WorldWideScience

Sample records for water uptake properties

  1. Stone-ground wood pulp-reinforced polypropylene composites: Water uptake and thermal properties

    Directory of Open Access Journals (Sweden)

    Joan Pere López

    2012-11-01

    Full Text Available Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC.

  2. The effect of water uptake on the mechanical properties of low-k organosilica glass

    Science.gov (United States)

    X. Guo; J.E. Jakes; M.T. Nichols; S. Banna; Y. Nishi; J.L. Shohet

    2013-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-...

  3. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties.

    Science.gov (United States)

    López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada

    2016-11-05

    This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  5. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    Science.gov (United States)

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  6. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  7. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  8. Plant–Water Relations (1): Uptake and Transport

    Science.gov (United States)

    2014-01-01

    Summary Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow tracheary elements are just one of many adaptations that enable plants to cope with a very dry atmosphere. This lecture examines the physical laws that govern water uptake and transport, the biological properties of cells and plant tissues that facilitate it, and the strategies that enable plants to survive in diverse environments

  9. Effects of soil properties on the uptake of pharmaceuticals into earthworms

    International Nuclear Information System (INIS)

    Carter, Laura J.; Ryan, Jim J.; Boxall, Alistair B.A.

    2016-01-01

    Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment. - Highlights: • Uptake of pharmaceuticals into earthworms is influenced by soil parameters. • Presence of pharmaceuticals in the terrestrial environment influences soil pH. • Uptake of pharmaceuticals by earthworms changes internal earthworm pH. - The uptake of pharmaceuticals into soil invertebrates is dependent on the complex interplay between pharmaceutical physico-chemical properties and soil

  10. Influence of water relations and growth rate on plant element uptake and distribution

    International Nuclear Information System (INIS)

    Greger, Maria

    2006-02-01

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution

  11. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  12. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  13. Root water uptake and lateral interactions among root systems in a temperate forest

    Science.gov (United States)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  14. Effect of Gamma Irradiation on Water Uptake Rate and Gelatinization of Brown Rice

    International Nuclear Information System (INIS)

    Shu, C.S.; Lee, J.W.; Lee, Y.S.; Byun, M.W.

    2004-01-01

    Effects of gamma irradiation on brown rice quality were evaluated. Brown rice was irradiated at absorbed dose of 1, 3 or 5 kGy, and ground. Water uptake, pasting properties, and physicochemical characteristics of flour samples were tested. Water uptake rates of irradiated samples were higher than that of control, and were dose-dependent. Hydration capacity decreased in sample irradiated at 5 kGy due to leaching out of soluble compounds, whereas no differences were observed among other irradiated samples and control

  15. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  16. Relative Water Uptake as a Criterion for the Design of Trickle Irrigation Systems

    Science.gov (United States)

    Communar, G.; Friedman, S. P.

    2008-12-01

    Previously derived analytical solutions to the 2- and 3-dimensional water flow problems describing trickle irrigation are not being widely used in practice because those formulations either ignore root water uptake or refer to it as a known input. In this lecture we are going to describe a new modeling approach and demonstrate its applicability for designing the geometry of trickle irrigation systems, namely the spacing between the emitters and drip lines. The major difference between our and previous modeling approaches is that we refer to the root water uptake as to the unknown solution of the problem and not as to a known input. We postulate that the solution to the steady-state water flow problem with a root sink that is acting under constant, maximum suction defines un upper bound to the relative water uptake (water use efficiency) in actual transient situations and propose to use it as a design criterion. Following previous derivations of analytical solutions we assume that the soil hydraulic conductivity increases exponentially with its matric head, which allows the linearization of the Richards equation, formulated in terms of the Kirchhoff matric flux potential. Since the transformed problem is linear, the relative water uptake for any given configuration of point or line sources and sinks can be calculated by superposition of the Green's functions of all relevant water sources and sinks. In addition to evaluating the relative water uptake, we also derived analytical expressions for the steam functions. The stream lines separating the water uptake zone from the percolating water provide insight to the dependence of the shape and extent of the actual rooting zone on the source- sink geometry and soil properties. A minimal number of just 3 system parameters: Gardner's (1958) alfa as a soil type quantifier and the depth and diameter of the pre-assumed active root zone are sufficient to characterize the interplay between capillary and gravitational effects on

  17. Hydraulic root water uptake models: old concerns and new insights

    Science.gov (United States)

    Couvreur, V.; Carminati, A.; Rothfuss, Y.; Meunier, F.; Vanderborght, J.; Javaux, M.

    2014-12-01

    Root water uptake (RWU) affects underground water dynamics, with consequences on plant water availability and groundwater recharge. Even though hydrological and climate models are sensitive to RWU parameters, no consensus exists on the modelling of this process. Back in the 1940ies, Van Den Honert's catenary approach was the first to investigate the use of connected hydraulic resistances to describe water flow in whole plants. However concerns such as the necessary computing when architectures get complex made this approach premature. Now that computing power increased dramatically, hydraulic RWU models are gaining popularity, notably because they naturally produce observed processes like compensatory RWU and hydraulic redistribution. Yet major concerns remain. Some are more fundamental: according to hydraulic principles, plant water potential should equilibrate with soil water potential when the plant does not transpire, which is not a general observation when using current definitions of bulk or average soil water potential. Other concerns regard the validation process: water uptake distribution is not directly measurable, which makes it hard to demonstrate whether or not hydraulic models are more accurate than other models. Eventually parameterization concerns exist: root hydraulic properties are not easily measurable, and would even fluctuate on an hourly basis due to processes like aquaporin gating. While offering opportunities to validate hydraulic RWU models, newly developed observation techniques also make us realize the increasing complexity of processes involved in soil-plant hydrodynamics, such as the change of rhizosphere hydraulic properties with soil drying. Surprisingly, once implemented into hydraulic models, these processes do not necessarily translate into more complex emerging behavior at plant scale, and might justify the use of simplified representations of the soil-plant hydraulic system.

  18. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  19. Forest Transpiration: Resolving Species-Specific Root Water Uptake Patterns

    Science.gov (United States)

    Blume, T.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.; Stewart, R. D.

    2016-12-01

    Transpiration and its spatio-temporal variability are still not fully understood, despite their importance for the global water cycle. This is in part due to our inability to measure transpiration comprehensively. Transpiration is usually either estimated with empirical equations based on climatic variables and crop factors, by measuring sap velocities, estimating sap wood area and scaling up to the forest stand based on a number of assumptions or by measuring the integral signal across a footprint with eddy flux towers. All these methods are focused on the cumulated loss of water to the atmosphere and do not provide information on where this water is coming from. In this study, spatio-temporal variability of root water uptake was investigated in a forest in the northeastern German lowlands. The soils are sandy and the depth of the unsaturated zone ranges from 1 to 30 m. We estimated root water uptake from different soil depths, from 0.1 m down to 2 m, based on diurnal fluctuations in soil moisture content during rain-free days. The 15 field sites cover different topographic positions and forest stands: 4 pure stands of both mature and young beech and pine and 9 mixed stands. The resulting daily data set of root water uptake shows that the forest stands differ in total amounts as well as in uptake depth distributions. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of uptake that changes with water availability. The relationship of these depth-resolved uptake rates to overall soil water availability varies considerably between tree species. Using the physically-based soil hydrological model HYDRUS we investigated to what extent the observed patterns in uptake can be related to soil physical relationships alone and where tree species-specific aspects come into play. We furthermore used the model to test assumptions and estimate uncertainties of this soil moisture based estimation of plant water uptake. The

  20. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  1. Uptake of uranium from sea water by microalgae

    International Nuclear Information System (INIS)

    Sakaguchi, Takashi; Horikoshi, Takao; Nakajima, Akira

    1978-01-01

    The uptake of uranium from aqueous systems especially from sea water by various microalgae was investigated. The freshwater microalgae, Chlorella regularis, Scenedesmus bijuga, Scenedesmus chloreloides, Scenedesmus obliquus, Chlamydomonas angulosa, Chlamydomonas reinhardtii, accumulated relatively large amounts of uranium from the solution containing uranium only. The concentration factors of the above mentioned algae were: Chlorella regularis 3930, Chlamydomonas 2330 - 3400, Scenedesmus 803 - 1920. The uptake of uranium from sea water by Chlorella regularis was inhibited markedly by the co-existence of carbonate ions. Chlorella cells could take up a great quantity of uranium from decarbonated sea water. The uptake of uranium was affected by the pH of sea water, and the amount of uranium absorbed was maximum at pH 5. The experiment was carried out to screen marine microalgae which have the ability to accumulate a large amount of uranium from sea water. The uptake of uranium from sea water by marine microalgae of different species turned out to be in the following decreasing order: Synechococcus > Chlamydomonas >> Chlorella > Dunaliella > Platymonas > Calothrix > Porphyridium. The amount of uranium absorbed differed markedly with different species of marine microalgae. (author)

  2. Influence of Water Absorption on Volume Resistivity and the Dielectric Properties of Neat Epoxy Material

    KAUST Repository

    Sulaimani, Anwar Ali

    2014-07-15

    Influence of Water Absorption on the Dielectric Properties and Volume Resistivity of Neat Epoxy Material Anwar Ali Sulaimani Epoxy resins are widely used materials in the industry as electrical insulators, adhesives and in aircrafts structural components because of their high mechanical sti ness, strength and high temperature and chemical resistance properties. But still, the in uence of water uptake due to moisture adsorption is not fully understood as it detrimentally modi es the electrical and chemical properties of the material. Here, we investigate the in uence of water moisture uptake on the neat epoxy material by monitoring the change in the volume resistivity and dielectric properties of epoxy material at three di erent thickness con gurations: 0.250 mm, 0.50 mm and 1 mm thicknesses. Gravimetric analysis was done to monitor the mass uptake behaviour, Volume Resistivity was measured to monitor the change in conductivity of the material, and the dielectric properties were mapped to characterise the type of water mechanism available within the material during two ageing processes of sorption and desorption. Two-stage behaviours of di usion and reaction have been identi ed by the mass uptake analysis. Moreover, the plot of volume resistivity versus mass uptake has indi- cated a non-uniform relationship between the two quantities. However, the analysis of the dielectric spectrum at medium range of frequency and time has showed a change 5 in the dipolar activities and also showed the extent to which the water molecules can be segregated between bounding to the resin or existing as free water.

  3. Relationship between root water uptake and soil respiration: A modeling perspective

    Science.gov (United States)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  4. Modified Feddes type stress reduction function for modeling root water uptake: Accounting for limited aeration and low water potential

    Science.gov (United States)

    Peters, Andre; Durner, Wolfgang; Iden, Sascha C.

    2017-04-01

    Modeling water flow in the soil-plant-atmosphere continuum with the Richards equation requires a model for the sink term describing water uptake by plant roots. Despite recent progress in developing process-based models of water uptake by plant roots and water flow in aboveground parts of vegetation, effective models of root water uptake are widely applied and necessary for large-scale applications. Modeling root water uptake consists of three steps, (i) specification of the spatial distribution of potential uptake, (ii) reduction of uptake due to various stress sources, and (iii) enhancement of uptake in part of the simulation domain to describe compensation. We discuss the conceptual shortcomings of the frequently used root water uptake model of Feddes and suggest a simple but effective improvement of the model. The improved model parametrizes water stress in wet soil by a reduction scheme which is formulated as function of air content where water stress due to low soil water potential is described by the original approach of Feddes. The improved model is physically more consistent than Feddes' model because water uptake in wet soil is limited by aeration which is a function of water content. The suggested modification is particularly relevant for simulations in heterogeneous soils, because stress parameters are uniquely defined for the entire simulation domain, irrespective of soil texture. Numerical simulations of water flow and root water uptake in homogeneous and stochastic heterogeneous soils illustrate the effect of the new model on root water uptake and actual transpiration. For homogeneous fine-textured soils, root water uptake never achieves its potential rate. In stochastic heterogeneous soil, water uptake is more pronounced at the interfaces between fine and coarse regions which has potential implications for plant growth, nutrient uptake and depletion.

  5. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    Directory of Open Access Journals (Sweden)

    N. J. Jarvis

    2011-11-01

    Full Text Available Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates and one at a global scale (water balances across an aridity gradient in the continental USA, are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest

  8. Uptake of uranium from sea water by Synechococcus elongatus

    International Nuclear Information System (INIS)

    Horikoshi, Takao; Nakajima, Akira; Sakaguchi, Takashi

    1979-01-01

    Basic features of the uranium uptake by Synechococcus elongatus, and the factors affecting it were examined. Synechococcus elongatus was grown in Roux flasks containing 1 liter of culture solution in light (20,000 lux) and with aeration at 30 deg C. Synechococcus cells in the linear growth phase were collected by centrifugation at 6,000 x g for 5 minutes, washed with sea water, and used for the uranium-uptake experiments. The uptake of uranium from sea water containing 1 ppm of the element was strongly affected by the pH of sea water. The optimum uptake was at pH 5. Presence of carbonate ions markedly inhibited and decarbonation of sea water greatly enhanced the uptake. Absorption of uranium by Synechococcus cells was initially rapid, and reached a plateau within 24 hours. The uranium accumulation capacity of Synechococcus cells was increased by heat treatment, the capacity of scalded cells being about twice as much as that of living cells. Most of the uranium absorbed by Synechococcus was found in the inner space of the cells, and only a small amount was present in the cell walls. (Kaihara, S.)

  9. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    Science.gov (United States)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  10. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    Science.gov (United States)

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  11. Water uptake and motion in highly densified bentonite

    International Nuclear Information System (INIS)

    Kahr, G.; Mueller-Vonmoos, F.; Kraehenbuehl, F.; Stoeckli, H.F.

    1986-07-01

    Water uptake by the bentonites MX-80 and Montigel was investigated according to the classical method of determination of the heat immersion and the adsorption-desorption isotherms. In addition, the layer expansion of the montmorillonite was measured as a function of the water content. The evaluation of the adsorption isotherms according to Dubinin-Radushkevich and the stratification distances determined by x-ray confirmed gradual water uptake. Up to 10% water content, the water is adsorbed as a monolayer, up to 20%, as a bimolecular layer around the interlayer cations. The partial specific entropy could be determined from the approximative calculation of the partial specific enthalpy from the heats of immersion and the free enthalpy from the adsorption isotherms. From this it is evident that the interlayer water shows a high degree of order. In this condition, the mobility of the water molecules is considerably lower than in free water. From the adsorption isotherm and the layer expansion observed, it can be assumed that water can appear in the pore space only from approximately 25% water content. The spaces outwith the interlayer space and the surfaces of the montmorillonite particles are considered as pore space. If free swelling is prevented and with dry densities greater than 1.8 Mg/m/sup 3/ for the highly compacted bentonites, water uptake causes a drastic reduction of the original pore space so that practically all the water is in the interlayer space. Calculation of the swelling pressure from the adsorption isotherms gives a good approximation of the measured swelling pressures. A montmorillonite surface of ca. 750 m/sup 2//g for both bentonites can be derived from a Dubinin-Radushkevich analysis of the adsorption isotherm. Water uptake into the compacted unsaturated bentonites can be described as diffusion with a diffusion coefficient of the order of magnitude of 3.10/sup -10/ m/sup 2//s. (author)

  12. Uptake of {sup 137}Cs by fresh water fish

    Energy Technology Data Exchange (ETDEWEB)

    Man, C.K.; Kwok, Y.H

    2000-02-01

    The uptake and discharge rates of {sup 137}Cs by fresh water fish at different radionuclide concentrations have been studied. A dual compartment model was used to fit the experimental data. The discharge rates have been found to be negligible for the duration of the experiment of 10 days. The uptake rates were independent of radionuclide concentrations for a particular type of fresh water fish and were different for different types of fish. The uptake rates of carp, tilapia and snakehead were 1.58, 1.66 and 2.23, in unit of 10{sup -6} h{sup -1}, respectively. It was also estimated that the consumption of fresh water fish, even if the water were contaminated as much as that in the Chernobyl accident, leads to negligible latent cancer fatality to the Hong Kong population.

  13. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  15. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...

  16. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-01

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ( 1 H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-√t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from √t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction γ is defined for the calculation of surface flux.

  17. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  18. Water movement through plant roots - exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Science.gov (United States)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu

    2017-12-01

    In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation

  19. Molecular mechanisms of foliar water uptake in a desert tree

    OpenAIRE

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecul...

  20. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  1. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    Science.gov (United States)

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  2. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  3. Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Directory of Open Access Journals (Sweden)

    F. Meunier

    2017-12-01

    Full Text Available In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil–root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact

  4. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    Science.gov (United States)

    J. Mason Earles; Or Sperling; Lucas C. R. Silva; Andrew J. McElrone; Craig R. Brodersen; Malcolm P. North; Maciej A. Zwieniecki

    2015-01-01

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water...

  5. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.

    Science.gov (United States)

    Kettler, Katja; Veltman, Karin; van de Meent, Dik; van Wezel, Annemarie; Hendriks, A Jan

    2014-03-01

    The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present study, the authors review dominant uptake mechanisms of NPs in cells, as well as the effect of NP properties, experimental conditions, and cell type on NP uptake. Knowledge of NP uptake is crucial for risk assessment and is essential to predict the behavior of NPs based on their physical-chemical properties. Important uptake mechanisms for eukaryotic cells are macropinocytosis, receptor-mediated endocytosis, and phagocytosis in specialized mammalian cells. The studies reviewed demonstrate that uptake into nonphagocytic cells depends strongly on NP size, with an uptake optimum at an NP diameter of approximately 50 nm. Increasing surface charges, either positive or negative, have been shown to increase particle uptake in comparison with uncharged NPs. Another important factor is the degree of (homo-) aggregation. Results regarding shape have been ambiguous. Difficulties in the production of NPs, with 1 property changed at a time, call for a full characterization of NP properties. Only then will it be possible to draw conclusions as to which property affected the uptake. © 2013 SETAC.

  6. Measuring and modeling three-dimensional water uptake of a growing faba bean (Vicia faba) within a soil column

    Science.gov (United States)

    Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry

    2014-05-01

    A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of

  7. Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles

    Directory of Open Access Journals (Sweden)

    R. M. Garland

    2005-01-01

    Full Text Available While water insoluble organics are prevalent in the atmosphere, it is not clear how the presence of such species alters the chemical and physical properties of atmospheric aerosols. Here we use a combination of FTIR spectroscopy, Transmission Electron Microscopy (TEM and Aerosol Mass Spectrometry (AMS to characterize ammonium sulfate particles coated with palmitic acid. Coated aerosols were generated by atomizing pure ammonium sulfate, mixing the particles with a heated flow of nitrogen with palmitic acid vapor, and then flowing the mixture through an in-line oven to create internally mixed particles. The mixing state of the particles was probed using the AMS data and images from the TEM. Both of these probes suggest that the particles were internally mixed. Water uptake by the mixed particles was then probed at 273 K. It was found that for ammonium sulfate containing ~20 wt% palmitic acid the deliquescence relative humidity (DRH was the same as for pure ammonium sulfate (80±3% RH. For particles with ~50 wt% palmitic acid however, the mixed particles began to take up water at relative humidities as low at 69% and continued to slowly take up water to 85% RH without fully deliquescing. In addition to studies of water uptake, water loss was also investigated. Here coatings of up to 50 wt% had no impact on the efflorescence relative humidity. These studies suggest that even if insoluble substances coat salt particles in the atmosphere, there may be relatively little effect on the resulting water uptake and loss.

  8. Uptake of different species of iodine by water spinach and its effect to growth.

    Science.gov (United States)

    Weng, Huan-Xin; Yan, Ai-Lan; Hong, Chun-Lai; Xie, Lin-Li; Qin, Ya-Chao; Cheng, Charles Q

    2008-08-01

    A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate (IO(-)(3)), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: CH(2)ICOO(-) >I(-)>IO(-)(3). In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of IO(-)(3) and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and IO(-)(3). The nitrate content in water spinach was increased by different degrees.

  9. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  10. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  11. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin.

    Science.gov (United States)

    Beh, Joo Ee; Latip, Jalifah; Abdullah, Mohd Puad; Ismail, Amin; Hamid, Muhajir

    2010-05-04

    Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of water uptake on the fracture behavior of low-k organosilicate glass

    Science.gov (United States)

    Xiangyu Guo; Joseph E. Jakes; Samer Banna; Yoshio Nishi; J. Leon Shohet

    2014-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-the-line integration and circuit reliability. This work examines the effects of water uptake on the fracture behavior of nanoporous low-k organosilicate glass. By using annealing dehydration and humidity conditioning, the roles of different water types...

  13. Synthesis and optical properties of water-soluble biperylene-based dendrimers.

    Science.gov (United States)

    Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng

    2014-05-30

    We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.

  14. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  15. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films.

    Science.gov (United States)

    Rhim, Jong-Whan; Wang, Long-Feng

    2013-07-01

    Multicomponent hydrogel films composed of agar, κ-carrageenan, konjac glucomannan powder, and nanoclay (Cloisite(®) 30B) were prepared and their mechanical and water barrier properties such as water vapor permeability (WVP), water contact angle (CA), water solubility (WS), water uptake ratio (WUR), water vapor uptake ratio (WVUR) were determined. Mechanical, water vapor barrier, and water resistance properties of the ternary blend film exhibited middle range of individual component films, however, they increased significantly after formation of nanocomposite with the clay. Especially, the water holding capacity of the ternary blend biopolymer films increased tremendously, from 800% to 1681% of WUR for agar and κ-carrageenan films up to 5118% and 5488% of WUR for the ternary blend and ternary blend nanocomposite films, respectively. Water vapor adsorption behavior of films was also tested by water vapor adsorption kinetics and water vapor adsorption isotherms test. Preliminary test result for fresh spinach packaging revealed that the ternary blend biohydrogel films had a high potential for the use as an antifogging film for packaging highly respiring agricultural produce. In addition, the ternary blend nanocomposite film showed an antimicrobial activity against Gram-positive bacteria, Listeria monocytogenes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  17. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  18. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    Science.gov (United States)

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging

  19. The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Ehsan Ghobadi

    2018-01-01

    Full Text Available In this contribution, diffusion of water, acetone, and ethanol into a polymer matrix has been studied experimentally and numerically by finite element approaches. Moreover, the present study reports an assessment of different thermomechanical conditions of the shape-memory (SM performance, for example, stress- or strain-holding times in stress- or strain-controlled thermomechanical cycles and the effect of maximum strain. According to the results presented here, the uptake of acetone in Estane is much higher than ethanol and follows classical Fickian diffusion. Further, a series of thermomechanical measurements conducted on dry and physically (hydrolytically aged polyether urethanes revealed that incorporation of water seems to have an appreciable impact on the shape recovery ratios which can be attributed to the additional physical crosslinks. However, no obvious difference in shape fixation of dry and physically (hydrolytically aged samples could be recognized. Furthermore, by decreasing the strain-holding time, shape recovery improves significantly. Moreover, the shape fixity is found to be independent of holding time. The shape recovery ratio decreased dramatically with an increase in the stress-holding time.

  20. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  1. Protocols for atomistic modeling of water uptake into zeolite crystals for thermal storage and other applications

    International Nuclear Information System (INIS)

    Fasano, Matteo; Borri, Daniele; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • Numerical protocols for modeling water adsorption and infiltration into zeolite. • A priori screening of new materials for heat storage and desalination is possible. • Water uptake isotherms for bridging atomistic and engineering scales. - Abstract: We report numerical protocols for describing the water uptake process into microporous materials, with special emphasis on zeolite crystals. A better understanding and more predictive tools of the latter process are critical for a number of modern engineering applications, ranging from the optimization of loss free and compact thermal storage plants up to more efficient separation processes. Water sorption (and desorption) is indeed the key physical phenomenon to consider when designing several heat storage cycles, whereas water infiltration is to be studied when concerned with sieving through microporous materials for manufacturing selective membranes (e.g. water desalination by reverse osmosis). Despite the two quite different applications above, in this article we make an effort for illustrating a comprehensive numerical framework for predicting the engineering performances of microporous materials, based on detailed atomistic models. Thanks to the nowadays spectacular progresses in synthesizing an ever increasing number of new materials with desired properties such as zeolite with various concentrations of hydrophilic defects, we believe that the reported tools can possibly guide engineers in choosing and optimizing innovative materials for (thermal) engineering applications in the near future.

  2. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    Science.gov (United States)

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling.

  3. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  4. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying, E-mail: maying@igsnrr.ac.cn [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing (China); State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing (China); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing (China)

    2016-04-15

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and {sup 18}O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013–2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0–20 cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20–50 cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0–20 cm (6.0–58.5%) and 20–50 cm (6.1–26.3%). There was little difference of contributions in the deep layers (50–200 cm) among treatments in 2013, whereas differences were observed in 50–90 cm at the milk stage and 50–200 cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0–50 cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r = 0.753, p < 0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management. - Highlights: • Dual stable isotopes and MixSIAR were coupled to quantify water uptake of maize. • Maize mainly used soil water in 20–50 cm at milk stage and 0–20 cm at other stages. • Fertilization treatments led to distinct water uptake pattern at 0–50 cm

  5. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments

    International Nuclear Information System (INIS)

    Ma, Ying; Song, Xianfang

    2016-01-01

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and "1"8O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013–2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0–20 cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20–50 cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0–20 cm (6.0–58.5%) and 20–50 cm (6.1–26.3%). There was little difference of contributions in the deep layers (50–200 cm) among treatments in 2013, whereas differences were observed in 50–90 cm at the milk stage and 50–200 cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0–50 cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r = 0.753, p < 0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management. - Highlights: • Dual stable isotopes and MixSIAR were coupled to quantify water uptake of maize. • Maize mainly used soil water in 20–50 cm at milk stage and 0–20 cm at other stages. • Fertilization treatments led to distinct water uptake pattern at 0–50 cm depth

  6. Differential Responses of Water Uptake Pathways and Expression of Two Aquaporin Genes to Water-Deficit in Rice Seedlings of Two Genotypes

    Directory of Open Access Journals (Sweden)

    Xu Ai-hua

    2017-07-01

    Full Text Available Water-deficit (WD is a major abiotic stress constraining crop productivity worldwide. Zhenshan 97 is a drought-susceptible rice genotype, while IRAT109 is a drought-resistant one. However, the physiological basis of the difference remains unclear. These two genotypes had similar total water uptake rates under both WD and well-watered (WW conditions, and their water uptake rates under WD were significantly decreased compared with those under WW. However, the water uptake rate via the cell-to-cell pathway was significantly increased in Zhenshan 97 but decreased in IRAT109 under WD, whereas the opposite trends were observed through the apoplastic pathway. These results indicated that the stress responses and relative contributions of these two water uptake pathways were associated with rice genotype under WD. The expression levels of OsPIP2;4 and OsPIP2;5 genes were significantly higher in roots of Zhenshan 97 than in IRAT109 under the two conditions. OsPIP2;4 expression in roots was significantly up-regulated under WD, while OsPIP2;5 expression showed no significant change. These results suggest that the expression levels of OsPIP2;4 and OsPIP2;5 in rice are dependent on genotype and water availability. Compared with Zhenshan 97, IRAT109 had a higher root dry weight, water uptake rate and xylem sap flow rate, and lower leaf water potential and root porosity under WD, which might be responsible for the drought resistance in IRAT109.

  7. Foliar uptake of cesium from the water column by aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States); Hinton, T.G. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States)]. E-mail: thinton@srel.edu; Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2006-07-01

    The probable occurrence and rate of foliar absorption of stable cesium ({sup 133}Cs) from the water column by aquatic macrophyte species was analyzed following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10{sup 3} L kg{sup -1} d{sup -1}) and a loss rate parameter k (d{sup -1}) were estimated for each species using time series of {sup 133}Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the {sup 133}Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u {>=} 0.75 x 10{sup 3} L kg{sup -1} d{sup -1}. Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for {sup 137}Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  8. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    Science.gov (United States)

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  9. Foliar uptake of 137Cs from the water column by aquatic macrophytes

    International Nuclear Information System (INIS)

    Kelly, M.S.; Pinder, J.E. III

    1996-01-01

    A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137 Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137 Cs g -1 dry mass) or uncontaminated sediments (i.e. -1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137 Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter -1 . The plants is uncontaminated sediments rapidly accumulated 137 Cs from the water column and after 35 days of immersion had 137 Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137 Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B. (author)

  10. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    Science.gov (United States)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  11. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation.

    Science.gov (United States)

    Greaver, Tara L; Sternberg, Leonel L da S

    2006-09-01

    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  12. The uptake of radioactive phosphorus by brown trout (Salmo trutta L.) from water and food

    International Nuclear Information System (INIS)

    Winpenny, K.; Knowles, J.F.; Smith, D.L.

    1998-01-01

    Brown trout were exposed to 32 P in their tank water (7.4 Bq l -1 ) and the uptake to muscle followed over 6 weeks. A steady-state concentration factor (C ss ) of 1.7 and a biological half-time for clearance (tb1/2)) of 45 days were calculated from the results. The low C ss ) indicates that uptake from water is not a major route of 32 P accumulation in these fish. Brown trout were given a single 32 P-spiked meal, and the uptake and clearance in muscle, liver and blood followed over 6 weeks. Assimilation of the isotope by these organs was low, the maximum activity in whole muscle reaching only 0.2-0.4% of that in the meal with lower values in the other two organs. There was no appreciable clearance of 32 P from muscle during the experiment. The slow clearance of 32 P after uptake from water and lack of any clearance after uptake from food indicates that the C ss for this isotope following uptake by either route is likely to depend on radioactive decay rather than intake rate and physiological clearance. (author)

  13. Radiation and storage effects on water uptake and cooking behaviour of mungbean

    International Nuclear Information System (INIS)

    Aurangzeb; Bibi, N.; Badshah, A.; Sattar, A.

    1991-01-01

    Effect of different doses of gamma irradiation (0-10 kGy) and storage for 6 months at room conditions was studied on seed size, water uptake and cooking time of mungbeans. Irradiation exhibited insignificant effect on seed weight, seed volume, density, hydration capacity/index, swelling capacity/index, as well as water hydration capacity (WHC) and pH of flour, but significantly (P .ltoreq. 0.01) reduced the cooking time of mungbean seeds (15.37 to 9.93 min.). Storage time increased the cooking time of this legume (11.55 to 12.75 min.). The water uptake parameters of seed and pH of flour decreased significantly due to storage, whereas seed size (weight and volume) remained unaffected during storage

  14. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  15. Water uptake in woody riparian phreatophytes of the southwestern United States: a stable isotope study

    International Nuclear Information System (INIS)

    Busch, D.E.; Ingraham, N.L.; Smith, S.D.

    1992-01-01

    Alluvial forest associations are often dominated by woody phreatophytes, plants that are tightly linked to aquifers for water uptake. Anthropogenic hydrological alterations (e.g., water impoundment or diversion) are of clear importance to riparian ecosystem function. Because decreased frequency of flooding and depression of water tables may, in effect, sever riparian plants from their natural water sources, research was undertaken to determine water uptake patterns for the dominant native and introduced woody taxa of riparian plant communities of the southwestern United States. At floodplain study sites along the Bill Williams and lower Colorado Rivers (Arizona, USA), naturally occurring D and 18 O were used to distinguish among potential water sources. Isotopic ratios from potential uptake locations were compared to water extracted from the dominant woody taxa of the study area (Populus fremontii, Salix gooddingii, and Tamarix ramosissima) to elucidate patterns of water absorption. Isotopic composition of water obtained from sapwood cores did not differ significantly from heartwood or branch water, suggesting that heartwood water exchange, stem capacitance, and phloem sap mixing may be inconsequential in actively transpiring Salix and Populus. There was evidence for close hydrologic linkage of river, ground, and soil water during the early part of the growing season. Surface soils exhibited D enrichment due to cumulative exposure to evaporation as the growing season progressed. Isotopic ratios of water extracted from Populus and Salix did not exhibit isotopic enrichment and were not significantly different from groundwater or saturated soil water sources, indicating a phreatophytic uptake pattern. Associations of isotopic ratios with water relations parameters indicated high levels of canopy evaporation and possible use of moisture from unsaturated alluvial soils in addition to groundwater in Tamarix. (author)

  16. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance of these path......Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW ... particles, or from air. Volatile contaminants have a low potential for accumulation because they quickly escape to air. Experimental data are listed that support these model predictions, but underline also the high variability of accumulation under field conditions. Plant uptake predictions are uncertain...

  17. Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water

    Directory of Open Access Journals (Sweden)

    Tiago Fernandes

    2017-03-01

    Full Text Available Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe3O4@SiO2/SiCRG and Fe3O4@SiO2/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe3O4@SiO2/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe3O4@SiO2/SiCRG biosorbents was 257 mg·g−1, which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.

  18. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  19. The effect of newer water-soluble contrast media on I-131 uptake by the thyroid gland

    International Nuclear Information System (INIS)

    Starinsky, R.; Horne, T.; Barr, J.; Ramot, Y.

    2006-01-01

    The aim of this study was to evaluate the effect of two water-soluble contrast media (nonionic and Dimer) on iodine uptake by the thyroid gland. Twenty-eight euthyroid patients (16 females and 12 males) were subjected to 24hrs radioiodine uptake (RAIU) studies following brain CT examinations using the above cited two water-soluble contrast media. Radioiodine uptake studies were done at one (Group-1), two (Group-2) and four (Group-3) weeks following performance of contrast enhanced CT scans. The effect of both contrast media on the thyroid uptake was found to be identical. The radio active iodine uptake (RAIU) was observed to be suppressed in 30% of patients in Group-1, 33% of patients in Group-2 and in none of the patients belonging to Group-3. On the basis of this pilot study on a limited number of patients it was concluded that dimer and non-ionic water soluble contrast media cause suppression of radio iodine uptake by the thyroid gland in a significant proportion of patients. It has also been observed that both contrast media have similar suppressive effects on radio iodine uptake by the thyroid gland. This effect is transient and does not persist beyond a period of four weeks following the administration of the contrast media. (author)

  20. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  1. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  2. An analysis of the physiological FDG uptake in the stomach with the water gastric distention method

    International Nuclear Information System (INIS)

    Kamimura, Kiyohisa; Fujita, Seigo; Yano, Tatsuhiko; Ogita, Mikio; Umemura, Yoshiro; Fujimoto, Toshiro; Nishii, Ryuichi; Wakamatsu, Hideyuki; Nagamachi, Shigeki; Nakajo, Masayuki

    2007-01-01

    Physiological FDG uptake in the stomach is a common phenomenon, especially noted at the cardia. Water intake just before scanning will result in gastric distention and thinning of the gastric wall, which in turn may lead to a reduction in the physiological uptake in the gastric wall. In the current study, we investigated whether gastric distention by water intake just before PET imaging reduces physiological FDG uptake in the stomach. The patient population comprised 60 patients who underwent whole-body FDG-PET imaging for cancer screening following gastroscopy performed within the preceding week. All patients took 400 ml of water for hydration and were administered 185 MBq of FDG intravenously. The patients were randomly divided into two groups: a group with additional water intake (AW group; n = 30) and a group without additional water intake (NW group; n = 30). In the AW group, an additional 400 ml of water was given just before PET imaging. For quantitative analysis, the stomach was classified into three areas [upper (U), middle (M) and lower (L)], and the degree of FDG uptake in each area was evaluated using standardised uptake values (SUVs). In the NW group, the mean SUVs in the U, M and L areas were 2.41 ± 0.75, 2.28 ± 0.73 and 1.61 ± 0.89, respectively, while in the AW group they were 1.82 ± 0.66, 1.73 ± 0.56 and 1.48 ± 0.49, respectively, and 2.21 ± 0.38 in the oesophago-gastric junction. The mean SUVs in the U and M areas in the AW group were significantly lower than those in the NW group (p < 0.05). Additional water intake just before PET imaging is an effective method for suppressing physiological FDG uptake in the stomach. (orig.)

  3. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    Science.gov (United States)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  4. Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties

    International Nuclear Information System (INIS)

    Laurent, Julien; Casellas, Magali; Dagot, Christophe

    2009-01-01

    The effects of sonication of activated sludge on heavy metal uptake were in a first time investigated in respect with potential modifications of floc surface properties. The treatment led to the simultaneous increase of specific surface area and of the availability of negative and/or hydrophilic sites. In parallel, organic matter was released in the soluble fraction. Sorption isotherms of cadmium and copper showed that uptake characteristics and mechanisms were highly dependent on both heavy metal species and specific energy supplied. The increase of both specific surface area and fixation sites availability led to the increase of Cd(II) uptake. For Cu(II), organic matter released in soluble phase during the treatment seemed to act as a ligand and to limit adsorption on flocs surface. Three different heavy metals uptake mechanisms have been identified: proton exchange, ion exchange and (co)precipitation

  5. Uptake of radioactive strontium by fishes in relation to the calcium content of the water

    International Nuclear Information System (INIS)

    Chiosila, J.

    1975-01-01

    The study attempts to compare experimental results obtained with pseudorasbora parava with regard to 85 Sr uptake at various Ca concentrations of the water (4.20 and 50 mg/l Ca) and also to compare these results with natural conditions. The water was contaminated with 500 pCi/ml 85 SrCl 2 only at the onset of the experiments. Radiostrontium uptake is much higher with a very low calcium content of the water; maximum values are reached in about 10 days. - With low or optimum calcium contents of the water, the values are 3-5 times lower and are not reached until 30 days after radioactive contamination. The fish in this Danube water experiment took up somewhat less radioactivity than in an experiment with the same amounts of Ca and Mg in a control medium. The uptake of 85 Sr in fish in dependence of the Ca content of the water varies according to the formula F.C = 2.505 x Casup(-0.909), with Ca given in Mg/l. (orig.) [de

  6. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  7. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  8. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  9. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    International Nuclear Information System (INIS)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo; Rabot, Eva

    2016-01-01

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  10. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo [University of Catania, Department of Biological, Geological and Environment Sciences, Catania (Italy); Rabot, Eva [Laboratoire Leon Brillouin (CNRS/CEA), Gif-Sur-Yvette (France)

    2016-11-15

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  11. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  12. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  13. Simulation of root water uptake. II. Non-uniform transient water stress using different reduction functions

    NARCIS (Netherlands)

    Homaee, M.; Feddes, R.A.; Dirksen, C.

    2002-01-01

    The macroscopic root water uptake approach was used in the numerical simulation model HYSWASOR to test four different pressure head-dependent reduction functions. The input parameter values were obtained from the literature and derived from extensive measurements under controlled conditions in the

  14. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    Science.gov (United States)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  15. Cisplatin carbonato complexes. Implications for uptake, antitumor properties, and toxicity.

    Science.gov (United States)

    Centerwall, Corey R; Goodisman, Jerry; Kerwood, Deborah J; Dabrowiak, James C

    2005-09-21

    The reaction of aquated cisplatin with carbonate which is present in culture media and blood is described. The first formed complex is a monochloro monocarbonato species, which upon continued exposure to carbonate slowly forms a biscarbonato complex. The formation of carbonato species under conditions that simulate therapy may have important implications for uptake, antitumor properties, and toxicity of cisplatin.

  16. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  17. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  18. Relation of zinc levels and water soluble phosphorus in suphala [fertilizer] on uptake of phosphorus and zinc

    International Nuclear Information System (INIS)

    Mutatkar, V.K.; Chapke, V.G.

    1975-01-01

    Under pot culture, four levels of Zn 0, 2, 4 and 6 ppm, were studied in relation to 30, 50 and 100 % water soluble levels of phosphorus in suphala for the dry matter production and uptake of P and Zn by maize on acidic soil of Goa and black cotton soil of Maharashtra. 32 P and 65 Zn tracers were used for this investigation. The results revealed that application of Zn has increased the dry matter and uptake of phosphorus upto 4 ppm of Zn application and it has decreased at 6 ppm Zn level. This inhibition of P uptake was observed at all water soluble levels of P and in both the soils studied. Zn uptake by maize in both the soils under study was increased with increasing level of Zn, irrespective of water soluble level of P in suphala. (author)

  19. Neutron radiography for the study of water uptake in painting canvases and preparation layers

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.J. [Swiss Institute for Art Research (SIK-ISEA), Zurich (Switzerland); FOM Institute AMOLF, Amsterdam (Netherlands); Hendrickx, R.; Ferreira, E.S.B. [Swiss Institute for Art Research (SIK-ISEA), Zurich (Switzerland); Eijkel, G.; Cerjak, I. [FOM Institute AMOLF, Amsterdam (Netherlands); Kaestner, A. [Paul Scherrer Institut, Neutron Imaging and Activation Group, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland)

    2015-11-15

    Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk-glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content. (orig.)

  20. The uptake of radiationless by some fresh water aquatic biota review

    International Nuclear Information System (INIS)

    Abdel Malik, W.E.Y.; Ibrahim, A.S.; El-Shinawy, R.M.K.

    2005-01-01

    The work presented in this paper reviews many studies carried out by the authors along the last thirty years. The behaviour of the radionuclides in the aquatic ecology of Ismailia Canal stream is of great interest for the evaluation of the possible hazards that may occur to man through the movement of such radionuclides via food chain. Laboratory investigations have been carried out in order to understand the accumulation and release of some radionuclide by some aquatic biota (aquatic macrophyte aquatic plants, some snails species and some fish species) inhabiting this fresh water stream. Different parameters such as water ph, contact time, water salinity, etc. were used in these investigations. The kinetic analysis of the uptake process of some radio nuclides by certain biota was performed. From this analysis, it was possible (through the statistical methods) to investigate that the uptake process proceeded through different steps with different rates depending on the radionuclide and the biota species. It was possible to conclude that some of the selected biota can be used as biological indicators for certain radionuclides

  1. Water uptake by two river red gum ( Eucalyptus camaldulensis) clones in a discharge site plantation in the Western Australian wheatbelt

    Science.gov (United States)

    Marshall, John K.; Morgan, Anne L.; Akilan, Kandia; Farrell, Richard C. C.; Bell, David T.

    1997-12-01

    The heat-pulse technique was used to estimate year-long water uptake in a discharge zone plantation of 9-year-old clonal Eucalyptus camaldulensis Dehnh. near Wubin, Western Australia. Water uptake matched rainfall closely during weter months but exceeded rainfall as the dry season progressed. Average annual water uptake (1148 mm) exceeded rainfall (432 mm) by about 2.7 fold and approached 56% of pan evaporation for the area. The data suggest that at least 37% (i.e. ( {1}/{2.7}) × 100 ) of the lower catchment discharge zone should be planted to prevent the rise of groundwater. Water uptake varied with soil environment, season and genotype. Upslope trees used more water than did downslope trees. Water uptake was higher in E. camaldulensis clone M80 than in clone M66 until late spring. The difference reversed as summer progressed. Both clones, however, have the potential to dry out the landscape when potential evapotranspiration exceeds rainfall. This variation in water uptake within the species indicates the potential for manipulating plantation uptake by matching tree characteristics to site characteristics. Controlled experiments on the heat-pulse technique indicated accuracy errors of approximately 10%. This, combined with the ability to obtain long-term, continuous data and the superior logistics of use of the heat-pulse technique, suggests that results obtained by it would be much more reliable than those achieved by the ventilated chamber technique.

  2. Uptake of Hg2+ by picocyanobacteria in natural water from four Andean lakes

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available In lake food webs, planktonic bacteria and algae represent the greatest bioconcentration step for Hg2+ and monomethyl-Hg (MeHg. As they are the most abundant organisms in planktonic trophic webs and also the main food resource for herbivorous plankton, they can mobilize large amounts of Hg to higher trophic levels. In Andean Patagonian lakes (Argentina, dissolved organic matter (DOM concentration and character, coupled with photo-reactions, play a central role in the complexation of Hg2+ in the water column and can even regulate the uptake of Hg2+ by planktonic algae. In this investigation we evaluated the DOM character of natural waters (NW from four Andean lakes and studied its influence on the uptake of 197Hg2+ in a strain of the picocyanobacteria Synechococcus by using Hg2+ labeled with 197Hg2+. The uptake of radiolabeled Hg2+ by Synechococcus showed different magnitude in NW of lakes Moreno, El Trébol, Morenito and Escondido. Increasing lake DOM concentration reduced the bioavailability of Hg2+ as indicated by the lower uptakes rates found in NW with higher complexity and concentration of the DOM pool. Uptakes of Hg2+ by this picocyanobacteria contrasted among NW from pelagic (surface and bottom and littoral compartments of Lake Escondido which suggest that the entry of this metal may be highly variable even in the same environment. The study of the uptake of radiolabeled Hg2+ in a set of dilutions of NW from Lake Escondido demonstrated that the bioavailability of Hg2+ decrease with increasing DOM concentration.

  3. Nitrogen uptake and fertilizer nitrogen use efficiency of wheat under different soil water conditions

    International Nuclear Information System (INIS)

    Wang Baiqun; Zhang Wei; Yu Cunzu

    1999-01-01

    The pot experiment was conducted to study the effects of soil water regime and fertilizer nitrogen rate on the yields, nitrogen uptake and fertilizer nitrogen utilization of wheat by using 15 N tracer method. The results showed that the aboveground biomass, stem yield and grain yield increased with the increase of soil moisture in the fertilizer nitrogen treatments. All the yield increased with the increase of the fertilizer nitrogen rate in the soil water treatments. It was found that both soil water regime and fertilizer nitrogen rate significantly influenced the amount of nitrogen uptake by wheat according to the variance analysis. The amount of nitrogen uptake increased with the rise of the soil moisture in fertilizer nitrogen treatments and the amount also increased with the increase of the urea nitrogen rate in the soil water regime. Soil water regimes not only had an impact on nitrogen uptake but also had a close relationship with soil nitrogen supply and fertilizer nitrogen use efficiency. The soil A values decreased in urea treatment and increased with the rise of the soil moisture in the combination treatment of urea with pig manure. The fertilizer nitrogen use efficiency rose with the rise of the soil moisture in the same fertilizer nitrogen treatment. The fertilizer nitrogen use efficiency of the urea treatment was 13.3%, 27.9% and 32.3% in the soils with 50%, 70% and 90% of the field water capacity, respectively. The fertilizer nitrogen use efficiency in the combination treatment of urea with pig manure was 20.0%, 29.9% and 34.4% in the soils of above three levels, respectively. It was concluded that the low soil moisture restricted urea nitrogen use efficiency (UNUE) and the UNUE could be raised by combination treatment of urea with manure in the soil of enough moisture

  4. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    International Nuclear Information System (INIS)

    Hung, Wei-Nung; Chiou, Cary T.; Lin, Tsair-Fuh

    2014-01-01

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K tw ) are measured. • Measured K tw values are nearly the same as the respective K ow . • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K tw ) for organic compounds, the log K tw values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K tw determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K tw are closely related to their respective log K ow (octanol–water), with log K ow = 1.9 to 6.5. A significant difference is observed between the present and early measured log K tw for compounds with log K ow > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K aw/lipid ) are virtually identical to the respective log K tw values, which manifests the dominant lipid-partition effect of the compounds with algae

  5. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  6. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  7. Measurements of water uptake of maize roots: the key function of lateral roots

    Science.gov (United States)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  8. H2WHOA - 6 to 8 glasses of water an hour: how water can distinguish physiological from pathological uptake in the GIT on PET/CT scans

    International Nuclear Information System (INIS)

    Crowther, M. D.

    2009-01-01

    Full text:Objectives: To determine the effectiveness of water as a negative contrast agent in PET/CT. To determine the amount and timing of water to be administered in order to evaluate specific regions of the gastro-intestinal tract (GIT). To evaluate whether the use of a 'bolus' of a large amount of water is effective in distinguishing physiological from pathological 18F-FDG uptake in the GIT. Method: Over the past seven months, patients who were scanned and on review had FDG-avidity in the stomach, or had FDG-avidity of an uncertain aetiology further along the GIT, were selected for further scanning. Depending on the site of FDG uptake, patients were either given 1) 2 glasses of water on the bed immediately before scanning or 2) given 6-8 glasses of water in the space of an hour and a delay preceded before scanning over the GIT. Results: To date, 11 patients who have had 13 FDG PET/CT scans have had further water-enhanced delayed imaging. 8(61.5%) scans proved water to be a useful contrast agent. In 11(84.6%) cases, an appropriate amount and timing of water ingested assisted in further evaluating a specific region. In 7(53.9%) cases a large bolus of water allowed the reporting doctor to effectively distinguish between physiological and pathological uptake in the GIT. Conclusions: Patients with gastric/gastro-oesophageal/pancreatic cancers benefit from imaging with water in the stomach or small bowel. Scanning patients with discrete, FDG uptake in the large bowel following a large 'bolus' of water can help to distinguish physiological from pathological FDG uptake.

  9. Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-09-01

    The report presents the results of a number of laboratory tests and field observations to form the basis of a physical and mathematical model that can be used for predicting water uptake and swelling in highly compacted bentonite components of an actual deposition plant. The clay buffer masses have been suggested as barriers in the Swedish KBS concepts. Two commercially available bentonites were used for the production of samples. The rate of water uptake suggests a mathematical model based on a simple diffusion equation. The rate is determined by the access of water and thousands of years may pass before saturation is obtained. The rate of swelling is governed by the negative pore pressure and the permeability. There is reasonable agreement with field observations. The observed swelling potential of old smectite-rich clays has offered the evidence. (G.B.)

  10. How to put plant root uptake into a soil water flow model [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-01-01

    Full Text Available The need for improved crop water use efficiency calls for flexible modeling platforms to implement new ideas in plant root uptake and its regulation mechanisms. This paper documents the details of modifying a soil infiltration and redistribution model to include (a dynamic root growth, (b non-uniform root distribution and water uptake, (c the effect of water stress on plant water uptake, and (d soil evaporation. The paper also demonstrates strategies of using the modified model to simulate soil water dynamics and plant transpiration considering different sensitivity of plants to soil dryness and different mechanisms of root water uptake. In particular, the flexibility of simulating various degrees of compensated uptake (whereby plants tend to maintain potential transpiration under mild water stress is emphasized. The paper also describes how to estimate unknown root distribution and rooting depth parameters by the use of a simulation-based searching method. The full documentation of the computer code will allow further applications and new development.

  11. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Nung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan (China); Chiou, Cary T., E-mail: carychio@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China); U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Lin, Tsair-Fuh, E-mail: tflin@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-30

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K{sub tw}) are measured. • Measured K{sub tw} values are nearly the same as the respective K{sub ow}. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K{sub tw}) for organic compounds, the log K{sub tw} values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K{sub tw} determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K{sub tw} are closely related to their respective log K{sub ow} (octanol–water), with log K{sub ow} = 1.9 to 6.5. A significant difference is observed between the present and early measured log K{sub tw} for compounds with log K{sub ow} > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K{sub aw/lipid}) are virtually identical to the respective log K{sub tw} values, which manifests the dominant lipid-partition effect of the compounds with algae.

  12. Release Properties and Cellular Uptake in Caco-2 Cells of Size-Controlled Chitosan Nanoparticles.

    Science.gov (United States)

    Je, Hyun Jeong; Kim, Eun Suh; Lee, Ji-Soo; Lee, Hyeon Gyu

    2017-12-20

    The influences of particle size on the physicochemical, release, and cellular uptake properties of chitosan nanoparticles (CSNPs) were investigated. Ionotropic CSNPs of different sizes (200-1000 nm) loaded with two model core materials (resveratrol or coumarin-6) were prepared using tripolyphosphate and carrageenan as cross-linkers. With an increase of particle size, zeta potential (34.6 ± 0.5 to 51.1 ± 0.9) and entrapment efficiency (14.9 ± 1.4 to 40.9 ± 1.9) of the CSNPs were significantly (p cellular uptake of CSNPs were significantly increased from 3.70 ± 0.03 to 5.24 ± 0.20 with an increase of particle size from 200 to 600 nm, whereas those significantly decreased from 5.24 ± 0.20 to 4.55 ± 0.2 for particles larger than 600 nm in transwell assay. Moreover, much the same uptake patterns were also observed in confocal microscopy and flow cytometry. Investigation of cellular uptake of CSNPs revealed positive correlations between ZP and EE and indicated the effects of complex factors of nanoparticles other than size. These results provide a better understanding of CSNPs absorption and raises the possibility of controlling alternative nanoparticle properties to enhance bioavailability.

  13. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko; Uchida, Hiroshi; Tsuji, Atsunori

    2001-01-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with 15 O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce 15 O-labeled water. Then the 15 O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  14. Governance Regime Factors Conducive to Innovation Uptake in Urban Water Management: Experiences from Europe

    Directory of Open Access Journals (Sweden)

    Josselin Rouillard

    2016-10-01

    Full Text Available Innovative ways to manage the urban water cycle are required to deal with an ageing drinking and waste water infrastructure and new societal imperatives. This paper examines the influence of water governance in enabling transformations and technological innovation uptake in urban water management. A governance assessment framework is developed and applied in three case-studies, examining different scales and types of innovations used to tackle challenges in European urban water management. The methodology combines documentary analysis and interviews to reconstruct historical storylines of the shift in the water governance of urban water management for each site. The research provides detailed empirical observations on the factors conducive to innovation uptake at the local level. Critical governance factors such as commitment to compromise, the necessity to build political support, and the role of “entrepreneurs” and coalitions are highlighted. The paper also explores the role of discursive strategies and partnership design, as well as that of regulative, economic and communicative instruments, in creating barriers and opportunities to initiate and secure change. A number of recommendations targeted at innovators and water managers are presented in the conclusion.

  15. Predicting Phenologic Response to Water Stress and Implications for Carbon Uptake across the Southeast U.S.

    Science.gov (United States)

    Lowman, L.; Barros, A. P.

    2016-12-01

    Representation of plant photosynthesis in modeling studies requires phenologic indicators to scale carbon assimilation by plants. These indicators are typically the fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI) which represent plant responses to light and water availability, as well as temperature constraints. In this study, a prognostic phenology model based on the growing season index is adapted to determine the phenologic indicators of LAI and FPAR at the sub-daily scale based on meteorological and soil conditions. Specifically, we directly model vegetation green-up and die-off responses to temperature, vapor pressure deficit, soil water potential, and incoming solar radiation. The indices are based on the properties of individual plant functional types, driven by observational data and prior modeling applications. First, we describe and test the sensitivity of the carbon uptake response to predicted phenology for different vegetation types. Second, the prognostic phenology model is incorporated into a land-surface hydrology model, the Duke Coupled Hydrology Model with Prognostic Vegetation (DCHM-PV), to demonstrate the impact of dynamic phenology on modeled carbon assimilation rates and hydrologic feedbacks. Preliminary results show reduced carbon uptake rates when incorporating a prognostic phenology model that match well against the eddy-covariance flux tower observations. Additionally, grassland vegetation shows the most variability in LAI and FPAR tied to meteorological and soil conditions. These results highlight the need to incorporate vegetation-specific responses to water limitation in order to accurately estimate the terrestrial carbon storage component of the global carbon budget.

  16. Antidiabetic Properties and Mechanism of Action of Gynura procumbens Water Extract in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mariam Ahmad

    2010-12-01

    Full Text Available Gynura procumbens (Lour. Merr (family Compositae is cultivated in Southeast Asia, especially Indonesia, Malaysia and Thailand, for medicinal purposes. This study evaluated the in vivo hypoglycemic properties of the water extract of G. procumbens following 14 days of treatment and in vitro in RIN-5F cells. Glucose absorption from the intestines and its glucose uptake in abdominal skeletal muscle were assessed. The antidiabetic effect of water extract of G. procumbens leaves was investigated in streptozotocin-induced diabetic rats. The intraperitoneal glucose tolerance test (IPGTT was performed in diabetic rats treated with G. procumbens water extract for 14 days. In the IPGTT, blood was collected for insulin and blood glucose measurement. After the IPGTT, the pancreases were collected for immunohistochemical study of β-cells of the islets of Langerhans. The possible antidiabetic mechanisms of G. procumbens were assessed through in vitro RIN-5F cell study, intestinal glucose absorption and glucose uptake by muscle. The results showed that G. procumbens significantly decreased blood glucose levels after 14 days of treatment and improved outcome of the IPGTT. However, G. procumbens did not show a significant effect on insulin level either in the in vivo test or the in vitro RIN-5F cell culture study. G. procumbens also showed minimal effects on β-cells of the islets of Langerhans in the pancreas. However, G. procumbens only significantly increased glucose uptake by muscle tissues. From the findings we can conclude that G. procumbens water extract exerted its hypoglycemic effect by promoting glucose uptake by muscles.

  17. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  18. Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2014-01-01

    Full Text Available To modify water absorption properties of bamboo fiber (BF and high density polyethylene (HDPE composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s. Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process.

  19. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  20. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  1. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    Science.gov (United States)

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  2. Influence of physicochemical properties of rice flour on oil uptake of tempura frying batter.

    Science.gov (United States)

    Nakamura, Sumiko; Ohtsubo, Ken'ichi

    2010-01-01

    The physicochemical properties of rice flour and wheat flour influenced the oil uptake of tempura frying batter. Rice flour was better than wheat flour in the overall quality and crispness of the fried tempura batter. Rice flour resisted oil absorption more than wheat flour, and a higher level of apparent starch amylose and higher consistency/breakdown ratio of the pasting properties led to a lower oil uptake of the batter. Super hard EM10 rice showed the highest apparent amylose content and higher consistency/breakdown ratio than the other flour samples, the batter from EM10 revealing the lowest oil content after frying among all the batters examined. The apparent amylose content, consistency/breakdown ratio and oil absorption index are proposed as useful guides for oil absorption when frying from among the physicochemical properties that influence the oil content of fried batter. Our proposal for the "oil absorption index" could be a simple, although not perfect method for estimating the oil content of batter flour.

  3. Nutritional and water effect on fluoride uptake and respiration of bean seedlings. [Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, H G; Adams, D F

    1960-01-01

    Bean plants (Phaseolus vulgaris) were grown in an atmosphere containing 2.0 +/- 0.21 g F /mT (1.6 ppb). The effect of N, P, K, Fe, and Ca deficiencies and the effect of osmotic pressures of 0, 1.5, 3.0, 4.5, 6.0 and 7.5 pounds on fluoride uptake and fluoride-mediated respiration were studied. The data showed that P deficient plants took up more fluoride than plants deficient in any of the other elements studied. Fluoride-mediated respiration was phosphorous dependent, however. Plants low in Fe or K showed increased uptake of fluoride. Nitrogen had no effect on fluoride uptake under the conditions of this experiment. Plants low in Fe showed inhibition of oxygen uptake. This inhibition was accentuated by fluoride. The interactions of N, K and Ca with fluoride on respiration were complex. Neither fluoride uptake nor fluoride-mediated respiration appeared to be linked directly to the water economy of the plants. 14 references, 6 tables.

  4. Plant uptake of 134Cs in relation to soil properties and time

    International Nuclear Information System (INIS)

    Massas, I.; Skarlou, V.; Haidouti, C.

    2002-01-01

    134 Cs uptake by sunflower and soybean plants grown on seven different soils and its relation to soil properties were studied in a greenhouse pot experiment. Soil in each pot was contaminated by dripping the 134 Cs in layers, and sunflower and soybean plants were grown for three and two successive periods, respectively. 134 Cs plant uptake was expressed as the transfer factor (TF) (Bq kg -1 plant/Bq kg -1 soil) and as the daily plant uptake (flux) (Bq pot -1 day -1 ) taking into account biomass production and growth time. For the studied soils and for both plants, no consistent trend of TFs with time was observed. The use of fluxes, in general, provided less variable results than TFs and stronger functional relationships. A negative power functional relationship between exchangeable potassium plus ammonium cations expressed as a percentage of cation exchange capacity of each soil and 134 Cs fluxes was found for the sunflower plants. A similar but weaker relationship was observed for soybean plants. The significant correlation between sunflower and soybean TFs and fluxes, as well as the almost identical highest/lowest 134 Cs flux ratios, in the studied soils, indicated a similar effect of soil characteristics on 134 Cs uptake by both plants. In all the studied soils, sunflower 134 Cs TFs and fluxes were significantly higher than the respective soybean values, while no significant difference was observed in potassium content and daily potassium plant uptake (flux) of the two plants

  5. Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.H.; Wang, S.J.; Xiao, M.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies/Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Guangzhou 510275 (China); Shu, D. [School of Chemistry and Environmental, South China Normal University, Guangzhou 510006 (China)

    2010-01-01

    High molecular weight sulfonated poly(fluorenyl ether ketone nitrile)s with different equivalent weight (EW) from 681 to 369 g mequiv.{sup -1} are synthesized by the nucleophilic substitution polycondensation of various amounts of sulfonated difluorobenzophenone (SDFBP) and 2,6-difluorobenzonitrile (DFBN) with bisphenol fluorene (BPF). The synthesized copolymers are characterized by {sup 1}H NMR, FT-IR, TGA, and DSC techniques. The membranes cast from the corresponding copolymers exhibit superior thermal stability, good oxidative stability and high proton conductivity, but low water uptake due to the strong nitrile dipole interchain interactions that combine to limit swelling. Among all the membranes, the membrane with EW of 441 g mequiv.{sup -1} shows optimum properties of both high proton conductivity of 41.9 mS cm{sup -1} and low water uptake of 42.6%. Accordingly, That membrane is fabricated into a membrane electrode assembly (MEA) and evaluated in a single proton exchange membrane fuel cell (PEMFC). The experimental results indicate its similar cell performance as that of Nafion {sup registered} 117 at 70 C, but much better cell performance at higher temperatures. At the potential of 0.6 V, the current density of fuel cell using the prepared membrane and Nafion {sup registered} 117 is 0.46 and 0.25 A cm{sup -2}, respectively. The highest current density of the former reaches as high as 1.25 A cm{sup -2}. (author)

  6. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M.

    2018-04-01

    In this work, a study of several observations of aerosol water uptake in a real (non-controlled) atmosphere, registered by remote sensing techniques, are presented. In particular, three events were identified within the Atmospheric Boundary Layer (ABL) and other two events were detected in the free troposphere (beyond the top of the ABL). Then, aerosol optical properties were measured at different relative humidity (RH) conditions by means of a multi-wavelength (MW) Raman lidar located at CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Research Centre for Energy, Environment and Technology) facilities in Madrid (Spain). Additionally, aerosol optical and microphysical properties provided by automatic sun and sky scanning spectral radiometers (CIMEL CE-318) and a meteorological analysis complement the study. However, a detailed analysis only could be carried out for the cases observed within the ABL since well-mixed atmospheric layers are required to properly characterize these processes. This characterization of aerosol water uptake is based on the curve described by the backscatter coefficient at 532 nm as a function of RH which allows deriving the enhancement factor. Thus, the Hänel parameterization is utilized, and the results obtained are in the range of values reported in previous studies, which shows the suitability of this approach to study such hygroscopic processes. Furthermore, the anti-correlated pattern observed on backscatter-related Ångström exponent (532/355 nm) and RH indicates plausible signs of aerosol hygroscopic growth. According to the meteorological analysis performed, we attribute such hygroscopic behaviour to marine aerosols which are advected from the Atlantic Ocean to the low troposphere in Madrid. We have also observed an interesting response of aerosols to RH at certain levels which it is suggested to be due to a hysteresis process. The events registered in the free troposphere, which deal with volcano

  7. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    Science.gov (United States)

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  8. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  9. Effect of interfacial composition on uptake of curcumin-piperine mixtures in oil in water emulsions by Caco-2 cells.

    Science.gov (United States)

    Gülseren, İbrahim; Guri, Anilda; Corredig, Milena

    2014-06-01

    Encapsulation in lipid particles is often proposed as a solution to improve curcumin bioavailability. This bioactive molecule has low water solubility and rapidly degrades during digestion. In the present study, the uptake of curcumin from oil in water emulsions, prepared with two different emulsifiers, Tween 20 and Poloxamer 407, was investigated to determine the effect of interfacial composition on absorption. Piperine was added to the curcumin to limit the degradation of curcumin because it is known to inhibit β-glucuronidase activity. The emulsions were administered to Caco-2 cell cultures, which is used as a model for intestinal uptake, and the recovery of curcumin was measured. The curcumin uptake was significantly affected by the type of interface, and the extent of curcumin uptake improved significantly by piperine addition only in the case of oil-in-water emulsions stabilized by Poloxamer 407. This work provides further evidence of the importance of interfacial composition on the delivery of bioactives.

  10. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.

    Science.gov (United States)

    Khalvati, M A; Hu, Y; Mozafar, A; Schmidhalter, U

    2005-11-01

    Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.

  11. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  12. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...... tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant...

  13. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  14. Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; He, R.; Berg, Rolf W.

    2004-01-01

    Acid-doped polybenzimidazole (PBI) membranes have been demonstrated for fuel cell applications with advanced features such as high operating temperatures, little humidification, excellent CO tolerance, and promising durability. The water uptake and acid doping of PBI membranes have been studied...

  15. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  16. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  17. NMR imaging of water uptake in multilayer polymeric films : stressing the role of mechanical stress

    NARCIS (Netherlands)

    Baukh, V.; Huinink, H.P.; Adan, O.C.G.; Erich, S.J.F.; Ven, van der L.G.J.

    2010-01-01

    The penetration of water into two-layer polymeric films of a hydrophilic base layer and hydrophobic top layer plays an important role in their performance. Little is known about the coupled effects of water uptake and stress in such films. To study such interactive phenomena, time-dependent

  18. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  19. Preparation of ferrocyanide molybdate and their selective uptake properties for palladium and cesium ions

    Energy Technology Data Exchange (ETDEWEB)

    Hitoshi, Mimura; Ayumi, Asakura; Yan, Wu; Yuichi, Niibori; Masaki, Ozawa [Tohoku Univ., Dept. of Quantum Science and Engineering Graduate School of Engineering (Japan)

    2007-07-01

    The selective separation of heat-generating nuclide (Cs) and platinum group metal (Pd) containing in high-level liquid wastes (HLLW) is an important subject for the advancement of nuclear fuel cycle. Selective uptake of these nuclides was accomplished by using insoluble ferrocyanide molybdates (FeMo-[1-4]). The uptake properties of Pd{sup 2+} and Cs{sup +} for MoFe-[1-4] in the presence of 1 M HNO{sub 3} were examined by batch method. Relatively high uptake percentages of Pd{sup 2+} and Cs{sup +} above 90% were obtained within 30 min. The uptake percentage above 90% was kept in the presence of 0.1-3 M HNO{sub 3}. The uptake selectivity of Pd{sup 2+} was higher than that of Cs{sup +}; the separation factor of Pd{sup 2+} to Cs{sup +} increased with coexisting HNO{sub 3} concentration and was estimated to be 15 at 3 M HNO{sub 3}. The uptake of Pd{sup 2+} and Cs{sup +} on FeMo-[1-4] followed a Langmuir-type adsorption equation, and the uptake capacities of Pd{sup 2+} and Cs{sup +} were estimated to be [0.17-0.28] and [1.68-2.24] mmol/g, respectively. The uptake is mainly governed by the ion-exchange reaction between exchangeable cations (Na{sup +} and K{sup +}) and target cations (Pd{sup 2+} and Cs{sup +}). Further, the selective uptake of Pd{sup 2+} and Cs{sup +} was confirmed by using simulated HLLW (28 components, SW-11, JAEA); the uptake equilibrium attained within 30 min and the uptake percentages of Pd{sup 2+} and Cs{sup +} were 99 and 85 %, respectively. In order to granulate the fine powders of FeMo exchangers, the alginate gel polymer was used as an immobilizing matrix for the micro-encapsulation. The uptake percentages of Pd{sup 2+} and Cs{sup +} for FeMo-3 micro-capsule were above 80% even in the presence of 3 M HNO{sub 3}. Thus the molybdate can be converted to the ion-exchanger having high selectivity towards Pd{sup 2+} and Cs{sup +} in HLLW. This conversion method leads to the volume reduction of wastes and the utilization of useful nuclides. (authors)

  20. Point processes statistics of stable isotopes: analysing water uptake patterns in a mixed stand of Aleppo pine and Holm oak

    Directory of Open Access Journals (Sweden)

    Carles Comas

    2015-04-01

    Full Text Available Aim of study: Understanding inter- and intra-specific competition for water is crucial in drought-prone environments. However, little is known about the spatial interdependencies for water uptake among individuals in mixed stands. The aim of this work was to compare water uptake patterns during a drought episode in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the isotope composition of xylem water (δ18O, δ2H as hydrological marker. Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks and 78 pines (plot area= 888 m2. We tested the hypothesis that both species uptake water differentially along the soil profile, thus showing different levels of tree-to-tree interdependency, depending on whether neighbouring trees belong to one species or the other. Material and Methods: We used pair-correlation functions to study intra-specific point-tree configurations and the bivariate pair correlation function to analyse the inter-specific spatial configuration. Moreover, the isotopic composition of xylem water was analysed as a mark point pattern. Main results: Values for Q. ilex (δ18O = –5.3 ± 0.2‰, δ2H = –54.3 ± 0.7‰ were significantly lower than for P. halepensis (δ18O = –1.2 ± 0.2‰, δ2H = –25.1 ± 0.8‰, pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. Research highlights: Point-process analyses revealed spatial intra-specific dependencies among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This supports niche segregation for water uptake between the two species.

  1. Increased cesium uptake by water tupelo under inundated conditions

    International Nuclear Information System (INIS)

    McLeod, K.W.

    1980-01-01

    Low level releases of 137 Cs to streams has resulted in concentrations greater than background levels in soils, sediments and plants of the Savannah River swamp. The object of this study was to determine the effect of inundation on the absorption of 137 Cs by water tupelo (Nyssa aquatica) which is dominant in the swamp and is able to survive and grow well under flooded conditions. Results show that actively growing young water tupelo absorb about twice as much 137 Cs when grown in the laboratory under inundated conditions suggesting that in the spring, when inundated conditions usually exist and rapid growth occurs, uptake of 137 Cs is high. Some Cs is transported from soil depths and returned to soil surface via incorporation into leaves and subsequent leaf fall, thus continually mixing Cs which was buried below the soil surface. (U.K.)

  2. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    Science.gov (United States)

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  3. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    Directory of Open Access Journals (Sweden)

    Kurdali, Fawaz

    2013-02-01

    Full Text Available The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si and/or potassium (K applications on growth and nitrogen uptake in barley plants grown under water (FC1 and non water (FC2 stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. Dry matter (DM and N yield (NY in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the watering regime level under which the plants have been grown. Solely added K or in combination with adequate rate of Si (Si 100 were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely added Si or in combination with K significantly reduced leaves ∆13 C reflecting their bifacial effects on water use efficiency (WUE, particularly in plants grown under well watering regime. This result indicated that Si might be involved in saving water loss through reducing transpiration rate and facilitating water uptake; consequently, increasing WUE. Although the rising of soil humidity generally increased fertilizer nitrogen uptake (Ndff and its use efficiency (%NUE in barley plants, applications of K or Si fertilizers to water stressed plants resulted in significant increments of these parameters as compared with the control. Our results highlight that Si or K is not only involved in amelioration of growth of barley plants, but can also improve nitrogen uptake and fertilizer nitrogen use efficiency particularly under water deficit conditions.

  4. Uptake of Mn and Cd by Wild Water Spinach and Their Bioaccumulation and Translocation Factors

    OpenAIRE

    Billy Teck Huat Guan; Ferdaus Mohamat-Yusuff; Normala Halimoon; Christina Seok Yien Yong

    2017-01-01

    Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn) and cadmium (Cd) to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd by the water spinach (Ipomoea aquatica) is presented in this paper. Different concentrations of Mn and Cd were added to the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse conditions. The pla...

  5. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  6. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Science.gov (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  7. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Directory of Open Access Journals (Sweden)

    G. Cai

    2018-04-01

    Full Text Available How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ model and the physically based Couvreur (C model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC, water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities

  8. Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.

    Science.gov (United States)

    Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman

    2018-01-01

    Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.

  9. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  10. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-01-01

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  11. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  12. Osmosis-induced water uptake by Eurobitum bituminized radioactive waste and pressure development in constant volume conditions

    International Nuclear Information System (INIS)

    Mariën, A.; Mokni, N.; Valcke, E.; Olivella, S.; Smets, S.; Li, X.

    2013-01-01

    Highlights: ► The water uptake by Eurobitum is studied to judge the safety of geological disposal. ► High pressures of up to 20 MPa are measured in constant volume water uptake tests. ► The morphology of leached Eurobitum samples is studied with μCT and ESEM. ► The observations are reproduced by an existing CHM formulation for Eurobitum. - Abstract: The chemo-hydro-mechanical (CHM) interaction between swelling Eurobitum radioactive bituminized waste (BW) and Boom Clay is investigated to assess the feasibility of geological disposal for the long-term management of this waste. These so-called compatibility studies include laboratory water uptake tests at Belgian Nuclear Research Center SCK-CEN, and the development of a coupled CHM formulation for Eurobitum by the International Center for Numerical Methods and Engineering (CIMNE, Polytechnical University of Cataluña, Spain). In the water uptake tests, the osmosis-induced swelling, pressure increase and NaNO 3 leaching of small cylindrical BW samples (diameter 38 mm, height 10 mm) is studied under constant total stress conditions and nearly constant volume conditions; the actual geological disposal conditions should be intermediate between these extremes. Two nearly constant volume tests were stopped after 1036 and 1555 days to characterize the morphology of the hydrated BW samples and to visualize the hydrated part with microfocus X-ray Computer Tomography (μCT) and Environmental Scanning Electron Microscopy (ESEM). In parallel, a coupled CHM formulation is developed that describes chemically and hydraulically coupled flow processes in porous materials with salt crystals, and that incorporates a porosity dependent membrane efficiency, permeability and diffusivity. When Eurobitum BW is hydrated in (nearly) constant volume conditions, the osmosis-induced water uptake results in an increasing pressure to values that can be (in theory) as high as 42.8 MPa, being the osmotic pressure of a saturated NaNO 3

  13. Effect of Chemical Treatment on Mechanical and Water-Sorption Properties Coconut Fiber-Unsaturated Polyester from Recycled PET

    OpenAIRE

    Munirah Abdullah, Nurul; Ahmad, Ishak

    2012-01-01

    Coconut fibers were used as reinforcement for unsaturated polyester resin from recycled PET that has been prepared using glycolysis and polyesterification reaction. Various concentrations of alkali, silane, and silane on alkalized fiber were applied and the optimum concentration of treatments was determined. Morphological and mechanical properties of the composite have also been investigated to study the effect of fiber surface treatment. The influence of water uptake on the sorption characte...

  14. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.

    Science.gov (United States)

    Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo

    2007-12-01

    The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.

  15. The influence of drought on the water uptake by Scots pines (Pinus sylvestris L. at different positions in the tree stand

    Directory of Open Access Journals (Sweden)

    Boczoń Andrzej

    2015-12-01

    Full Text Available Periodically occurring drought is typical for the climate of Poland. In habitats supplied exclusively with rain water, tree stands are frequently exposed to the negative effects of water deficit in the soil. The aim of this study was to examine the water uptake and consumption of two individual Scots pine trees under drought conditions. The trees were located at different positions within the stand and at the time of study were over 150 years old. Soil moisture, availability of soil water and the quantity of water uptake by the individual trees were examined by measuring the water velocity inside the trunks (Thermal Dissipation Probe method.

  16. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    Science.gov (United States)

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  17. The effect of water uptake gradient in membrane electrode assembly on fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)

    2011-02-15

    Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.

  18. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    Science.gov (United States)

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  20. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Uchida, Hiroshi; Tsuji, Atsunori

    2001-05-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with {sup 15}O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce {sup 15}O-labeled water. Then the {sup 15}O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  1. The role of seed coat phenolics on water uptake and early protein synthesis during germination of dimorphic seeds of halopyrum mucronatum (L.) staph

    International Nuclear Information System (INIS)

    Siddiqui, Z. S.; Khan, M.A.

    2010-01-01

    Role of seed coat phenolics on water uptake and early protein synthesis of Halopyrum mucronatum dimorphic seeds during germination were tested. Scanning electron micrographs (SEM) showed seed texture with differential deposition of secondary metabolites in both morphs. Ability of both seed morphs to retain secondary deposition was dependent on exposure to either saline or non-saline conditions. More phenols leached from the brown seed during the initial hours of soaking when compared to black seeds. Water uptake pattern was slightly different in both seed type particularly during initial hours when imbibition in black seeds showed little water uptake while in brown seeds absorption was quick in the first hour under both saline and non saline condition. Change in total protein was somewhat similar in both seeds morphs showing early increase (4 and 8 h), reaching to the maximum (12 h) and decreasing (24 and 48 h) afterward. The results are discussed in relation to seed coat phenolics, water uptake and early protein synthesis during germination. (author)

  2. Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

    Science.gov (United States)

    Tripathy, S. C.; Patra, Sivaji; Vishnu Vardhan, K.; Sarkar, A.; Mishra, R. K.; Anilkumar, N.

    2018-03-01

    This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 - and SiO4 4-) concentrations increased southward from STF to PF; while ammonium (NH4 +), nitrite (NO2 -) and phosphate (PO4 3-) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4 + and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump".

  3. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin.

    Science.gov (United States)

    Telò, Isabella; Favero, Elena Del; Cantù, Laura; Frattini, Noemi; Pescina, Silvia; Padula, Cristina; Santi, Patrizia; Sonvico, Fabio; Nicoli, Sara

    2017-10-02

    The aim of this work was to develop an innovative microemulsion with gel-like properties for the cutaneous delivery of imiquimod, an immunostimulant drug employed for the treatment of cutaneous infections and neoplastic conditions. A pseudoternary phase diagram was built using a 1/1 TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate)/Transcutol mixture as surfactant system, and oleic acid as oil phase. Eight microemulsions-selected from the 1.25/8.75 oil/surfactants ratio, along the water dilution line (from 20 to 56% w/w)-were characterized in terms of rheological behavior, optical properties via polarized microscopy, and supramolecular structure using X-ray scattering. Then, these formulations were loaded with imiquimod and the uptake and distribution into the skin was evaluated on full-thickness porcine skin. X-ray scattering experiments revealed the presence of disconnected drops in the case of microemulsion with 20% water content. Diluting the system up to 48% water content, the structure turned into an interconnected lamellar microemulsion, reaching a proper disconnected lamellar structure for the highest water percentages (52-56%). Upon water addition, also the rheological properties changed from nearly Newtonian fluids to gel-like structures, displaying the maximum of viscosity for the 48% water content. Skin uptake experiments demonstrated that formulation viscosity, drug loading, and surfactant concentration did not play an important role on imiquimod uptake into the skin, while the skin penetration was related instead to the microemulsion mesostructure. In fact, drug uptake became enhanced by locally lamellar interconnected structures, while it was reduced in the presence of disconnected structures, either drops or proper lamellae. Finally, the data demonstrated that mesostructure also affects the drug distribution between the epidermis and dermis. In particular, a significantly higher dermal accumulation was found when disconnected lamellar

  4. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  5. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Furukawa, J.; Yokota, H.; Tanoi, K.; Ueoka, S.; Nakanishi, T.M.; Uchida, H.; Tsuji, A.

    2001-01-01

    Real time vanadate (V 5+ ) uptake imaging in a cowpea plant by positron emitting tracer imaging system (PETIS) is presented. Vanadium-48 was produced by bombarding a Sc foil target with 50 MeV α-particles at Takasaki Ion Accelerators for Advanced Radiation application (TIARA) AVF cyclotron. Then 48 V was added to the culture solution to investigate the V distribution in a cowpea plant. The real time uptake of the 48 V was monitored by PETIS. Distribution of 48 V in a whole plant was measured after 3, 6 and 20 hours of V treatment by Bio-imaging Analyzer System (BAS). After the 20 hour treatment, vanadate was detected at the up-ground part of the plant. To know the effect of V uptake on plant activity, 18 F-labeled water uptake was analyzed by PETIS. When a cowpea plant was treated with V for 20 hours before 18 F-labeled water uptake experiment, the total amount of 18 F-labeled water absorption ws drastically decreased. Results suggest the inhibition of water uptake was mainly caused by the vanadate already moved to the up-ground part of the plant. (author)

  6. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L. seedlings: passive or active uptake?

    Directory of Open Access Journals (Sweden)

    Jiang Ting-Hui

    2010-03-01

    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE, a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L. seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM. The contribution of active uptake to total absorption was almost 40

  7. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  8. Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.

    Science.gov (United States)

    Ranathunge, Kosala; Steudle, Ernst; Lafitte, Renee

    2003-06-01

    A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that

  9. Water uptake in free films and coatings using the Brasher and Kingsbury equation: a possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry

    International Nuclear Information System (INIS)

    Vosgien Lacombre, C.; Bouvet, G.; Trinh, D.; Mallarino, S.; Touzain, S.

    2017-01-01

    For many years, the water uptake in organic coatings was measured by EIS and/or gravimetry but differences in water content values were found in almost all studies. The Brasher-Kingsbury equation used in the electrochemical analysis (EIS) is often criticized because elementary assumptions may be unvalid. The origin of the discrepancy between both methods is still of interest because many questions remain open and this study aims to provide new insights to these questions. In this work, free films and coatings of a model epoxy-amine system were immersed in a 3 wt.% NaCl solution. The water uptake in free films was evaluated using gravimetric measurements and EIS, using the Basher-Kingsbury equation. The mass of free-films used in the EIS tests was measured and compare to gravimetric measurements while the water uptake (EIS) in free films was compared to that obtained with coatings. It was found that the mass increase of free films tested with EIS was in agreement with gravimetric measurements but was always lower than the water uptake obtained by EIS. Moreover, the water uptake in free films (EIS) was different from that obtained with coatings. In all cases, it was found that the Basher-Kingsbury equation overestimated the water uptake. It appears that the differences between EIS and gravimetric measurements can be analyzed in terms of geometrical effects. Indeed, the swelling in free films and coatings can be monitored by DMA and SECM during ageing. Finally, by mixing the experimental swelling data and the Brasher-Kingsbury equation, the same value of water uptake was obtained by EIS and gravimetry for coatings.

  10. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China.

    Science.gov (United States)

    Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong

    2016-09-01

    Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.

  11. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    International Nuclear Information System (INIS)

    Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. - Highlights: • AgNP coated with polyvinyl pyrrolidone (PVP), PVP-AgNP were efficiently assimilated by Lymnaea stagnalis. • Water chemistry has no influence on the dietary uptake of PVP-AgNP by snails. - L. Stagnalis assimilated PVP-AgNPs efficiently from food and water chemistry had no influence on their uptake and toxicity

  12. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  13. Uptake of Mn and Cd by Wild Water Spinach and Their Bioaccumulation and Translocation Factors

    Directory of Open Access Journals (Sweden)

    Billy Teck Huat Guan

    2017-01-01

    Full Text Available Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn and cadmium (Cd to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd by the water spinach (Ipomoea aquatica is presented in this paper. Different concentrations of Mn and Cd were added to the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse conditions. The plant samples exposed to heavy metals were collected to determine the metal concentrations using atomic absorption spectroscopy (AAS and the metal concentrations were found for Mn was between 1.589 to 9.696 µg/g and Cd from 5.309 to 10.947 µg/g. The correlation and regression results showed that the water-to-shoot bioaccumulation factor (BAF decreased for Mn, while root-to-shoot translocation factor (TF values increased in the order Cd > Mn to the increasing levels of metals in the water. Furthermore, it was revealed from the two-way analysis of variance (ANOVA that the different metal types influenced the BAF and TF values at different metal concentration treatments.

  14. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    Science.gov (United States)

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated

  15. Uptake of 137Cs in cultured fresh water fish (Cyprinus carpio): physiological and histological effects

    International Nuclear Information System (INIS)

    Vosniakos, F.; Kesidou, A.; Kalfa, A.; Moumtzis, A.; Karakoltsidis, P.

    1991-01-01

    An experiment was conducted in fresh-water fish (Cyprinus carpio) cultured, in small water tanks, artificially contaminated with radioactive 137 Cs (3000 Bq/1) to determine the uptake of 137 Cs and its physiological and histological effects in different fish organs. It was found that 137 Cs was located in muscular tissues, gills, head muscles, liver and kidneys. Moderate amounts were found in spleen, eyes, gonads, intestine and urinary bladder. It seems that sorption was of much less importance than ingestion in the uptake of 137 Cs. The histological examination in musculature tissue, revealed an acute hyperemia with focal haemorrages which may be due to allergic effects of 137 Cs. Hyperemia and focal fatty degeneration of hepatic cells was also noted in the liver which may be due to toxic effects of 137 Cs. Diffused hyperemia has also occurred in the brain and focal degeneration of epithelial cells of renal tubules. (Author)

  16. The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp I

    DEFF Research Database (Denmark)

    Selck, Henriette; Forbes, Valery E.

    2004-01-01

    The impact of dietary and water exposure on the accumulation and distribution of cadmium (Cd) in subcellular components of the polychaete Capitella sp. I was investigated. Worms were exposed to either dissolved Cd alone ('Water-Only' treatments; WO) or diet-bound Cd alone ('Algae-bound Only......, starvation likewise influenced the distribution of protein between mitochondria and cytosol. Cutaneous uptake and accumulation of Cd from the water was related to surface area while dietary uptake was influenced by the amount of sediment passing through the gut. Irrespective of exposure route, Cd...

  17. Improving Properties of Arrowroot Starch (Maranta arundinacea)/PVA Blend Films by Using Citric Acid as Cross-linking Agent

    Science.gov (United States)

    Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono

    2017-12-01

    This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.

  18. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  19. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  20. Cadmium triggers Elodea canadensis to change the surrounding water pH and thereby Cd uptake.

    Science.gov (United States)

    Javed, M Tariq; Greger, Maria

    2011-01-01

    This study was aimed to investigate the influence of Elodea canadensis shoots on surrounding water pH in the presence of cadmium and the effect of plant-induced pH on cadmium uptake. The pH change in the surrounding nutrient solution and Cd uptake by Elodea shoots were investigated after cultivation of various plant densities (1, 3, 6 plants per 500 ml) in hydroponics at a starting pH of 4.0 and in the presence of different concentrations of cadmium (0, 0.1, 0.5 microM). Cadmium uptake was also investigated at different constant pH (4.0, 4.5, 5.5 and 6.5). To investigate if the pH change arose from photosynthetic activities, plants were grown under light, darkness or in the presence of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and 0.5 microM cadmium in the solution. Elodea had an ability to increase the surrounding water pH, when the initial pH was low, which resulted in increased accumulation of Cd. The higher the plant density, the more pronounced was the pH change. The pH increase was not due to the photosynthetic activity since the pH rise was more pronounced under darkness and in the presence of DCMU. The pH increase by Elodea was triggered by cadmium.

  1. Thermo-physical properties of silica gel for adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw; Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon

    2013-01-01

    Thermo-physical properties, surface characteristics and water vapor uptake capacity are key parameters in the selection of adsorbent for an adsorption desalination (AD) cycle. In the AD cycles, silica gel is used as adsorbent due to their high water vapor uptake capacity, reliability, repeatability and inexpensiveness as compared to other adsorbents. Three types of commercially available silica gels (Type-RD 2560,Type-A5BW and Type-A++) are investigated using a surface characteristic analyzer and their thermo-physical properties are evaluated using several analysis methods. The instrument used in this investigation employs the static volumetric method with liquid Nitrogen at 77 K as the filing fluid. The surface area of each adsorbent is studied using Brunauer-Emmett-Teller (BET) method whilst the pore size distribution (PSD) analysis is conducted with the Non-Local Density Functional Theory (NLDFT). It is observed that the Type-A++ silica gel (granular type) possesses the highest surface area of 863.6 m2/g amongst the three parent silica gels studied. It has a two-maxima or bimodal distribution pattern where the pore diameters are distributed mostly between 10 Å and 30 Å. Water vapor uptake capacity of silica gels are studied with water vapor dosage apparatus and the results show that the Type-A++ silica gel exhibits a highest equilibrium uptake at 537 cm3/g. These thermo-physical properties are essential for the design and the numerical simulation of AD cycles. © 2012 Published by Elsevier Ltd.

  2. Thermo-physical properties of silica gel for adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw

    2013-02-01

    Thermo-physical properties, surface characteristics and water vapor uptake capacity are key parameters in the selection of adsorbent for an adsorption desalination (AD) cycle. In the AD cycles, silica gel is used as adsorbent due to their high water vapor uptake capacity, reliability, repeatability and inexpensiveness as compared to other adsorbents. Three types of commercially available silica gels (Type-RD 2560,Type-A5BW and Type-A++) are investigated using a surface characteristic analyzer and their thermo-physical properties are evaluated using several analysis methods. The instrument used in this investigation employs the static volumetric method with liquid Nitrogen at 77 K as the filing fluid. The surface area of each adsorbent is studied using Brunauer-Emmett-Teller (BET) method whilst the pore size distribution (PSD) analysis is conducted with the Non-Local Density Functional Theory (NLDFT). It is observed that the Type-A++ silica gel (granular type) possesses the highest surface area of 863.6 m2/g amongst the three parent silica gels studied. It has a two-maxima or bimodal distribution pattern where the pore diameters are distributed mostly between 10 Å and 30 Å. Water vapor uptake capacity of silica gels are studied with water vapor dosage apparatus and the results show that the Type-A++ silica gel exhibits a highest equilibrium uptake at 537 cm3/g. These thermo-physical properties are essential for the design and the numerical simulation of AD cycles. © 2012 Published by Elsevier Ltd.

  3. The rate of 45Ca uptake by two corals species at waters of Burung island, Bangka-Belitung province

    International Nuclear Information System (INIS)

    Zulkifli Dahlan; Gusti Diansyah; T Zia Ulqodry; Ania Citraresmini

    2010-01-01

    Coral reefs transplantation is the most technique used for coral reefs rehabilitation, at the present. Recently the 45 Ca technique has been using for determining growth appearances in corals because of its ability to calculate the calcification process. For this reason, the study on the rate of 45 Ca uptake by natural corals Acropora Formosa and Acropora nobilis was carried out between June and December 2009 at the waters of Burung Island, Bangka-Belitung Province. The coral fragments of about 5 cm were harvested and put into a PVC container filled with 2 liters of fresh sea water, then incubated with 45 CaCl 2 solutions with an activity of 11.04 μCi/ml for 8 hour under fluorescent light. After the incubation, the “labeled” coral fragments were transplanted to where they have been taken from, and after such period will be re-harvested to determine their 45 Ca uptake content. The results showed that the 45 Ca technique was a reliable method to calculate the rate 45 Ca uptake by coral fragments, which were studied in different depths and time periods of light exposure. There was a significant difference in the 45 Ca uptake by the two different coral species. A. Formosa up took more 45 Ca than A. nobilis did. The highest 45 Ca uptake was shown by A. Formosa at 5 m. This was true for all the lengths of time to light exposure (1, 3, 5 and 7 hours). Different pattern of 45 Ca uptake showed by A. nobilisat 10 m depth, where it could be recognized that after a drop of 45 Ca the uptake increase continuously until the end of the light exposure (7 hours). The difference in 45 Ca uptake between the coral fragments is assumed to be influence by light and the algae species living symbiotically with the coral species that will further influence the CO 2 -fixation. This process will influence the calcification process, which is expressed in 45 Ca uptake. Further studies should be carried out to exactly gathered data of all the factors which could influence the calcification

  4. Effect of gamma irradiation on cooking time and associated physiochemical properties of two legumes

    International Nuclear Information System (INIS)

    Aurangzeb; Ahmed, M.; Badshah, A.; Bibi, N.

    1990-01-01

    Effect of gamma irradiation (0.25-5.00 kGy) on physical properties (seed size and density), water uptake (swelling and hydration capacities and indices), cooking time and phytic acid content was studied for five varieties each of chickpea and mungbean. Up to 5 kGy irradiation had no significant effect on physical and water uptake properties of these legumes, but cooking time and phytic acid content were drastically reduces. Irradiation caused more reduction in cooking time of chickpea than of mungbeans

  5. CO2 uptake of Opuntia ficus-indica (L. Mill. whole trees and single cladodes, in relation to plant water status and cladode age

    Directory of Open Access Journals (Sweden)

    Giorgia Liguori

    2013-02-01

    Full Text Available Most of net photosynthesis determinations in Opuntia ficus-indica come from measurements on individual cladodes. However, they have limitations when used to scale up to whole canopy gas exchange, because a large variability of carbon assimilation may occur within the canopy, due to, among others, differences in cladode age and intercepted radiation or individual cladode response to abiotic stresses. The aim of this work was to evaluate the application of open gas exchange chambers, simultaneously applied around the whole canopy, to measure net CO2 uptake, continuously over a 24 h period, in single Opuntia ficus-indica (L. Mill. potted trees and in relation with their water status. Net CO2 uptake was also measured for single cladodes differentiated by age. O. ficus-indica trees continued their photosynthetic activity 60 days after the irrigation was stopped, when soil water content was lower than 5%. At this stage, current-year and 1-year-old cladodes had become flaccid but still the daily net CO2 uptake of non-irrigated trees kept the same rate than at the beginning of the experiment, while watered trees had doubled their net CO2 uptake. The highest instantaneous rates and total daily net CO2 uptake for both well-watered and non-irrigated trees occurred 60 days after the onset of the dry period, when maximal instantaneous rates were 11.1 in well-watered trees and 8.4 mol m–2 s–1 in non-irrigated trees. During the drought period, the chlorenchyma fresh weight decreased by 45% and 30%, in 1- and 2-yearold drought cladodes respectively, and marginally increased in currentyear ones (+20%. Net CO2 uptake for 1-year-old and 2-year-old cladodes changed only at highest photosynthetic photon flux density and temperatures, and average seasonal net CO2 uptake of 2-year-old cladodes was 15% lower than for 1-year-old ones. Whole-tree gas exchange measurements applied for the first time to O. ficus-indica indicated that whole cactus pear trees maintain

  6. Uptake of uranium from underground drinking water by chlorella (Chlorella pyrendoidosa)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, Shobha; Gurg, R.P.; Shenoy, N.S.; Ferandes, Neychelle; Gopale, Rajesh S.; Jhaveri, A.S.

    2002-01-01

    Naturally occurring uranium has found at elevated levels i.e. 300-1200 ppb in underground water, especially in the areas located around uranium mines and granite rocks sites. The U.S. Environmental Protection Agency (EPA) recently adopted drinking water standards requiring a maximum uranium concentration of 20 μgl. This limit is based on nephro-toxicity, rather than on radiological hazards. The concentration of uranium is to be monitored along with other parameters in well and other sources of drinking water in these areas. During this work a low cost kit was developed for removing uranium from under-ground water used for drinking purposes. This unit is capable of reducing uranium from 1000 ppb to 15-20 ppb. Chlorella (Chlorella pyrendoidosa), a fresh water algae, was immobilised in sodium alginate in the form of beads by using 0.2 M calcium chloride. These beads were put in container and the water is stirred occasionally. 99-100 % uranium adsorbed was recovered from the beads by using 0.1 M HNO 3 . These results suggest that the uptake of uranium by Chlorella depended upon the physico-chemical adsorption on the cell surface, but not upon the biological activity and that uranium in the algal cells was coupled with the ligands, which can be easily substituted with NO 3 -1 . (author)

  7. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).

    Science.gov (United States)

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2013-07-01

    Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material

    International Nuclear Information System (INIS)

    Dewanckele, J.; De Kock, T.; Fronteau, G.; Derluyn, H.; Vontobel, P.; Dierick, M.; Van Hoorebeke, L.; Jacobs, P.; Cnudde, V.

    2014-01-01

    Euville and Savonnières limestones were weathered by acid test and this resulted in the formation of a gypsum crust. In order to characterize the crystallization pattern and the evolution of the pore structure below the crust, a combination of high resolution X-ray computed tomography and SEM–EDS was used. A time lapse sequence of the changing pore structure in both stones was obtained and afterwards quantified by using image analysis. The difference in weathering of both stones by the same process could be explained by the underlying microstructure and texture. Because water and moisture play a crucial role in the weathering processes, water uptake in weathered and non-weathered samples was characterized based on neutron radiography. In this way the water uptake was both visualized and quantified in function of the height of the sample and in function of time. In general, the formation of a gypsum crust on limestone slows down the initial water uptake in the materials. - Highlights: • Time lapse sequence in 3D of changing pore structures inside limestone • A combination of X-ray CT, SEM and neutron radiography was used. • Quantification of water content in function of time, height and weathering • Characterization of weathering processes due to gypsum crystallization

  9. Calcium uptake by cowpea as influenced by mycorrhizal colonization and water stress

    International Nuclear Information System (INIS)

    Pai, G.; Bagyaraj, D.J.; Padmavathi Ravindra, T.; Prasad, T.G.

    1994-01-01

    The role of vesicular-arbuscular mycorrhizal (VAM) colonization on calcium uptake was studied under different levels of moisture stress. Pots maintained at different moisture levels were given water containing known amount of radioactive calcium. The radioactivity in different parts of the plant was assessed 60 h after giving 45 Ca to the soil. High 45 Ca activity was present in all parts of vesicular-arbuscular mycrrohizal (VAM) plants compared to non-mycorrhizal plants at all levels of moisture stress. (author). 14 refs., 1 tab

  10. Uptake and depuration of pharmaceuticals in aquatic invertebrates

    International Nuclear Information System (INIS)

    Meredith-Williams, Melanie; Carter, Laura J.; Fussell, Richard; Raffaelli, David; Ashauer, Roman; Boxall, Alistair B.A.

    2012-01-01

    The uptake and depuration of a range of pharmaceuticals in the freshwater shrimp (Gammarus pulex) and the water boatman (Notonecta glauca) was studied. For one compound, studies were also done using the freshwater snail Planobarius corneus. In G. pulex, bioconcentration factors (BCFs) ranged from 4.6 to 185,900 and increased in the order moclobemide < 5-fluoruracil < carbamazepine < diazepam < carvedilol < fluoxetine. In N. glauca BCFs ranged from 0.1 to 1.6 and increased in the order 5-fluorouracil < carbamazepine < moclobemide < diazepam < fluoxetine < carvedilol. For P. corneus, the BCF for carvedilol was 57.3. The differences in degree of uptake across the three organisms may be due to differences in mode of respiration, behaviour and the pH of the test system. BCFs of the pharmaceuticals for each organism were correlated to the pH-corrected liposome–water partition coefficient of the pharmaceuticals. - Highlights: ► One of the first studies exploring the uptake of pharmaceuticals into aquatic invertebrates. ► Data presented on uptake, depuration rates and bioconcentration for a range of pharmaceuticals. ► Uptake is correlated with the pH-corrected liposome–water partition coefficient. ► Findings can be used to better predict impacts of pharmaceuticals on the aquatic environment. - The factors affecting the degree of uptake of pharmaceuticals into aquatic invertebrates were studied. The results indicate that species traits such as respiration and behaviour of the organisms and pH-corrected liposome–water partition coefficients are important factors in determining pharmaceutical uptake.

  11. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd; Berendse, Frank; Robroek, Bjorn

    2014-05-01

    Northern peatlands represent one of the largest global carbon stores that can potentially be released by water table drawdown during extreme summer droughts. Small precipitation events may moderate negative impacts of deep water levels on carbon uptake by sustaining photosynthesis of peatmoss (Sphagnum spp.), the key species in these ecosystems. We experimentally assessed the importance of the temporal distribution of precipitation for Sphagnum water supply and carbon uptake during a stepwise decrease in water levels in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species representative of three contrasting habitats in northern peatlands (Sphagnum fuscum, S. balticum and S. majus). For shallow water levels, capillary rise was the most important source of water for peatmoss photosynthesis and precipitation did not promote carbon uptake irrespective of peatmoss species. For deep water levels, however, precipitation dominated over capillary rise and moderated adverse effects of drought on carbon uptake by peat mosses. The ability to use the transient water supply by precipitation was species-specific: carbon uptake of S. fuscum increased linearly with precipitation frequency for deep water levels, whereas S. balticum and S. majus showed depressed carbon uptake at intermediate precipitation frequencies. Our results highlight the importance of precipitation for carbon uptake by peatmosses. The potential of precipitation to moderate drought impact, however, is species specific and depends on the temporal distribution of precipitation and water level. These results also suggest that modelling approaches in which water level depth is used as the only state variable determining water availability in the living moss layer and (in)directly linked to Sphagnum carbon uptake may have serious drawbacks. The predictive power of peatland ecosystem models may be reduced when deep water levels prevail, as precipitation

  12. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  13. Use of gold nanoparticles to detect water uptake in vascular plants.

    Science.gov (United States)

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  14. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nabulo, G.; Black, C.R. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-02-15

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl{sub 2}-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: Cadmium uptake by tropical green vegetables varies greatly between types. Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. Modelling with dilute CaCl{sub 2} extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl{sub 2} extraction of soil but model parameters are genotype-specific.

  15. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    International Nuclear Information System (INIS)

    Nabulo, G.; Black, C.R.; Young, S.D.

    2011-01-01

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl 2 -soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: → Cadmium uptake by tropical green vegetables varies greatly between types. → Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. → Modelling with dilute CaCl 2 extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl 2 extraction of soil but model parameters are genotype-specific.

  16. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    Science.gov (United States)

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  18. Water retention properties of ashes; Vattenretentionsegenskaper hos aska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Ezziyani, Samir; Bendz, David

    2009-05-15

    The water holding properties of a material can be described with a water retention curve (also called pF curve or characteristic curve). The importance of this material property has until now been neglected in waste and rest products contexts. There is an eminent need for knowledge of the water holding properties of ash and rest products in order to improve the possibility to perform i) assessment of leaching from rest product used in constructions, ii) dimensioning of covers built with rest products and iii) assessment of long term properties of land fill waste concerning leaching, especially for stabilized ash with a monolithic characteristics. The aim of this project was to increase the knowledge of the water holding properties of ashes by determining water retention curves with laboratory methods on four ash materials with the potential to be used in constructions. In the project, four ashes has been studied; one MSWI bottom ash from SYSAV, one aged MSWI bottom ash from Gaerstadverket and two fly ashes from incineration of biofuels; one from SCA Ortviken and one from Jaemtkraft AB. For comparison, data from a silt soil studied in another SGI project is presented. When determining a water retention curve for a specific material water from the examined, beforehand water saturated, sample is eliminated under controlled circumstances in a pressure plate extractor. The sample is exposed to a pressure, with increasing degree, squeezing excess water out of the material. The excess water is measured for each increased pressure step and the remaining volumetric water content in the material can be calculated. The results from such measurements are presented in water retention curves, in which the volumetric water content is plotted as a function of the capillary pressure. The water retention curves shows how various materials differ in water content at the same pressure. The results from the study showed that ashes have great water holding capacity. The study also

  19. Selective uptake of manganese in seawater by hybrid microcapsules

    International Nuclear Information System (INIS)

    Kuzumaki, Takenori; Yan, Wu; Mimura, Hitoshi; Niibori, Yuichi

    2008-01-01

    The selective separation and recovery of low concentrated elements in seawater are very important subjects for the advancement of environmental monitoring. Selective uptake of manganese from seawater was carried out by using two kinds of microcapsules (MCs) including activated carbon (AC) and insoluble tannin (T). The adsorbents, AC and T, having affinity for manganese, were enclosed into MCs (ACMS, TMC) by sol-gel method using matrices of biopolymer (calcium alginate gel polymer, CaALG). The uptake properties and selectivity of Mn 2+ (1 ppm) for MCs were examined by batch method. Relatively large uptake percentages of Mn 2+ above 80% were obtained within 1 h, and the uptake percentage above 80% was kept at pH 3-6. The uptake order was found to be T, AC, CaALG > ACMC, TMC. The uptake of Mn 2+ decreased with increasing Na + ion concentration. This tendency depends on the swelling property of CaALG; it tends to solate in the presence of highly concentrated Na + ions. The manganese ions were adsorbed on CaALG, ACMC and TMC from seawater containing 1,000 ppm Mn 2+ . ACMC and TMC had selectivity to Mn 2+ , and, especially, the matrices of CaALG also had an excellent uptake and selectivity properties. (author)

  20. Soil Chemical Properties and Nutrient Uptake of Cocoa as Affected by Application of Different Organic Matters and Phosphate Fertilizers

    Directory of Open Access Journals (Sweden)

    Sugiyanto Sugiyanto

    2008-07-01

    Full Text Available Effort repair of land quality better be done by simultan namely with application of organic matters and inorganic fertilization. The objective of this research is to study the effect of varied organic matters source and phosphate fertilizers on the chemicals soil characteristic and cocoa nutrient uptake. The experiment was laid experimentally in split-plot design and environmentally in randomized complete block design. The main plot was source of P consisted of, control, SP 36 and rock phosphate in dosage of 200 mg P2O5 per kg of air dry soil. Source of organic matter as sub-plot consisted of control (no organic matter, cow dung, cocoa pod husk compost and sugar cane filter cake, each in dosage of 2.5 and 5.0%. Result of this experiment showed application of cow dung, cocoa pod husk compost and sugar cane filter cake increased content of C, N, Ca exchangeable, Fe available, and pH in soil, and SP 36 increased availability of P in soil. Application of sugar cane filter cake increased N, K, Ca, Mg, and SO4 uptake but did not increase Cl uptake, application of cow dung in dosage 5% increased N, K, and Cl uptake and cocoa pod husk compost dosage 5% increased N and K uptake of cocoa. SP 36 increased Mg uptake of cocoa but rock phosphate did not increase it. They were not interaction between organic matters and phosphate fertilizers to nutrient uptake of cocoa. Nutrient soil content as affected by organic matters correlated with nutrient uptake of cocoa.Key words : soil chemical properties, nutrient uptake, cocoa, organic matter, phosphate fertlizers.

  1. Relationships between properties of Hanford area soils and the availability of 134Cs and 85Sr for uptake by cheatgrass and tumbleweed

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Routson, R.C.; Paine, D.; G.

    1978-10-01

    The relationships between plant root absorption mechanisms and basic soil parameters which effect the concentration of Sr and Cs, and analog ions in soil solution are reviewed. Based on these relationships, studies were undertaken to determine the relative availability of Cs and Sr for uptake by plants grown on Hanford area soils, and the feasibility of developing a predictive relationship between readily measurable soil parameters and plant availability of Cs and Sr. Concentration ratios were determined for cheatgrass and tumbleweed grown on Hanford area soils representing a range in properties (Burbank, Ritzville, Lickskillet, Rupert and Warden). Concentration ratios ranged from 0.0078 to 0.066 and 3.5 to 16 for 134 Cs and 85 Sr, respectively. Soils were analyzed for physical properties, mineralogy, extractable cations and extractable 134 Cs and 85 Sr. Simple correlation analyses showed Cs and Sr uptake in cheatgrass and Sr uptake by tumbleweed to be related to cation exchange capacity, and extractable Sr, Ba and Mg. However, in the case of Cs, this correlation may be coincidental since these divalent cations are not chemical analogs of Cs. Uptake of Cs by tumbleweed showed weak correlations with extractable and exchangeable K. Factor analysis and principle components analysis did not assist in further quantitation of the relationships between plant uptake and soil parameters

  2. Uptake of cobalt-60 from sea water and from labelled food by the common shrimp Crangon erangon (L.)

    International Nuclear Information System (INIS)

    Weers, A.W. van

    1975-01-01

    The role of two different modes of uptake in the accumulation of 60 Co by the common shrimp (Crangon crangon (L.)) is the subject of the present study. The results show that accumulation of 60 Co from sea water is a slow process. The concentration factor for whole animals reached in one month was only about 13. Most of the activity accumulated from water appears to be associated with the exoskeleton. As a consequence, moulting has a pronounced effect on the uptake pattern of 60 Co and on the subsequent retention of the radionuclide by shrimps kept in non-radioactive sea water. After single feeding of shrimps with labelled mussel flesh, 60 Co is retained according to an exponential function with a short-lived and a long-lived component. The short-lived component has a mean biological half-life of 1.2 days and accounts for about 80% of the initial activity. About 20% of the initial activity is lost with a mean biological half-life of about 10 days. After repeated feeding of labelled mussel flesh the short-lived component in the 60 Co retention is virtually absent. Cobalt-60 taken up with food is localized mainly in the digestive gland and the concentration in the edible muscles from the abdomen is relatively small. It is concluded from the present study that direct uptake from sea water will play only a minor role in the accumulation of 60 Co in the internal organs of the shrimp. 60 Co released into the marine environment will be taken up by shrimps mainly from food. The results indicate a rapid turnover of 60 Co in shrimps. (author)

  3. Root - shoot - signaling in Chenopodium rubrum L. as studied by 15O labeled water uptake

    International Nuclear Information System (INIS)

    Ohya, T.; Hayashi, Y.; Tanoi, K.; Rai, H.; Nakanishi, T.M.; Suzuki, K.; Albrechtova, J.T.P.; Wagner, E.

    2005-01-01

    Full text: It has been demonstrated with C. rubrum that the different organ systems are transmitting surface action potentials which might be the basis for systemic signal transduction. Shoot tip respectively root generated action potentials travel along the stem axis. Shoot tip generated action potentials arriving at the basis can be reflected and travel upwards. The radioactive labeling technique was established at the NIRS in Inage, Japan. About 2 GBq of 15 O labeled Hoagland's solution was supplied to the plant root or cut stem in a phytotron at 25 o C with 45 % of relative humidity and continuous light. By cutting the shoot apical bud and the apices of main side branches the uptake of 15 O labeled water was inhibited in plants with intact roots but not in plants with roots cut. Because of the short half-life of 15 O (2 min), experiments could be repeated in hourly intervals. Cutting the apex probably limits root water uptake via a hydraulic-electrochemical signal. The results are discussed with respect to the significance of a continuous communication between the root system and the shoot apical meristem(s) in the adaptation of plants to their environment. (author)

  4. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Chammaa, M.; Mouasess, A.

    2012-09-01

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13 C in water stressed (FC1) and well watered (FC2) chickpea plants using 15 N and 13 C isotopes. Three fertilizer rates of Si (Si 5 0, Si 1 00 and Si 2 00) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si 1 00K + (FC1) and Si 5 0K + (FC2) treatments gave high enough amounts of N 2 -fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N 2 -fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si 5 0K - and Si 1 00K - ) is associated with lower Δ 13 C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ 13 C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si 1 00) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing

  5. An experimental set-up to study carbon, water, and nitrate uptake rates by hydroponically grown plants.

    Science.gov (United States)

    Andriolo, J L; Le Bot, J; Gary, C; Sappe, G; Orlando, P; Brunel, B; Sarrouy, C

    1996-01-01

    The experimental system described allows concomitant hourly measurements of CO2, H2O, and NO3 uptake rates by plants grown hydroponically in a greenhouse. Plants are enclosed in an airtight chamber through which air flows at a controlled speed. Carbon dioxide exchange and transpiration rates are determined from respective differences of concentrations of CO2 and water vapor of the air at the system inlet and outlet. This set-up is based on the "open-system" principle with improvements made on existing systems. For instance, propeller anemometers are used to monitor air flow rates in the chamber. From their signal it is possible to continuously adjust air speed to changing environmental conditions and plant activity. The air temperature inside the system therefore never rises above that outside. Water and NO3 uptake rates are calculated at time intervals from changes in the volume and the NO3 concentration of the nutrient solution in contact with the roots. The precise measurement of the volume of solution is achieved using a balance which has a higher precision than any liquid level sensors. Nitrate concentration is determined in the laboratory from aliquots of solution sampled at time intervals. A number of test runs are reported which validate the measurements and confirm undisturbed conditions within the system. Results of typical diurnal changes in CO2, H2O, and NO3 uptake rates by fruiting tomato plants are also presented.

  6. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review.

    Science.gov (United States)

    Madikizela, Lawrence Mzukisi; Ncube, Somandla; Chimuka, Luke

    2018-04-27

    Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Control of abusive water addition to Octopus vulgaris with non-destructive methods.

    Science.gov (United States)

    Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara

    2018-01-01

    Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice.

    Science.gov (United States)

    Zia, Zahida; Bakhat, Hafiz Faiq; Saqib, Zulfiqar Ahmad; Shah, Ghulam Mustafa; Fahad, Shah; Ashraf, Muhammad Rizwan; Hammad, Hafiz Mohkum; Naseem, Wajid; Shahid, Muhammad

    2017-10-01

    Silicon (Si) is the 2nd most abundant element in soil which is known to enhance stress tolerance in wide variety of crops. Arsenic (As), a toxic metalloid enters into the human food chain through contaminated water and food or feed. To alleviate the deleterious effect of As on human health, it is a need of time to find out an effective strategy to reduce the As accumulation in the food chain. The experiments were conducted during September-December 2014, and 2016 to optimize Si concentration for rice (Oryza sativa L.) exposed to As stress. Further experiment were carried out to evaluate the effect of optimum Si on rice seed germination, seedling growth, phosphorus and As uptake in rice plant. During laboratory experiment, rice seeds were exposed to 150 and 300µM As with and without 3mM Si supplementation. Results revealed that As application, decreased the germination up to 40-50% as compared to control treatment. Arsenic stress also significantly (P management, significantly (P˂0.05) affected the plant growth, Si and As concentrations in the plant. Arsenic uptake was relatively less under aerobic conditions. The maximum As concentration (9.34 and 27.70mgkg DW -1 in shoot and root, respectively) was found in plant treated with 300µM As in absence of Si under anaerobic condition. Similarly, anaerobic condition resulted in higher As uptake in the plants. The study demonstrated that aerobic cultivation is suitable to decrease the As uptake and in rice exogenous Si supply is beneficial to decrease As uptake under both anaerobic and aerobic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Uptake by Plants of Diethylstilboestrol and of Its Glucuronide

    DEFF Research Database (Denmark)

    Gregers Hansen, B.

    1964-01-01

    The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments. It is con......The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments...

  10. Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France

    Science.gov (United States)

    Canal, N.; Calvet, J.-C.; Decharme, B.; Carrer, D.; Lafont, S.; Pigeon, G.

    2014-12-01

    The simulation of root water uptake in land surface models is affected by large uncertainties. The difficulty in mapping soil depth and in describing the capacity of plants to develop a rooting system is a major obstacle to the simulation of the terrestrial water cycle and to the representation of the impacts of drought. In this study, long time series of agricultural statistics are used to evaluate and constrain root water uptake models. The inter-annual variability of cereal grain yield and permanent grassland dry matter yield is simulated over France by the Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) generic land surface model (LSM). The two soil profile schemes available in the model are used to simulate the above-ground biomass (Bag) of cereals and grasslands: a two-layer force-restore (FR-2L) bulk reservoir model and a multi-layer diffusion (DIF) model. The DIF model is implemented with or without deep soil layers below the root zone. The evaluation of the various root water uptake models is achieved by using the French agricultural statistics of Agreste over the 1994-2010 period at 45 cropland and 48 grassland départements, for a range of rooting depths. The number of départements where the simulated annual maximum Bag presents a significant correlation with the yield observations is used as a metric to benchmark the root water uptake models. Significant correlations (p value neutral impact of the most refined versions of the model is found with respect to the simplified soil hydrology scheme. This shows that efforts should be made in future studies to reduce other sources of uncertainty, e.g. by using a more detailed soil and root density profile description together with satellite vegetation products. It is found that modelling additional subroot-zone base flow soil layers does not improve (and may even degrade) the representation of the inter-annual variability of the vegetation above-ground biomass. These results are

  11. The effects of water management on the CO2 uptake of Sphagnum moss in a reclaimed peatland

    Directory of Open Access Journals (Sweden)

    C.M. Brown

    2017-07-01

    Full Text Available To harvest Sphagnum on a cyclic basis and rapidly accumulate biomass, active water management is necessary. The goal of this study is to determine the hydrological conditions that will maximise CO2 uptake in Sphagnum farming basins following the moss-layer transfer technique. Plot CO2 uptake doubled from the first growing season to the second, but growth was not uniform across the site. Results indicate that the seasonal oscillations in water table (WT position were more important than actual WT position for estimating Sphagnum ground cover and CO2 uptake when the seasonal WT is shallow (< -25 cm. Plots with higher productivity had a WT range (seasonal maximum – minimum less than 15 cm, a WT position which did not fluctuate more than ± 7.5 cm, and a low WT standard deviation. Each basin was a CO2 source during the second growing season, and seasonal modelled NEE ranged from 107.1 to 266.8 g CO2 m-2. Decomposition from the straw mulch accounted for over half of seasonal respiration, and the site is expected to become a CO2 sink as the straw mulch decomposes and moss cover increases. This study highlights the importance of maintaining stable moisture conditions to increase Sphagnum growth and CO2 sink functions.

  12. Leaching due to hygroscopic water uptake in cemented waste containing soluble salts

    DEFF Research Database (Denmark)

    Brodersen, K.

    1992-01-01

    conditions, condensation of water vapour will result in generation of a certain amount of liquid in the form of a strong salt solution. The volume of liquid may well exceed the storage capacity of the pore system in the cemented material and in the release of a limited amount of free contaminated solution......Considerable amounts of easily soluble salts such as sodium nitrate, sulphate, or carbonate are introduced into certain types of cemented waste. When such materials are stored in atmospheres with high relative humidity or disposed or by shallow land burial under unsaturated, but still humid....... A model of the quantitative aspects for the equilibrium situation is presented. Experiments with hygroscopic water uptake support the model and give indications about the rate of the process. The release mechanism is only thought to be important for radionuclides which are not fixed in a low...

  13. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Tilbrook, Bronte

    2007-01-01

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 30 0 S to 50 0 S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing

  14. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  15. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Patrick, P.H.

    1985-06-01

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  16. Dielectric Properties of Water in Butter and Water-AOT-Heptane Systems Measured using Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    2010-01-01

    We investigate the dielectric properties of water confined in nanometer-sized inverse micelles in mixtures of water, AOT, and heptane. We show that the dielectric properties of the confined water are dependent on the water pool size and different from those of bulk water. We also discuss...... the dielectric properties of different vegetable oils, lard, and butter, and use these properties to deduce the dielectric properties of water in butter, which are shown to deviate significantly from the dielectric properties of bulk water....

  17. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  18. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  19. Relationship of dough thermomechanical properties with oil uptake, cooking and textural properties of instant fried noodles.

    Science.gov (United States)

    Gulia, Neelam; Khatkar, B S

    2014-04-01

    Instant noodles were prepared from fifteen diverse wheat cultivars varying widely in their flour quality and dough rheology. Dough thermomechanical parameters obtained by Mixolab and flour analytical properties were correlated with the quality of instant noodles including oil uptake, cooking quality and textural attributes. The Mixolab parameters dough development time and dough stability showed significant positive correlation with cooking time, cooked weight, overall acceptability, hardness, springiness, cohesiveness and chewiness of noodles, while negatively correlated with oil uptake and cooking loss, therefore, exhibiting a marked positive effect on quality of instant noodles. Lower protein breakdown represented by C2 torque was also positively related with overall acceptability, hardness, springiness, cohesiveness and chewiness of noodles. Stickiness/adhesiveness of noodles was revealed to be mainly conferred by falling number values (R (2 )= 0.671) and damaged starch (R (2 )= 0.523) content of wheat flour samples. Flour samples with lesser values of protein content, sodium dodecyl sulphate sedimentation volume, thermal stability of proteins, dough stability and dough development time were found to be linked with poor noodle quality. Medium strong flours performed better in noodle making, while weaker flours demonstrated poor noodle quality. Dough rheology of good noodle making flours was characterized with higher dough development time, dough stability, C2, C3, C4 as well as C5 values. Noodles with higher overall acceptability showed a more continuous and uniform protein starch matrix in comparison to the poor counterparts.

  20. Effect of soil acidification on root growth, nutrient and water uptake

    International Nuclear Information System (INIS)

    Marschner, H.

    1989-01-01

    Soil acidification poses various types of stress to plants, especially Al and H + toxicity in roots and Mg and Ca deficiency in roots and shoots. The importance of the various types of stress varies with plant species, location and time. Average data of the chemical composition of the bulk soil or of the molar Ca/Al or Mg/Al ratios in the soil solution without consideration of the Al species are of limited value for precise conclusions of the actual, or for predictions of the potential risk of soil-acidity-induced inhibition of root growth and of nutritional imbalances. The root-induced changes in the rhizosphere and the consequences for Al toxicity and nutrient acquisition by plants deserve more attention. Further it should be considered that roots are not only required for anchoring higher plants in the soil and for nutrient and water uptake. Roots are also important sites for synthesis of phytohormones, cytokinins and abscisic acid in particular, which are transported into the shoots and act either as signals for the water status at the soil-root interface (ABA) or as compounds required for growth and development. Inhibition in root growth may therefore affect shoot growth by means other than water and nutrient supply. (orig./vhe)

  1. EFFECT OF IMMERSION TEMPERATURE ON THE WATER UPTAKE OF POLYPROPYLENE/WOOD FLOUR/ORGANOCLAY HYBRID NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    Behzad Kord

    2011-02-01

    Full Text Available Polypropylene/wood flour/organoclay hybrid nanocomposites were melt-compounded in an internal mixer at 190 oC and 60 rpm rotor speed. Then samples were fabricated by injection molding. Effects of immersion temperature on the water uptake of hybrid nanocomposite were investigated. To meet this objective, water absorption of samples was determined after 24 h immersion in distilled water at different temperatures (25, 50, 75, and 100 °C. Results indicated that immersion temperature had a significant influence on the water absorption of composites. By increasing the temperature, water absorption increases as well. The maximum water absorption of composite is decreased by increasing the nanoclay and compatibilizer content. The morphology of nanoclay was determined by X-ray diffraction (XRD and transmission electron microscopy. The effect of morphology on water absorption was also evaluated. Due to inadequate compatibilizer, exfoliated morphology of nanoclay was not obtained, but there was evidence of intercalation. The order of intercalation for samples containing 3 phc was higher than that of 6 phc at the same PP-g-MA content due to some agglomerations of organoclay.

  2. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  3. The trade of virtual water: do property rights matter?

    Science.gov (United States)

    Xu, Ankai

    2016-04-01

    My paper examines the determinants of the virtual water trade - embodied in the trade of agriculture products - by estimating a structural gravity model. In particular, it tests the relationship between property rights and the export of water-intensive agricultural products based on water footprint data in Mekonnen and Hoekstra (2011, 2012). Using two different measures of property rights protection, I show that countries with weaker property rights have an apparent comparative advantage in the trade of water-intensive products. After controlling for the economic size, natural resource endowments, and possible effects of reverse causality, the trade flow of virtual water is negatively and significantly correlated with the property rights index of the exporting country. Holding other factors constant, one point increase in the property rights index of a country is associated with a 24% - 36% decrease in its virtual water export, whereas a 1% increase in the natural resource protection index of a country is associated with a 16% decrease in its virtual water export. This paper is the first empirical work that tests the relationship between property rights and trade of water-intensive products, offering a new perceptive in the debate of virtual water trade. The findings provide a possible explanation on the paradoxical evidence that some countries with scarce water resources export water-intensive products. The result is important not only in terms of its theoretical relevance, but also its policy implications. As prescribed by the model of trade and property rights, when countries with weaker property rights open to international trade, they are more likely to over-exploit and thus expedite the depletion of natural resources.

  4. Content and uptake of trace metals in benthic algae, Enteromorpha and Porphyra. II. Studies on the algae cultured in sea water supplemented with various metals

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Fujiyama, T.

    1977-01-01

    In the culture of Porphyra in sea water supplemented with metals, the uptakes of Mn and Cd were relatively high and increased in proportion to culture time when the metal concentration in water was high. Fe distributed evenly in all three parts of fronds. Mn was concentrated in surface and middle layers, while Cd was accumulated mainly in the middle layer and a little in the surface layer. In general the uptake was high in the middle layer. In the uptake of Mn there was a clear distinction between light and dark conditions, that is, Mn was absorbed only during light periods while Cd was absorbed regardless of light and dark periods.

  5. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    Science.gov (United States)

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.

  6. Uptake mechanism for iodine species to black carbon.

    Science.gov (United States)

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  7. Effect of hot water extracted hardwood and softwood chips on particleboard properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon

    2014-01-01

    The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...

  8. Thermophysical properties of materials for water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA`s International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs.

  9. Thermophysical properties of materials for water cooled reactors

    International Nuclear Information System (INIS)

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs

  10. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Science.gov (United States)

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  11. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  13. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  14. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  15. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  16. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    Science.gov (United States)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  17. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  18. A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO2 uptake in Mediterranean environments

    Science.gov (United States)

    Helman, David; Lensky, Itamar M.; Osem, Yagil; Rohatyn, Shani; Rotenberg, Eyal; Yakir, Dan

    2017-09-01

    Estimations of ecosystem-level evapotranspiration (ET) and CO2 uptake in water-limited environments are scarce and scaling up ground-level measurements is not straightforward. A biophysical approach using remote sensing (RS) and meteorological data (RS-Met) is adjusted to extreme high-energy water-limited Mediterranean ecosystems that suffer from continuous stress conditions to provide daily estimations of ET and CO2 uptake (measured as gross primary production, GPP) at a spatial resolution of 250 m. The RS-Met was adjusted using a seasonal water deficit factor (fWD) based on daily rainfall, temperature and radiation data. We validated our adjusted RS-Met with eddy covariance flux measurements using a newly developed mobile lab system and the single active FLUXNET station operating in this region (Yatir pine forest station) at a total of seven forest and non-forest sites across a climatic transect in Israel (280-770 mm yr-1). RS-Met was also compared to the satellite-borne MODIS-based ET and GPP products (MOD16 and MOD17, respectively) at these sites.Results show that the inclusion of the fWD significantly improved the model, with R = 0.64-0.91 for the ET-adjusted model (compared to 0.05-0.80 for the unadjusted model) and R = 0.72-0.92 for the adjusted GPP model (compared to R = 0.56-0.90 of the non-adjusted model). The RS-Met (with the fWD) successfully tracked observed changes in ET and GPP between dry and wet seasons across the sites. ET and GPP estimates from the adjusted RS-Met also agreed well with eddy covariance estimates on an annual timescale at the FLUXNET station of Yatir (266 ± 61 vs. 257 ± 58 mm yr-1 and 765 ± 112 vs. 748 ± 124 gC m-2 yr-1 for ET and GPP, respectively). Comparison with MODIS products showed consistently lower estimates from the MODIS-based models, particularly at the forest sites. Using the adjusted RS-Met, we show that afforestation significantly increased the water use efficiency (the ratio of carbon uptake to ET) in this region

  19. Response of Cotton to Irrigation Methods and Nitrogen Fertilization: Yield Components, Water-Use Efficiency, Nitrogen Uptake, and Recovery

    International Nuclear Information System (INIS)

    Janat, M.

    2009-01-01

    Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)

  20. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles

  1. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Science.gov (United States)

    Baldy, Virginie; Thiebaut, Gabrielle; Fernandez, Catherine; Sagova-Mareckova, Marketa; Korboulewsky, Nathalie; Monnier, Yogan; Perez, Thierry; Tremolieres, Michele

    2015-01-01

    Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1) P-PO4(3-) and hypertrophic state, 300 μg x l(-1) P-PO4(3-)) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  2. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Directory of Open Access Journals (Sweden)

    Virginie Baldy

    Full Text Available Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch. St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine or soft (Vosges water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1 P-PO4(3- and hypertrophic state, 300 μg x l(-1 P-PO4(3- on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer. Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic. The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  3. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  4. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal.

    Science.gov (United States)

    Kim, Jeong Myeong; Lee, Hyo Jung; Lee, Dae Sung; Jeon, Che Ok

    2013-03-01

    To characterize the denitrifying phosphorus (P) uptake properties of "Candidatus Accumulibacter phosphatis," a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of "Ca. Accumulibacter" and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized "Ca. Accumulibacter" subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and "Candidatus Competibacter phosphatis" [from 16.4% to 20.0%]), while the overall "Ca. Accumulibacter" abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the "Ca. Accumulibacter" clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all "Ca. Accumulibacter" clades successfully took up phosphorus in the presence of nitrate. However, the "Ca. Accumulibacter" clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by "Ca. Accumulibacter" clades occurred when nitrite was added. These results suggest that the "Ca. Accumulibacter" cells lack nitrate reduction capabilities and that P uptake by "Ca. Accumulibacter" is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and "Ca. Competibacter."

  5. Ceramic coatings for water-repellent textiles

    Science.gov (United States)

    Colleoni, C.; Esposito, F.; Guido, E.; Migani, V.; Trovato, V.; Rosace, G.

    2017-10-01

    In recent years, ceramic coatings have been widely studied for their potential performance in many scientific and technological fields. Ceramic coatings are also used as a textile-finishing agent to impart several properties such as anti-bacterial, anti-abrasion, flame retardant. In this study, fluoro free water repellent finishings have been developed to assess the features of the silica films on the textile fabrics. The water repellency of the treated samples has been evaluated by different tests such as water contact angle, water uptake and drop test.

  6. Physicochemical properties of brown rice as influenced by gamma irradiation, variety and storage

    International Nuclear Information System (INIS)

    Sabularse, V.C.

    1988-01-01

    Effects of gamma irradiation, variety and storage on physicochemical properties of brown rice from three Louisiana rice varieties: Mars, a medium grain variety, Lemont and Tebonnet, long grain varieties, were determined. Cooking time was significantly reduced in Mars and Lemont at doses of 200 and 300 Krads. Irradiation increased cooking rate, water uptake at 80 degree C, water uptake ratios, total solids content in residual cooking liquid and starch damage from 100 to 300 Krad samples. Water uptake at 96 degree C generally decreased with increasing dose levels. Evidence indicated alterations in the rice grain structures and composition. The component drastically affected by gamma irradiation was starch as shown by reduced cooking time, increased water uptake, increased amounts of starch and protein in residual cooking liquid, reduced volume expansion, increased damage starch and changes in amylographic pasting characteristics. Scanning electron microscopy showed more simple starch granules in irradiated samples than in nonirradiated samples. Structural changes in the bran layer due to gamma irradiation were not evident from electron micrographs

  7. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  8. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  10. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for the long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are related to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product

  11. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are ralated to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product. (author)

  12. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties.

    Science.gov (United States)

    Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah

    2017-11-01

    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding

    Directory of Open Access Journals (Sweden)

    Manuel Felix

    Full Text Available Abstract Soy Protein Isolate (SPI has been evaluated as useful candidate for the development of protein-based bioplastic materials processed by injection molding. The influence of sorbitol (SB as plasticizer in mechanical properties and water uptake capacity was evaluated in SPI-based bioplastics. A mixing rheometer that allows monitoring torque and temperature during mixing and a small-scale-plunger-type injection molding machine were used to obtain SPI/Plasticizer blends and SPI-based bioplastics, respectively. Dynamic measurements were carried out to obtain mechanical spectra of different bioplastics. Moreover, the mechanical characterization was supplemented with uniaxial tensile tests. Additionally, the influence of SB in water uptake capacity was also evaluated. The introduction of SB leads to increase the rigidity of bioplastics as well as the water uptake capacity after 24h, however it involves a decrease in strain at break. Final bioplastics are plastic materials with both adequate properties for the substitution of conventional petroleum plastics and high biodegradability.

  14. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW contaminants have...... the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  15. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants

    International Nuclear Information System (INIS)

    Navarro, Divina A.; Bisson, Mary A.; Aga, Diana S.

    2012-01-01

    Graphical abstract: This study highlights the importance of quantum dot (QD) structural stability in preventing phytotoxicity. Overall, there is no evidence that Arabidopsis thaliana plants can internalize intact QDs within 1–7 days of exposure, with or without humic acids. Highlights: ► Potential uptake of water-dispersible CdSe/ZnS QDs by Arabidopsis was demonstrated. ► QDs were not internalized by Arabidopsis as intact particles. ► Plants exposed to Cd-, Se-, and QD + HA suspensions experienced oxidative stress. ► An effective LC–MS method proves detection of low levels of glutathione in plants. ► Uptake of Cd and/or Se leached from QDs is of major concern. - Abstract: Interest on the environmental impacts of engineered nanomaterials has rapidly increased over the past years because it is expected that these materials will eventually be released into the environment. The present work investigates the potential root uptake of water-dispersible CdSe/ZnS quantum dots (QDs) by the model plant species, Arabidopsis thaliana. Experiments revealed that Arabidopsis exposed to QDs that are dispersed in Hoagland's solution for 1–7 days did not internalize intact QDs. Analysis of Cd and Se concentrations in roots and leaves by inductively-coupled plasma mass spectrometry indicated that Cd and Se from QD-treated plants were not translocated into the leaves, and remained in the root system of Arabidopsis. Furthermore, fluorescence microscopy showed strong evidence that the QDs were generally on the outside surfaces of the roots, where the amount of QDs adsorbed is dependent on the stability of the QDs in suspension. Despite no evidence of nanoparticle internalization, the ratio of reduced glutathione levels (GSH) relative to the oxidized glutathione (GSSG) in plants decreased when plants were exposed to QD dispersions containing humic acids, suggesting that QDs caused oxidative stress on the plant at this condition.

  16. A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO2 uptake in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    D. Helman

    2017-09-01

    Full Text Available Estimations of ecosystem-level evapotranspiration (ET and CO2 uptake in water-limited environments are scarce and scaling up ground-level measurements is not straightforward. A biophysical approach using remote sensing (RS and meteorological data (RS–Met is adjusted to extreme high-energy water-limited Mediterranean ecosystems that suffer from continuous stress conditions to provide daily estimations of ET and CO2 uptake (measured as gross primary production, GPP at a spatial resolution of 250 m. The RS–Met was adjusted using a seasonal water deficit factor (fWD based on daily rainfall, temperature and radiation data. We validated our adjusted RS–Met with eddy covariance flux measurements using a newly developed mobile lab system and the single active FLUXNET station operating in this region (Yatir pine forest station at a total of seven forest and non-forest sites across a climatic transect in Israel (280–770 mm yr−1. RS–Met was also compared to the satellite-borne MODIS-based ET and GPP products (MOD16 and MOD17, respectively at these sites.Results show that the inclusion of the fWD significantly improved the model, with R =  0.64–0.91 for the ET-adjusted model (compared to 0.05–0.80 for the unadjusted model and R =  0.72–0.92 for the adjusted GPP model (compared to R =  0.56–0.90 of the non-adjusted model. The RS–Met (with the fWD successfully tracked observed changes in ET and GPP between dry and wet seasons across the sites. ET and GPP estimates from the adjusted RS–Met also agreed well with eddy covariance estimates on an annual timescale at the FLUXNET station of Yatir (266 ± 61 vs. 257 ± 58 mm yr−1 and 765 ± 112 vs. 748 ± 124 gC m−2 yr−1 for ET and GPP, respectively. Comparison with MODIS products showed consistently lower estimates from the MODIS-based models, particularly at the forest sites. Using the adjusted RS–Met, we show that afforestation

  17. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  18. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles; Sulaimani, Anwar Ali; El Yagoubi, Jalal; Mulle, Matthieu; Verdu, Jacques

    2017-01-01

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes

  19. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  20. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    Science.gov (United States)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  1. Influence of water management and fertilizer application on "1"3"7Cs and "1"3"3Cs uptake in paddy rice fields

    International Nuclear Information System (INIS)

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-01-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on "1"3"7Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ("1"3"3Cs) in the plants was also determined as an analogue for predicting "1"3"7Cs behavior after long-term aging of soil "1"3"7Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher "1"3"7Cs and "1"3"3Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on "1"3"7Cs and "1"3"3Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between "1"3"7Cs and "1"3"3Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period

  2. Observation and analysis of water inherent optical properties

    Science.gov (United States)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  3. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

    Science.gov (United States)

    Carminati, Andrea; Vetterlein, Doris

    2013-01-01

    Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New

  4. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics

    Directory of Open Access Journals (Sweden)

    U. Dusek

    2011-09-01

    Full Text Available We investigate the CCN activity of freshly emitted biomass burning particles and their hygroscopic growth at a relative humidity (RH of 85%. The particles were produced in the Mainz combustion laboratory by controlled burning of various wood types. The water uptake at sub- and supersaturations is parameterized by the hygroscopicity parameter, κ (c.f. Petters and Kreidenweis, 2007. For the wood burns, κ is low, generally around 0.06. The main emphasis of this study is a comparison of κ derived from measurements at sub- and supersaturated conditions (κG and κCCN, in order to see whether the water uptake at 85% RH can predict the CCN properties of the biomass burning particles. Differences in κGand κCCN can arise through solution non-idealities, the presence of slightly soluble or surface active compounds, or non-spherical particle shape. We find that κG and κCCN agree within experimental uncertainties (of around 30% for particle sizes of 100 and 150 nm; only for 50 nm particles is κCCN larger than κG by a factor of 2. The magnitude of this difference and its dependence on particle size is consistent with the presence of surface active organic compounds. These compounds mainly facilitate the CCN activation of small particles, which form the most concentrated solution droplets at the point of activation. The 50 nm particles, however, are only activated at supersaturations higher than 1% and are therefore of minor importance as CCN in ambient clouds. By comparison with the actual chemical composition of the biomass burning particles, we estimate that the hygroscopicity of the water-soluble organic carbon (WSOC fraction can be represented by a κWSOC value of approximately 0.2. The effective hygroscopicity of a typical wood burning particle can therefore be represented by a linear mixture of an inorganic component with κ ≅ 0.6, a WSOC

  6. Uptake, translocation, and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data.

    Science.gov (United States)

    Diepens, Noël J; Arts, Gertie H P; Focks, Andreas; Koelmans, Albert A

    2014-10-21

    Understanding bioaccumulation in sediment-rooted macrophytes is crucial for the development of sediment toxicity tests using macrophytes. Here, we explore bioaccumulation in sediment-rooted macrophytes by tracking and modeling chemical flows of chlorpyrifos, linuron, and six PCBs in water-sediment-macrophyte systems. Chemical fluxes across the interfaces between pore water, overlying water, shoots, and roots were modeled using a novel multicompartment model. The modeling yielded the first mass-transfer parameter set reported for bioaccumulation by sediment-rooted macrophytes, with satisfactory narrow confidence limits for more than half of the estimated parameters. Exposure via the water column led to rapid uptake by Elodea canadensis and Myriophyllum spicatum shoots, followed by transport to the roots within 1-3 days, after which tissue concentrations gradually declined. Translocation played an important role in the exchange between shoots and roots. Exposure via spiked sediment led to gradual uptake by the roots, but subsequent transport to the shoots and overlying water remained limited for the chemicals studied. These contrasting patterns show that exposure is sensitive to test set up, chemical properties, and species traits. Although field-concentrations in water and sediment will differ from those in the tests, the model parameters can be assumed applicable for modeling exposure to macrophytes in the field.

  7. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  8. Long-term properties of TVO's bituminized resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Vuorinen, U.

    1989-06-01

    Long-term properties of bituminized spent ion-exchange resins from Olkiluoto power plant have been studied since 1981. This report summarizes the results on water uptake and leaching obtained up till now. It is observed that water uptake in excess of rewetting of the ion-exchange resins is taking place. Leach test in water equilibrated with cement have been performed for about five years. Separation of granular resin particles caused by density differences observed in former experiments was further studied and confirmed in this work. Anaerobic corrosion of a steel drum has been studied in laboratory conditions generally giving corrosion rates below l μm/a. Radiolytic gases will accumulate and be trapped in the waste product. The rate of swelling is estimated by a specially constructed device based on ultrasonic distance meter observing changes in level of the product surface in the drum

  9. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  10. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  11. Uptake of barium and strontium by cress (Lepidium sativum) in water culture and the presence of an inhibiting soluble factor

    International Nuclear Information System (INIS)

    Oestling, O.; Kopp, P.; Burkart, W.

    1991-01-01

    Seeds of cress were sown in various densities on plastic grids placed in half-litre dishes filled with either a dilute salt solution or distilled water. After 2 days the radionuclides 133 Ba, 134 Cs and 85 Sr were added, and after another 5 days the plants were harvested and the radioactivity measured by γ-ray spectrometry. Plants in alternated sparse cultures concentrated less radioactivity of Ba and Sr than the corresponding non-alternated cultures. Furthermore, when water from very dense cultures on which plants had grown for a week was sterile-filtered and added to fresh cultures, it was shown that this conditioned water strongly inhibited the uptake of Ba and Sr. The difference in radionuclide concentration in the plants as a function of plant density disappeared when the concentrations of Ca and Mg in the nutrient solution were raised to 0.15 and 0.40 mM, respectively. Apparently a chelating substance, possibly excreted from the plant roots, is responsible for the inhibition of the uptake of bivalent cations, and this agent becomes saturated when bivalent cations are present at sufficiently high concentrations. (author)

  12. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato

    DEFF Research Database (Denmark)

    Liu, Caixia; Rubæk, Gitte Holton; Liu, Fulai

    2015-01-01

    Better understanding of the effects of deficit irrigation regimes on phosphorus (P) and nitrogen (N) uptake dynamics is necessary for sustainable water, P and N management. The effects of full (FI), deficit (DI) and partial root-zone drying (PRD) irrigation on potato P and N uptake with P fertili...... was superior to DI in terms of N uptake, but not P uptake. Challenges remain how to maintain crop yield and P uptake under reduced irrigation regimes. Utilization of water and N fertilizer was low when the soil was deficient in P.......Better understanding of the effects of deficit irrigation regimes on phosphorus (P) and nitrogen (N) uptake dynamics is necessary for sustainable water, P and N management. The effects of full (FI), deficit (DI) and partial root-zone drying (PRD) irrigation on potato P and N uptake with P...... fertilization (P1) or without (P0) were investigated in two split-root pot experiments in a soil with low plant available P. Under FI, the plants were irrigated to pot water holding capacity while under DI and PRD, 70% of the water amount of FI was applied on either both or one side of the pots, respectively...

  13. Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers

    Science.gov (United States)

    Mandla A. Tshabalala; Ryan Libert; Christian M. Schaller

    2011-01-01

    In recent years, there has been increased interest in the use of inorganic UV blocking nanoparticles for photostabilization of wood surfaces. Photostability and moisture uptake properties of wood veneers coated with a combination of hybrid inorganic-organic thin sol-gel films and organic light stabilizers was investigated. The light stabilizers were applied by brushing...

  14. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  15. A Root water uptake model to compensate disease stress in citrus trees

    Science.gov (United States)

    Peddinti, S. R.; Kambhammettu, B. P.; Lad, R. S.; Suradhaniwar, S.

    2017-12-01

    Plant root water uptake (RWU) controls a number of hydrologic fluxes in simulating unsaturated flow and transport processes. Variable saturated models that simulate soil-water-plant interactions within the rizhosphere do not account for the health of the tree. This makes them difficult to analyse RWU patterns for diseased trees. Improper irrigation management activities on diseased (Phytopthora spp. affected) citrus trees of central India has resulted in a significant reduction in crop yield accompanied by disease escalation. This research aims at developing a quantitative RWU model that accounts for the reduction in water stress as a function of plant disease level (hereafter called as disease stress). A total of four research plots with varying disease severity were considered for our field experimentation. A three-dimensional electrical resistivity tomography (ERT) was performed to understand spatio-temporal distribution in soil moisture following irrigation. Evaporation and transpiration were monitored daily using micro lysimeter and sap flow meters respectively. Disease intensity was quantified (on 0 to 9 scale) using pathological analysis on soil samples. Pedo-physocal and pedo-electric relations were established under controlled laboratory conditions. A non-linear disease stress response function for citrus trees was derived considering phonological, hydrological, and pathological parameters. Results of numerical simulations conclude that the propagation of error in RWU estimates by ignoring the health condition of the tree is significant. The developed disease stress function was then validated in the presence of deficit water and nutrient stress conditions. Results of numerical analysis showed a good agreement with experimental data, corroborating the need for alternate management practices for disease citrus trees.

  16. Uranium uptake of Vetiveria zizanioides (L.) Nash

    International Nuclear Information System (INIS)

    Luu Viet Hung; Maslov, O.D.; Trinh Thi Thu My; Phung Khac Nam Ho; Dang Duc Nhan

    2010-01-01

    Uranium uptake of vetiver grass (Vetiveria zizanioides (L.) Nash) from Eutric Fluvisols (AK), Albic Acrisols (BG), Dystric Fluvisols (HP) and Ferralic Acrisols (TC) in northern Vietnam is assessed. The soils were mixed with aqueous solution of uranyl nitrate to make soils contaminated with uranium at 0, 50, 100, 250 mg/kg before planting the grass. The efficiency of uranium uptake by the grass was assessed based on the soil-to-plant transfer factor (TF U , kg·kg -1 ). It was found that the TF U values are dependent upon the soils properties. CEC facilitates the uptake and the increased soil pH could reduce the uptake and translocation of uranium in the plant. Organic matter content, as well as iron and potassium, inhibits the uranium uptake of the grass. It was revealed that the lower fertile soil, the higher uranium uptake. The translocation of uranium in root for all the soil types studied is almost higher than that in its shoot. It seems that vetiver grass could potentially be used for the purpose of phytoremediation of soils contaminated with uranium

  17. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A

    2015-12-21

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.

  18. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  19. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  20. The effect on slurry water as a fresh water replacement in concrete properties

    Science.gov (United States)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  1. Water at Interfaces.

    Science.gov (United States)

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

  2. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    Science.gov (United States)

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. © The Author 2014. Published by Oxford University Press. All rights reserved.

  3. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    OpenAIRE

    Kurdali, Fawaz; Al-Chammaa, Mohammad

    2013-01-01

    The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si) and/or potassium (K) applications on growth and nitrogen uptake in barley plants grown under water (FC1) and non water (FC2) stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si 50, Si 100 and Si 200) and one fertilizer rate of K were used. Dry matter (DM) and N yield (NY) in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the wa...

  4. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles

    2017-05-11

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes in the electrical volume conductivity of an anhydride-cured epoxy polymer during moisture sorption-desorption experiments. Gravimetric analysis showed that the polymer exhibits a two-stage sorption behavior resulting from the competition between diffusive and reactive mechanisms. As expected, the macroscopic electrical conductivity increases with the diffusion of water. However, our most surprising observation was severe hysteresis in the relation between water uptake and electrical conductivity during the sorption and desorption experiments. This indicates that change in the electrical conductivity depends on both the water uptake and the competition between the diffusive and reactive mechanisms. We studied samples with various thicknesses to determine the relative effects of the diffusive and reactive mechanisms. This is an important observation as it means that general electrical monitoring techniques should be used cautiously when it comes to measuring the moisture content of polymer or polymer-based composite samples.

  5. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  6. The Effect of UVC Irradiation on the Mechanical Properties of Chitosan Membrane in Sterilization Process

    Science.gov (United States)

    Rupiasih, N. N.; Sumadiyasa, M.; Putra, I. K.

    2018-04-01

    The present study, we report about the effect of UVC irradiation on the mechanical properties of chitosan membrane in the sterilization process. The membrane used was chitosan membrane 2% which prepared by a casting method using chitosan as matrix and acetic acid 1% as a solvent. The UVC source used was germicidal ultraviolet (UVG) which widely used for sterilization purposes. Variation doses were done by the varying time of irradiation, e.g. 5 min, 15 min, 30 min, and 60 min. Those samples are named as S1, S2, S3, and S4, respectively. Chitosan membrane before irradiation namely S0 also used for comparative study. The effect of UVC irradiation on the mechanical properties of membranes has been examined by different techniques including FTIR, DMA, and the water uptake capability. The results showed that ultimate tensile strength (UTS) and moduli of elasticity (E) were increased by increasing the irradiation time. From FTIR analysis obtained that no new molecules were formed in irradiated membranes. The water uptakes capability of the membranes after irradiation was smaller compared with before irradiation, and among the irradiated membranes, the water uptake capabilities were increased by increasing the exposure time. These observations suggested that more care should be taken during the sterilization process and outdoor used of the membrane. The other side, the UVC irradiation can improve the mechanical properties of the membranes.

  7. Uptake of N-nitrosodimethylamine (NDMA) from water by phreatophytes in the absence and presence of perchlorate as a co-contaminant.

    Science.gov (United States)

    Yifru, Dawit D; Nzengung, Valentine A

    2006-12-01

    The uptake and fate of the emerging contaminants N-nitrosodimethylamine (NDMA) and perchlorate in phreatophytes was studied in a hydroponics system under greenhouse conditions. NDMA is a potent carcinogen, and perchlorate disrupts the functioning ofthe human thyroid gland. The rate of removal of NDMA from solution by rooted cuttings of black willow (Salix nigra) and hybrid poplar (Populus deltoides x nigra, DN34) trees varied seasonally, with faster removal in summer months when transpiration rates were highest. A linear correlation between the volume of water transpired and mass of NDMA removed from the root zone was observed, especially at higher NDMA concentrations. In bioreactors dosed with both NDMA (0.7-1.0 mg L(-1)) and perchlorate (27 mg L(-1)), no competitive uptake of NDMA and perchlorate was observed. While NDMA was primarily removed from solution by plant uptake, perchlorate was predominantly removed by rhizodegradation. In the presence of NDMA, a slower rate of rhizodegradation of perchlorate was observed, but still significantly faster than the rate of NDMA uptake. For experiments conducted with radiolabeled NDMA, 46.4 +/- 1.1% of the total 14C-activity was recovered in the plant tissues and 47.5% was phytovolatilized. The 46.4 +/- 1.1% recovered in the plants was distributed as follows: 18.8 +/- 1.4% in leaves, 15.9 +/- 5.9% in stems, 7.6 +/- 3.2% in branches, and 3.5 +/- 3.3% in roots. The poor extractability of NDMA with methanol-water (1:1 v/v) from stem and leaf tissues suggested that some fraction of NDMA was assimilated. The calculated transpiration stream concentration factor (TSCF) of 0.28 +/- 0.06 suggests that NDMA is passively taken up by phreatophytes, and mainly phytovolatilized.

  8. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.

    1983-01-01

    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  9. Calibration of a Plant Uptake Model with Plant- and Site-Specific. Data for Uptake of Chlorinated Organic Compounds into Radish

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2015-01-01

    The uptake of organic pollutants by plants is an important process for the exposure of humans to toxic chemicals. The objective of this study was to calibrate the parameters of a common plant uptake model by comparison to experimental results from literature. Radish was grown in contaminated soil...... with default data and site-specific data were similar. Deposition from air was the major uptake mechanism into shoots. Transport from soil with resuspended particles was only relevant for the contaminated plot. The calculation results (in dry weight) were most sensitive to changes of the water content of plant...

  10. Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water

    International Nuclear Information System (INIS)

    Abral, H.; Kadriadi, D.; Rodianus, A.; Mastariyanto, P.; Ilhamdi; Arief, S.; Sapuan, S.M.; Ishak, M.R.

    2014-01-01

    Highlights: • Moisture absorption of water hyacinth (WH) fibers was measured. • WH fibers polyester composites immersed in water decreased mechanical properties. • Improvement fibers fraction in polyester increases mechanical properties. - Abstract: This study reported moisture absorption of untreated and treated individual water hyacinth (WH) fibers as well as comparison the mechanical properties of WH fibers – unsaturated polyester (UPR) matrix composites after and before immersion in water. The result shows that the individual WH fibers treated with various alkali concentration did not exhibit significantly decreases of their moisture absorption. SEM photograph in cross section of the treated WH fibers shows swollen cell wall containing more nano and micro hollows. Tensile and flexure strength of the wet composite samples are lower than that of dried ones. However, increases volume fraction of the WH fibers in UPR matrix affected slightly on enhancement mechanical properties of the composite samples

  11. Nitrogen uptake efficiency of irrigated wheat in Egypt

    International Nuclear Information System (INIS)

    Abdel Monem, M.A.S.

    2000-01-01

    Egypt's current wheat production would be impossible without N fertilizers, the consumption of which has increased more than 75% in the last 20 years. The efficiency of uptake of applied N is low, and better management of both fertilizer and irrigation is needed to improve N recovery by crops and reduce losses from the plant/soil system. Field trials were conducted over a 3-year period, on Egypt's three main soil types: old irrigated land of the Nile valley, newly reclaimed sandy and calcareous soils, and salt-affected soil of the north delta. The responses of wheat cultivars to N, and patterns of N uptake and N loss, as affected by irrigation regime, were examined using 15 N. Cultivar Sakha 69 was more responsive to applied N and assimilated N more efficiently than other varieties under different soil types. Nitrogen loss from the sandy soil was as high as 57% whereas average loss in the clay soil was 17%. A higher water table in the salt-affected soil negatively affected N uptake. Irrigation with 75% of the required water for wheat had no effect on yield or N-uptake. (author)

  12. Studies in uptake and turnover of tritiated water vapour (HTO) by vegetables. Untersuchungen zur Aufnahme und zum Umsatz von tritiiertem Wasserdampf (HTO) in Gemuesepflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Roller, M.

    1989-02-01

    The aerial parts of vegetables were exposed to tritiated water vapour for up to three days in a plant growth chamber. The species used were Raphanus sativus L., Phaseolus vulgaris K. and Daucus carota L. (red radish, bean and carrot). The increase of specific activity of tissue free water as collected by freeze drying which was observed in the aerial parts of plants is explained by direct uptake of tritiated water vapour by the exposed part of the plant. It shows different characteristics for the several organs. No translocation of water from the laminae into other parts of the plant was observed. After combustion of dry matter tritium activity was detectable in the oxidation water for all parts of the plants. Kinetics of the specific activity of organically bound tritium in leaves can be described by a single curve. The lower - steep - part of the curve is increasing approximately with the uptake rate of HTO; this is explained by reversible binding of tritium by isotopic exchange reactions. The upper - flat - part of the curve represents tritium bound by light dependent reducing reactions of photosynthesis; it is increasing with a rate similar to the growth rate of leaves. (orig./KG).

  13. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  14. Thermodynamic properties of water in the critical region

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.

    2009-01-01

    The supercritical-water-cooled reactor (SCWR) is one of the nuclear reactor technologies selected for research and development under the Generation IV program. SCWRs offer the potential for high thermal efficiencies and considerable plant simplifications for improved economics. One of the main characteristics of critical water is the strong variations of its thermal-physical properties in the vicinity of the critical point. These large variations may result in an unusual heat transfer behavior. The 1967 IFC Formulation for Industrial Use, which until 1998 formed the basis of steam tables used in many areas of steam power industry throughout the world since the late 1960's, has been now replaced with the IAPWS IF-97 Formulation for the Thermodynamic Properties of Water and Steam for Industrial Use, adopted by the International Association for the Properties of Water and Steam (IAPWS) in 1997. An IAPWS release points out that this new formulation has some unsatisfactory features in the immediate vicinity of the critical point. In order to investigate this singular aspect, which is crucial to better understand the heat transfer mechanism in a SCWR system, predictions by the IAPWS-IF97 formulation will be compared with thermodynamic properties values predicted by an alternative crossover equation of state as well as with experimental data found in literature. (author)

  15. A comparative study on the uptake and translocation of organochlorines by Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    San Miguel, Angélique; Ravanel, Patrick [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France); Raveton, Muriel, E-mail: muriel.raveton@ujf-grenoble.fr [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France)

    2013-01-15

    Highlights: ► This study compares uptake/translocation of organochlorine congeners in macrophytes. ► First, root OC uptake was strongly linked with the partitioning/diffusion process. ► With time exposure, bioconcentration increased with OC solubility and volatility. ► Translocation was linked to the combination of water flow and vapor flux transfers. ► The most volatile OCs might be phytovolatilized from foliar surfaces. -- Abstract: Organochlorines (OCs) are persistent chemicals found in various environmental compartments. The differences in the uptake of {sup 14}C-labeled 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and γ-hexachlorocyclohexane (γHCH) by Phragmites australis were investigated under hydroponic conditions. The first step in sorption appears to be correlated with the hydrophobic nature of the compounds, since log-linear correlations were obtained between root concentration factor and partition coefficient (LogK{sub ow}). After 7 days of exposure, plant uptake of DCB, TCB, γHCH was significant with bioconcentration factors reaching 14, 19 and 15, respectively. Afterwards, uptake and translocation were seen to be more complex, with a loss of the simple relationship between uptake and LogK{sub ow}. Linear correlations between the bioconcentration/translocation factors and the physico-chemical properties of OCs were shown, demonstrating that translocation from roots to shoots increases with solubility and volatility of the OCs. This suggests that OC-translocation inside plants might result from the combination of two processes, xylem sap flow and vapor fluxes. {sup 14}C-phytovolatilization was measured and was correlated with the volatility of the compounds; the more volatile OCs being most the likely to be phytovolatilized from foliar surfaces (p = 0.0008). Thus, OC-uptake/translocation appears to proceed at a rate that depends mostly on the OCs hydrophobicity, solubility and volatility.

  16. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  17. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  18. Beneficial Use of Produced Water from Oil and Gas Operations for Agriculture: Effects on Crop Health and Crop Uptake of Contaminants

    Science.gov (United States)

    Sedlacko, E.; Blaine, A. C.; Haynes, K. M.; Higgins, C. P.

    2016-12-01

    The balance between water conservation and energy generation is difficult to maintain. Oil and gas (O&G) companies look to dispose of produced water in safe, economical ways, while farmers desperate for water seek plentiful sources to maintain their fields. The solution seems simple—purify the water from O&G operations and deliver it to the farmers for irrigation to ensure a reliable source of food. Unfortunately, little research has been conducted to date that could provide purification guidelines, risk warnings, or standard methods for how to implement this solution. In addition, multiple barriers to implementation including regulatory, economic, liability, and social license considerations, must be addressed. This presentation contains data regarding the uptake of compounds two crops, Triticum aestivum (spring wheat) and Helianthus annus (sunflower), grown in a controlled greenhouse environment and irrigated with different dilutions of raw and treated produced water from O&G operations. Differences in plant height, plant color, leaf area, and plant mass were examined, and additional laboratory analyses were conducted on the plants to detect uptake of inorganic and organic substances. Plant stress was also assessed both qualitatively and through plant hormone analysis. In addition, this project provided the opportunity for K-12 teachers to become involved in university research through a new National Science Foundation Research Experience for Teachers (RET) program at Colorado School of Mines. The subsequent impacts of this food-energy-water nexus research on local communities and local STEM curricula via the RET program will also be highlighted.

  19. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    Science.gov (United States)

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  20. Uptake of cadmium from hydroponic solutions by willows (Salix spp ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2011-11-16

    Nov 16, 2011 ... which indicated that cadmium uptake across the plasma membrane was ... to cadmium pollution in water-soil-plant systems because .... plants were separated into roots and shoots, blotted dry with paper tissue .... Analysis of the kinetic constants for cadmium uptake ..... proteins (Welch and Norvell, 1999).

  1. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Science.gov (United States)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  2. Simple mass transport model for metal uptake by marine macroalgae growing at different rates

    Energy Technology Data Exchange (ETDEWEB)

    Rice, D.L.

    1984-01-01

    Although algae growing at different rates may exhibit different concentrations of a given metal, such differences in algal chemistry may or may not reflect actual effects of environmental growth factors on the kinetics of metal uptake. Published data on uptake of rubidium, cadmium, and manganese by the green seaweed Ulva fasciata Delile grown at different rates in open system sea water was interpreted using the model. Differences in exposure time to sea water of relatively old and relatively young thalli were responsible for significant decreases in algal rubidium and cadmium concentrations with increases in specific growth rate. The biomass-specific growth rates of uptake of these two metals did not vary with growth rate. Both algal concentrations and specific rates of uptake of manganese increase significantly with increasing growth rate, thus indicating a distinct link between the kinetics of manganese uptake and metabolic rate. Under some circumstances, seaweed bioassay coupled with an interpretive model may provide the only reasonable approach to the study of chemical uptake-growth phenomena. In practice, if the residence time of sea water in culture chambers is sufficiently low to preclude pseudo-closed system artifacts, differences in trace metal concentrations between input and output sea water may be difficult to detect. In the field and in situ experiments based on time-series monitoring of changes in the water chemistry would be technically difficult or perhaps impossible to perform. 13 references, 1 figure.

  3. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  4. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water

    KAUST Repository

    Towsif Abtab, Sk Md; Alezi, Dalal; Bhatt, Prashant; Shkurenko, Aleksander; Belmabkhout, Youssef; Aggarwal, Himanshu; Weselinski, Lukasz Jan; Alsadun, Norah Sadun; Samin, Umer; Hedhili, Mohamed N.; Eddaoudi, Mohamed

    2018-01-01

    Summary Hydrolytically stable adsorbents, with notable water uptake, are of prime importance and offer great potential for many water-adsorption-related applications. Nevertheless, deliberate construction of tunable porous solids with high porosity and high stability remains challenging. Here, we present the successful deployment of reticular chemistry to address this demand: we constructed Cr-soc-MOF-1, a chemically and hydrolytically stable chromium-based metal-organic framework (MOF) with underlying soc topology. Prominently, Cr-soc-MOF-1 offers the requisite thermal and chemical stability concomitant with unique adsorption properties, namely extraordinary high porosity (apparent surface area of 4,549 m2/g) affording a water vapor uptake of 1.95 g/g at 70% relative humidity. This exceptional water uptake is maintained over more than 100 adsorption-desorption cycles. Markedly, the adsorbed water can be fully desorbed by just the simple reduction of the relative humidity at 25°C. Cr-soc-MOF-1 offers great potential for use in applications pertaining to water vapor control in enclosed and confined spaces and dehumidification.

  5. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water

    KAUST Repository

    Towsif Abtab, Sk Md

    2018-01-11

    Summary Hydrolytically stable adsorbents, with notable water uptake, are of prime importance and offer great potential for many water-adsorption-related applications. Nevertheless, deliberate construction of tunable porous solids with high porosity and high stability remains challenging. Here, we present the successful deployment of reticular chemistry to address this demand: we constructed Cr-soc-MOF-1, a chemically and hydrolytically stable chromium-based metal-organic framework (MOF) with underlying soc topology. Prominently, Cr-soc-MOF-1 offers the requisite thermal and chemical stability concomitant with unique adsorption properties, namely extraordinary high porosity (apparent surface area of 4,549 m2/g) affording a water vapor uptake of 1.95 g/g at 70% relative humidity. This exceptional water uptake is maintained over more than 100 adsorption-desorption cycles. Markedly, the adsorbed water can be fully desorbed by just the simple reduction of the relative humidity at 25°C. Cr-soc-MOF-1 offers great potential for use in applications pertaining to water vapor control in enclosed and confined spaces and dehumidification.

  6. Uptake and loss of dissolved zinc by the stickleback gasterosteus Aculeatus l. [Zinc 65

    Energy Technology Data Exchange (ETDEWEB)

    Matthiessen, P.; Brafield, A.E.

    1977-01-01

    Uptake and loss by sticklebacks of both stable zinc and /sup 65/Zn in hard and soft water were studied for periods up to 400 h. In calcium-free water, the zinc uptake curve is approximately asymptotic over a period of 24 h, while in hard water internal Zn levels dropped at 24 h. Over 5 h, fish in hard tapwater absorb about 3 to 5 times more Zn than those in calcium-free water. There is positive linear correlation between log Zn uptake and log wet weight of fish. Whole-body concentration factors (c.f.) at 16 h reach a maximum of 12.2 (mean = 2.9), highest concentrations of Zn being found in the gills (mean c.f. = 5.1), and lowest concentrations in the gonads (mean c.f. = 0.8). Over longer periods (400 h), internal stable zinc levels of fish exposed to 1 and 4 ppM Zn/sup +2/ remain little higher than controls (max. 28%) /sup 65/Zn efflux in zinc-free water falls to zero after 5 h, more zinc (78%) being lost after uptake in tapwater than in calcium-free water (56%).

  7. Practical Suggestions for Calculating Supercritical Water-Steam Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    A standard procedure for determining water-steam properties has been established through an international collaboration in addition to a domestic effort. The current accepted international standard for industrial application is based on the IAPWS-IF97 (International Association for the Properties of Water and Steam-Industrial Formation 97). Based on this standard, the ASME (American Society of Mechanical Engineers)/NIST (National Institute of Standard and Technology) developed the REPROP program in the USA, and the JSME (Japan Society of Mechanical Engineers) developed the steam table and calculation code. Upon applying this standard procedure, modified procedures were proposed for computational convenience, particularly in the supercritical pressure region where non-smooth variations of water-steam properties were distinctively observed. In this paper, the internationally adopted procedures and the progress of related activities are briefly summarized. Some practical considerations are presented for the efficient execution of computational code.

  8. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    Science.gov (United States)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  9. Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters.

    Science.gov (United States)

    Gao, Meng; Zhai, Peng-Wang; Franz, Bryan; Hu, Yongxiang; Knobelspiesse, Kirk; Werdell, P Jeremy; Ibrahim, Amir; Xu, Feng; Cairns, Brian

    2018-04-02

    Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths. Ocean optical properties are characterized by a generalized bio-optical model with direct accounting for the absorption and scattering of phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles (NAP). Our retrieval algorithm can accurately determine the water-leaving radiance and aerosol properties for coastal waters, and may be used to improve the atmospheric correction when apply to a hyperspectral ocean color instrument.

  10. Uptake and elimination of radiotungsten in black bullheads

    International Nuclear Information System (INIS)

    Reed, J.R.

    1975-01-01

    Black bullheads, Ictalurus melas (Rafinesque), accumulated radiotungsten from food and water. Whole-body activity reached a plateau after the fish had been in tagged water 4 days (mean temperature 154 0 C). Whole-body elimination of radiotungsten varied with the method of uptake. Fish that had accumulated radiotungsten from water had a single exponential component of elimination with a biological half-life of 2.75 days. Fish that had received radioisotope in a single feeding lost activity at two rates; one component had a biological half-life of 14 hr and the second 6 days. The bone, skin, flesh, blood, and gills contained the greatest percentages of whole-body activity after 1 day of uptake from tagged water; after 8 days, the flesh, gills, bone, and gut together contained 78.6 percent of the total activity. The bone had the longest biological half-life (8.0 days) of the tissues examined and contained 69.8 percent of the whole-body acitivty after 16 days of elimination

  11. Water absorption and mechanical properties of water-swellable natural rubber

    Directory of Open Access Journals (Sweden)

    Diew Saijun

    2009-11-01

    Full Text Available Water-swellable rubber (WSR was prepared by blending superabsorbent polymer (SAP of crosslinked poly(acrylamide-co-sodium acrylate with natural rubber in latex condition. The crosslinked poly(acrylamide-co-sodium acrylate was first prepared by inverse suspension polymerization from acrylamide and sodium acrylate monomers with potassiumpersulfate initiator and N,N-methylenebisacrylamide crosslinker. The reaction was carried out at 60oC for 40 mins. Water absorption properties, such as the degree of water absorption, water absorption rate, degree of weight loss, and mechanicalproperties of WSR were then investigated. It was found that the degree of water absorption, water absorption rate, and thedegree of weight loss increased, while tensile strength and elongation at break decreased with increasing quantity of SAP inthe blends. However, the degree of water absorption, degree of weight loss, and elongation at break decreased, but tensilestrength increased with increasing quantity of the N-tert-butyl-2-benzothiazyl sulphenamide (TBBS accelerator used in thecompounds formulation.

  12. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  13. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  14. Corrosion and deuterium uptake of Zr-based alloys in supercritical water

    International Nuclear Information System (INIS)

    Khatamian, D.

    2010-01-01

    To increase the thermodynamic efficiency above 40% in nuclear power plants, the use of supercritical water as the heat transport fluid has been suggested. Zircaloy-2, -4, Zr-Cr-Fe, Zr-1Nb and Zr-2.5Nb were tested as prospective fuel cladding materials in 30 MPa D 2 O at 500 o C. Zircaloy-2 showed the highest rates of corrosion and hydriding. Although Zr-Cr-Fe initially showed a very low corrosion rate, it displayed breakaway corrosion kinetics after 50 h exposure. The best-behaved material both from a corrosion and hydrogen uptake point of view was Zr-2.5Nb. However, the Zr-2.5Nb oxide growth rate was still excessive and beyond the current CANDU design allowance. Similar coupons, coated with Cr, were also tested. The coated layer effectively prevented oxidation of the coupons except on the edges, where the coating was thinner and had some flaws. In addition, the Cr-coated Zr-2.5Nb coupons had the lowest deuterium pickup of all the alloys tested and showed no signs of accelerated or nonuniform corrosion. (author)

  15. The uptake of uranium and radium from food and water in relation to calcium

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1988-01-01

    Observed ratios for dietary radium and calcium suggest that at least a 20 to 70 fold discrimination exists against radium uptake in the skeleton relative to calcium. It has been widely shown in many countries around the world that the relative radium to calcium ratio in the human skeleton varies from country to country, but within geographic areas, it appears to be relatively invariant with age. The ratio of radium-226 to calcium in intake, relative to the radium-226 to calcium value in the skeleton, is called the observed ratio, and varies over the world from a value of 0.013 to 0.039, with a mean of 0.024. In 1975, I inferred a mean observed ratio for uranium of 0.057 for the US. These findings suggest that man is in equilibrium with radium-226 with respect to the calcium in food and water. Most of the calcium would be ingested in diet, as would a significant amount, but not necessarily all, of the radium. The role of calcium for intake in water has not been examined

  16. Effect of Mineral and Humic Substances on Tailing Soil Properties and Nutrient Uptake by Pennisetum purpureum Schumach

    Directory of Open Access Journals (Sweden)

    Adhe Phoppy Wira Etika

    2015-05-01

    Full Text Available Tin mining produces a by-product sand tailing from soil leaching with characteristic low pH and total organic carbon, and can be reclaimed by providing a suitable ameliorant. When available in situ, ameliorant materials can be economically used as they are required in large amounts. Fortunately, Bangka Belitung has sample stock of such kaolinite-rich minerals that can be utilized for improving soil chemical properties. Extracted organic materials, such as humic substances, can also be utilized as they influence the complex soil reactions, and promote plant growth. Thus, this study aimed to assess the effects of mineral, humic materials and interaction of both material on soil chemical properties and nutrient uptake of Pennisetum purpureum Schumach. A completely randomized design with 2 factors and 3 replications each was employed. Factor 1 was mineral matter is 0; 420; 840; 1.260 Mg ha-1 while Factor 2 was humic material is 0; 0.46; 0.92; 1.38 kg C ha-1. Air-dried samples of tailing were applied with oil palm compost then mixed evenly with mineral and humic materials. Penissetum purpureum Schumach was planted after 4 weeks incubation, and maintained for another 4 weeks. The results demonstrated that the addition of mineral matter significantly increased soil organic carbon content, total N, exchangeable K, Fe, Mn and boosted nutrient - total Ca, Mg and Mn – uptake of the plant. But the application of humic material increased only soil organic carbon content. The interaction of both materials only lowered soil pH.

  17. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    Science.gov (United States)

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach

    Directory of Open Access Journals (Sweden)

    V. Couvreur

    2012-08-01

    Full Text Available Many hydrological models including root water uptake (RWU do not consider the dimension of root system hydraulic architecture (HA because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution SSF, the root system equivalent conductance Krs and the compensatory RWU conductance Kcomp. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation.

  19. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, Jr, J P; Paine, D [Savannah River Ecology Lab., Aiken, S.C. (USA)

    1978-01-01

    The uptake of americium by three algae, Scenedesmus obliguus, Selenastrum capricomutum and Chlorella pyrenosdosa and a bacterium Aeromonas hydrophila was studied. Live and fixed cells of each algal species and live bacterial cells were used. It is shown that algae and bacteria concentrate americium 241 to a high degree which makes them important links in the biomagnification phenomenon which may ultimately lead to a human hazard and be potentially important in recycling Am /sup 241/ in the water column and mobilization from sediments. Chemical fixation of algal cells caused increased uptake which indicated that uptake is by passive diffusion and probably due to chemical alteration of surface binding sites.

  20. Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis)

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Matthew S.; Vikesland, Peter J. [Virginia Tech Department of Civil and Environmental Engineering, Blacksburg, VA (United States); Virginia Tech Institute for Critical Technology and Applied Science (ICTAS) (United States); Virginia Tech Center for Sustainable Nanotechnology (VT SuN) (United States); Center for the Environmental Implications of Nanotechnology (CEINT) (United States); Schultz, Irvin R., E-mail: ir_schultz@pnl.gov [Battelle Pacific Northwest National Laboratory (PNNL), Marine Sciences Laboratory, Sequim, WA (United States)

    2013-09-15

    Highlights: •We measured uptake of two types of nanomaterials in a marine mussel. •Uptake from water was rapid and complete in less than 24 h. •Only particles suspended in the water appeared to be absorbed. •Most absorbed nanomaterial was concentrated in the digestive gland. -- Abstract: We measured the uptake, distribution and elimination of two types of metallic nanoparticles (MetNPs) by the aquatic mussel Mytilus galloprovincialis in static seawater column exposures. Test MetNPs included polyethylene glycol (PEG) functionalized Fe{sub 3}O{sub 4} nanoparticles (PEG-FeOxNP) and PEG-functionalized cadmium-selenide quantum dots (PEG-Qdot). Exposure water was sampled at various times to assess MetNP clearance, and mussels were serially euthanized to assess uptake of MetNPs into the hemolymph, digestive gland, and remaining carcass. Results indicated that >90% of both types of MetNPs were taken up by mussels within 8 h of initial exposure. Nearly the entire retained dose of FeOxNPs and PEG-Qdots was deposited in the digestive gland. Our results provide important insights on the uptake and elimination kinetics of MetNPs in filter-feeding marine bivalves, and will be useful for subsequent development of toxicokinetic models to predict the kinetics of these processes.

  1. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    Science.gov (United States)

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

  2. Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport

    DEFF Research Database (Denmark)

    Nielsen, Robert; Larsen, Erik Hviid

    2007-01-01

    (V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased delta......C(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.......Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1...

  3. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  4. Water Property Models as Sovereignty Prerogatives: European Legal Perspectives in Comparison

    Directory of Open Access Journals (Sweden)

    Dario Casalini

    2010-08-01

    Full Text Available Water resources in European legal systems have always been vested in sovereign power, regardless of their legal nature as goods vested in State property or as res communes omnium not subject to ownership. The common legal foundation of sovereign power over water resources departed once civil law jurisdictions leveled the demesne on ownership model, by introducing public ownership in the French codification of 1804, while common law jurisdiction developed a broader legal concept of property that includes even the rights to use res communes. The models led respectively to the establishment of administrative systems of water rights and markets of water rights. According to the first, public authorities’ power to manage and preserve water resources is grounded in a derogatory regime, whereby water rights, grounded on licenses or concessions, are neither transferable nor tradeable. On the contrary, environmental and social concerns in water market schemes must be enforced by means of regulation, thus limiting private property rights on water, in compliance with the constitutional and common law constraints set out to protect the minimum content of property as a fundamental human right.

  5. Prediction of cesium-134 and strontium-85 crop uptake based on soil properties

    International Nuclear Information System (INIS)

    Roca, M.C.; Vallejo, V.R.; Roig, M.; Tent, J.; Vidal, M.; Rauret, G.

    1997-01-01

    Nowadays, there is still the need to improve the quantification of parameters that affect radionuclide mobility. With this aim, radiocesium and radiostrontium soil-to-plant transfer was measured in lysimeters in a Calcic Luvisol, loamy soil and in a Fluvisol, loam-sandy soil, using lettuce [Lactuca sativa L. cv. Kinemontepas] and pea plants [Pisum sativum L. cv. Kelvedon Wonder]. Weighted Concentration Ratios (WCR), expressed as kg soil/kg plant, were calculated for different growth stages. Weighted Concentration Ratios were in general higher for 85Sr than for 134Cs, and also higher in the loam-sandy than in the loamy soil. To predict plant uptake, we evaluated a set of soil properties to define a prediction factor for the relative transfer in the two soils using cation exchange capacity (CEC) and radionuclide available fraction (fav) for radiostrontium, and soil solution composition, solid-liquid distribution coefficient, and radionuclide available fraction for radiocesium. The ratios of WCR in the loam-sandy and loamy soil were compared with the prediction factor. There was good agreement in lettuce for 85Sr (ratio of WCR was 5.4 for seedling and 3.9 for commercial samples, whereas prediction factor was 3.1) and for 134Cs (ratio of WCR was 5.1 for seedling and 5.5 for commercial samples, the prediction factor being 5.1), although for pea only the relative root uptake of radiocesium in seedling pea was well predicted (the ratio of WCR was 8.8, the prediction factor being 9.1). These soil parameters improved former predictions based solely on the fav, although factors depending on plant physiology should be better evaluated

  6. Tritium uptake in rainbow trout (Oncorhynchus mykiss): HTO and OBT-spiked feed exposures simultaneously

    International Nuclear Information System (INIS)

    Kim, S.B.; Shultz, C.; Stuart, M.; Festarini, A.

    2015-01-01

    There is currently considerable interest in organically bound tritium (OBT) formation in edible fish. The major questions revolve around whether or not tritium can accumulate in fish after being released into aquatic environments. Since OBT formation rates in large, edible fish are poorly understood, rainbow trout (Oncorhynchus mykiss) studies, where fish were simultaneously exposed to tritiated water (HTO) and OBT-spiked feed over 130 days, were conducted to evaluate tritium uptake. The measured HTO activity concentrations in fish tissue confirmed that HTO in fish tissue equilibrates quickly with HTO in tank water. The data obtained also confirmed that OBT uptake is faster when fish are ingesting OBT-spiked feed compared to when fish are living in tritiated water (and consuming non-OBT-spiked feed). The difference between the two exposure types is such that the groups exposed to tritiated water and OBT-spiked feed simultaneously were showing the same uptake rates as OBT-spiked feed only exposures. Contrary to what was expected, the rate of OBT uptake (from OBT-spiked feed) seemed to be higher in slow growing fish compared to fast growing fish. Another observation from these studies was that OBT activity concentrations in all organs (viscera) had a tendency to be higher than OBT activity concentrations measured in fish flesh. - Highlights: • Edible size of rainbow trout (Oncorhynchus mykiss) were simultaneously exposed to tritiated water (HTO) and OBT-spiked feed over 130 days. • OBT uptake is faster when fish are ingesting OBT-spiked feed compared to when fish are living in tritiated water (and consuming non-OBT-spiked feed). • The rate of OBT uptake (from OBT-spiked feed) seemed to be higher in slow growing fish compared to fast growing fish

  7. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake

    International Nuclear Information System (INIS)

    Batty, Lesley C.; Younger, Paul L.

    2004-01-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H + ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development

  8. Influence of soil agrochemical properties for 90Sr uptake by cereals in radioactive contaminated zone

    International Nuclear Information System (INIS)

    Putyatin, Yu.V.; Vetrova, N.N.

    2001-05-01

    The adequate estimation of necessity of carrying out of protective measures is one of most prominent aspects of conducting agro-industrial production in a period after Chernobyl NPP failure in conditions of a deficit of the investments. The problem of diminution of dose loadings on the population is solved first of all by complex of agricultural protective measures, as about 70 percents of a collective dose is shaped at the expense of entering radionuclide uptake of in an organism with foodstuff. The application of protective measures in agriculture allows essentially to lower the radionuclide content in foodstuff. The liming, extra rates of potassium and phosphorus fertilizers are basic elements of the plant production technology in radioactive contaminated zone, which results in essential change of soil agrochemical properties. Main purpose of the study was on the basis of the experimental data to establish threshold soil parameters, which excess does not provide of 90 Sr uptake reduction in grain. The mathematical processing of results of 90 Sr radiochemical analysis with samples of sod-podsolic loamy sand soil and cereals selected from trial plots of Gomel and Mogilev regions has shown, that the inhibiting action of 90 Sr uptake decrease in grain is noted at pH (1N KCl) - 6,4 for rye, spring wheat -- 6,7, barley -- 6,7. The quantity of reliability of approximating -R 2 for rye has made 0,55, summer wheat 0,49 and barley 0,72. As a whole, the levels of soil acidity correspond to optimal parameters for production of maximal yields. The liming of soil by dolomite is accompanied with rising of exchangeable Ca and Mg contents. The correlation analysis has shown, that R 2 for the Ca content in soil and 90 Sr accumulation by rye was -- 0,38, spring wheat -- 0,69 and barley -- 0,47. The impairment of influence of calcium concentration of soil is noted at 1420 ppm for rye and 781 ppm Ca for barley. For exchangeable Mg is noted limits for rye --140(R 2 -- 0.54), spring

  9. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd E A T M; Berendse, Frank; Robroek, Bjorn J M

    2014-07-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown. We experimentally assessed the importance of precipitation frequency for Sphagnum water supply and carbon uptake during a stepwise decrease in water tables in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species (Sphagnum majus, Sphagnum balticum and Sphagnum fuscum) representative of three hydrologically distinct peatland microhabitats (hollow, lawn and hummock) and expected to differ in their water table-precipitation relationships. Precipitation contributed significantly to peatmoss water supply when the water table was deep, demonstrating the importance of precipitation during drought. The ability to exploit transient resources was species-specific; S. fuscum carbon uptake increased linearly with precipitation frequency for deep water tables, whereas carbon uptake by S. balticum and S. majus was depressed at intermediate precipitation frequencies. Our results highlight an important role for precipitation in carbon uptake by peatmosses. Yet, the potential to moderate the impact of drought is species-specific and dependent on the temporal distribution of precipitation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. An improved approach for remotely sensing water stress impacts on forest C uptake.

    Science.gov (United States)

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought. © 2014 John Wiley & Sons

  11. Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, Federico J.; Corti, Horacio R. [Grupo de Pilas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Av. General Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Buera, M. Pilar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n, Ciudad Universitaria (1428) Buenos Aires (Argentina)

    2010-10-01

    The thermal properties of phosphoric acid-doped poly[2-2'-(m-phenylene)-5-5' bi-benzimidazole] (PBI) and poly[2,5-benzimidazole] (ABPBI) membranes, ionomeric materials with promising properties to be used as electrolytes in direct methanol and in high temperature polymer electrolyte membrane (PEM) fuel cells, were studied by means of differential scanning calorimetry (DSC) technique in the temperature range from -145 C to 200 C. The DSC scans of samples equilibrated in water at different relative humidities (RH) and in liquid water-methanol mixtures were analyzed in relation to glass transition, water crystallization/melting and solvent desorption in different temperature regions. The thermal relaxation observed in the very low temperature region could be ascribed to the glass transition of the H{sub 3}PO{sub 4}-H{sub 2}O mixture confined in the polymeric matrix. After cooling the samples up to -145 C, frozen water was detected in PBI and ABPBI at different RH, although at 100% RH less amount of water had crystallized than that observed in Nafion membranes under the same conditions. Even more important is the fact that the freezing degree of water is much lower in ABPBI membranes equilibrated in liquid water-methanol mixtures than that observed for PBI and, in a previous study, for Nafion. Thus, apart from other well known properties, acid-doped ABPBI emerges as an excellent ionomer for applications in direct methanol fuel cells working in cold environments. (author)

  12. Gallium-67-labeled lactam bridge-cyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake.

    Science.gov (United States)

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-06-20

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of (67)Ga-DOTA-GGNle-CycMSHhex {(67)Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (67)Ga-NOTA-GGNle-CycMSHhex {(67)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and compare with (67)Ga-DOTA-GlyGlu-CycMSH {(67)Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM) in B16/F1 melanoma cells. Both (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than (67)Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, (67)Ga-NOTA-GGNle-CycMSHhex exhibited more favorable radiolabeling conditions (>85% radiolabeling yields started at 37 °C), as well as higher tumor/kidney uptake ratios than (67)Ga-DOTA-GGNle-CycMSHhex at 0.5, 2, and 24 h postinjection. High melanoma uptake coupled with low renal uptake highlighted the potential of (67)Ga-NOTA-GGNle-CycMSHhex for melanoma imaging and therapy.

  13. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Wieser, Gerhard; Metzger, Ursula; Loew, Markus; Wipfler, Philip; Haeberle, Karl-Heinz; Matyssek, Rainer

    2007-01-01

    Whole-tree O 3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O 3 flux. O 3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O 3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O 3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O 3 uptake reflects similar responsiveness of canopy conductance and O 3 uptake across contrasting tree species and site conditions

  14. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  15. Water content of aged aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2011-02-01

    Full Text Available The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008. A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH as low as 20%. The aerosol was acidic during most of the measurement campaign, which likely contributed to the water uptake at low RH. The water content observations were compared to the thermodynamic model E-AIM, neglecting any contribution of the organics to aerosol water content. There was good agreement between the water measurements and the model predictions. Adding the small amount of water associated with the organic aerosol based on monoterpene water absorption did not change the quality of the agreement. These results strongly suggest that the water uptake by aged organic aerosol is relatively small (a few percent of the total water for the conditions during FAME-08 and generally consistent with what has been observed in laboratory experiments. The water concentration measured by a Q-AMS was well correlated with the DAASS measurements and in good agreement with the predicted values for the RH of the Q-AMS inlet. This suggests that, at least for the conditions of the study, the Q-AMS can provide valuable information about the aerosol water concentrations if the sample is not dried.

  16. Uptake of radionuclides by wheat roots with respect to location of contamination below the surface

    International Nuclear Information System (INIS)

    Suvornmongkhol, Narumon.

    1996-01-01

    The behaviour of 85 Sr, 137 Cs, 54 Mn and 60 Co in terms of plant availability in near surface soil and their root uptake was studied as a function of the location of contamination in the soil profile. Wheat (Triticum aestivum) was employed and the study programme involved both column and hydroponic studies. In the column studies, columns were packed with sandy soil, and either homogeneously or discretely contaminated with the radionuclides, and the water table maintained manually at 3 cm from the bottom. In the discrete contamination, the location of contamination was varied (0-5, 25-30 or 45-50 cm from the top). Wheat plants were grown to maturity in these columns, and harvested at different growth stages to examine radioactivity uptake and its subsequent translocation within the plants. The movement of radionuclides within the soil as well as the soil physicochemical properties were also investigated. The short term uptake kinetics of the hydroponically grown plants during ontogenesis were also studied, both with excised roots and intact plants. The excised root experiment was aimed at investigating the radionuclide by roots of different orders. (author)

  17. Microbiological and Physicochemical Properties of Drinking Water at ...

    African Journals Online (AJOL)

    Quality drinking water is of basic importance to human physiology and man's continued existence depends much on its availability. Water samples from different outlets and homes in Ado Odo - Ota Local Government, Ogun state, Nigeria were analyzed for their microbiological and physiochemical properties. Total viable ...

  18. Properties enhancement of cassava starch based bioplastics with addition of graphene oxide

    Science.gov (United States)

    Amri, A.; Ekawati, L.; Herman, S.; Yenti, S. R.; Zultiniar; Aziz, Y.; Utami, S. P.; Bahruddin

    2018-04-01

    The properties of cassava starch based bioplastic have been successfully enhanced by additioning of graphene oxide (GO) filler. The composite was synthesized via starch intercalation method using glycerol plasticizer with variation of 5 – 15 % v/v GO filler and mixing time of 30 and 60 minutes. The effects of GO content and the mixing time to the mechanical, water uptake and biodegradation were studied. The synthesis of GO and its integration in the bioplastic composite were also elucidated. The increasing of the GO content and mixing time improved the mechanical properties of composite mainly due to of good homogeneity among the constituents in the composite as indicated by scanning electron microscopy (SEM) and Fourier Transfom Infrared (FTIR) spectroscopy. The bioplastic produced using 15% of GO and 60 minutes mixing time had the highest mechanical properties with tensile strenght of 3,92 Mpa, elongation of 13,22% and modulus young of 29,66 MPa. The water uptake and biodegradation increased as the increase of GO content and decreased as the increase of the mixing time. Graphene oxide is the promissing filler for further development of cassava starch based bioplastics.

  19. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  20. Effects of soil's properties on transfer of 137Cs to rice plants through plant uptake after soil deposition

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Hansoo; Kang, Hee-Seok; Jun, In; Choi, Yong-Ho; Lee, Chang-Woo

    2007-01-01

    This paper presents a dynamic compartment model to appraise the concentration of 137 Cs in agricultural plants as a result of a soil deposition. The present model used the Absalom model as a module to account for the effects of a soil's properties (pH, soil clay content, organic matter content, and exchangeable potassium) on a plant uptake, and the leaching and fixation process of 137 Cs in a soil. The model was tested by comparing the model predictions of the 137 Cs aggregated transfer factors for rice plants with those obtained as results of simulated 137 Cs soil deposition experiments with seventeen paddy soils of different properties, all of which were performed before a transplanting of the rice. Predicted 137 Cs TF a values of the rice plants were found to be comparable with those observed. (author)

  1. Effects of aminoisobutyric acid on 1-aminocyclopropane-1-carboxylic acid uptake, ethylene production and content of ACC in water-stressed tomato plants

    International Nuclear Information System (INIS)

    Kalantari, Kh.M.; Bolourani, P.

    2000-01-01

    The effect of water stress on the regulation of ethylene biosynthesis has not yet clearly been established. Both the formation and utilization of aminocyclopropane-1-carboxylic acid, ACC, are considered to be major regulatory points in ethylene biosynthesis. There is evidence that ACC synthase is the key control enzyme in response to various stimuli associated with the induction of ethylene biosynthesis. It has been reported that aminoisobutyric acid, AIB, inhibits ethylene production in some plants and AIB may inhibit the conversion of ACC to ethylene. For this reason, the possibility of inhibition of ACC uptake in the presence of AIB was examined. It was observed that the rate of 14 C-ACC uptake decreased with an increase in the concentration of AIB in the solution. Calculating the percentage of ACC converted to ethylene on the basis of uptake shows that AIB inhibits the conversion of 14 C-ACC to ethylene and that this inhibition is increased with an increase in the concentration of AIB in the solution. This suggests that a portion of the inhibition of the conversion of ACC to ethylene in the presence of AIB is partly due to the competition for absorption. However, the ability of AIB to inhibit ethylene production in leaf tissue without an exogenous supply of ACC clearly indicates that AIB inhibits ethylene production. The present study was undertaken to elucidate the regulation of ethylene biosynthesis in water-stressed plants and the results are discussed

  2. Water masses and property distribution in the EEZ of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; Singbal, S.Y.S.; George, M.D.

    Water masses and their properties have been studied in the Mauritian during September-October, 1987. Surface water is characterizEd. by two water masses: 1) a warm (temp. 27 degrees C) and relatively saline water (salinity 35.3 x 10 sup(-3)) which...

  3. Direct uptake of cobalt 60 by the carp (Cyprinus carpio L.) following experimental chronic or cyclical contamination of water

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Foulquier, L.

    1978-01-01

    Irrespective of the nature of experimental cobalt 60 contamination (chronic or cyclical), the activity level in the carp was highest after 32 or 35 days when the concentration factor reached 3. An analysis of cobalt 60 distribution shows preferential uptake by the kidneys. It therefore seems unlikely that the discharge rate of effluents from the nuclear industry and the resulting variations of radioactivity levels in the water significantly modify the impact of contamination on aquatic organisms [fr

  4. Ammonia-water system : Part I. Thermodynamic properties

    International Nuclear Information System (INIS)

    Goomer, N.C.; Dave, S.M.; Sadhukhan, H.K.

    1980-01-01

    The various thermodynamic properties which have direct bearing on design calculations and separation factor calculations for gaseous ammonia water system have been calculated and compiled in tabular form for easy reference. (auth.)

  5. NMR 1D-imaging of water infiltration into meso-porous matrices

    International Nuclear Information System (INIS)

    Le Feunteun, St.; Diat, O.; Podor, R.; Le Feunteun, St.; Poulesquen, A.; Poulesquen, A.

    2011-01-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO 3 (highly soluble) and/or BaSO 4 (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryo-poro-metry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. (authors)

  6. Seasonal dynamics of 60Co uptake by freshwater algae under natural conditions

    International Nuclear Information System (INIS)

    Koulikov, N.V.; Trapeznikov, A.V.

    1988-08-01

    The data presented in the present report show that the values of 60 Co uptake coefficient in freshwater algae under naturel conditions can change 5-6 times depending on seasons, reaching maximum values in summer. Specific activity of the radionuclide in water can be essentially changed depending on the nuclear power plant operation mode. In such a nonequilibrium system it is rather questionable to use the uptake coefficient as a constant parameter for the determination of the radionuclide specific activity in water [fr

  7. Plant uptake of americium, curium, and the chemical analog neodymium

    International Nuclear Information System (INIS)

    Weimer, W.C.; Laul, J.C.; Kutt, J.C.; Bondietti, E.A.

    1977-01-01

    The plant uptake from several bulk soils has been determined for neodymium, a chemical analog to the transuranium elements americium and curium, and several other native rare earth elements as well. These investigations have demonstrated that neodymium, which has very similar chemical properties to amercium and curium and should have a similar environmental behavior, does behave indistinguishably under both laboratory and field conditions. The uptake of the weathered or mobile forms of these elements from soils is expected to be governed primarily by their identical oxidation states and nearly identical ionic radii. This hypothesis is strongly supported by the chondritic (primordial) normalized rare earth element patterns in several plants. In these samples, the entire series of rare earth elements behaves as a smooth function of the REE ionic radii, as is also seen in the contiguous soils. This behavior suggests that the plant uptake of other ions with similar chemical properties (i.e., americium and curium) would also be governed by ionic size and charge

  8. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  9. Preliminary Study of Water Repellent Properties of Red Pepper Seed Oil

    Science.gov (United States)

    Kurniawan, F.; Madurani, K. A.; Wahyulis, N. C.

    2017-03-01

    The water-repellent properties of red pepper seed oil (capsicol) have been studied. The oil was coated on the glass surface by spray technique. Water repellent properties were performed by measuring the contact angle of water droplets. The measurement was conducted by varying the drying time of the oil coating at room temperature. The optimum contact angle of the droplets on the glass with capsicol coating is 46.77°, which can be achieved in 30 min of drying time. It also obtained the smallest diameter of the droplets (0.47 cm). The longer drying time decrease the contact angles and increases the diameter. The results were compared with the bare glass and commercial water repellent. The contact angle of the droplets on the glass surface with capsicol coating is higher than bare glass, but lower than glass with commercial water repellent coating. It means that capsicol has the water-repellent properties.

  10. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  11. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Escrevente, Cristina; Keller, Sascha; Altevogt, Peter; Costa, Júlia

    2011-01-01

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  12. A modified assay method for determining serotonin uptake in human platelets

    International Nuclear Information System (INIS)

    Arora, R.C.; Meltzer, H.Y.

    1981-01-01

    Effects of various experimental conditions on serotonin (5-HT) uptake in human platelets were examined. The experimental design allowed the evaluation of the effect of diffusion and other non-saturable processes on the affinity and maximum activity of the membrane pump for 5-HT uptake. Total 5-HT uptake was determined by incubating platelet-rich plasma (PRP) with increasing concentrations of serotonin at 37 0 C for 4 min. The passive uptake was measured by the addition of various 5-HT concentrations to PRP in buffer at 37 0 C, followed by immediate transfer to an ice-cold water bath. The difference between the total and passive uptake was linear for 6 min. The affinity (Ksub(m)) for active platelet serotonin uptake was 0.45 +- 0.09 μmol/l and maximal rate of uptake (V) was 10.7 +- 2.1 pmol/10 7 platelets/min. The described method provides a convenient and reliable measure of active 5-HT uptake suitable for clinical investigation. The effect of passive diffusion on kinetic parameters is discussed. (Auth.)

  13. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water.

    Science.gov (United States)

    Lu, Jian; Wu, Jun; Stoffella, Peter J; Wilson, P Chris

    2015-01-01

    The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Differential water sorption studies on Kevlar 49 and As-polymerized poly(p-phenylene terephthalamide): determination of water transport properties.

    Science.gov (United States)

    Mooney, Damian A; MacElroy, J M Don

    2007-11-06

    Water vapor sorption experiments have been conducted on Kevlar 49 at 30 degrees C over a range of water vapor pressures in 0-90% of saturation and on the as-polymerized form of the material at 30, 45, and 60 degrees C over a series of water vapor pressures of 0-60%, 0-25%, and 0-15%, respectively. For each of the differential steps in water vapor pressure, dynamic uptake curves were generated and analyzed according to a number of different mathematical models, including Fickian, Coaxial cylindrical, and intercalation models. The intercalation model was demonstrated to be the most successful model and considered two time-scales involved in the diffusion process, i.e., a penetrant-diffusive time-scale and a polymer-local-matrix-relaxation time-scale. The success of this model reinforces previously reported adsorption and desorption isotherms which suggested that water may penetrate into the surface layers of the polymer crystallite through a process known as intercalation.

  15. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  16. Effect of exercise and obesity on skeletal muscle amino acid uptake

    International Nuclear Information System (INIS)

    Friedman, J.E.

    1988-01-01

    To determine if amino acid uptake by muscle of the obese Zucker rat is impaired, epitrochlearis (EPI) and soleus strip (SOL) muscles from 32 pairs of female lean (Fa/-) and obese (fa/fa) Zucker rats were incubated using [ 14 C]α-aminoisobutyric acid (AIB). Because contractile activity also influences amino acid uptake, the effect of acute endurance exercise on amino acid uptake by skeletal muscle from lean and obese rats was also studied. Muscle wet and dry weights were similar in lean and obese rats. However, both muscle protein content and concentration from obese rats were significantly reduced. In preliminary studies, pinning EPI at resting length during incubation significantly increased AIB uptake and reduced muscle water accumulation. AIB uptake was similar in stripped and intact SOL. Lean and obese rats were studied at rest or following a 1 hr treadmill run at 8% grade Muscles were pinned, and preincubated for 30 min at 37 degree C in Krebs Ringer bicarbonate buffer (KRB) containing 5mM glucose under 95:5 O 2 /CO 2 , followed by 30, 60, 120, or 180 min of incubation in KRB with 0.5 mM AIB, [ 14 C]-AIB to measure amino acid, and [ 3 H]-inulin to determine extracellular water

  17. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C.

    2005-01-01

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 μM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as log K Hg-gill = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as log K Hg-NOM = 18.0 with about 0.5 μmol binding sites per mg C, representing strong binding of Hg to NOM

  18. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, Joel [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Dunbar, Michael [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Brown, Stephanie [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Nichols, Joel [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Winter, Anna [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Hughes, Christopher [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Playle, Richard C. [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada)]. E-mail: rplayle@wlu.ca

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 {mu}M total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as log K {sub Hg-gill} = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as log K {sub Hg-NOM} = 18.0 with about 0.5 {mu}mol binding sites per mg C, representing strong binding of Hg to NOM.

  19. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 microM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as logK(Hg-gill) = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as logK(Hg-NOM) = 18.0 with about 0.5 micromol binding sites per mg C, representing strong binding of Hg to NOM.

  20. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    Science.gov (United States)

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements.

  1. Uptake, absorption efficiency and elimination of DDT in marine phytoplankton, copepods and fish

    International Nuclear Information System (INIS)

    Wang Xinhong; Wang Wenxiong

    2005-01-01

    Uptake, absorption efficiency and elimination of DDT were measured in marine phytoplankton, copepods (Acartia erythraea) and fish (mangrove snappers Lutjanus argentimaculatus). The uptake rate constant of DDT from water decreased with increasing trophic level. The dietary absorption efficiency (AE) of DDT was 10-29% in copepods and 72-99% in fish. Food concentration did not significantly affect the AEs of DDT, but the AEs varied considerably among the different food diets. The elimination rate constants of DDT by the copepods were comparable following uptake from the diet and from the water. Elimination of DDT from the fish was exceedingly low. Both aqueous and dietary uptake are equally important for DDT accumulation in the copepods. In fish, dissolved exposure is a more significant route than intake from the diet. The predicted trophic transfer factors in the copepods and the fish are consistent with the field measurements in marine zooplankton and fish. -Biomagnification and exposure of DDT in a marine food chain is demonstrated by measurements of uptake and elimination rates and kinetic modeling

  2. Modification of mechanical and thermal property of chitosan–starch blend films

    International Nuclear Information System (INIS)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M.E.; Khan, Ruhul A.; Dafader, N.C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-01-01

    Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively. - Highlights: ► Chitosan–starch blend films (thickness 0.2 mm) were prepared by casting. ► To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. ► Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. ► Properties of the modified films such as tensile strength, elongation at break, water uptake, TGA, DMA, SEM, FTIR were studied. ► Results indicate that modification of chitosan–starch film with mustard oil improved the properties of the blend films which could be further modified by HEMA using gamma radiation.

  3. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  4. Phosphorus deficiency enhances molybdenum uptake by tomato plants

    International Nuclear Information System (INIS)

    Heuwinkel, H.; Kirkby, E.A.; Le Bot, J.; Marschner, H.

    1992-01-01

    Water culture experiments are described which provide conclusive evidence that Mo uptake by tomato plants is markedly enhanced by P deficiency. In a longterm experiment, which ran for 11 days, in marked contrast to the uptake of other nutrients, a three fold higher Mo uptake rate was observed after only four days of withdrawal of P from the nutrient medium. In contrast to the gradual increase in pH of the nutrient medium of the plants supplied with P, the pH in the medium of the -P plants fell. Throughout the growth of these plants net H+ efflux could be accounted for by excess cation over anion uptake, indicating that organic acid extrusion plays no major role in the observed fall in pH. Further evidence that Mo uptake is enhanced in P deficient tomato plants is provided in short-term nutrient solution experiments (1h and 4h) using radioactive molybdenum (99Mo). Compared with P sufficient plants, the uptake rates of 99Mo by P deficient plants were three to five times higher after 1h and nine to twelve times higher after 4h. Resupplying P during the uptake periods to deficient plants reduced the uptake rate of 99Mo to values similar to those of P sufficient plants. It is concluded that the uptake of molybdate occurs via phosphate binding/ transporting sites at the plasma membrane of root cells. Further support for this conclusion comes from exchange experiments with non-labelled molybdenum, which show a much larger amount of 99Mo exchangeable from the roots of P deficient plants

  5. Effect of Water Quality and Temperature on the Efficiency of Two Kinds of Hydrophilic Polymers in Soil.

    Science.gov (United States)

    Dehkordi, Davoud Khodadadi

    2018-06-01

      In this study, evaluation of two-superabsorbent effects, Super-AB-A-300 and Super-AB-A-200 in a sandy soil on the water retention capability and saturated hydraulic conductivity (Ks) at different water quality and soil temperature were done. The Super-AB-A-200 was less effective in water uptake than Super-AB-A-300. The efficiency of these polymers in water retention was negatively influenced by the water quality and temperature. The efficiency of these polymer treatments in water uptake reduced significantly (P < 0.05) with increasing soil temperature. In the control soil, the Ks stayed nearly constant with increasing soil temperature. As compared to the untreated control, the treated soil demonstrated a significant (P < 0.05) linear increase of Ks with increasing soil temperature. In the control soil, the water holding properties curve did not change with increasing soil temperature.

  6. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    The natural diet of marine fish larvae, copepods, contain 60-350 mg I kg(-1), while live feed used in commercial hatcheries have iodine concentrations in the range of 1 mg kg(-1). Seawater is also considered to be an important source of iodine for marine fish. The question asked in this study is ......M. The uptake was partly blocked by perchlorate (ClO3-) which is a known inhibitor of the sodium iodide symporter. This indicates that the Atlantic halibut larvae accumulate iodide through both specific and non-specific uptake pathways....

  7. Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

    International Nuclear Information System (INIS)

    Yonemura, S.; Yokozawa, M.; Kawashima, S.; Tsuruta, H.

    2000-01-01

    CO and H 2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating 'a microbiologically inactive layer and an active layer' as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H 2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H 2 may be attributable to differences in CO and H 2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H 2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer

  8. NMR 1D-imaging of water infiltration into mesoporous matrices.

    Science.gov (United States)

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    Science.gov (United States)

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Structural properties of water around uncharged and charged carbon nanotubes

    International Nuclear Information System (INIS)

    Dezfoli, Amir Reza Ansari; Mehrabian, Mozaffar Ali; Rafsanjani, Hassan Hashemipour

    2013-01-01

    Studying the structural properties of water molecules around the carbon nanotubes is very important in a wide variety of carbon nanotubes applications. We studied the number of hydrogen bonds, oxygen and hydrogen density distributions, and water orientation around carbon nanotubes. The water density distribution for all carbon nanotubes was observed to have the same feature. In water-carbon nanotubes interface, a high-density region of water molecules exists around carbon nanotubes. The results reveal that the water orientation around carbon nanotubes is roughly dependent on carbon nanotubes surface charge. The water molecules in close distances to carbon nanotubes were found to make an HOH plane nearly perpendicular to the water-carbon nanotubes interface for carbon nanotubes with negative surface charge. For uncharged carbon nanotubes and carbon nanotubes with positive surface charge, the HOH plane was in tangential orientation with water-carbon nanotubes interface. There was also a significant reduction in hydrogen bond of water region around carbon nanotubes as compared with hydrogen bond in bulk water. This reduction was very obvious for carbon nanotubes with positive surface charge. In addition, the calculation of dynamic properties of water molecules in water-CNT interface revealed that there is a direct relation between the number of Hbonds and self-diffusion coefficient of water molecules

  11. Arsenic uptake and phytoremediation potential by arbuscular mycorrhizal fungi

    Science.gov (United States)

    Xinhua He; Erik Lilleskov

    2014-01-01

    Arsenic (As) contamination of soils and water is a global problem because of its impacts on ecosystems and human health. Various approaches have been attempted for As remediation, with limited success. Arbuscular mycorrhizal (AM) fungi play vital roles in the uptake of water and essential nutrients, especially phosphorus (P), and hence enhance plant performance and...

  12. Water-stability of soil aggregates in relation to selected properties

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.; Unamba Oparah, I.

    1995-03-01

    The stability of soil aggregates in water is an important soil physical property for evaluating the potential of agricultural soils to erode and elucidating the mechanisms of soil erosion. In this study we used aggregates from 15 surface soil samples in Italy to evaluate the influence of intrinsic soil physical, chemical and mineralogical properties on aggregates stability (AS). The aim was to develop a model for predicting AS from a subset of these soil properties. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The model developed with soil physical properties alone explained just 42% of variance in MWD and predicted AS in only 20% of test soils. The model developed with mineralogical properties alone explained 70% of variance in MWD and predicted AS in 60% of the test soils. The chemical properties - based model explained 90% of variance in MWD and predicted AS in 80% of the test soils. The best-fit model was developed with soil properties from the physical, chemical and mineralogical subsets. It explained 98% of variance in MWD and predicted AS in 100% of the test soils. This model shows that the most important soil properties which influence the AS of these soils include ratio of total sand to clay, concentrations of iron oxide, magnesium oxide, organic matter, silica/alumina ratio, chlorite, feldspar and muscovite. This indicates that fairly good estimates of the relative stability of these aggregates in water and hence of their potential to erode, requires a knowledge of the physico-chemical and mineralogical properties. (author). 40 refs, 4 tabs

  13. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  14. Measuring oxygen uptake in fishes with bimodal respiration.

    Science.gov (United States)

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  15. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    Science.gov (United States)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  16. Oxygen uptake in water polo, comparison and agreement in cycle ergometer and eggbeater kick: A pilot study

    Directory of Open Access Journals (Sweden)

    Ligia Ignêz Engelmann

    Full Text Available Abstract The aim of this study was to compare and verify the agreement of maximal oxygen uptake (VO2 max values obtained from tests on land and in water. Twelve recreational water polo players (30.5 ± 7.7 years; 79.2 ± 7.2 kg body mass; 179.1 ± 5.9 cm height were assessed in two phases: (1 in laboratory with maximal test on a cycle ergometer and (2 in a swimming pool with maximal test in eggbeater kick. Maximum values obtained in the two tests (respectively, cycle ergometer, and eggbeater kick: VO2 max = 40.2 ± 2.7 ml.kg-1.min-1 and 38.4 ± 5.7 ml.kg-1.min-1; RER = 1.17 ± 0.08 and 1.19 ± 0.12; HR max = 181.4 ± 11.7 bpm and 179 ± 11.7 bpm; IEP = 20 and 20 did not show significant differences. According to the Bland-Altman analyses, there were acceptable limits of agreement between the two tests (land and water. Therefore, it can be concluded that the eggbeater kick test is a specific and valid protocol to asses VO2 max in water polo players.

  17. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  18. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  19. Influence of soil properties on the bioaccumulation and effects of arsenic in the earthworm Eisenia andrei

    NARCIS (Netherlands)

    Romero Freire, A.; Martin Peinado, F.J.; Diez Ortiz, M.; van Gestel, C.A.M.

    2015-01-01

    This study aimed at assessing the influence of soil properties on the uptake and toxicity effects of arsenic in the earthworm Eisenia andrei exposed for 4 weeks to seven natural soils spiked with different arsenic concentrations. Water-soluble soil concentrations (AsW) and internal As concentrations

  20. Pigmentation, anesthesia, behavioral factors, and salicylate uptake.

    Science.gov (United States)

    Jastreboff, P J; Issing, W; Brennan, J F; Sasaki, C T

    1988-02-01

    In four experiments, 54 pigmented rats were used to examine the time course of sodium salicylate uptake in serum, cerebrospinal fluid, and perilymph. Subjects were tested under sodium pentobarbital anesthesia or while conscious. Compared with previously reported data from albino rats, pigmented subjects generally showed increased salicylate uptake. Moreover, the data suggested two different, time-dependent clearance mechanisms in conscious animals not observed in anesthetized rats. Daily injections of salicylate did not produce an accumulation of salicylate in serum. Systematically higher levels of salicylate were observed in perilymph compared with cerebrospinal fluid. Behavioral procedures, including water deprivation and conditioned suppression of ongoing drinking levels, had no effect on salicylate levels.

  1. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    Science.gov (United States)

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  2. Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources

    Science.gov (United States)

    2013-04-11

    derived from lignin . These materials possess favorable thermal and water uptake properties with dry glass transition temperatures above 200°C and wet...Differential scanning calorimetry showed that resins with more sterically restrictive bridge groups between the reactive moieties cure more slowly...distribution is unlimited. Creosol as a Monomer Source 7 • Input material cost is an important consideration for cyanate ester resins • Lignin is

  3. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  4. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  5. Physico-chemical properties of perturbed water: facts and enigmas

    OpenAIRE

    Vittorio Elia

    2012-01-01

    Background The study of extremely diluted and agitated substances and solutions is strictly linked with the analysis of properties of water perturbed using different systems. This study is about the determination of the physical-chemical parameters of water, after the perturbations described. Methods The perturbed water was obtained using the three different protocols: · EDS (Extremely Diluted Solutions). Obtained through an iterative process of ...

  6. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Directory of Open Access Journals (Sweden)

    M. A. Tolbert

    2007-08-01

    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  7. Effects of PEG-Induced Water Deficit in Solanum nigrum on Zn and Ni Uptake and Translocation in Split Root Systems

    Directory of Open Access Journals (Sweden)

    Urs Feller

    2015-06-01

    Full Text Available Drought strongly influences root activities in crop plants and weeds. This paper is focused on the performance of the heavy metal accumulator Solanum nigrum, a plant which might be helpful for phytoremediation. The water potential in a split root system was decreased by the addition of polyethylene glycol (PEG 6000. Rubidium, strontium and radionuclides of heavy metals were used as markers to investigate the uptake into roots, the release to the shoot via the xylem, and finally the basipetal transport via the phloem to unlabeled roots. The uptake into the roots (total contents in the plant was for most makers more severely decreased than the transport to the shoot or the export from the shoot to the unlabeled roots via the phloem. Regardless of the water potential in the labeling solution, 63Ni and 65Zn were selectively redistributed within the plant. From autoradiographs, it became evident that 65Zn accumulated in root tips, in the apical shoot meristem and in axillary buds, while 63Ni accumulated in young expanded leaves and roots but not in the meristems. Since both radionuclides are mobile in the phloem and are, therefore, well redistributed within the plant, the unequal transfer to shoot and root apical meristems is most likely caused by differences in the cell-to-cell transport in differentiation zones without functional phloem (immature sieve tubes.

  8. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  9. Effect of tonicity on 22NaCl solution uptake by rabbit eye in vivo and in vitro

    International Nuclear Information System (INIS)

    Obenberger, J.; Bartosova, D.; Babicky, A.

    1979-01-01

    Solutions of 22 NaCl in saline or distilled water differ with respect to their ocular uptake. Studies were performed on eyes of living rabbits as well on the enucleated rabbit eyes. Chromatographic paper strips (15x2 mm) were soaked in both solutions, stretched over the cornea and left in contact for 1 min. Radioactivities of paper strips and rabbit eyes were measured and the ocular uptake of 22 Na was expressed as percentual values of the total radioactivities contained in the paper strips before their application to the corneal surface. Values of the ocular uptake of 22 NaCl solved in distilled water exceeded more than twice the values found in experiments where 22 Na solution in saline was used. The use of carrier-free 22 NaCl solutions in distilled water is recommended for the method measuring the ocular uptake hydrodynamics on basis of ocular 22 Na clearance. Uptake of 22 Na in enucleated eyes was twenty-five per cent higher in comparison with the eyes of living rabitts. (author)

  10. FDG uptake in the stomach

    International Nuclear Information System (INIS)

    Yun, M. J.; Cho, H. J.; Cho, E. H.; Kim, T. S.; Kang, W. J.; Lee, J. D.

    2007-01-01

    This study was performed to evaluate histopathologic features of advanced gastric cancer (AGC) to predict FDG uptake on PET. 153 patients(102 men; mean age, 55 y) were diagnosed with AGC by surgery were included in this study. PET images were evaluated by visual and semi-quantitative analysis of FDG uptake in primary tumors. Primary tumors size were measured and divided according to Borrmann classification. Tumor histology was classified under WHO classification, depth of invasion and Iymphovascular invasion. The tumors were also grouped by high cellular(cellularity = 50%) and low cellular group (<50%). Microscopic growth type was based on Lauren classification. Stromal fibrosis degree and inflammatory cell infiltration amount was graded as low(none∼mild), or high(moderate∼severe). Lymph node metastases was assessed in all patients. Statistical analyses were performed to evaluate differences in SUV as to histopathologic factors. Of the 153 patients, 21 patients(14%) had primary tumor invisible on initial whole body images. After water ingestion, the tumors became visible in 15 of the 21 patients due to disappearance of physiologic stomach uptake. Polypoid or ulcerofungating tumors, high cellularity, intestinal growth pattern, and larger tumors significantly predicted increased tumor SUVs. Well or moderately differentiated adenocarcinoma tended to show high cellularity and intestinal growth pattern. Poorly differentiated adenocarcinoma had diverse spectrum of histopathology. Signet ring cell carcinomas were mostly ulceroinfiltrative or diffusely infiltrative in macroscopic type and diffuse in microscopic tumor growth. Mucinous adenocarcinomas were mostly low in cellularity. FDG uptake patterns are useful in representing histopathologic characteristics of the entire tumor in gastric cancers. The degree of FDG uptake depends on tumor size, macroscopic type, cellularity, and microscopic growth pattern and it shows no association with well known important prognostic

  11. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserotto, B. [Departamento de Fisiologia, Universidade Federal de Santa Maria, 97105.900 Santa Maria, RS (Brazil); Chowdhury, M.J. [Department of Biology, McMaster University, Hamilton, Ont., L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, Hamilton, Ont., L8S 4K1 (Canada)]. E-mail: woodcm@mcmaster.ca

    2005-03-25

    The objective of this study was to examine the effects of chronically elevated dietary Ca{sup 2+} (as CaCO{sub 3}), alone and in combination with elevated dietary Cd, on survival, growth, and Cd and Ca{sup 2+} accumulation in several internal compartments in juvenile rainbow trout (Oncorhynchus mykiss). In addition, effects on short-term branchial uptake and internal distribution of newly accumulated waterborne Ca{sup 2+} and Cd during acute waterborne Cd exposure (50 {mu}g/L as CdNO{sub 3} for 3 h) were monitored using radiotracers ({sup 45}Ca, {sup 65}Cd). Fish were fed with four diets: 20 mg Ca{sup 2+}/g food (control), 50 mg Ca{sup 2+}/g food, 300 {mu}g Cd/g food, and 50 mg Ca{sup 2+}/g + 300 {mu}g Cd/g food for 30 days. There were no significant effects on growth, mortality, or total body Ca{sup 2+} accumulation. The presence of elevated Ca{sup 2+}, Cd, or Ca{sup 2+} + Cd in the diet all reduced waterborne Ca{sup 2+} uptake in a short-term experiment (3 h), though the inhibitory mechanisms appeared to differ. The effects were marked after 15 days of feeding, but attenuated by 30 days, except when the diet was elevated in both Ca{sup 2+} and Cd. The presence of elevated Ca{sup 2+} in the diet had only modest influence on Cd uptake from the water during acute Cd challenges but greatly depressed Cd uptake from the diet and accumulation in most internal tissues. None of the treatment diets prevented the decreases in waterborne Ca{sup 2+} uptake and new Ca{sup 2+} accumulation in internal tissues caused by acute exposure to waterborne Cd. In conclusion, there are complex interactions between waterborne and dietary effects of Ca{sup 2+} and Cd. Elevated dietary Ca{sup 2+} protects against both dietary and waterborne Cd uptake, whereas both waterborne and dietary Cd elevations cause reduced waterborne Ca{sup 2+} uptake.

  12. Modelling and Evaluation of Non-Linear Rootwater Uptake for Winter Cropping of Wheat and Berseem

    Science.gov (United States)

    GS, K.; Prasad, K. S. H.

    2017-12-01

    The plant water uptake is significant for study to monitor the irrigation supplied to the plant. The Richards equation has been the key governing equation to quantify the root water uptake in the vadose zone and it takes all the sources and sink terms into consideration. The β parameter or the non linearity parameter is used in this modeling to bring the non linearity in the plant root water uptake. The soil parameters are obtained by experimentation and are employed in the Van-Genuchten equation for soil moisture study. Field experiments were carried out at Civil Engineering Department IIT Roorkee, Uttarakhand, India, during the winter season of 2013 and 2014 for berseem and 2016 for wheat as per the local cropping practices. Drainage type lysimeters were installed to study the soil water balance. Soil moisture was monitored using profile probe. Precipitation and all meteorological data were obtained from the nearby gauges located at the National Institute of Hydrology, Roorkee.The moisture data and the deep percolation data were collected on a daily basis and the irrigation supply was controlled and monitored to satisfy the moisture requirements of the crops respectively.In order to study the effect of water scarcity on the crops, the plot was divided and deficited irrigation was applied for the second cropping season for Berseem.The yields for both the seasons was also measured. The solution of Richards equation as applied to the moisture movement in the root zone was modeled. For estimation of root water uptake, the governing equation is the one-dimensional mixed form of Richards' equation is employed (Ji et al., 2007; Shankar et al., 2012).The sink term in the model accounts for the root water uptake, which is utilized by the plant for transpiration. Smaxor the maximum root water uptake for the root zone on a given day must be equal to the maximum transpiration on the corresponding day The model computed moisture content and pressure head is calibrated with

  13. THERMOPHYSICAL PROPERTIES AND WATER ACTIVITY OF TRANSFERRED CHEESE (UF

    Directory of Open Access Journals (Sweden)

    Mohsen Dalvi Esfahan

    2015-06-01

    Full Text Available Few data are available on the thermophysical properties of cheese in the ripening process.The main objective of this work was to investigate the effects of brining and temperature on the thermophysical properties, i.e., thermal conductivity, specific heat, density and water activity of UF cheese and finally we measure surface heat transfer coefficient .Then we develop models for thermophysical properties based on physical and multiple regression concept .

  14. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    International Nuclear Information System (INIS)

    Yu, Ya-Jen; Hearon, Keith; Maitland, Duncan J; Wilson, Thomas S

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (T g ) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T g of the foam, with a maximum water uptake shifting the T g from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h

  15. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  16. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    Science.gov (United States)

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  17. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  18. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats

    International Nuclear Information System (INIS)

    Vasdev, S.; Prabhakaran, V.; Sampson, C.A.

    1990-01-01

    This study examined the effect of 25% deuterium oxide in drinking water on systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas of Dahl salt-sensitive rats on 0.4% (low) and 8% (high) sodium chloride (salt) diet. Twenty-four rats were divided into four groups. Groups I and II were on the low salt diet and groups III and IV on the high salt diet from 6 weeks of age. Additionally, at 10 weeks of age groups I and III were placed on 100% water and groups II and IV on 25% deuterium oxide. At 14 weeks, systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas were significantly higher (p less than 0.01) in rats on the high salt diet as compared with those on the low salt diet. Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet. Deuterium oxide had no effect on blood pressure or aortic calcium uptake in rats on the low salt diet. The parallel increase in systolic blood pressure and vascular calcium uptake suggests that increased calcium uptake mechanisms are associated with hypertension in salt-sensitive Dahl rats. Furthermore, deuterium oxide appears to normalize elevated blood pressure in salt-sensitive hypertensive rats by normalizing elevated vascular (aortic) calcium uptake

  19. Interaction and uptake of exosomes by ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Altevogt Peter

    2011-03-01

    Full Text Available Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific

  20. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  1. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    Science.gov (United States)

    Lins, Roberto D; Vorpagel, Erich R; Guglielmi, Matteo; Straatsma, T P

    2008-01-01

    Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.

  2. Uptake of atmospheric tritium by market foods

    International Nuclear Information System (INIS)

    Inoue, Y.; Tanaka-Miyamoto, K.; Iwakura, T.

    1992-01-01

    In this paper uptake of tritium by market foods from tritiated water vapor in the air is investigated using cereals and beans purchased in Deep River, Canada. The concentrations of tissue free water tritium (TFWT) and organically bound tritium (OBT) range from 12 to 79% and from 10 to 38% respectively, of that estimated for atmospheric water vapor of the sampling month. The specific activity ratios of OBT to TFWT were constant for cereals, but variable for beans. The elevated OBT was shown to be the result of isotopic exchange of labile hydrogen by the fact that washing the foods with tritium free-water reduced their tritium contents to levels characteristic of their production sites

  3. The properties of water in swollen cross-linked polystyrene sulfo acids

    Science.gov (United States)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  4. Assessing soil and plant parameters affecting uranium availability and plant uptake

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2009-01-01

    In the assessment of the potential impact of contaminants in soils and the requirement for the implementation of corrective actions, it is important to determine the contaminant's mobility and bioavailability and to identify the processes and parameters ruling it. Mobility and bioavailability of contaminants are among others affected by the physicochemical characteristics of the environment itself and plant properties. This is also the case for uranium (U), reported to be the most frequent radionuclide contaminant in ground and surface water and soils. The actual failure of the available transfer factor (TF) data and their broad relation to soil type to be an appropriate measure for food chain transfer in assessment models, calls for a more mechanistic understanding of the individual processes affecting bioavailability. The objectives of this study were (1) to test if Diffusive Gradient in Thin film (DGT) measured concentrations adequately assess U bioavailability and (2) to evaluate if differences in U uptake by plants can be explained by variation in root-mediated changes in selected soil properties and assess the role of organic acids in this process

  5. Properties of the Water Column and Bottom Derived from AVIRIS Data

    Science.gov (United States)

    Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

    2001-01-01

    Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  6. Physico-chemical properties of water in bentonite

    International Nuclear Information System (INIS)

    Torikai, Yuji; Sato, Seichi; Ohashi, Hiroshi

    1994-01-01

    As a part of safety analysis on ground layer disposal, in order to estimate nuclides migration behavior from engineering shielding materials, it is required to modelize migration process of nuclides in bentonite and chemical species relating to corrosion, to estimate solubility and to specify application condition of geochemical calculation code. In this study, as a part of elucidation of nuclide migration process, physico-chemical properties of water in bentonite and montmorillonite using steam pressure method were determined. As a result, following items were found: (1) Even if 1/3 of water in bentonite is near free water, it is far from a region dealable with dilute solution in the electrolyte solution theory. And, (2) the water in bentonite has generally small activity in comparison with dilute solution, then has smaller solubility than estimation value of calculation code. (G.K.)

  7. Sorption, Uptake, and Translocation of Pharmaceuticals across Multiple Interfaces in Soil Environment

    Science.gov (United States)

    Zhang, W.; Liu, C. H.; Bhalsod, G.; Zhang, Y.; Chuang, Y. H.; Boyd, S. A.; Teppen, B. J.; Tiedje, J. M.; Li, H.

    2015-12-01

    Pharmaceuticals are contaminants of emerging concern frequently detected in soil and water environments, raising serious questions on their potential impact on human and ecosystem health. Overuse and environmental release of antibiotics (i.e., a group of pharmaceuticals extensively used in human medicine and animal agriculture) pose enormous threats to the health of human, animal, and the environment, due to proliferation of antibiotic resistant bacteria. Recently, we have examined interactions of pharmaceuticals with soil geosorbents, bacteria, and vegetable crops in order to elucidate pathways of sorption, uptake, and translocation of pharmaceuticals across the multiple interfaces in soils. Sorption of pharmaceuticals by biochars was studied to assess the potential of biochar soil amendment for reducing the transport and bioavailability of antibiotics. Our preliminary results show that carbonaceous materials such as biochars and activated carbon had strong sorption capacities for antibiotics, and consequently decreased the uptake and antibiotic resistance gene expression by an Escherichia coli bioreporter. Thus, biochar soil amendment showed the potential for reducing selection pressure on antibiotic resistant bacteria. Additionally, since consumption of pharmaceutical-tainted food is a direct exposure pathway for humans, it is important to assess the uptake and accumulation of pharmaceuticals in food crops grown in contaminated soils or irrigated with reclaimed water. Therefore, we have investigated the uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead or surface irrigations). Preliminary results indicate that greater pharmaceutical concentrations were measured in overhead irrigated lettuce than in surface irrigated lettuce. This could have important implications when selecting irrigation scheme to use the reclaimed water for crop irrigation. In summary, proper soil and water management

  8. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    Science.gov (United States)

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  9. Effect of magnetic field on the physical properties of water

    Science.gov (United States)

    Wang, Youkai; Wei, Huinan; Li, Zhuangwen

    2018-03-01

    In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.

  10. Research on the uptake of mercury 197 acetate in early bronchial cancers and on the variation of this uptake during drug therapy

    International Nuclear Information System (INIS)

    Gautier, H.M.

    1975-01-01

    Mercury 197 was proposed as a means to analyze the behavior of early bronchial cancers, especially during drug treatment. This choice was based on four facts: a hyperfixation of mercury has already been demonstrated in malignant intrathoracic tumors; the use of mercury 197 in acetate form gives higher uptake rates than those observed with bichloride; because of its properties mercury 197 is easy to use in routine radioisotopic practice; mercury toxicity is negligible with the preparation employed. The work was performed in two stages: analysis of the uptake conditions for mercury 197 in acetate form in order to detect the factors which influence this uptake and to define its limits and advantages; on the basis of the above notions, use of mercury 197 as tracer to follow the development of bronchial tumors, the aim being to observe the tumor volume variation under drug treatment (the changes in uptake rate are analyzed and the numerical results obtained used to estimate the degree of efficiency of the treatment proposed, the moment of maximum result and the start of a new tumoral growth) [fr

  11. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  12. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento

    2014-01-01

    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  13. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  14. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  15. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  16. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  17. The Structure-Property Relationship of Poly(amide-imide)/Organoclay Nanocomposites

    Science.gov (United States)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadateh

    2011-06-01

    Surface treated montmorillonite (MMT) was used to prepare nanocomposites with poly(amide-imide) (PAI) 5 by solution intercalation technique with various percent of organoclay (5-15 mass %). Surface modification of the MMT was performed with Cloisite 20A for ample compatibilization with the PAI matrix. The PAI 5 chains were produced through polycondensation of 4,4-diamino diphenyl sulfone 4 with N-trimellitylimido-L-alanine 3 in a medium consisting of triphenyl phosphite, N-methyl-2-pyrolidone (NMP), pyridine and calcium chloride. The PAI-Nanocomposites morphology and clay dispersion were investigated by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and PAI chains on the properties of PAI-Nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements. Thermal stability of nanocomposites increased relative to the neat polyamide with increasing organoclay content but water uptake of these materials decreased as compared to the neat polyamide indicating reduced permeability.

  18. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  19. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    Energy Technology Data Exchange (ETDEWEB)

    Zarebanadkouki, Mohsen

    2013-05-08

    Where and how fast do roots take up water? Despite its importance in plant and soil sciences, there is limited experimental information on the location of water uptake along the roots of transpiring plants growing in soil. The answer to this question requires direct and in-situ measurement of the local flow of water into the roots. The aim of this study was to develop and apply a new method to quantify the local fluxes of water into different segments of the roots of intact plants. To this end, neutron radiography was used to trace the transport of deuterated water (D{sub 2}O) into the roots of lupines. Lupines were grown in aluminum containers filled with sandy soil. The soil was partitioned into different compartments using 1 cm-thick layers of coarse sand as capillary barriers. These barriers limited the diffusion of D{sub 2}O within the soil compartments. D{sub 2}O was locally injected into the selected soil compartments during the day (transpiring plants) and night (non-transpiring plants). Transport of D{sub 2}O into roots was then monitored by neutron radiography with spatial resolution of 100 μm and time intervals of 10 seconds. Neutron radiographs showed that: i) transport of D{sub 2}O into roots was faster during the day than during the night; 2) D{sub 2}O quickly moved along the roots towards the shoots during the day, while at night this axial transport was negligible. The differences between day and night measurements were explained by convective transport of D{sub 2}O into the roots. To quantify the net flow of water into roots, a simple convection-diffusion model was developed, where the increase rate of D{sub 2}O concentration in roots depended on the convective transport (net root water uptake) and the diffusion of D{sub 2}O into roots. The results showed that water uptake was not uniform along the roots. Water uptake was higher in the upper soil layers than in the deeper ones. Along an individual roots, the water uptake rate was higher in the

  20. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    International Nuclear Information System (INIS)

    Zarebanadkouki, Mohsen

    2013-01-01

    Where and how fast do roots take up water? Despite its importance in plant and soil sciences, there is limited experimental information on the location of water uptake along the roots of transpiring plants growing in soil. The answer to this question requires direct and in-situ measurement of the local flow of water into the roots. The aim of this study was to develop and apply a new method to quantify the local fluxes of water into different segments of the roots of intact plants. To this end, neutron radiography was used to trace the transport of deuterated water (D 2 O) into the roots of lupines. Lupines were grown in aluminum containers filled with sandy soil. The soil was partitioned into different compartments using 1 cm-thick layers of coarse sand as capillary barriers. These barriers limited the diffusion of D 2 O within the soil compartments. D 2 O was locally injected into the selected soil compartments during the day (transpiring plants) and night (non-transpiring plants). Transport of D 2 O into roots was then monitored by neutron radiography with spatial resolution of 100 μm and time intervals of 10 seconds. Neutron radiographs showed that: i) transport of D 2 O into roots was faster during the day than during the night; 2) D 2 O quickly moved along the roots towards the shoots during the day, while at night this axial transport was negligible. The differences between day and night measurements were explained by convective transport of D 2 O into the roots. To quantify the net flow of water into roots, a simple convection-diffusion model was developed, where the increase rate of D 2 O concentration in roots depended on the convective transport (net root water uptake) and the diffusion of D 2 O into roots. The results showed that water uptake was not uniform along the roots. Water uptake was higher in the upper soil layers than in the deeper ones. Along an individual roots, the water uptake rate was higher in the proximal segments than in the distal

  1. Uptake of uranium from drinking water

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1987-01-01

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234 U and 238 U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion the subjects collected 24 hour total output of both urine and feces for seven days prior to drinking water. During the next day they drank, at their normal rate of drinking water intake, 900 ml of water containing approximately 90 pCi 238 U and 90 pCi 234 U (274 μg U) and continued to collect their urine and feces for seven additional days. Utilizing one technique for analyzing data, the G.I. absorption of 234 U ranged from -0.07% to 1.88% with an average of 0.51% and G.I. absorption of 238 U ranged from -0.07% to 1.79% with an average of 0.50%. Employing another technique for analyzing the data, the G.I. absorption ranged from -0.04 to 1.46% with a mean of 0.53% for 234 U and from 0.03% to 1.43% with a mean of 0.52 for 238 U. The dietary intake of U was also estimated from measurements of urinary and fecal excretion of U in eight subjects prior to drinking water containing U. The estimated average dietary intake of U for these subjects is 3.30 +/- 0.65 or 4.22 +/- 0.65 μg/day. These averages are two to four times higher than the values reported in the literature for dietary intake

  2. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  3. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  4. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.

    Science.gov (United States)

    Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf

    2016-06-01

    Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Estimating aquifer properties from the water level response to Earth tides.

    Science.gov (United States)

    Cutillo, Paula A; Bredehoeft, John D

    2011-01-01

    Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  6. Μetal Uptake by Sunflower (Helianthus annuus) Irrigated with Water Polluted with Chromium and Nickel.

    Science.gov (United States)

    Stoikou, Vasiliki; Andrianos, Vangelis; Stasinos, Sotiris; Kostakis, Marios G; Attiti, Sofia; Thomaidis, Nikolaos S; Zabetakis, Ioannis

    2017-07-17

    The water aquifers of the regions of Asopos River in Viotia and Messapia in Evia (Greece) have been contaminated with hexavalent chromium (Cr (VI)) and bivalent nickel (Ni (II)). Given that these areas are the two biggest tuber producing regions of Greece, in our previous work, the cross-contamination of the food chain with these two heavy metals was quantified. In the present study, the potential of sunflower ( Helianthus annuus ) cultivation in these regions is evaluated. The scope of our study was to investigate the uptake of chromium and nickel by sunflower, in a greenhouse experiment. The study included two cultivation periods of plants in six irrigation lines with different levels of Cr (VI) and Ni (II) ranging from 0 μg/L (control) to 10,000 μg/L. In all plant parts, statistically significant increased levels of Cr (VI) and Ni (II) were found when compared to control ones. Also, a positive correlation, both for Cr and Ni, between levels of heavy metals in irrigation water and plants was observed. Following European Food Safety Authority recommendations, the obtained oil was evaluated as safe for consumption, therefore, sunflower cultivation could be a valid bioremediation solution for the Asopos and Messapia regions.

  7. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements

    Directory of Open Access Journals (Sweden)

    R. J. Gustafsson

    2005-01-01

    Full Text Available The hygroscopicity of mineral aerosol samples has been examined by three independent methods: diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and differential mobility analysis. All three methods allow an evaluation of the water coverage of two samples, CaCO3 and Arizona Test dust, as a function of relative humidity. For the first time, a correlation between absolute gravimetric measurements and the other two (indirect methods has been established. Water uptake isotherms were reliably determined for both solids which at 298 K and 80% relative humidity exhibited similar coverages of ~4 monolayers. However, the behaviour at low relative humidity was markedly different in the two cases, with Arizona Test Dust showing a substantially higher affinity for water in the contact layer. This is understandable in terms of the chemical composition of these two materials. The mobility analysis results are in good accord with field observations and with our own spectroscopic and gravimetric measurements. These findings are of value for an understanding of atmospheric chemical processes.

  8. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  9. Knowledge uptake by technical professionals and decision-makers ...

    African Journals Online (AJOL)

    While significant knowledge appears to be available on developmental water services (a term for service provision, to meet developmental objectives, with an emphasis on poor communities, in which a range of factors other than purely technical factors are addressed), there appears to be insufficient uptake of this ...

  10. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  11. The relative importance of skin oxygen uptake in the naturally buried plaice, Pleuronectes platessa, exposed to graded hypoxia

    DEFF Research Database (Denmark)

    Steffensen, J F; Lomholt, J P; Johansen, K

    1981-01-01

    Cutaneous O2-uptake has been estimated in plaice, Pleuronectes platessa, naturally buried in sediment as the difference between total O2-uptake, measured in a flow-through respirometer, and branchial O2-uptake calculated from direct and continuous recordings of gill water flow and O2-extraction...

  12. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    Science.gov (United States)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  13. Altering the concentration of silica tunes the functional properties of collagen-silica composite scaffolds to suit various clinical requirements.

    Science.gov (United States)

    Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran

    2015-12-01

    The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  15. Citric acid modifies surface properties of commercial CeO{sub 2} nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo-Reyes, J. [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Vilchis-Nestor, A.R. [Centro Conjunto de Investigación en Química Sustentable UAEM—UNAM, Carretera Toluca—Atlacomulco km 14.5, San Cayetano, CP 50200 Toluca, Estado de México (Mexico); Majumdar, S. [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Gardea-Torresdey, J.L., E-mail: jgardea@utep.edu [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States)

    2013-12-15

    Highlights: • The citric acid capping significantly reduced the ζ potential values. • As the amount of CA increased, thicker the layer surrounding the CeO{sub 2} NPs. • CeO{sub 2}/CA NPs had better distribution and small particle size than bare CeO{sub 2} NPs. • CeO{sub 2}/CA NPs decrease the Ce uptake by radish seedlings. -- Abstract: Little is known about the mobility, reactivity, and toxicity to plants of coated engineered nanoparticles (ENPs). Surface modification may change the interaction of ENPs with living organisms. This report describes surface changes in commercial CeO{sub 2} NPs coated with citric acid (CA) at molar ratios of 1:2, 1:3, 1:7, and 1:10 CeO{sub 2}:CA, and their effects on radish (Raphanus sativus) seed germination, cerium and nutrients uptake. All CeO{sub 2} NPs and their absorption by radish plants were characterized by TEM, DLS, and ICP-OES. Radish seeds were germinated in pristine and CA coated CeO{sub 2} NPs suspensions at 50 mg/L, 100 mg/L, and 200 mg/L. Deionized water and CA at 100 mg/L were used as controls. Results showed ζ potential values of 21.6 mV and −56 mV for the pristine and CA coated CeO{sub 2} NPs, respectively. TEM images showed denser layers surrounding the CeO{sub 2} NPs at higher CA concentrations, as well as better distribution and smaller particle sizes. None of the treatments affected seed germination. However, at 200 mg/L the CA coated NPs at 1:7 ratio produced significantly (p ≤ 0.05) more root biomass, increased water content and reduced by 94% the Ce uptake, compared to bare NPs. This suggests that CA coating decrease CeO{sub 2} NPs toxicity to plants.

  16. Nitrogen uptake by size-fractionated phytoplankton in mangrove waters

    Digital Repository Service at National Institute of Oceanography (India)

    Dham, V.V.; Wafar, M.V.M.; Heredia, A.M.

    to January — dry and cool) and pre-monsoon (February to May — dry and hot) periods. Environmental parameters, the nutrients and rates of N uptake and the remineralisation by unfractionated plankton were measured at 3 stations (Fig. 1) over a series of 16... samples with netplankton (20 to 200 µm) and nanoplankton (0.8 to 20 µm) sized particles were obtained by serial filtration through 200 and 20 µm bolting silk and 0.8 µm glass-fibre filters, and were used for measurements of chlorophyll a (chl a...

  17. Numerical Modeling of Water Fluxes in the Root Zone of Irrigated Pecan

    Science.gov (United States)

    Shukla, M. K.; Deb, S.

    2010-12-01

    Information is still limited on the coupled liquid water, water vapor, heat transport and root water uptake for irrigated pecan. Field experiments were conducted in a sandy loam mature pecan field in Las Cruces, New Mexico. Three pecan trees were chosen to monitor diurnal soil water content under the canopy (approximately half way between trunk and the drip line) and outside the drip line (bare spot) along a transect at the depths of 5, 10, 20, 40, and 60 cm using TDR sensors. Soil temperature sensors were installed at an under-canopy locations and bare spot to monitor soil temperature data at depths of 5, 10, 20, and 40 cm. Simulations of the coupled transport of liquid water, water vapor, and heat with and without root water uptake were carried out using the HYDRUS-1D code. Measured soil hydraulic and thermal properties, continuous meteorological data, and pecan characteristics, e.g. rooting depth, leaf area index, were used in the model simulations. Model calibration was performed for a 26-day period from DOY 204 through DOY 230, 2009 based on measured soil water content and soil temperature data at different soil depths, while the model was validated for a 90-day period from DOY 231 through DOY 320, 2009 at bare spot. Calibrated parameters were also used to apply the model at under-canopy locations for a 116-day period from DOY 204 to 320. HYDRUS-1D simulated water contents and soil temperatures correlated well with the measured data at each depth. Numerical assessment of various transport mechanisms and quantitative estimates of isothermal and thermal water fluxes with and without root water uptake in the unsaturated zone within canopy and bare spot is in progress and will be presented in the conference.

  18. Mechanical properties of cohesive soils in dependence on the water quantity and mineralogical composition

    Directory of Open Access Journals (Sweden)

    Ludvik Trauner

    2003-12-01

    Full Text Available This article explains the relationships between the water content, mineralogical properties and mechanical properties of saturated clays. The findings are based on theoretical analysis and were confirmed experimentally on monomineral clay samples. It was foundthat the quantity of intergrain water, which determines the undrained shear strength and compressibility of clays, consists of free pore water, and the firmly adsorbed water on the external surfaces of the clay grains. The free water quantity is the same for differentsaturated clays, at the same undrained shear strength, and same effective stress after consolidation and, likewise, the thickness of the water film around the clay grains. The total quantity of firmly adsorbed water depends on the specific surfaces of the clays. Theresult of this work is a new analytical formulation that gives the relationship between the water content and the mechanical properties of clays, taking into account their mineralogical characteristics.

  19. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  20. Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2011-11-01

    Full Text Available The influence of the properties of fine particles on the formation of clouds and precipitation in the tropical atmosphere is of primary importance to their impacts on radiative forcing and the hydrological cycle. Measurements of aerosol number size distribution, hygroscopicity in both sub- and supersaturated regimes and composition were taken between March and July 2008 in the tropical rainforest in Borneo, Malaysia, marking the first study of this type in an Asian tropical rainforest. Hygroscopic growth factors (GF at 90 % relative humidity (RH for the dry diameter range D0 = 32–258 nm, supersaturated water uptake behaviour for the dry diameter range D0 = 45–300 nm and aerosol chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA, a Droplet Measurement Technologies Cloud Condensation Nuclei counter (CCNc and an Aerodyne Aerosol Mass Spectrometer (AMS respectively.

    The hygroscopicity parameter κ was derived from both CCNc and HTDMA measurements, with the resulting values of κ ranging from 0.05–0.37, and 0.17–0.37, respectively. Although the total range of κ values is in good agreement, there are inconsistencies between CCNc and HTDMA derived κ values at different dry diameters. Results from a study with similar methodology performed in the Amazon rainforest report values for κ within a similar range to those reported in this work, indicating that the aerosol as measured from both sites shows similar hygroscopic properties. However, the derived number of cloud condensation nuclei (NCCN were much higher in the present experiment than the Amazon, resulting in part from the increased total particle number concentrations observed in the Bornean rainforest. This contrast between the two environments may be of substantial importance in describing the impacts of particles in the tropical atmosphere.

  1. A high-flow humidograph for testing the water uptake by ambient aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H.M.; Khlystov, A.; Kos, G.P.A. [ECN Fuels Conversion and Environment, Petten (Netherlands); Tuch, T. [Institut of Medical Data Management, Biometrics and Epidemiology, Ludwig-Maximilian University, Muenich (Germany); Roth, C.; Kreyling, W. [Institute for Inhalation Biology, GSF National Research Center for Environment and Health, Neuherberg/Muenich (Germany)

    1999-10-01

    A scanning humidograph, with an air flow rate of 0.5 m{sup 3} s{sup -1} was built to investigate the uptake of water and its effect on sizing, collection and light-scattering of ambient aerosol. The performance of the system was assessed with laboratory particles of ammonium nitrate, ammonium sulfate and sodium chloride which are the major hygroscopic components of ambient aerosol. The increase in size at the deliquescence points, which ideally is a stepwise function of relative humidity, occurs over a range of 3% RH units. This is shown to be an optimum value in a system of such large dimensions. Because of the strong temperature increase of the vapor pressure of ammonium nitrate, its evaporative loss was investigated as a function of heating/drying temperature. The loss of pure test aerosol, with a mass distribution similar to that in the ambient atmosphere, was found to be acceptable for drying temperatures of up to 40C. The sizing of deliquesced aerosol by LAS-X monitors was tested and found to be a complex function of RH. In Berner low pressure impactors growth of hygroscopic aerosol was not observed, not even at an RH approaching saturation. 21 refs.

  2. Uptake of tritium through foliage in capsicum fruitescens, L

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1977-01-01

    Tritium uptake and release patterns throuogh foliage in Capsicum fruitescens, L. were investigated using twelve potted plants, under different conditions of exposure and release. The plants studied belonged to two age groups, 3 months and 5 months. The average half residence time for the species was found to be 42.6 min, on the basis of treating the entire group of plants as a single cluster. The individual release rates showed a variation of up to a factor of two, for half residence time values (Tsub(1/2)). The second component was not easily resolvable in most of the cases. Tissue bound tritium showed interesting uptake patterns. The ratios between tissue bound tritium and tissue free water tritium concentrations indicated regular mode of uptake with well defined rate constants in the case of long exposure periods. (author)

  3. Evaluation of tensile properties and water absortion of cassava starch film

    Science.gov (United States)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  4. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  5. Sustainable measures for sewage sludge treatment - evaluating the effects on P reaction in soils and plant P uptake

    Science.gov (United States)

    Shenker, Moshe; Einhoren, Hana

    2016-04-01

    Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.

  6. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    Science.gov (United States)

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.

  7. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation (IPSW)

    Science.gov (United States)

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measur...

  8. A Comprehensive Review of the Evidence of the Impact of Surface Water Quality on Property Values

    Directory of Open Access Journals (Sweden)

    Sarah Nicholls

    2018-02-01

    Full Text Available The desirability of living on or close to water is reflected in sometimes substantial property price premiums. Water quality has an important influence on property prices, since it impacts a water body’s appearance, capacity to support wildlife, and recreational potential. As water quality continues to be altered by human use and activity, and in light of new threats posed by projected climate and associated environmental change, understanding the impact of changing quality on property prices, and the associated property tax base, is paramount. This paper reviews the body of evidence on this topic to date. Of the 43 distinct studies represented in the 48 publications reviewed, the expected, statistically significant relationship between water quality and property price was demonstrated in at least one of the models developed in all but two studies. As a whole, they provide convincing evidence that clean water has a positive effect on property values.

  9. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale

    Science.gov (United States)

    Gibson, Catherine A.; O'Reilly, Catherine M.; Conine, Andrea L.; Lipshutz, Sondra M.

    2015-02-01

    Understanding interactions between nutrient cycles is essential for recognizing and remediating human impacts on water quality, yet multielemental approaches to studying nutrient cycling in streams are currently rare. Here we utilized a relatively new approach (tracer additions for spiraling curve characterization) to examine uptake dynamics for three essential nutrients across a landscape that varied in absolute and relative nutrient availability. We measured nutrient uptake for soluble reactive phosphorous, ammonium-nitrogen, and nitrate-nitrogen in 16 headwater streams in the Catskill Mountains, New York. Across the landscape, ammonium-nitrogen and soluble reactive phosphorus had shorter uptake lengths and higher uptake velocities than nitrate-nitrogen. Ammonium-nitrogen and soluble reactive phosphorus uptake velocities were tightly correlated, and the slope of the relationship did not differ from one, suggesting strong demand for both nutrients despite the high ambient water column dissolved inorganic nitrogen: soluble reactive phosphorus ratios. Ammonium-nitrogen appeared to be the preferred form of nitrogen despite much higher nitrate-nitrogen concentrations. The uptake rate of nitrate-nitrogen was positively correlated with ambient soluble reactive phosphorus concentration and soluble reactive phosphorus areal uptake rate, suggesting that higher soluble reactive phosphorus concentrations alleviate phosphorus limitation and facilitate nitrate-nitrogen uptake. In addition, these streams retained a large proportion of soluble reactive phosphorus, ammonium-nitrogen, and nitrate-nitrogen supplied by the watershed, demonstrating that these streams are important landscape filters for nutrients. Together, these results (1) indicated phosphorus limitation across the landscape but similarly high demand for ammonium-nitrogen and (2) suggested that nitrate-nitrogen uptake was influenced by variability in soluble reactive phosphorus availability and preference for

  11. Effect of water management, tillage options and phosphorus status on arsenic uptake in rice.

    Science.gov (United States)

    Talukder, A S M H M; Meisner, C A; Sarkar, M A R; Islam, M S

    2011-05-01

    High arsenic (As) concentrations in soil may lead to elevated concentrations of arsenic in agricultural products. Field experiments were conducted to examine the effects of water management (WM) and Phosphorus (P) rates on As uptake, rice growth, yield and yield attributes of winter (boro) and monsoon (aman) rice in an As contaminated soil-water at Gobindagonj, Gaibandha, Bangladesh in 2004 and 2005. Significantly, the highest average grain yields (6.88±0.07 t ha(-1) in boro 6.38±0.06 t ha(-1) in aman) were recorded in permanent raised bed (PRB; aerobic WM: Eh=+360 mV) plus 100% P amendment. There was a 12% yield increase over conventional till on flat (CTF; anaerobic WM: Eh=-56 mV) at the same P level. In boro, the As content in grain and As content in straw were about 3 and 6 times higher in CTF compared to PRB, respectively. The highest total As content (0.646±0.01 ppm in grain and 10.93±0.19 ppm in straw) was recorded under CTF, and the lowest total As content (0.247±0.01 and 1.554±0.09 ppm in grain and straw, respectively) was recorded under PRB (aerobic WM). The results suggest that grain and straw As are closely associated in boro rice. The furrow irrigation approach of the PRB treatments consistently reduced irrigation input by 29-31% for boro and 27-30% for aman rice relative to CTF treatments in 2004 and 2005, respectively, thus reducing the amount of As added to the soil from the As-contaminated irrigation water. Yearly, 30% less As was deposited to the soil compared to CTF system through irrigation water during boro season. High As concentrations in grain and straw in rice grown using CTF in the farmers' field, and the fact that using PRB reduced grain As concentrations to value less than half of the proposed food hygiene standard. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. A parallel analysis of hydrolithospheric beds geodata of Narzan mineral water Kislovodsk deposit

    Directory of Open Access Journals (Sweden)

    Д. А. Первухин

    2016-11-01

    Full Text Available The area of the Caucasus Mineral Waters – an environmental spa - occupies a special place among the other  spa regions of Russia due to richness, diversity, abundance and value of its mineral waters, landscape and climate conditions, and therapeutic muds. Lately the rate increased of developing its mineral water resources for both the local spa use and bottling for retail consumers. The growing number of mineral water bottling enterprises and sanatorium organizations affects significantly the amount of mineral water uptake. Irrational water uptake results in deterioration of underground water quality, change of its chemical composition and temperature. Expansion of the depression crater may eventually result in a collapse of seams roofing and vanishing of many water springs. It refers to all the waters underlying the area of Kavkazskie Mineralnye Vody. Due to that situation there is a potential threat of degradation of these deposits of mineral waters. Therefore, an important task consists in building forecast models of hydro-lithospheric processes in the region while the scope of water uptake changes in various parts of the deposit. it will be based on analyzing aerial photographs taken from board unmanned aerial vehicles. Currently such analysis is conducted using simple linear algorithms. The paper suggests to use the Nvidia CUDA technology for the purpose, adapting the mathematics used to ana- lyze aerial photographs to that technology. The initial data for processing were obtained by aerial photography in the course of remote sensing of the area by unmanned aerial vehicles belonging to OJSC «Narzan», Kislovodsk, an enterprise for mining mineral water. Presented in this paper have their Author’s Certificates issued by the Federal Institute of Industrial Property, the Russian Federation.

  13. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    Science.gov (United States)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  14. [Differences of inherent optical properties of inland lake water body in typical seasons].

    Science.gov (United States)

    Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen

    2008-05-01

    Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.

  15. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  16. Ethanol intake and 3H-serotonin uptake I: A study in Fawn-Hooded rats

    International Nuclear Information System (INIS)

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P.

    1991-01-01

    Ethanol intake and synaptosomal 3 H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal 3 H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces 3 H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system

  17. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    Science.gov (United States)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP

  18. The Effects of Ribose on Mechanical and Physicochemical Properties of Cold Water Fish Gelatin Films

    Directory of Open Access Journals (Sweden)

    Neda Javadian

    2014-06-01

    Full Text Available Native fish gelatin has some disadvantages such as high hydrophilic, and solubility in cold water. Mixing with other biopolymers and crosslinking by sugars may improve functional properties of fish gelatin. So in this research, the effects of ribose were investigated on moisture sorption isotherm, solubility in water, and mechanical properties of cold water fish gelatin (CWFG films. Ribose sugar was incorporated into CWFG solutions at different concentrations (e.g. 0, 2, 4, and 6% w/w dried gelatin. Physicochemical properties such as water solubility, moisture sorption isotherm and mechanical properties of the films were measured according to ASTM standards. Results showed that incorporation of ribose sugar significantly improved functional properties of CWFG films. Solubility, moisture content and monolayer water content of the matrixes were decreased by increasing the ribose contents. Mechanical properties of biocomposites were improved more than 20% and moisture sorption isotherm curve significantly shifted to lower moisture contents. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for packaging purposes.

  19. Actinide uptake onto zeolite-L and SAPO-34

    International Nuclear Information System (INIS)

    Amini, S.; Dyer, A.

    1994-01-01

    The characteristics of ion exchange of uranyl and americium, which are α-emitting radioactive nuclides, were examined by batch and column methods. SAPO-34 showed good selectivity for uranyl ion at pH 2-3.5, and distribution coefficients of Am 3+ and UO 2 2+ increased with equilibrium pH. γ irradiation (2 MGy) did not show any significant effect on the uptake of both of actinide ions onto L and SAPO-34. Higher doses of γ-irradiation (up to 10 MGy) created a change of equilibrium pH, and hence uptake, due to radiolysis of water and heat localization generated by γ-radiation and annealing processes. (author) 19 refs.; 15 figs.; 3 tabs

  20. Thermo physical properties of lateritic soil bricks: Influence of water content

    International Nuclear Information System (INIS)

    Meukam, P.; Noumowe, A.; Kofane, T.C.

    2002-11-01

    This paper presents an experimental study carried out in order to determine the properties of local materials used as construction materials. Cement stabilized compressed bricks were tested. The thermal properties of lateritic soil based materials were determined. The objectives of work reported in this paper are to determine the effect of addition of pozzolan or sawdust in lateritic soil brick on the thermal properties. It was shown that the effect of the incorporation of pozzolan or sawdust is the decreasing of the thermal conductivity and density. The moisture content of these materials can modify their thermal performance. Thus a study of the influence of the water content on the thermal conductivity k and the thermal diffusivity a is presented. The thermal conductivity, as a function of water content, increases rapidly between O% and 12% for lateritic soil. The thermal diffusivity curve presents a maximum for values of water content of 15% for lateritic soil and 8% for lateritic soil-pozzolan or lateritic soil- sawdust. (author)

  1. Identifying the Physical Properties of Showers That Influence User Satisfaction to Aid in Developing Water-Saving Showers

    Directory of Open Access Journals (Sweden)

    Minami Okamoto

    2015-07-01

    Full Text Available This research was conducted with the goal of clarifying the required conditions of water-saving showerheads. In order to this, the research analyzes the mutual relationship between water usage flow, the level of satisfaction and the physical properties of spray of showerheads. The physical properties of spray were measured using physical properties test apparatus of standard or scheme for water-saving showerheads issued in several water-saving countries, and satisfaction evaluation data was acquired through bathing experiments. The evaluated showerheads were separated into three groups according to usage water flow and the level of satisfaction. The relationships between usage water flow, the level of satisfaction and physical properties were compared. The results identified that Spray Force and Spray Force-per-Hole were physical properties that influence usage water flow. Spray force-per-hole, water volume ratio in Spray Patterns within φ 100 and φ 150, Temperature Drop and Spray Angle were identified as physical properties that influenced the level of satisfaction. The level of satisfaction and usage water flow has a spurious correlation through the physical properties of Spray Force-per-Hole and Temperature Drop. It is possible to improve the level of satisfaction independent of amount of water usage through designs that set an appropriate value for water volume ratio and Spray Angle for Spray Patterns within φ 100 and φ 150.

  2. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Singh Pooja

    2009-03-01

    Full Text Available Abstract Background Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery. Results With an aim to gain more insight into hydrocarbon uptake mechanism, an efficient biosurfactant producing and n-hexadecane utilizing Pseudomonas sp was isolated from oil contaminated soil which was found to produce rhamnolipid type of biosurfactant containing a total of 13 congeners. Biosurfactant action brought about the dispersion of hexadecane to droplets smaller than 0.22 μm increasing the availability of the hydrocarbon to the degrading organism. Involvement of biosurfactant was further confirmed by electron microscopic studies. Biosurfactant formed an emulsion with hexadecane thereby facilitating increased contact between hydrocarbon and the degrading bacteria. Interestingly, it was observed that "internalization" of "biosurfactant layered hydrocarbon droplet" was taking place suggesting a mechanism similar in appearance to active pinocytosis, a fact not earlier visually reported in bacterial systems for hydrocarbon uptake. Conclusion This study throws more light on the uptake mechanism of hydrocarbon by Pseudomonas aeruginosa. We report here a new and exciting line of research for hydrocarbon uptake involving internalization of biosurfactant covered hydrocarbon inside cell for subsequent breakdown.

  3. Diffusive and quantum effects of water properties in different states of matter

    International Nuclear Information System (INIS)

    Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen; Lin, Shiang-Tai

    2014-01-01

    The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments

  4. Vegetation and overburden cover on phosphogypsum: Effects on radon emission, runoff water quality, and plant uptake of fluoride and radium

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.G. [Florida Institute of Phosphate Research, Bartow, FL (United States)

    1997-12-31

    Phosphogypsum is a byproduct of phosphate fertilizer production, and more than 700 million metric tons have accumulated on 2,500 ha in Florida. Field research was conducted to compare the benefits of capping phosphogypsum with overburden (up to 15 cm in depth) from mined sites versus treatment of the phosphogypsum with minimal amendments. After four growing seasons, vegetation cover was excellent (no bare ground) on plots amended with dolomitic limestone or capped with overburden. However, more species became established with an overburden cap. Fluoride uptake by bermudagrass (Cynodon dactylon) was high when grown directly on phosphogypsum (895 mg kg{sup -1} in leaf tissue) and was reduced slightly by a 15 cm overburden cap (670 mg kg{sup -1}). Unexpectedly, radium ({sup 226}Ra) uptake in bermudagrass grown directly on phosphogypsum (0.6 pCi g{sup -1}) was less than when grown on the overburden cap (1.8 pCi g{sup -1}). The presence of grass cut the radon ({sup 222}Rn) efflux from phosphogypsum in half (from 24 pCi m{sup -2} s{sup -1} to 11 pCi m{sup -2} s{sup -1}), while 15 cm of overburden, in addition to grass cover, halved it again (down to 5 pCi m{sup -2} s{sup -1}). Vegetation cover on phosphogypsum resulted in a 30-fold decrease in electrical conductivity and a 5-fold decrease in the fluoride concentration of surface runoff water. Runoff water quality from vegetated plots was equally good with or without a 15 cm overburden cap on top of the phosphogypsum.

  5. Uptake and localization of sup(99m)technetium-methylene-diphosphonate in bone

    International Nuclear Information System (INIS)

    Savelkoul, T.J.F.

    1984-01-01

    The author investigated the uptake and localization of 99m-technetium-methylene-diphosphonate (99m-Tc-MDP) in bone, to develop a sensitive mean for the detection of early osseous disease. In an electrolysis procedure without the presence of contaminating reductants a 99m-Tc-MDP complex is formed with clear bone-seeking properties. The scans performed in experimental animals are comparable in quality with 99m-Tc(Sn)-MDP scans. The uptake of 99m-Tc-MDP is faster and higher than the uptake of reduced hydrolyzed 99m-Tc. Uptake of 99m-Tc(Sn)-MDP in bone can only take place after decomposition of the complex. As 99m-Tc-MDP is taken up as a unit, this may be a better agent to evaluate the osteoblastic activity in the skeleton. (Auth./R.B.)

  6. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  7. A study of the wet deposit and foliar uptake of iodine and strontium on rye-grass and clover

    International Nuclear Information System (INIS)

    Angeletti, Livio; Levi, Emilio; Commission of the European Communities, Ispra

    1977-12-01

    Foliar uptake of iodine and strontium by rye-grass and clover was studied as a function of aspersion intensities. At the same time, the contribution of root sorption to foliar uptake was measured. The effective half-lives of radionuclides of standing and harvested grass were also determined together with their uptake under the action of demineralized water aspersion [fr

  8. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    International Nuclear Information System (INIS)

    Kwak, Noh-Seok; Baek, Youngmin; Hwang, Taek Sung

    2012-01-01

    Highlights: ► Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. ► The best preparation condition was determined from the yield, water uptake and IEC. ► The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 μm. The microbeads were thermally stable up to 260 °C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  9. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh-Seok; Baek, Youngmin [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hwang, Taek Sung, E-mail: tshwang@cnu.ac.kr [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. Black-Right-Pointing-Pointer The best preparation condition was determined from the yield, water uptake and IEC. Black-Right-Pointing-Pointer The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 {mu}m. The microbeads were thermally stable up to 260 Degree-Sign C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  10. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  11. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review

    International Nuclear Information System (INIS)

    Tasho, Reep Pandi; Cho, Jae Yong

    2016-01-01

    Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area. - Highlights: • Use of veterinary antibiotics (VA's) in livestock farming. • The fate of VA's in soil. • Properties that make the uptake of VA's by plants relatively easy. • Effect of VA's on plants based on earlier findings. • Possible measures that are helpful in limiting the impact of VA's.

  12. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  13. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  14. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina.

    Science.gov (United States)

    Steppe, Kathy; Vandegehuchte, Maurits W; Van de Wal, Bart A E; Hoste, Pieter; Guyot, Adrien; Lovelock, Catherine E; Lockington, David A

    2018-03-17

    Mangrove forests depend on a dense structure of sufficiently large trees to fulfil their essential functions as providers of food and wood for animals and people, CO2 sinks and protection from storms. Growth of these forests is known to be dependent on the salinity of soil water, but the influence of foliar uptake of rainwater as a freshwater source, additional to soil water, has hardly been investigated. Under field conditions in Australia, stem diameter variation, sap flow and stem water potential of the grey mangrove (Avicennia marina (Forssk.) Vierh.) were simultaneously measured during alternating dry and rainy periods. We found that sap flow in A. marina was reversed, from canopy to roots, during and shortly after rainfall events. Simultaneously, stem diameters rapidly increased with growth rates up to 70 μm h-1, which is about 25-75 times the normal growth rate reported in temperate trees. A mechanistic tree model was applied to provide evidence that A. marina trees take up water through their leaves, and that this water contributes to turgor-driven stem growth. Our results indicate that direct uptake of freshwater by the canopy during rainfall supports mangrove tree growth and serve as a call to consider this water uptake pathway if we aspire to correctly assess influences of changing rainfall patterns on mangrove tree growth.

  15. Water interactions with condensed organic phases: a combined experimental and theoretical study of molecular-level processes

    Science.gov (United States)

    Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline

    2016-04-01

    observed water accommodation are discussed based on the combined EMB and MD results. The studies illustrate that the detailed surface properties of the condensed organic phase may substantially modify water uptake, with potential implications for the properties and action of aerosols and clouds in the Earth system. References: 1. X.R. Kong, E. S. Thomson, P. Papagiannakopoulos, S.M. Johansson, and J.B.C. Pettersson, Water Accommodation on Ice and Organic Surfaces: Insights from Environmental Molecular Beam Experiments. J. Phys. Chem. B 118 (2014) 13378-13386. 2. P. Papagiannakopoulos, X. Kong, E. S. Thomson, N. Marković, and J. B. C. Pettersson, Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature. J. Phys. Chem. C 117 (2013) 6678-6685.

  16. Local properties of countercurrent stratified steam-water flow

    International Nuclear Information System (INIS)

    Kim, H.J.

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed

  17. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

    KAUST Repository

    Luxenhofer, Robert

    2011-07-01

    The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high concentrations. Furthermore, we report structure-uptake relationships of a series of amphiphilic POx block copolymers that have different architectures, molar mass and chain termini. The rate of endocytosis can be fine-tuned over a broad range by changing the polymer structure. The cellular uptake increases with the hydrophobic character of the polymers and is observed even at nanomolar concentrations. Considering the structural versatility of this class of polymers, the relative ease of preparation and their stability underlines the potential of POx as a promising platform candidate for the preparation of next-generation polymer therapeutics.

  18. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    Science.gov (United States)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  19. Real-time analysis of water movement in plant sample

    International Nuclear Information System (INIS)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro

    2000-01-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time 18 F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then 18 F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of 18 F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of 18 F labeled water absorption was found to be drastically decreased. (author)

  20. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  1. Uptake and retention of 124Sb in the common mussel, shrimp and shore crab

    International Nuclear Information System (INIS)

    Weers, A.W. van

    1981-01-01

    The uptake of radioactive antimony from water and food by mussels, shrimps and shore crabs and the subsequent loss in non-radioactive sea water were studied with 124 Sb. The concentration factors of about 0.6 for mussels and 2.5 for shrimps, reached by direct uptake from sea water, remained considerably below stable-antimony concentration factors reported for these organisms. The loss of 124 Sb after uptake of the radionuclide by mussels during 19 and 32 days respectively, could be described by a loss from two compartments with different rates. The distribution of the radionuclide in the animals did not change during the retention period. Antimony-124 taken up from sea water by shrimps was largely accounted for by adsorption to the exoskeleton, as was shown by the effect of moulting on the time course of subsequent loss in non-radioactive sea water. Antimony-124 applied to freeze-dried mussel flesh that was fed to shrimps was lost according to a single exponential function. The mean biological half-life of 124 Sb elimination was about 10 days. Two components were shown to be present in the retention of 124 Sb in two groups of shore crabs, one of which was fed freeze-dried shrimps spiked with 124 Sb, while the second group received shrimps labelled by uptake of 124 Sb with food. The only significant difference between the two groups was a longer mean biological half-life of the short-lived component in the second group. In shrimps and crabs only a small fraction of 124 Sb taken up with food ends up in the exoskeleton. About 45% of retained activity in crabs was found in the digestive gland. (author)

  2. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  3. Cs-134 transfer from water or food to the Ciprinid Tinca tinca Linnaeus: uptake and loss kinetics

    International Nuclear Information System (INIS)

    Corisco, J.A.G.; Carreiro, M.C.V.

    1991-01-01

    Experiments with 134 Cs and the fish Tinca tinca Linnaeus (fam. Cyprinidae), as a part of a more extensive work, concerning a simplified freshwater trophic chain using water from Fratel dam, (at Tejo River), were undertaken. Direct uptake from water, during a period of about 30 days, leads to a kinetics expressed by the power function: CF (t) = 0.58 t 0.781 (t in days), the concentration factor (CF) referred to wet weight. Retention study, showed the existence of two biological half-lives, Tb 1 = 7 days and Tb 2 = 87 days, which might concern respectively, the 134 Cs desorption from the transit organs and the loss of the assimilated isotope from the storage organs. In the accumulation through the food chain, using planktonic crustacean Daphnia magna Straus (Cladocera) as prey, a transfer factor (TF) related to wet weight of both fish and prey, is estimated through the power function: TF (t) = 0.022 t 0.578 (t in days). Finally, the retention study following the food pathway contamination, stresses the existence of one long term component, with half-life Tb = 61 days. The transfer factor kinetics seems to point out to a rather slow process, leading to lower 134 Cs concentration values, than the contamination through the water. The loss of the assimilated 134 Cs, uptaken through both pathways, water or food, is a slow process. The longer biological half-life is very important in Radiological Protection, once it may be attributed to the radionuclide loss from the muscular mass. (author)

  4. Physical Property Control on the Cellular Uptake Pathway and Spatial Distribution of Nanoparticles in Cells.

    Science.gov (United States)

    Ahn, Sungsook; Seo, Eunseok; Kim, Ki Hean; Lee, Sang Joon

    2015-06-01

    Nanoparticles have been developed in broad biomedical research in terms of effective cellular interactions to treat and visualize diseased cells. Considering the charge and polar functional groups of proteins that are embedded in cellular membranes, charged nanoparticles have been strategically developed to enhance electrostatic cellular interactions. In this study, we show that cellular uptake efficiency, pathway, and spatial distribution of gold nanoparticles in a cell are significantly modulated based on the surface condition of gold nanoparticles and human cancer cells that were tuned by controlling the pH of the medium and by introducing an electron beam. Cellular uptake efficiency is increased when electrostatic attraction is induced between the cells and the gold nanoparticles. Cell surface modification changes the cellular uptake pathways of the gold nanoparticles and concentrates the gold nanoparticles at the membrane region. Surface modification of the gold nanoparticles also contributes to deep penetration and homogeneous spatial distributions in a cell.

  5. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  6. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Zhang, Yuping; Sallach, J. Brett; Hodges, Laurie; Snow, Daniel D.; Bartelt-Hunt, Shannon L.; Eskridge, Kent M.; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. - Highlights: • Higher sand content in soil caused higher internalization of sulfamethoxazole and Salmonella in lettuce. • Drought

  7. Determination of maximum physiologic thyroid uptake and correlation with 24-hour RAI uptake value

    International Nuclear Information System (INIS)

    Duldulao, M.; Obaldo, J.

    2007-01-01

    Full text: In hyperthyroid patients, thyroid uptake values are overestimated, sometimes approaching or exceeding 100%. This is physiologically and mathematically impossible. This study was undertaken to determine the maximum physiologic thyroid uptake value through a proposed simple method using a gamma camera. Methodology: Twenty-two patients (17 females and 5 males), with ages ranging from 19-61 y/o (mean age ± SD; 41 ± 12), with 24-hour uptake value of >50%, clinically hyperthyroid and referred for subsequent radioactive iodine therapy were studied. The computed maximum physiologic thyroid uptake was compared with the 24-hour uptake using the paired Student t-test and evaluated using linear regression analysis. Results: The computed physiologic uptake correlated poorly with the 24-hour uptake value. However, in the male subgroup, there was no statistically significant difference between the two (p=0.77). Linear regression analysis gives the following relationship: physiologic uptake (%) = 77.76 - 0.284 (24-hour RAI uptake value). Conclusion: Provided that proper regions of interest are applied with correct attenuation and background subtraction, determination of physiologic thyroid uptake may be obtained using the proposed method. This simple method may be useful prior to I-131 therapy for hyperthyroidism especially when a single uptake determination is performed. (author)

  8. Soil properties evolution after irrigation with reclaimed water

    Science.gov (United States)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  9. The density behaviour of heavy oils in water

    International Nuclear Information System (INIS)

    Fingas, M.; Hollebone, B.; Fieldhouse, B.

    2006-01-01

    The recent concern regarding the difficulty of cleaning up Low API gravity oils (LAPIO) spilled in water was discussed. Sinking and overwashing are 2 phenomena related to the behaviour of these heavy oils in water. Sinking refers to the complete submergence of the oil to the bottom of a waterbody, while over-washing refers to the overflowing of a layer of water over dense oil at sea when the oil is still close to the surface. The latter is important because even a micron-layer of water could render the oil undetectable, particularly at acute viewing angles, such as from a ship. This paper reviewed the properties of heavy oil, the prediction of density changes and the sinking/over-washing of heavy oil. In particular, it discussed a spill which occurred in August 2005 when 11 tank cars from train derailment spilled 800,000 litres of Bunker fuel mixed with high PAH-containing pole-treating oil into Lake Wabamun, Alberta. The behaviour of the oil included submergence, neutral buoyancy, resurfacing and formation of several types of aggregates of oil. This study summarized the behaviours and processes that transformed the particles of oil into small tar balls, larger logs, sheets, and large lumps into a slick. Sediment uptake or loss was found to be the major process that caused the changes in density. The behaviour of the oils was compared with respect to density and uptake of various types of sediment. The paper also reviewed the literature on dense oil behaviour. Weathering experiments performed on dense oils to determine if extensive weathering could render oils heavier than water showed that rarely is weathering the only factor in the bulk sinking of oil. Once an oil is submerged, little weathering occurs, either by dissolution or volatilization. The uptake of particulate matter is the most important process in increasing density. This study reviewed over-washing experiments to develop a mathematical solution of the conditions required for oil to be covered by a

  10. Thermomechanical and hygroelastic properties of an epoxy system under humid and cold-warm cycling conditions

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Saghir, Shahid; Verdu, Jacques; Askari, Abe H.

    2014-01-01

    In this paper, we study the hygrothermal aging of an anhydride-cured epoxy under temperature and hygrometry conditions simulating those experienced by an aircraft in wet tropical or subtropical regions. Gravimetric and dimensional measurements were performed and they indicate that there are three stages in this aging process: the first one, corresponding to the early cycles can be called the "induction stage". The second stage of about 1000 cycles duration, could be named the "swelling stage", during which the volume increase is almost equal to the volume of the (liquid) water absorbed. Both the first and second stages are accompanied by modifications of the mechanical properties and the glass transition temperature. During the third ("equilibrium") stage, up to 3000 cycles, there is no significant change in the physical properties despite the continuous increase of water uptake. This can be explained by the fact that only physically sorbed water can influence physical properties. © 2013 Elsevier Ltd. All rights reserved.

  11. Uptake and localization of fluorescent labelled gold nanoparticles in living zebrafish (Danio rerio) using Light Sheet Microscopy

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Asmonaite, G.; Jolk, R.

    2015-01-01

    Despite nanoparticles being used in many different products and applications, the effects and fate in the environment are still not well understood. Uptake of nanoparticles into cells has been shown in vitro and in vivo. However, it is challenging to find suitable methods to identify uptake...... and determine localization on a whole organism level. Furthermore, methods used to identify nanoparticle uptake have been associated with artefacts induced by sample preparation including staining methods for electron microscopy.  This study used Fluorescent Light Sheet Microscopy (FLSM) to determine uptake...... to the particles through the diet or the water phase in a series of separate experiments. In the dietary exposure experiments Artemia salina were exposed to 1 mg Au/L for 24h before being fed to D. rerio. For exposure through the water phase 1 mg Au/L was added directly to aquaria holding the fish and non...

  12. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha

    International Nuclear Information System (INIS)

    Sures, Bernd; Zimmermann, Sonja

    2007-01-01

    Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl 4 , PdSO 4 , RhCl 3 ) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances. - Precious metal accumulation in Dreissena polymorpha is affected by humic substances

  13. Skin hydration: interplay between molecular dynamics, structure and water uptake in the stratum corneum.

    Science.gov (United States)

    Mojumdar, Enamul Haque; Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma

    2017-11-16

    Hydration is a key aspect of the skin that influences its physical and mechanical properties. Here, we investigate the interplay between molecular and macroscopic properties of the outer skin layer - the stratum corneum (SC) and how this varies with hydration. It is shown that hydration leads to changes in the molecular arrangement of the peptides in the keratin filaments as well as dynamics of C-H bond reorientation of amino acids in the protruding terminals of keratin protein within the SC. The changes in molecular structure and dynamics occur at a threshold hydration corresponding to ca. 85% relative humidity (RH). The abrupt changes in SC molecular properties coincide with changes in SC macroscopic swelling properties as well as mechanical properties in the SC. The flexible terminals at the solid keratin filaments can be compared to flexible polymer brushes in colloidal systems, creating long-range repulsion and extensive swelling in water. We further show that the addition of urea to the SC at reduced RH leads to similar molecular and macroscopic responses as the increase in RH for SC without urea. The findings provide new molecular insights to deepen the understanding of how intermediate filament organization responds to changes in the surrounding environment.

  14. Uptake and transport of positron-emitting tracer in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Shimazu, Masamitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; and others

    1997-03-01

    The transport of a positron-emitting isotope introduced into a plant was dynamically followed by a special observation apparatus called `Positron-Emitting Tracer Imaging System`. In the system, annihilation {gamma}-rays from the positron emitter are detected with two planer detectors (5 x 6 cm square). The water containing ca. 5 MBq/ml of {sup 18}F was fed to the cut stem of soybean for 2 min and then the images of tracer activity were recorded for 30 - 50 min. When the midrib of a leaf near the petiole was cut just before measurement, the activity in the injured leaf was decreased but detected even at the apex. This result suggests that the damaged leaf recovered the uptake of water through the lamina. Maximum tracer activities in leaves of unirradiated plant were observed within 10 min, whereas those of irradiated plant at 100 Gy were observed after over 25 min. The final activity of irradiated plant after 30 min was lower than that of unirradiated plant. In case of beans, there was a difference in the absorption behavior of the {sup 18}F-labeled water between unirradiated and irradiated samples. These results show that the system is effective to observe the uptake and transportation of water containing positron emitting tracer for the study of damage and recovery functions of plants. (author)

  15. Hydroponic Uptake of Atrazine and Lambda-cyhalothrin in Aquatic Macrophytes

    Science.gov (United States)

    Bouldin, J. L.; Farris, J. L.; Moore, M. T.; Smith, S.; Cooper, C. M.

    2005-05-01

    Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes in addition to soil geochemical modifications and associated rhizospheric degradation. Remediation attributes of two vegetative species common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations used in 8-d hydroponic exposures were calculated using recommended field applications and a 5% runoff model from a 0.65-cm rainfall event on a 2.02-ha field. While greater atrazine uptake was measured in Juncus effusus, greater lambda-cyhalothrin uptake occurred in Ludwigia peploides. Maximum pesticide uptake was reached within 48 h for each exposure and subsequent translocation of pesticides to upper plant biomass occurred in macrophytes exposed to atrazine. Sequestration of 98.2% of lambda-cyhalothrin in roots of L. peploides was measured after 8 d. Translocation of lambda-cyhalothrin in J. effusus resulted in 25.4% of pesticide uptake partitioned to upper plant biomass. These individual macrophyte remediation studies measured species- and pesticide-specific uptake rates, indicating that the seasonality of pesticide applications and macrophyte emergence might interact strongly to enhance mitigation capabilities in edge-of-field conveyance structures.

  16. The uptake of 131I by some hydroponically grown crops

    International Nuclear Information System (INIS)

    Asprer, G.A.; Lansangan, L.M.; de la Paz, L.R.

    1982-01-01

    Biologically labelled vegetables which include kangkong and sweet potato tops were grown hydroponically in a modified Hoagland-Arnon nutrient solution containing radioiodine with 0.5% non-radioactive Nal solution as the medium. The crops considered in this study are commonly eaten by Filipinos. The concentration of the solution as well as the uptake in the plant system were determined at various time intervals. The extent of radioiodine uptake through air-water-plant pathway is one of the parameters needed for calculating the dose that the general populace could be exposed to, due to radioactivity in the environment. (author)

  17. Mosquitocidal and water purification properties of Ocimum sanctum and Phyllanthus emblica

    Directory of Open Access Journals (Sweden)

    Kadarkarai Murugan

    2012-12-01

    Full Text Available Ocimum sanctum was tested for its larvicidal and water sedimentation properties; the fruit ethanol and methanol extracts of Phyllanthus emblica were tested for phytochemical, larvicidal, oviposition-deterrent and ovicidal activities. Results emphasized that plant extracts have high toxicity against the egg and larvae of the malarial vector Anopheles stephensi and also have water sedimentation properties. LC50 of Phyllanthus emblica against Anopheles stephensi larvae ranged from 33.08 ppm to 81.26 ppm and from 23.44 to 54.19 ppm for ethanol and methanol extracts, respectively. Phyllanthus emblica also showed excellent ovipositional deterrent and ovicidal activities. The oviposition activity index value of ethanol and methanol extracts of Phyllanthus emblica at 500 ppm were -0.80 and -0.92, respectively. Ocimum sanctum includes both insecticidal secondary compounds, amino acids (glycine, lysine, vitamin C and other substances, that make treated water suitable for human consumption. Water quality parameters such as color, turbidity and pH were analyzed in the water samples (pre-treatment and post-treatment of plant extracts taken from the breeding sites of mosquitoes. Hence, the plant product can be used as both mosquitocidal and water purifier.

  18. Waste Water Treatment by Some Prepared Polymers by Radiation

    International Nuclear Information System (INIS)

    El-Naggar, A.A.H.I.

    2010-01-01

    Synthesis of hydrophilic polymeric material having certain function groups with the ability to absorbs some heavy metals and some dyes from waste water is of a great importance from the point of view of environmental studies. The present work may be represented as the following : The two different methods have been used for the modification of PE-co- PP non woven fabric via two different techniques:- 1. Coating of (PE-co-PP) with mixture of CMC and AAc by using (E.B) irradiation. 2. The modification of (PE-co-PP) non-woven fabric by γ- irradiation induced grafting of (AAm) monomer . 3. The modification of hydrophilic substrate to hydrogel was carried out through the following: The preparation of clay/PVA hydrogel through freezing and thawing followed by E.B. irradiation. The different factors which affect the properties of the modified substrate were investigated. Moreover, the structure properties of the modified substrate were characterized by SEM, XRD, and IR. Thermal properties was also investigated by TGA and DSC. Hydrophilic property of the modified substrate was investigated by water uptake %. The results obtained show that the prepared substrates can be used in the removal of heavy metals and dyes from waste water.

  19. Root water extraction under combined water and osmotic stress

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Dam, van J.C.; Metselaar, K.

    2009-01-01

    Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The

  20. Factors influencing the uptake of {sup 18}F-fluoroestradiol in patients with estrogen receptor positive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Lanell M. [Department of Radiology, University of Washington Medical Center, Seattle WA (United States); Department of Radiology, Seattle Cancer Care Alliance, Seattle WA (United States); Kurland, Brenda F. [Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Link, Jeanne M. [Department of Radiology, University of Washington Medical Center, Seattle WA (United States); Schubert, Erin K. [Department of Radiology, University of Washington Medical Center, Seattle WA (United States); Department of Radiology, Seattle Cancer Care Alliance, Seattle WA (United States); Stekhova, Svetlana [Department of Radiology, University of Washington Medical Center, Seattle WA (United States); Linden, Hannah M. [Department of Medical Oncology, University of Washington Medical Center/Seattle Cancer Care Alliance, Seattle, WA (United States); Mankoff, David A., E-mail: dam@u.washington.edu [Department of Radiology, University of Washington Medical Center, Seattle WA (United States); Department of Radiology, Seattle Cancer Care Alliance, Seattle WA (United States)

    2011-10-15

    Introduction: {sup 18}F-Fluoroestradiol (FES) PET imaging provides a non-invasive method to measure estrogen receptor (ER) expression in tumors. Assessment of factors that could affect the quantitative level of FES uptake is important as part of the validation of FES PET for evaluating regional ER expression in breast cancer. Methods: This study examines FES uptake in tumors from 312 FES PET scans (239 patients) with documented ER+ primary breast cancer. FES uptake was compared to clinical and laboratory data, treatment prior to or at time of scan, and properties of FES and its metabolism and transport. Linear mixed models were used to explore univariate, threshold-based and multivariate associations. Results: Sex hormone-binding globulin (SHBG) was inversely associated with FES SUV. Average FES uptake did not differ by levels of plasma estradiol, age or rate of FES metabolism. FES tumor uptake was greater for patients with a higher body mass index (BMI), but this effect did not persist when SUV was corrected for lean body mass (LBM). In multivariate analysis, only plasma SHBG binding was an independent predictor of LBM-adjusted FES SUV. Conclusions: Calculation of FES SUV, possibly adjusted for LBM, should be sufficient to assess FES uptake for the purpose of inferring ER expression. Pre-menopausal estradiol levels do not appear to interfere with FES uptake. The availability and binding properties of SHBG influence FES uptake and should be measured. Specific activity did not have a clear influence on FES uptake, except perhaps at higher injected mass per kilogram. These results suggest that FES imaging protocols may be simplified without sacrificing the validity of the results.