to be effective. We apply this model to a counterfactual case study of water utility members of the Bay Area Water Supply and Conservation Agency in California during the drought period of June 2015 to May 2016. Our scenario analysis indicates that when the institutional structure and incentives are appropriately defined, water agencies can achieve economic benefits from collaborating in their conservation efforts, especially if they coordinate more closely in their decision-making.

  6. availability analysis of chemicals for water treatment

    African Journals Online (AJOL)

    NIJOTECH

    In most countries, chemicals are generally recognized as being vital in the production of potable water and will ... industries and water utility ventures are being started in Nigeria ... are being dumped into rivers thereby polluting them the more.

  7. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  8. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  9. Research cooperation project in fiscal 1999. Research cooperation on a technology to treat well waste water by utilizing biomass (follow-up); 1999 nendo bio riyo ni yoru kohaisui shori gijutsu ni kansuru kenkyu kyoryoku (follow up)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research cooperation project on a technology to treat well waste water by utilizing biomass has used as the object the well waste water from the north mine in the Wu Shan mine in Jiangxi Province. The research included surveys on properties of the well waste water from the subject mine by means of the site survey, discussions on treatment conditions based on studies in Japan, and discussions on factors for designing a full size facility as a result of pilot plant operation research. The Japanese side has transported to Beijing the bench-scale testing equipment used for the studies in Japan (an oxidation and neutralization testing equipment and a copper recovery testing equipment). In the present follow-up project, supports were provided to the research and development activities performed voluntarily by the Chinese side by using the above bench-scale testing equipment through guiding the tests at the site and supplying consumables. Certain bacteria have capability to oxidize ferrous ions in the mine well waste water into ferric ions. Utilizing these bacteria results in sedimentation of iron oxides in lower pH zones than in the conventional method, making removal of heavy metals from the well waste water possible. As a result, such effects may be expected as reduction in chemical cost, and reduction of quantity of the produced sediments. (NEDO)

  10. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    Science.gov (United States)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  11. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  12. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking--United States, 2003-2004.

    Science.gov (United States)

    Liang, Jennifer L; Dziuban, Eric J; Craun, Gunther F; Hill, Vincent; Moore, Matthew R; Gelting, Richard J; Calderon, Rebecca L; Beach, Michael J; Roy, Sharon L

    2006-12-22

    to WBDOs has been revised to reflect the categories of concerns associated with contamination at or in the source water, treatment facility, or distribution system (SWTD) that are under the jurisdiction of water utilities, versus those at points not under the jurisdiction of a water utility or at the point of water use (NWU/POU), which includes commercially bottled water. A total of 33 deficiencies were cited in the 30 WBDOs associated with drinking water: 17 (51.5%) NWU/POU, 14 (42.4%) SWTD, and two (6.1%) unknown. The most frequently cited NWU/POU deficiencies involved Legionella spp. in the drinking water system (n = eight [47.1%]). The most frequently cited SWTD deficiencies were associated with distribution system contamination (n = six [42.9%]). Contaminated ground water was a contributing factor in seven times as many WBDOs (n = seven) as contaminated surface water (n = one). Approximately half (51.5%) of the drinking water deficiencies occurred outside the jurisdiction of a water utility in situations not currently regulated by EPA. The majority of the WBDOs in which deficiencies were not regulated by EPA were associated with Legionella spp. or chemicals/toxins. Problems in the distribution system were the most commonly identified deficiencies under the jurisdiction of a water utility, underscoring the importance of preventing contamination after water treatment. The substantial proportion of WBDOs involving contaminated ground water provides support for the Ground Water Rule (finalized in October 2006), which specifies when corrective action is required for public ground water systems. CDC and EPA use surveillance data to identify the types of water systems, deficiencies, and etiologic agents associated with WBDOs and to evaluate the adequacy of current technologies and practices for providing safe drinking water. Surveillance data also are used to establish research priorities, which can lead to improved water-quality regulation development. The growing

  13. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    Science.gov (United States)

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  14. Picking a Fight with Water, and Water Lost ... an Electron

    Science.gov (United States)

    Herr, Jonathan D.

    The global need for energy is increasing, as is the importance of producing energy by green and renewable methodologies. This document outlines a research program dedicated to investigating a possible source for this form of energy generation and storage: solar fuels. The photon-induced splitting of water into molecular hydrogen and oxygen is currently hindered by large overpotentials from the oxidation half-reaction of water-splitting. This study concentrated on fundamental models of water-spitting chemistry, using a physical and computational chemistry analysis. The oxidation was first explored via ab initio electronic structure calculations of bare cationic water clusters, comprised of 2 to 21 molecules, in order to determine key electronic interactions that facilitate oxidation. Deeper understanding of these interactions could serve as guides for the development of viable water oxidation catalysts (WOC) designed to reduce overpotentials. The cationic water cluster study was followed by an investigation into hydrated copper (I) clusters, which acted as precursor models for real WOCs. Analyzing how the copper ion perturbed the properties of water clusters led to important electronic considerations for the development of WOCs, such as copper-water interactions that go beyond simple electrostatics. The importance of diagnostic thermodynamic properties, as well as anharmonic characteristics being persistent throughout oxidized water clusters, necessitated the use of quantum and classical molecular dynamics (MD) routines. Therefore, two new methods for accelerating computationally demanding classical and quantum MD methods were developed to increase their accessibility. The first method utilized a new form of electronic extrapolation - a linear prediction routine incorporating a Burg minimization - to decrease the iterations required for solving the electronic equations throughout the dynamics. The second method utilized a multiple-timestepping description of the

  15. Pollution source control by water utilities – characterisation and implications for water management: research results from England and Wales

    NARCIS (Netherlands)

    Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P.

    2013-01-01

    The treatment of agriculturally polluted water to potable standards is costly for water companies. Changes in agricultural practice can reduce these costs while also meeting the objectives of European Union (EU) environmental legislation. In this paper, the uptake of source control interventions

  16. The relationship among CPU utilization, temperature, and thermal power for waste heat utilization

    International Nuclear Information System (INIS)

    Haywood, Anna M.; Sherbeck, Jon; Phelan, Patrick; Varsamopoulos, Georgios; Gupta, Sandeep K.S.

    2015-01-01

    Highlights: • This work graphs a triad relationship among CPU utilization, temperature and power. • Using a custom-built cold plate, we were able capture CPU-generated high quality heat. • The work undertakes a radical approach using mineral oil to directly cool CPUs. • We found that it is possible to use CPU waste energy to power an absorption chiller. - Abstract: This work addresses significant datacenter issues of growth in numbers of computer servers and subsequent electricity expenditure by proposing, analyzing and testing a unique idea of recycling the highest quality waste heat generated by datacenter servers. The aim was to provide a renewable and sustainable energy source for use in cooling the datacenter. The work incorporates novel approaches in waste heat usage, graphing CPU temperature, power and utilization simultaneously, and a mineral oil experimental design and implementation. The work presented investigates and illustrates the quantity and quality of heat that can be captured from a variably tasked liquid-cooled microprocessor on a datacenter server blade. It undertakes a radical approach using mineral oil. The trials examine the feasibility of using the thermal energy from a CPU to drive a cooling process. Results indicate that 123 servers encapsulated in mineral oil can power a 10-ton chiller with a design point of 50.2 kW th . Compared with water-cooling experiments, the mineral oil experiment mitigated the temperature drop between the heat source and discharge line by up to 81%. In addition, due to this reduction in temperature drop, the heat quality in the oil discharge line was up to 12.3 °C higher on average than for water-cooled experiments. Furthermore, mineral oil cooling holds the potential to eliminate the 50% cooling expenditure which initially motivated this project

  17. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    Science.gov (United States)

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  18. The impact of water use fees on dispatching and water requirements for water-cooled power plants in Texas.

    Science.gov (United States)

    Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E

    2014-06-17

    We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.

  19. Device for district heating with utilization of waste heat from power plants

    International Nuclear Information System (INIS)

    Korek, J.

    1976-01-01

    In order to utilize the waste heat developing in power plants - especially in nuclear power plants - the author suggests to lead the waste heat of the coolers for oil (which the bearings are lubricated with), hydrogen (which serves for the stator rotor-cooling), and the stator cooling water to the circulating district heating water and to arrange these heat exchangers one behind another or parallel to each other in the water circuit of the district heating system. The oil cooler of the engine transformer is also connected with the circulation of the district heating water. The runback water of the district heating network could thus be heated from approx. 40 0 C up to 65 0 C. (UA) [de

  20. Successful Coproduction in Water Management and Climate Science

    Science.gov (United States)

    Kaatz, L.

    2017-12-01

    Frequently described as the "canary in the coal mine," the water sector has been one of the first to experience and begin preparing for the impacts of climate change. Water utilities have lead the way in developing and testing climate information in practice with the end goal of building resiliency and avoiding catastrophic disasters. A key aspect of this leadership is strong, collaborative partnerships resulting in the coproduction of knowledge and actionable science. In this session we will hear from the decision-maker perspective regarding what effective partnerships in real-world applications look like using examples from the Water Utility Climate Alliances (WUCA), and the experience and outcomes of a unique decade-long partnership between Denver Water and the National Center for Atmospheric Research. The lessons learned and challenges encountered in these examples of coproduction are not unique to WUCA, Denver Water nor the water sector, rather they are applicable across sectors and may inform future coproduction efforts.

  1. An Advanced Microturbine System with Water-Lubricated Bearings

    Directory of Open Access Journals (Sweden)

    Susumu Nakano

    2009-01-01

    Full Text Available A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC and a humid air turbine (HAT. The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

  2. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    Science.gov (United States)

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  3. Study on the Forming Process and Exploration of Concept of Human-Water Harmonization of Sustainable Development

    Science.gov (United States)

    Liu, Fang; Si, Liqi

    2018-05-01

    According to Maslow's hierarchy of needs, the process of human development and utilization of water resources can be divided into three stages: engineering water conservancy, resource water conservancy and harmonious coexistence between man and water. These three stages reflect the transformation of the idea of human development and utilization of water resources and eventually reach the state of harmony between human being and water. At the same time, this article draws on the experiences of water management under the thinking of sustainable development in the United States, Western Europe, Northern Europe and Africa. Finally, this paper points out that we need to realize the harmonious coexistence between man and water and sustainable development of water resources in the process of development and utilization of water resources, which is the inevitable requirement of the economic and social development.

  4. Conflicts in Coalitions: A Stability Analysis of Robust Multi-City Regional Water Supply Portfolios

    Science.gov (United States)

    Gold, D.; Trindade, B. C.; Reed, P. M.; Characklis, G. W.

    2017-12-01

    Regional cooperation among water utilities can improve the robustness of urban water supply portfolios to deeply uncertain future conditions such as those caused by climate change or population growth. Coordination mechanisms such as water transfers, coordinated demand management, and shared infrastructure, can improve the efficiency of resource allocation and delay the need for new infrastructure investments. Regionalization does however come at a cost. Regionally coordinated water supply plans may be vulnerable to any emerging instabilities in the regional coalition. If one or more regional actors does not cooperate or follow the required regional actions in a time of crisis, the overall system performance may degrade. Furthermore, when crafting regional water supply portfolios, decision makers must choose a framework for measuring the performance of regional policies based on the evaluation of the objective values for each individual actor. Regional evaluations may inherently favor one actor's interests over those of another. This work focuses on four interconnected water utilities in the Research Triangle region of North Carolina for which robust regional water supply portfolios have previously been designed using multi-objective optimization to maximize the robustness of the worst performing utility across several objectives. This study 1) examines the sensitivity of portfolio performance to deviations from prescribed actions by individual utilities, 2) quantifies the implications of the regional formulation used to evaluate robustness for the portfolio performance of each individual utility and 3) elucidates the inherent regional tensions and conflicts that exist between utilities under this regionalization scheme through visual diagnostics of the system under simulated drought scenarios. Results of this analysis will help inform the creation of future regional water supply portfolios and provide insight into the nature of multi-actor water supply systems.

  5. Demonstration test on the heat pump system, thermally utilizing the domestic waste water. Result of the collecting test on an air conditioning system, Hokkaido Electric Power Gymnasium, Tomari; Seikatsu haisui netsuriyo heat pump system jissho shiken. Tomari Hokuden taiikukan reidanbo system no sainetsu shiken kekka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T; Yamada, K; Watanabe, K [Hokkaido Electric Power Co. Inc., Sapporo (Japan)

    1995-06-14

    A heat pump system utilizing the domestic waste water was introduced into a gymnasium owned by Hokkaido Electric Power to elucidate the applicability of domestic waste water as a thermal source of heat pump in the cold region. The gymnasium is a two-storied concrete building with the floor space of 2292m{sup 2}. Ground water at temperatures from 10 to 20{degree}C is utilized for the water supply. Made to flow together as waste water, the dirty water and daily exhaust water are discharged at the rate of 100t/day into a river after passing through the septic tank. Higher by 5 to 15{degree}C than the atmospheric temperature, the discharging temperature is kept higher than 10{degree}C even during the very cold period. The domestic waste water is almost neutral in pH, and normal in both SS and BOD. The heat pump was utilized for two stages, i.e., thermal collection and temperature heightening. The capacity of a sewage storage tank tank was made to be 170m{sup 3} to meet the thermal load of 139000kcal/h in the gymnasium. The temperature of 15{degree}C could be kept during the air heating trial. The system is about 2 in coefficient of performance. The K-value of heat exchanger decreased by about 30% after seven months of operation. Upon its overhauling, its K-value recovered to 2.37, so that it must be overhauled once a year. 5 refs., 15 figs. 4 tabs.

  6. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    Science.gov (United States)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  7. Influence factors analysis of water environmental quality of main rivers in Tianjin

    Science.gov (United States)

    Li, Ran; Bao, Jingling; Zou, Di; Shi, Fang

    2018-01-01

    According to the evaluation results of the water environment quality of main rivers in Tianjin in 1986-2015, this paper analyzed the current situation of water environmental quality of main rivers in Tianjin retrospectively, established the index system and multiple factors analysis through selecting factors influencing the water environmental quality of main rivers from the economy, industry and nature aspects with the combination method of principal component analysis and linear regression. The results showed that water consumption, sewage discharge and water resources were the main factors influencing the pollution of main rivers. Therefore, optimizing the utilization of water resources, improving utilization efficiency and reducing effluent discharge are important measures to reduce the pollution of surface water environment.

  8. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  9. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  10. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  11. Water Integration In Sugar Industry

    Directory of Open Access Journals (Sweden)

    Wafa Hatim Balla

    2017-03-01

    Full Text Available The sugar industry uses much water and produces a significant amount of wastewater for disposal. Efficient utilization of water is vital in the process industries not only to reduce the cost of the supply and discharge of freshwater associated with the process but also to minimize environmental problems associated with the use and discharge of water. This paper presents the analysis of fresh water used and wastewater discharged in a sugar manufacturing process. In order to reduce the load of the cooling water system. The system was modified to an open recirculation cooling water system. Also the excess condensate internal water and the discharged water from cooling water system were analyzed and optimized using pinch analysis and mathematical optimization techniques by Resource Conversation Networks spreadsheet software.

  12. Multisensor satellite data for water quality analysis and water pollution risk assessment: decision making under deep uncertainty with fuzzy algorithm in framework of multimodel approach

    Science.gov (United States)

    Kostyuchenko, Yuriy V.; Sztoyka, Yulia; Kopachevsky, Ivan; Artemenko, Igor; Yuschenko, Maxim

    2017-10-01

    Multi-model approach for remote sensing data processing and interpretation is described. The problem of satellite data utilization in multi-modeling approach for socio-ecological risks assessment is formally defined. Observation, measurement and modeling data utilization method in the framework of multi-model approach is described. Methodology and models of risk assessment in framework of decision support approach are defined and described. Method of water quality assessment using satellite observation data is described. Method is based on analysis of spectral reflectance of aquifers. Spectral signatures of freshwater bodies and offshores are analyzed. Correlations between spectral reflectance, pollutions and selected water quality parameters are analyzed and quantified. Data of MODIS, MISR, AIRS and Landsat sensors received in 2002-2014 have been utilized verified by in-field spectrometry and lab measurements. Fuzzy logic based approach for decision support in field of water quality degradation risk is discussed. Decision on water quality category is making based on fuzzy algorithm using limited set of uncertain parameters. Data from satellite observations, field measurements and modeling is utilizing in the framework of the approach proposed. It is shown that this algorithm allows estimate water quality degradation rate and pollution risks. Problems of construction of spatial and temporal distribution of calculated parameters, as well as a problem of data regularization are discussed. Using proposed approach, maps of surface water pollution risk from point and diffuse sources are calculated and discussed.

  13. Public Versus Private: Does It Matter for Water Conservation? Insights from California

    Science.gov (United States)

    Kallis, Giorgos; Ray, Isha; Fulton, Julian; McMahon, James E.

    2010-01-01

    This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California’s history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California’s public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private.

  14. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    Science.gov (United States)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  15. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  16. Uses of warmed water in agriculture. Final report

    International Nuclear Information System (INIS)

    Garrett, R.E.

    1978-11-01

    Energy in the form of warmed water is available from condenser cooling water from fossil fuel or nuclear-electric power-generating facilities, geothermal power plants, geothermal fluids, or spent steam and cooling water from industrial processes. A re-analysis of the characteristics of possible agricultural uses of warmed water has revealed the need to decouple considerations of warmed water sources from those of warmed water users. Conflicting objectives and managerial requirements seem to preclude an integrated system approach. Rather an interface must be established with separate costs and benefits identified for a reliable warmed water source and for its various potential uses. These costs and benefits can be utilized as a basis for decisions separately by the energy supplier and the prospective energy users. A method of classifying uses of warmed water according to need, volume, objective, temperature, and quality is presented and preliminary classifications are discussed for several potential agricultural uses of warmed water. Specific uses for soil warming, space heating in greenhouses, and irrigation are noted. Specific uses in aquaculture for catfish, lobster, and prawn production are discussed. Warmed water use in animal shelters is mentioned. Low-quality heat is required for methane generation from biomass and warmed water heating could be utilized in this industry. 53 references

  17. Proposing and Planning the Rehabilitation Works of Mechanical Utility System in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Jusnan Hasim; Mohamad Suhaimi Yahaya; Abdul Razak Hashim

    2015-01-01

    Nuclear Malaysia has 2 complex located in Bangi and Jalan Dengkil. The utility in Nuclear Malaysia consists of civil, mechanical and electrical system that has been managed by Bahagian Kejuruteraan (BKJ). The mechanical utilities system has been divided to three main groups which are the main system, supporting system and safety equipment's. The objectives of this paper are to propose and plan the rehabilitation works of mechanical utility system in Nuclear Malaysia and also to explain working procedures in maintaining and repairing the mechanical utility system. The study suggest the rehabilitation works on the mechanical utilities system especially on Thermal Energy Storage (TES) and domestic water system needs to be done which involve process of design, procurement, installation and commissioning. (author)

  18. The Role of Political Action and Media in Increasing Public Awareness of Water Scarcity: Combined Effects on Water Use Behavior

    Science.gov (United States)

    Quesnel, K.; Roby, N.; Gonzales, P.; Ajami, N.

    2016-12-01

    In the midst of California's current drought, authorities have enacted widespread initiatives aimed at coping with water scarcity, for example the first mandatory statewide urban water use reductions in 2015. But to what extent have these measures resulted in decreased water consumption? To answer this question, our research examines the impact of political actions on water use by using media as a proxy. News media outlets have heavily covered the progression of the California drought, and this outreach has played an important role in disseminating information and raising public awareness. To our knowledge, the relationship between political action/media coverage and water use has yet to be examined. In this study, we extract the number of articles related to the term "California Drought" from six widely-read national and statewide newspapers from 2005 to 2015. We study the relationship between media and monthly urban water use at the utility level using multivariate panel regression and principal components analysis to examine how media interacts with other modes of influence such as climate, price, and the state of the economy and how populations of different socio-demographics are affected by media outreach. We also use daily household-level water use readings from recently installed Automated Meter Infrastructure (AMI) in one utility to examine the relationship on a finer spatiotemporal scale. Using a policy timeline, Google search rates, and newspaper article trends confirms the relationship between political actions, public awareness, and media outreach. Preliminary modeling indicates that media plays a significant role in altering water use patterns for residential customers and in utilities with specific local characteristics.

  19. Innovative utilization concept at water-water-heat pump plants in Dresden; Innovatives Nutzkonzept bei Wasser-Wasser-Waermepumpenanlagen in Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Zschaetzsch, Barbara [ARCADIS Deutschland GmbH, Dresden (Germany)

    2013-06-01

    In suitable hydro-geological conditions, the cooling of buildings using ground water is a good option. In Dresden (Federal Republic of Germany), climate wells were realized which can do more than only cooling. Except for cooling, climate wells are used for flood protection, removal of precipitation water and for heating during the winter.

  20. 18 CFR 260.200 - Original cost statement of utility property.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Original cost statement...) § 260.200 Original cost statement of utility property. Any natural gas company becoming subject to the... of its predecessors: (1) The original cost (estimated only if not determinable from existing records...

  1. The zebra mussel: US utility implications

    International Nuclear Information System (INIS)

    McMahon, R.F.

    1990-11-01

    Dreissena polymorpha, the freshwater macrofouling zebra mussel, was introduced to Lake St. Clair, near Detroit, Michigan, in 1985. It has since spread throughout Lake Erie. Its planktonic veliger larval stage disperses on water currents and adults are transported by human and natural vectors, making it likely to spread throughout most of the United States and southern Canada except for the southwestern and southern United State, where summer water temperatures are above tolerated levels. Veligers enter raw water systems on intake currents to settle and grow to adults attached by secreted byssal threads to hard surfaces. Accumulations of adults impede flow, aggravate sedimentation and corrosion, and foul small-diameter components. Settlement occurs at flow velocities less than 1.5--2.0 m/sec. Mussels can reduce effective pipe diameters and foul intake structures, steam condensers, heat exchangers, fire protection systems, and cooling tower basins. Establishment of mussels in raw water systems should be prevented because subsequent removal is difficult and expensive. Mitigation procedures include manual removal, robotic cleaning, thermal backwashing, water jetting, application of molluscicides, and possibly line pigging and acidic chemical cleaning. Control technologies include oxidizing and non-oxidizing molluscicides, robotic cleaning, shell strainers, exposure of veligers to high voltage electrical fields, thermal backwashing and sand-filtration. The United States power industry can utilize extensive European experience with this species and domestic experience with the Asian clam in its development of effective controls for zebra mussel fouling

  2. Twenty years of experience with central softening in The Netherlands : Water quality – Environmental benefits – Costs

    NARCIS (Netherlands)

    Hofman, J.A.M.H.; Kramer, O.J.I.; van der Hoek, J.P.; Nederlof, M; Groenendijk, M

    2006-01-01

    Central softening has been utilized by the Dutch water utilities since the late 1970s. It was introduced in the water treatment process as a method to supply water with an optimum water composition to prevent lead and copper release and to prevent excessive scaling. Twenty years of experience show

  3. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  4. In-Situ Remediation of Small Leaks in Water Pipes: Impacts of Water Chemistry, Physical Parameters and the Presence of Particles

    OpenAIRE

    Tang, Min

    2017-01-01

    Aging and leaking water infrastructure wastes water resources and creates public health risks. Upgrading of potable water systems represents a large financial burden for water utilities and private property owners. The conventional approaches of repair, rehabilitation and replacement are very effective, but will take decades to implement even if a financial commitment to do so was made immediately. A novel approach of in-situ remediation of leaks, achieved by harnessing the ability of water o...

  5. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port. Blair islands. Algorithm-3 of ...

  6. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    OpenAIRE

    Nyoman Suwartha; Resky Pramadin

    2012-01-01

    The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recha...

  7. A novel water poverty index model for evaluation of Chinese regional water security

    Science.gov (United States)

    Gong, L.; Jin, C. L.; Li, Y. X.; Zhou, Z. L.

    2017-08-01

    This study proposed an improved Water Poverty Index (WPI) model employed in evaluating Chinese regional water security. Firstly, the Chinese WPI index system was constructed, in which the indicators were obtained according to China River reality. A new mathematical model was then established for WPI values calculation on the basis of Center for Ecology and Hydrology (CEH) model. Furthermore, this new model was applied in Shiyanghe River (located in western China). It turned out that the Chinese index system could clearly reflect the indicators threatening security of river water and the Chinese WPI model is feasible. This work has also developed a Water Security Degree (WSD) standard which is able to be regarded as a scientific basis for further water resources utilization and water security warning mechanism formulation.

  8. Thermodynamic analysis of load-leveling hyper energy converting and utilization system

    International Nuclear Information System (INIS)

    Kiani, Behdad; Akisawa, Atsushi; Kashiwagi, Takao

    2008-01-01

    Load-leveling hyper energy converting and utilization system (LHECUS) is a hybrid cycle which utilizes ammonia-water mixture as the working fluid in a combined power generation and refrigeration cycle. The power generation cycle functions as a Kalina cycle and an absorption refrigeration cycle is combined with it as a bottoming cycle. LHECUS is designed to utilize the waste heat from industry to produce cooling and power simultaneously. The refrigeration effect can be either transported to end-use sectors by means of a solution transportation absorption chiller (STA) as solution concentration difference or stored for demand load leveling. This paper shows a simulation of the LHECUS cycle. A computer model was written to balance the cycle and key parameters for optimizing the cycle were identified

  9. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  10. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    Science.gov (United States)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  11. Productivity, total and utilized nitrogen and water use efficiency of soybean grown in reclaimed sandy soil as affected by water regime

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2002-01-01

    Field experiment was performed at the experimental farm, Inshas, atomic energy authority, Egypt, in tafla and sand mixture soil (1:7). The experiment was laid out using sprinkler irrigation system with a line source which allows a gradual variation of irrigation from high to low irrigation, whereas the calculated amount of irrigation water levels were 1565, 1050 and 766.5 (m 3 / feddan). Two soybean varieties (crawford and giza 35) were planted. The obtained results indicated that: a) irrigation with high (1562 m 3 /fed.) and medium (1050 m 3 /fed.) water levels increased total seed wield of the two soybean varieties. b) the highest value of water use efficiency was observed when both soybean varieties irrigated with water level of 1050 m 3 /fed. c) seed protein content in crawford variety was higher in giza 35 variety at the irrigation level of 1562 m 3 /fed. d) seeds of both two soybean varieties showed increase of its atom excess percentage at high and medium water levels, and reflecting increase of nitrogen use efficiency. e) significant increment in seed yield kg/plot. Has been indicated by irrigation with water level of 1050 m 3 /fed. As compared to higher and lower water levels

  12. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    International Nuclear Information System (INIS)

    Roring, J; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S

    2015-01-01

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC. Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware

  13. 18 CFR 141.100 - Original cost statement of utility property.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Original cost statement... POLICIES ACT OF 1978 STATEMENTS AND REPORTS (SCHEDULES) § 141.100 Original cost statement of utility... predecessors of an electric operating unit or system, the original cost, estimated, if not known, the cost of...

  14. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    Science.gov (United States)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  15. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  16. Utility leaders must manage change in the workplace

    International Nuclear Information System (INIS)

    Wolf, R.; Gering, D.

    1997-01-01

    Like most other industries in the United States, the utility industry is undergoing profound changes. Furthermore, the industry is in a far more precarious position than almost all other businesses. Deregulation, a changing labor pool, competition and years of unbridled growth are some of the extraordinary factors impacting the industry. Perhaps the greatest challenge of all rests with the utility industry's top management. To lead their organizations from government anointed monopolies to rightful market leaders demands major intellectual and physical adjustments. Given this most difficult position, executives must learn to embrace change as a constant business opportunity and develop skills to constructively channel and manage change. The challenge to utilities is deceptively clear - to be competitive in a consumer and service driven environment. Unfortunately, the actions necessary to accomplish this daunting task are not that clear. The authors offer that this transition does not have to be as ominous as it may seem, provided one develops and employs a good plan and the open minds necessary to navigate these tricky waters

  17. Utililization of water

    African Journals Online (AJOL)

    User

    Abstract. This study was conducted to investigate the level of water resources utilization for small scale irrigation agriculture and to examine the food security of households of Seka woreda. A sample of two hundred-ten households were taken using stratified random sampling method. Questionnaire and observation were ...

  18. Preliminary assessment of the health and environmental effects of coal utilization in the midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    An initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin is presented. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for the period 1975 to 2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. Included are: (1) a characterization of the energy demand and siting scenarios, coal related technologies, and coal resources, and (2) the related impacts on air quality, water availability, water quality, and human health.

  19. Efficient utilization of rain water in hill agriculture

    International Nuclear Information System (INIS)

    Singh, S.R.; Singh, S.S.; Khan, A.R.

    2002-05-01

    Hill areas generally receive rainfall of around or more than 1150 mm. More than 2500 mm rainfall is received in about 30.2 million ha hilly area of the country. Besides many other factors high rainfall and heavy runoff are mainly responsible for low productivity. Because of sloppy characters and shallow soil depth, major fraction of rainwater is lost as runoff. Invariably evaporation exceeds the moisture stored and thereby depletes soils of their moisture reserve when crops are to be sown. Too much water at one time and too little in another during the same year causes wide instability in the production and productivity (Gupta et al., 2000). In high rainfall/hilly areas small and scattered land holdings exclusively rain dependent subsistence type of agriculture, low irrigated area of eastern Himalaya (northeastern region of India) further aggravate the problem. Harvesting of runoff at micro level for storage and recycling, control of erosion and moisture conservation are necessary and possible measures for better crop production. (author)

  20. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  1. Integrated water resources management using engineering measures

    Science.gov (United States)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  2. Integrated water resources management using engineering measures

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-04-01

    Full Text Available The management process of Integrated Water Resources Management (IWRM consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation, are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  3. Assessment of Smart Reactor Utilization for Barelang

    International Nuclear Information System (INIS)

    Sahala-M-Lumbanraja; Yuliastuti

    2007-01-01

    This paper assesses the feasibility of SMART reactor utilization in BARELANG region. BARELANG region is an industrial area located in Riau Islands Province. The need of electricity and fresh water, whether for industry growth or people, are the main problem of this region. Until now, the National Electricity Company (PLN) has not able to supply the electricity needed by industrial sector. The use of oil as a main electricity generation resource of the entire power plant has caused a tremendous generation cost. On dry seasons, the fresh water supplied by PDAM is reducing drastically. This situation occurs because water source of PDAM extremely depends on the water storage during rainy seasons. SMART reactor is a modular light reactor developed by KAERI for dual purposes, producing electricity and fresh water at the same time. The total thermal power generated by this type of reactor is about 330 M Wth with 33 % efficiency, as 90 M We connected to the electricity grid and rest is used in producing potable water with capacity 40,000 m 3 /day. Compare to the conventional reactor, SMART reactor is based on simple operation and maintenance principles, enhanced safety, easy to inspect, a relatively short construction time, small investment cost, competitive generation cost, and a flexible design to fit with the existing infrastructure. The main characteristic of SMART reactor is an integral design concept where the entire main cooling system components are located in the pressurize vessel. (author)

  4. Modified fuel assembly design for pressurized water reactors with improved fuel utilization

    International Nuclear Information System (INIS)

    Galperin, A.; Ronen, Y.

    1983-01-01

    A method for reactivity control through variation of the moderator content in the reactor core was proposed. The main idea is to adjust the amount of water in the core from a low value at beginning of cycle to a high value at end of cycle, so as to compensate for fissile material burnup and buildup of fission products. The possible implementation of this idea may be carried out by introducing a number of hollow tubes into the fuel assembly between the fuel rods. Then variation of the moderator content in the core may be managed through a change of the water level in these tubes. cated a potential savings in the fuel cycle requirements and costs. Preliminary steady-state thermal-hydraulic calculations indicate the possibility of implementing the proposed method in the existing pressurized water reactor plants. Feasibility of the proposed design may be finally established after rigorous thermal hydraulics as well as safety analysis calculations. Furthermore, there is need to elaborate the mechanical design of the pressure vessel internals together with cost benefit analysis

  5. Drinking Water Quality in Hospitals and Other Buildings

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pa...

  6. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    Science.gov (United States)

    Kanta, L.; Berglund, E. Z.; Soh, M. H.

    2017-12-01

    Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden

  7. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.

    Science.gov (United States)

    Madugundu, Rangaswamy; Al-Gaadi, Khalid A; Tola, ElKamil; Hassaballa, Abdalhaleem A; Kayad, Ahmed G

    2018-01-01

    The crop Water Footprint (WF) can provide a comprehensive knowledge of the use of water through the demarcation of the amount of the water consumed by different crops. The WF has three components: green (WFg), blue (WFb) and grey (WFgr) water footprints. The WFg refers to the rainwater stored in the root zone soil layer and is mainly utilized for agricultural, horticultural and forestry production. The WFb, however, is the consumptive use of water from surface or groundwater resources and mainly deals with irrigated agriculture, industry, domestic water use, etc. While the WFgr is the amount of fresh water required to assimilate pollutants resulting from the use of fertilizers/agrochemicals. This study was conducted on six agricultural fields in the Eastern region of Saudi Arabia, during the period from December 2015 to December 2016, to investigate the spatiotemporal variation of the WF of silage maize and carrot crops. The WF of each crop was estimated in two ways, namely agro-meteorological (WFAgro) and remote sensing (WFRS) methods. The blue, green and grey components of WFAgro were computed with the use of weather station/Eddy covariance measurements and field recorded crop yield datasets. The WFRS estimated by applying surface energy balance principles on Landsat-8 imageries. However, due to non-availability of Landsat-8 data on the event of rainy days, this study was limited to blue component (WFRS-b). The WFAgro of silage maize was found to range from 3545 m3 t-1 to 4960 m3 t-1; on an average, the WFAgro-g, WFAgro-b, and WFAgro-gr are composed of < 1%, 77%, and 22%, respectively. In the case of carrot, the WFAgro ranged between 297 m3 t-1 and 502 m3 t-1. The WFAgro-g of carrot crop was estimated at <1%, while WFAgro-b and WFAgro-gr was 67% and 32%, respectively. The WFAgro-b is occupied as a major portion in WF of silage maize (77%) and carrot (68%) crops. This is due to the high crop water demand combined with a very erratic rainfall, the irrigation is

  8. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.

    Directory of Open Access Journals (Sweden)

    Rangaswamy Madugundu

    Full Text Available The crop Water Footprint (WF can provide a comprehensive knowledge of the use of water through the demarcation of the amount of the water consumed by different crops. The WF has three components: green (WFg, blue (WFb and grey (WFgr water footprints. The WFg refers to the rainwater stored in the root zone soil layer and is mainly utilized for agricultural, horticultural and forestry production. The WFb, however, is the consumptive use of water from surface or groundwater resources and mainly deals with irrigated agriculture, industry, domestic water use, etc. While the WFgr is the amount of fresh water required to assimilate pollutants resulting from the use of fertilizers/agrochemicals. This study was conducted on six agricultural fields in the Eastern region of Saudi Arabia, during the period from December 2015 to December 2016, to investigate the spatiotemporal variation of the WF of silage maize and carrot crops. The WF of each crop was estimated in two ways, namely agro-meteorological (WFAgro and remote sensing (WFRS methods. The blue, green and grey components of WFAgro were computed with the use of weather station/Eddy covariance measurements and field recorded crop yield datasets. The WFRS estimated by applying surface energy balance principles on Landsat-8 imageries. However, due to non-availability of Landsat-8 data on the event of rainy days, this study was limited to blue component (WFRS-b. The WFAgro of silage maize was found to range from 3545 m3 t-1 to 4960 m3 t-1; on an average, the WFAgro-g, WFAgro-b, and WFAgro-gr are composed of < 1%, 77%, and 22%, respectively. In the case of carrot, the WFAgro ranged between 297 m3 t-1 and 502 m3 t-1. The WFAgro-g of carrot crop was estimated at <1%, while WFAgro-b and WFAgro-gr was 67% and 32%, respectively. The WFAgro-b is occupied as a major portion in WF of silage maize (77% and carrot (68% crops. This is due to the high crop water demand combined with a very erratic rainfall, the

  9. Evaluating the marginal utility principle for long-term hydropower scheduling

    International Nuclear Information System (INIS)

    Zhao, Tongtiegang; Zhao, Jianshi; Liu, Pan; Lei, Xiaohui

    2015-01-01

    Highlights: • Analysis of one-, two- and multi-period hydropower scheduling. • Derivation of marginal cost and marginal return of carry-over storage. • Evaluation of the marginal utility principle in a case study of the Three Gorges Reservoir. - Abstract: The conversion of the potential energy of dammed water into hydropower depends on both reservoir storage and release, which are the major difficulties in hydropower reservoir operation. This study evaluates the marginal utility principle, which determines the optimal carry-over storage between periods, for long-term hydropower scheduling. Increasing marginal cost and decreasing marginal return are two important characteristics that determine the marginal utility principle in water supply. However, the notion of decreasing marginal return is inapplicable in hydropower scheduling. Instead, the carry-over storage from one period has an increasing marginal contribution to the power generation in the next period. Although carry-over storage incurs an increasing marginal cost to the power generation in the current period, the marginal return is higher than the marginal cost. The marginal return from the carry-over storage further increases in the multi-period case. These findings suggest saving as much carry-over storage as possible, which is bounded by the operational constraints of storage capacity, environmental flow, and installed capacity in actual hydropower scheduling. The marginal utility principle is evaluated for a case study of the Three Gorges Reservoir, and the effects of the constraints are discussed. Results confirm the theoretical findings and show that the marginal return from carry-over storage is larger than the marginal cost. The operational constraints help determine the optimal carry-over storage.

  10. Assessing Water Security in the Amu Darya River Basin, Afghanistan

    National Research Council Canada - National Science Library

    DiPasquale, Joseph A

    2006-01-01

    ...; and water development projects. The thesis evaluated the quantitative techniques employed for their utility in planning, executing, and assessing military operations in relation to water resources. Afghanistan...

  11. Direction of Heavy Water Projects

    International Nuclear Information System (INIS)

    1984-07-01

    Summary of the activities performed by the Heavy Water Projects Direction of the Argentine Atomic Energy Commission from 1950 to 1983. It covers: historical data; industrial plant (based on ammonia-hydrogen isotopic exchange); experimental plant (utilizing hydrogen sulfides-water process); Module-80 plant (2-3 tons per year experimental plant with national technology) and other related tasks on research and development (E.A.C.) [es

  12. Water privatization, water source, and pediatric diarrhea in Bolivia: epidemiologic analysis of a social experiment.

    Science.gov (United States)

    Tornheim, Jeffrey A; Morland, Kimberly B; Landrigan, Philip J; Cifuentes, Enrique

    2009-01-01

    Water and sanitation services are fundamental to the prevention of pediatric diarrhea. To enhance both access to water and investment, some argue for the privatization of municipal water networks. Water networks in multiple Bolivian cities were privatized in the 1990s, but contracts ended following popular protests citing poor access. A population-based retrospective cohort study was conducted in two Bolivian cities. Data were collected on family water utilization and sanitation practices and on the prevalence of diarrhea among 596 children. Drinking from an outdoor water source (OR, 2.08; 95%CI, 1.25-3.44) and shorter in-home water boiling times (OR, 1.99; 95%CI, 1.19-3.34) were associated with prevalence of diarrhea. Increased prevalence was also observed for children from families using private versus public water services, using off-network water from cistern trucks, or not treating their water in-home. Results suggest that water source, water provider, and in-home water treatment are important predictors of pediatric diarrhea.

  13. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

  14. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  15. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    Science.gov (United States)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  16. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants.

    Science.gov (United States)

    Szlag, David C; Sinclair, James L; Southwell, Benjamin; Westrick, Judy A

    2015-06-12

    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA.

  17. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants

    Directory of Open Access Journals (Sweden)

    David C. Szlag

    2015-06-01

    Full Text Available An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC, as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA.

  18. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants

    Science.gov (United States)

    Szlag, David C.; Sinclair, James L.; Southwell, Benjamin; Westrick, Judy A.

    2015-01-01

    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA. PMID:26075379

  19. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  20. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    environment of root soil, it alters rhizo- sphere ventilation, enhances the aerobic respiration, improves water and fertilizer absorption efficiency and redound water and nutrients' utilization. As to the effects of rhizosphere environment on ...

  1. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  2. Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian Gulf water body: promising consortia in oil sediment bioremediation.

    Science.gov (United States)

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2013-04-01

    Two picocyanobacterial strains related to Acaryochloris were isolated from the Arabian Gulf, 3 m below the water surface, one from the north shore and the other from the south shore of Kuwait. Both strains were morphologically, ultrastructurally, and albeit to a less extend, phylogenetically similar to Acaryochloris. However, both isolates lacked chlorophyll d and produced instead chlorophyll a, as the major photosynthetic pigment. Both picocyanobacterial isolates were associated with oil-utilizing bacteria in the magnitude of 10(5) cells g(-1). According to their 16S rRNA gene sequences, bacteria associated with the isolate from the north were affiliated to Paenibacillus sp., Bacillus pumilus, and Marinobacter aquaeolei, but those associated with the isolate from the south were affiliated to Bacillus asahii and Alcanivorax jadensis. These bacterial differences were probably due to environmental variations. In batch cultures, the bacterial consortia in the nonaxenic biomass as well as the pure bacterial isolates effectively consumed crude oil and pure aliphatic and aromatic hydrocarbons, including very high-molecular-weight compounds. Water and diethylether extracts from the phototrophic biomass enhanced growth of individual bacterial isolates and their hydrocarbon-consumption potential in batch cultures. It was concluded that these consortia could be promising in bioremediation of hydrocarbon pollutants, especially heavy sediments in the marine ecosystem.

  3. Field Trial Results of a 14-channel GPR Integrated with a U.S. Program for 3-D Utility Mapping

    Science.gov (United States)

    Anspach, James H.

    2013-04-01

    Existing underground utilities continue to be a leading cause of highway construction delay claims in the United States. Although 80-90% of existing utilities can typically be discovered and mapped using a wide range of geophysical tools, there is a recognizable need to improve the process. Existing shortcomings to the utility mapping process include a lack of viable depth attributes, long field occupation times, low experience level of the field technicians, and separate survey / geophysics functions. The U.S. National Academies and its Transportation Research Board recently concluded a project on alleviating the existing utility mapping shortcomings through the development of enhanced GPR. An existing commercial 400MHz 14-channel towed array was enhanced with positioning and interpretation hardware and software over a 3-year US 2M program. Field trials for effectiveness were conducted in a city suburb commercialized environment where the relative permittivity values averaged 9.4. The effectiveness of enhanced GPR was compared to traditional utility mapping techniques (Single Channel GPR, FDEM, Acoustic, Sondes, Gradiometric Magnetometers) during the project. The project area utilities included natural gas, water, electric, telephone, cable, storm, sanitary, traffic control, and several unknown function lines. Depths for these utilities were mostly unknown. 81% of known (from records and field appurtenance visual observation) utilities were detected via traditional geophysical means. These traditional geophysical means also detected 14% additional and previously "unknown" utilities. The enhanced GPR detected approximately 40% of the known and unknown utilities, and found an additional 6% of utilities that were previously undetected. These additional utilities were subsequently determined to be small diameter abandoned water and gas systems in very poor and broken condition. Although it did well with metallic water and gas lines, communication and electric

  4. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1976-04-01

    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2γ is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, α, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author) [pt

  5. ADDRESSING ENVIRONMENTAL CHALLENGES UNDER COMPREHENSIVE UTILIZATION OF GEOTHERMAL SALINE WATER RESOURCES IN THE NORTHERN DAGESTAN

    Directory of Open Access Journals (Sweden)

    A. Sh. Ramazanov

    2016-01-01

    Full Text Available Aim. The aim of the study is to develop technologies for processing geothermal brine produced with the extraction of oil as well as to solve environmental problems in the region.Methods. In order to determine the chemical composition and radioactivity of the geothermal water and solid samples, we used atomic absorption and gamma spectrometry. Evaluation of the effectiveness of the technology was made on the basis of experimental studies.Results. In the geothermal water, eight radionuclides were recognized and quantified with the activity of 87 ± 5 Bq / dm3. For the processing of this water to produce lithium carbonate and other components we propose a technological scheme, which provides a step of water purification from radio-nuclides. As a result of aeration and alkalinization, we can observe deactivation and purification of the geothermal water from mechanical impurities, iron ions, hydrogen carbonates and organic substances. Water treatment allows recovering lithium carbonate, magnesite caustic powder and salt from geothermal water. The mother liquors produced during manufacturing operations meet the requirements for the water suitable for waterflooding of oil reservoirs and can be injected for maintaining the reservoir pressure of the deposits.Conclusion. The implementation of the proposed processing technology of mineralized geothermal water produced with the extraction of oil in the Northern Dagestan will contribute to extend the life of the oil fields and improve the environmental problems. It will also allow import substitution in Russia for lithium carbonate and edible salt.

  6. Water supply development and tariffs in Tanzania: From free water policy towards cost recovery

    Science.gov (United States)

    Mashauri, Damas A.; Katko, Tapio S.

    1993-01-01

    The article describes the historical development of water tariff policy in Tanzania from the colonial times to present. After gaining independence, the country introduced “free” water policy in its rural areas. Criticism against this policy was expressed already in the 1970s, but it was not until the late 1980s that change became unavoidable. All the while urban water tariffs continued to decline in real terms. In rural and periurban areas of Tanzania consumers often have to pay substantial amounts of money for water to resellers and vendors since the public utilities are unable to provide operative service. Besides, only a part of the water bills are actually collected. Now that the free water supply policy has been officially abandoned, the development of water tariffs and the institutions in general are a great challenge for the country.

  7. Data gaps in evidence-based research on small water enterprises in developing countries.

    Science.gov (United States)

    Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J

    2009-12-01

    Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.

  8. Using Water Transfers to Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.

    2007-12-01

    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  9. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Summary of the 3rd workshop on the reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  11. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  12. Flow in water-intake pump bays: A guide for utility engineers. Final report

    International Nuclear Information System (INIS)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how the vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes

  13. Sustainable and reliable hot water in utility buildings; Duurzaam en verantwoord warmtapwater in utiliteitsgebouwen

    Energy Technology Data Exchange (ETDEWEB)

    Lansbergen, A. [Itho, Schiedam (Netherlands)

    2008-02-15

    Non-residential buildings that have a high demand for hot water were formerly equipped with large, conventional central hot water systems. A growing awareness of the risk of legionella infection and the thermal strategy needed to prevent the growth of these bacteria have generally resulted in higher water temperatures. The water circulation rate in such systems has also been raised. An unexpected side effect of these measures has been an increase in transmission loss from the hot water pipe network. This loss often results in the heating of water in adjacent cold water pipes to a higher temperature than desired or permitted. There is no longer any advantage in designing large centralized systems with a high thermal output. The answer is to split a large system into a number of smaller ones, and thereby reduce the pipe lengths required to serve the draw-off points. [Dutch] In utiliteitsgebouwen met veel warmwatertappunten is in het verleden vaak een grote traditionele centrale warmtapwaterinstallaties geplaatst. Door de groeiende bekendheid over de gevaren van de legionellabacterie en het thermisch beheer van de warmtapwaterinstallatie om legionellagroei te voorkomen, is de warmtapwatertemperatuur in de regel nu hoger ingesteld dan voorheen. Ook is de circulatie in de warmtapwaterinstallaties opgevoerd. Het bijkomend nadelig effect van deze maatregelen is dat het transmissieverlies van het warmtapwaternet groter is geworden, waardoor in veel gevallen de naastgelegen koudwaterleidingen onbedoeld warmer worden dan gewenst en toegestaan. Het heeft dus geen voordeel meer een grote centrale installatie met relatief veel warmteafgifte te ontwerpen. Het antwoord: splits de grote installatie in meerdere kleine installaties en beperk daardoor de noodzakelijke leidinglengtes naar de tappunten.

  14. Analysis of Hydropower Potential Utilization of Watercourses in Slovakia

    Science.gov (United States)

    Gejguš, Mirko; Aschbacher, Christine; Sablik, Jozef

    2017-09-01

    This article analyzes the hydropower potential of watercourses in Slovakia, defining water as the most promising and most used renewable energy source. The hydro-energetic potential as a source of energy is determined by the calculation of the technically feasible potential of the watercourses, which is divided into exploited and unused. It also identifies the potential of utilizing the unused technical hydro-energetic potential.

  15. Statistical models for the analysis of water distribution system pipe break data

    International Nuclear Information System (INIS)

    Yamijala, Shridhar; Guikema, Seth D.; Brumbelow, Kelly

    2009-01-01

    The deterioration of pipes leading to pipe breaks and leaks in urban water distribution systems is of concern to water utilities throughout the world. Pipe breaks and leaks may result in reduction in the water-carrying capacity of the pipes and contamination of water in the distribution systems. Water utilities incur large expenses in the replacement and rehabilitation of water mains, making it critical to evaluate the current and future condition of the system for maintenance decision-making. This paper compares different statistical regression models proposed in the literature for estimating the reliability of pipes in a water distribution system on the basis of short time histories. The goals of these models are to estimate the likelihood of pipe breaks in the future and determine the parameters that most affect the likelihood of pipe breaks. The data set used for the analysis comes from a major US city, and these data include approximately 85,000 pipe segments with nearly 2500 breaks from 2000 through 2005. The results show that the set of statistical models previously proposed for this problem do not provide good estimates with the test data set. However, logistic generalized linear models do provide good estimates of pipe reliability and can be useful for water utilities in planning pipe inspection and maintenance

  16. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  17. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  18. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  19. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  20. Solution and scope of utilization of the cross-stream cooling towers

    International Nuclear Information System (INIS)

    Zembaty, W.

    1995-01-01

    Technical solutions and operational properties of the cross-stream cooling towers as well as the scope of their utilization are presented. The differences within thermodynamic calculations of the cross-stream and counter-stream cooling towers due to the direction of the air flow as well as water flow in sprinkling system are discussed. The assessment of the capital and operational costs of the cross-stream cooling towers is given and compared with the cost of counter-stream cooling towers (utilizing as an example a calculation conducted for the cooling towers of the 720, 1100 and 1400 MW units). (author). 6 refs, 9 figs