WorldWideScience

Sample records for water uptake ability

  1. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  2. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...

  3. Uptake of uranium from sea water by microalgae

    International Nuclear Information System (INIS)

    Sakaguchi, Takashi; Horikoshi, Takao; Nakajima, Akira

    1978-01-01

    The uptake of uranium from aqueous systems especially from sea water by various microalgae was investigated. The freshwater microalgae, Chlorella regularis, Scenedesmus bijuga, Scenedesmus chloreloides, Scenedesmus obliquus, Chlamydomonas angulosa, Chlamydomonas reinhardtii, accumulated relatively large amounts of uranium from the solution containing uranium only. The concentration factors of the above mentioned algae were: Chlorella regularis 3930, Chlamydomonas 2330 - 3400, Scenedesmus 803 - 1920. The uptake of uranium from sea water by Chlorella regularis was inhibited markedly by the co-existence of carbonate ions. Chlorella cells could take up a great quantity of uranium from decarbonated sea water. The uptake of uranium was affected by the pH of sea water, and the amount of uranium absorbed was maximum at pH 5. The experiment was carried out to screen marine microalgae which have the ability to accumulate a large amount of uranium from sea water. The uptake of uranium from sea water by marine microalgae of different species turned out to be in the following decreasing order: Synechococcus > Chlamydomonas >> Chlorella > Dunaliella > Platymonas > Calothrix > Porphyridium. The amount of uranium absorbed differed markedly with different species of marine microalgae. (author)

  4. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  5. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  6. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  7. Molecular mechanisms of foliar water uptake in a desert tree

    OpenAIRE

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecul...

  8. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  9. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    affect the spatial distribution of root water uptake. This suggests that rhizosphere processes effect root water uptake at the plant scale. Overall, these preliminary results demonstrate the impact of rhizosphere on water flow and root water uptake, and the ability of the Rhizo-RSWMS to simulate these processes. References Javaux, M., Schröder, T., Vanderborght, J., & Vereecken, H. (2008). Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7(3), 1079-1088.‏ Kroener, E., Zarebanadkouki, M., Kaestner, A., & Carminati, A. (2014). Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resources Research, 50(8), 6479-6495.‏

  10. Mercury resistant bacteria from effluents of paint factory : characterisation and mercury uptake ability

    International Nuclear Information System (INIS)

    Yasmin, A.; Afrasayab, S.; Hasnain, S.

    1998-01-01

    Twelve Hg-resistant strains [SHg-13,SHg-14, SHg-15, SHg-16, SHg-17, SHg-18, SHg-19, SHg-20, SHg-21, SHg-22, SHg-23, SHg-24] were isolated from the polluted water sample taken from the outlets of ICI paint factory. They could tolerate 350-500 mu g ml/sup -1/ of HgCl/sub 2/ in the solid medium and 25-125 mu g mg/sup -1/ of HgCl/sub 2/ in the liquid medium. All strains had off-white, convex [except SHg-20 which had orange flat colonies] and circular colonies. SHg-13, SHg-15 and SHg-17 were Gram variable rods, while rest of strains had Gram -ve rods. They were strictly aerobic bacteria except SHg-16, SHg-18, SHg-22 and SHg-24 which were facilitative anaerobes. On the basis of morphological and biochemical characters strains SHg-13, Shg-14, SHg-15, SHg-17, SHg-19, SHg-20, SHg-21, SHg-23 were affiliated with family Pseudomonadaceae, whereas strains SHg-16, SHg-18, SHg-22 and SHg-24 could be grouped with family Vibranoaceae. All strains could grow in pH range from 6-9 with different optimum, SHg-14 and SHg-16 yielded maximum growth at 28 deg. C while SHg-17, SHg-18, SHg-20, SHg-22 and SHg-23 showed optimum growth at 32 deg. C, whereas rest of the strains yielded maximum growth at 37 deg. C. They conferred resistance to ampicillin and chloramphenicol, but were sensitive to streptomycin [except SHg-20, SHg-23], kanamycin [except SHg-24] and tetracycline [excluding SHg-13, SHg-18]. These isolates could tolerate a number of other metallic salts. Excluding Shg-19 all strains harbor single plasmid. These strains had the ability to uptake/transform mercury. Maximum mercury uptake was observed by SHg-14 and SHg-15. (author)

  11. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Forest Transpiration: Resolving Species-Specific Root Water Uptake Patterns

    Science.gov (United States)

    Blume, T.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.; Stewart, R. D.

    2016-12-01

    Transpiration and its spatio-temporal variability are still not fully understood, despite their importance for the global water cycle. This is in part due to our inability to measure transpiration comprehensively. Transpiration is usually either estimated with empirical equations based on climatic variables and crop factors, by measuring sap velocities, estimating sap wood area and scaling up to the forest stand based on a number of assumptions or by measuring the integral signal across a footprint with eddy flux towers. All these methods are focused on the cumulated loss of water to the atmosphere and do not provide information on where this water is coming from. In this study, spatio-temporal variability of root water uptake was investigated in a forest in the northeastern German lowlands. The soils are sandy and the depth of the unsaturated zone ranges from 1 to 30 m. We estimated root water uptake from different soil depths, from 0.1 m down to 2 m, based on diurnal fluctuations in soil moisture content during rain-free days. The 15 field sites cover different topographic positions and forest stands: 4 pure stands of both mature and young beech and pine and 9 mixed stands. The resulting daily data set of root water uptake shows that the forest stands differ in total amounts as well as in uptake depth distributions. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of uptake that changes with water availability. The relationship of these depth-resolved uptake rates to overall soil water availability varies considerably between tree species. Using the physically-based soil hydrological model HYDRUS we investigated to what extent the observed patterns in uptake can be related to soil physical relationships alone and where tree species-specific aspects come into play. We furthermore used the model to test assumptions and estimate uncertainties of this soil moisture based estimation of plant water uptake. The

  14. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  15. Uptake of {sup 137}Cs by fresh water fish

    Energy Technology Data Exchange (ETDEWEB)

    Man, C.K.; Kwok, Y.H

    2000-02-01

    The uptake and discharge rates of {sup 137}Cs by fresh water fish at different radionuclide concentrations have been studied. A dual compartment model was used to fit the experimental data. The discharge rates have been found to be negligible for the duration of the experiment of 10 days. The uptake rates were independent of radionuclide concentrations for a particular type of fresh water fish and were different for different types of fish. The uptake rates of carp, tilapia and snakehead were 1.58, 1.66 and 2.23, in unit of 10{sup -6} h{sup -1}, respectively. It was also estimated that the consumption of fresh water fish, even if the water were contaminated as much as that in the Chernobyl accident, leads to negligible latent cancer fatality to the Hong Kong population.

  16. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  17. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  18. Water uptake and motion in highly densified bentonite

    International Nuclear Information System (INIS)

    Kahr, G.; Mueller-Vonmoos, F.; Kraehenbuehl, F.; Stoeckli, H.F.

    1986-07-01

    Water uptake by the bentonites MX-80 and Montigel was investigated according to the classical method of determination of the heat immersion and the adsorption-desorption isotherms. In addition, the layer expansion of the montmorillonite was measured as a function of the water content. The evaluation of the adsorption isotherms according to Dubinin-Radushkevich and the stratification distances determined by x-ray confirmed gradual water uptake. Up to 10% water content, the water is adsorbed as a monolayer, up to 20%, as a bimolecular layer around the interlayer cations. The partial specific entropy could be determined from the approximative calculation of the partial specific enthalpy from the heats of immersion and the free enthalpy from the adsorption isotherms. From this it is evident that the interlayer water shows a high degree of order. In this condition, the mobility of the water molecules is considerably lower than in free water. From the adsorption isotherm and the layer expansion observed, it can be assumed that water can appear in the pore space only from approximately 25% water content. The spaces outwith the interlayer space and the surfaces of the montmorillonite particles are considered as pore space. If free swelling is prevented and with dry densities greater than 1.8 Mg/m/sup 3/ for the highly compacted bentonites, water uptake causes a drastic reduction of the original pore space so that practically all the water is in the interlayer space. Calculation of the swelling pressure from the adsorption isotherms gives a good approximation of the measured swelling pressures. A montmorillonite surface of ca. 750 m/sup 2//g for both bentonites can be derived from a Dubinin-Radushkevich analysis of the adsorption isotherm. Water uptake into the compacted unsaturated bentonites can be described as diffusion with a diffusion coefficient of the order of magnitude of 3.10/sup -10/ m/sup 2//s. (author)

  19. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-01

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ( 1 H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-√t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from √t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction γ is defined for the calculation of surface flux.

  20. Uptake of uranium from sea water by Synechococcus elongatus

    International Nuclear Information System (INIS)

    Horikoshi, Takao; Nakajima, Akira; Sakaguchi, Takashi

    1979-01-01

    Basic features of the uranium uptake by Synechococcus elongatus, and the factors affecting it were examined. Synechococcus elongatus was grown in Roux flasks containing 1 liter of culture solution in light (20,000 lux) and with aeration at 30 deg C. Synechococcus cells in the linear growth phase were collected by centrifugation at 6,000 x g for 5 minutes, washed with sea water, and used for the uranium-uptake experiments. The uptake of uranium from sea water containing 1 ppm of the element was strongly affected by the pH of sea water. The optimum uptake was at pH 5. Presence of carbonate ions markedly inhibited and decarbonation of sea water greatly enhanced the uptake. Absorption of uranium by Synechococcus cells was initially rapid, and reached a plateau within 24 hours. The uranium accumulation capacity of Synechococcus cells was increased by heat treatment, the capacity of scalded cells being about twice as much as that of living cells. Most of the uranium absorbed by Synechococcus was found in the inner space of the cells, and only a small amount was present in the cell walls. (Kaihara, S.)

  1. Uptake of uranium from drinking water

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1987-01-01

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234 U and 238 U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion the subjects collected 24 hour total output of both urine and feces for seven days prior to drinking water. During the next day they drank, at their normal rate of drinking water intake, 900 ml of water containing approximately 90 pCi 238 U and 90 pCi 234 U (274 μg U) and continued to collect their urine and feces for seven additional days. Utilizing one technique for analyzing data, the G.I. absorption of 234 U ranged from -0.07% to 1.88% with an average of 0.51% and G.I. absorption of 238 U ranged from -0.07% to 1.79% with an average of 0.50%. Employing another technique for analyzing the data, the G.I. absorption ranged from -0.04 to 1.46% with a mean of 0.53% for 234 U and from 0.03% to 1.43% with a mean of 0.52 for 238 U. The dietary intake of U was also estimated from measurements of urinary and fecal excretion of U in eight subjects prior to drinking water containing U. The estimated average dietary intake of U for these subjects is 3.30 +/- 0.65 or 4.22 +/- 0.65 μg/day. These averages are two to four times higher than the values reported in the literature for dietary intake

  2. Plant–Water Relations (1): Uptake and Transport

    Science.gov (United States)

    2014-01-01

    Summary Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow tracheary elements are just one of many adaptations that enable plants to cope with a very dry atmosphere. This lecture examines the physical laws that govern water uptake and transport, the biological properties of cells and plant tissues that facilitate it, and the strategies that enable plants to survive in diverse environments

  3. Water uptake by two river red gum ( Eucalyptus camaldulensis) clones in a discharge site plantation in the Western Australian wheatbelt

    Science.gov (United States)

    Marshall, John K.; Morgan, Anne L.; Akilan, Kandia; Farrell, Richard C. C.; Bell, David T.

    1997-12-01

    The heat-pulse technique was used to estimate year-long water uptake in a discharge zone plantation of 9-year-old clonal Eucalyptus camaldulensis Dehnh. near Wubin, Western Australia. Water uptake matched rainfall closely during weter months but exceeded rainfall as the dry season progressed. Average annual water uptake (1148 mm) exceeded rainfall (432 mm) by about 2.7 fold and approached 56% of pan evaporation for the area. The data suggest that at least 37% (i.e. ( {1}/{2.7}) × 100 ) of the lower catchment discharge zone should be planted to prevent the rise of groundwater. Water uptake varied with soil environment, season and genotype. Upslope trees used more water than did downslope trees. Water uptake was higher in E. camaldulensis clone M80 than in clone M66 until late spring. The difference reversed as summer progressed. Both clones, however, have the potential to dry out the landscape when potential evapotranspiration exceeds rainfall. This variation in water uptake within the species indicates the potential for manipulating plantation uptake by matching tree characteristics to site characteristics. Controlled experiments on the heat-pulse technique indicated accuracy errors of approximately 10%. This, combined with the ability to obtain long-term, continuous data and the superior logistics of use of the heat-pulse technique, suggests that results obtained by it would be much more reliable than those achieved by the ventilated chamber technique.

  4. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  5. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  6. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    Science.gov (United States)

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  7. Root water uptake and lateral interactions among root systems in a temperate forest

    Science.gov (United States)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  8. Hydraulic root water uptake models: old concerns and new insights

    Science.gov (United States)

    Couvreur, V.; Carminati, A.; Rothfuss, Y.; Meunier, F.; Vanderborght, J.; Javaux, M.

    2014-12-01

    Root water uptake (RWU) affects underground water dynamics, with consequences on plant water availability and groundwater recharge. Even though hydrological and climate models are sensitive to RWU parameters, no consensus exists on the modelling of this process. Back in the 1940ies, Van Den Honert's catenary approach was the first to investigate the use of connected hydraulic resistances to describe water flow in whole plants. However concerns such as the necessary computing when architectures get complex made this approach premature. Now that computing power increased dramatically, hydraulic RWU models are gaining popularity, notably because they naturally produce observed processes like compensatory RWU and hydraulic redistribution. Yet major concerns remain. Some are more fundamental: according to hydraulic principles, plant water potential should equilibrate with soil water potential when the plant does not transpire, which is not a general observation when using current definitions of bulk or average soil water potential. Other concerns regard the validation process: water uptake distribution is not directly measurable, which makes it hard to demonstrate whether or not hydraulic models are more accurate than other models. Eventually parameterization concerns exist: root hydraulic properties are not easily measurable, and would even fluctuate on an hourly basis due to processes like aquaporin gating. While offering opportunities to validate hydraulic RWU models, newly developed observation techniques also make us realize the increasing complexity of processes involved in soil-plant hydrodynamics, such as the change of rhizosphere hydraulic properties with soil drying. Surprisingly, once implemented into hydraulic models, these processes do not necessarily translate into more complex emerging behavior at plant scale, and might justify the use of simplified representations of the soil-plant hydraulic system.

  9. Uptake in the pancreatic islets of nicotimamide, nicotinic acid and tryptophan and their ability to prevent streptozotocin diabetes in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tjaelve, H; Wilander, E [Uppsala Univ. (Sweden)

    1976-01-01

    The uptake of the nicotinamide adenine dinucleotide (NAD)-precursors nicotinamide, nicotinic acid and tryptophan in the pancreatic islets of mice was studied by use of autoradio-graphical methods. The ability of these substances to prevent streptozotocin diabetes was studied in the same species. It was found that only nicotinamide was strongly accumulated in the pancreatic islets and nicotinamide was also the only NAD-precursor which protected against the streptozotocin diabetes. Apparently there is a relationship between the ability of the NAD-precursors to be taken up in the pancreatic islets and their ability to prevent streptozotocin diabetes.

  10. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    Science.gov (United States)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    -old maize the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. For the five weeks-old maize, water was mainly taken up by the crown roots and their associated laterals. The ability of crown roots to uptake water from the distal segments can help maize to extract water from deep soil layers and better tolerate drought. Reference Ahmed MA, Zarebanadkouki M, Kaestner A, Carminati A (2015) Measurements of water uptake of maize roots: the key function of lateral roots. Plant and Soil 1-19. doi: 10.1007/s11104-015-2639-6

  11. Modified Feddes type stress reduction function for modeling root water uptake: Accounting for limited aeration and low water potential

    Science.gov (United States)

    Peters, Andre; Durner, Wolfgang; Iden, Sascha C.

    2017-04-01

    Modeling water flow in the soil-plant-atmosphere continuum with the Richards equation requires a model for the sink term describing water uptake by plant roots. Despite recent progress in developing process-based models of water uptake by plant roots and water flow in aboveground parts of vegetation, effective models of root water uptake are widely applied and necessary for large-scale applications. Modeling root water uptake consists of three steps, (i) specification of the spatial distribution of potential uptake, (ii) reduction of uptake due to various stress sources, and (iii) enhancement of uptake in part of the simulation domain to describe compensation. We discuss the conceptual shortcomings of the frequently used root water uptake model of Feddes and suggest a simple but effective improvement of the model. The improved model parametrizes water stress in wet soil by a reduction scheme which is formulated as function of air content where water stress due to low soil water potential is described by the original approach of Feddes. The improved model is physically more consistent than Feddes' model because water uptake in wet soil is limited by aeration which is a function of water content. The suggested modification is particularly relevant for simulations in heterogeneous soils, because stress parameters are uniquely defined for the entire simulation domain, irrespective of soil texture. Numerical simulations of water flow and root water uptake in homogeneous and stochastic heterogeneous soils illustrate the effect of the new model on root water uptake and actual transpiration. For homogeneous fine-textured soils, root water uptake never achieves its potential rate. In stochastic heterogeneous soil, water uptake is more pronounced at the interfaces between fine and coarse regions which has potential implications for plant growth, nutrient uptake and depletion.

  12. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...... tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant...

  13. Increased cesium uptake by water tupelo under inundated conditions

    International Nuclear Information System (INIS)

    McLeod, K.W.

    1980-01-01

    Low level releases of 137 Cs to streams has resulted in concentrations greater than background levels in soils, sediments and plants of the Savannah River swamp. The object of this study was to determine the effect of inundation on the absorption of 137 Cs by water tupelo (Nyssa aquatica) which is dominant in the swamp and is able to survive and grow well under flooded conditions. Results show that actively growing young water tupelo absorb about twice as much 137 Cs when grown in the laboratory under inundated conditions suggesting that in the spring, when inundated conditions usually exist and rapid growth occurs, uptake of 137 Cs is high. Some Cs is transported from soil depths and returned to soil surface via incorporation into leaves and subsequent leaf fall, thus continually mixing Cs which was buried below the soil surface. (U.K.)

  14. Water collection behavior and hanging ability of bioinspired fiber.

    Science.gov (United States)

    Hou, Yongping; Chen, Yuan; Xue, Yan; Zheng, Yongmei; Jiang, Lei

    2012-03-13

    Since the water-collecting ability of the wetted cribellate spider capture silk is the result of a unique fiber structure, bioinspired fibers have been researched significantly so as to expose a new water-acquiring route in fogging-collection projects. However, the design of the geometry of bioinspired fiber is related to the ability of hanging drops, which has not been investigated in depth so far. Here, we fabricate bioinspired fibers to investigate the water collection behavior and the influence of geometry (i.e., periodicity of spindle knot) on the hanging-drop ability. We especially discuss water collection related to the periodicity of geometry on the bioinspired fiber. We reveal the length of the three phase contact line (TCL) at threshold conditions in conjunction with the maximal volume of a hanging drop at different modes. The study demonstrates that the geometrical structure of bioinspired fiber induces much stronger water hanging ability than that of uniform fiber, attributed to such special geometry that offers effectively an increasing TCL length or limits the contact length to be shorted. In addition, the geometry also improves the fog-collection efficiency by controlling tiny water drops to be collected in the large water drops at a given location.

  15. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  16. Cadmium triggers Elodea canadensis to change the surrounding water pH and thereby Cd uptake.

    Science.gov (United States)

    Javed, M Tariq; Greger, Maria

    2011-01-01

    This study was aimed to investigate the influence of Elodea canadensis shoots on surrounding water pH in the presence of cadmium and the effect of plant-induced pH on cadmium uptake. The pH change in the surrounding nutrient solution and Cd uptake by Elodea shoots were investigated after cultivation of various plant densities (1, 3, 6 plants per 500 ml) in hydroponics at a starting pH of 4.0 and in the presence of different concentrations of cadmium (0, 0.1, 0.5 microM). Cadmium uptake was also investigated at different constant pH (4.0, 4.5, 5.5 and 6.5). To investigate if the pH change arose from photosynthetic activities, plants were grown under light, darkness or in the presence of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and 0.5 microM cadmium in the solution. Elodea had an ability to increase the surrounding water pH, when the initial pH was low, which resulted in increased accumulation of Cd. The higher the plant density, the more pronounced was the pH change. The pH increase was not due to the photosynthetic activity since the pH rise was more pronounced under darkness and in the presence of DCMU. The pH increase by Elodea was triggered by cadmium.

  17. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  18. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    Science.gov (United States)

    J. Mason Earles; Or Sperling; Lucas C. R. Silva; Andrew J. McElrone; Craig R. Brodersen; Malcolm P. North; Maciej A. Zwieniecki

    2015-01-01

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water...

  19. Effect of water uptake on the fracture behavior of low-k organosilicate glass

    Science.gov (United States)

    Xiangyu Guo; Joseph E. Jakes; Samer Banna; Yoshio Nishi; J. Leon Shohet

    2014-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-the-line integration and circuit reliability. This work examines the effects of water uptake on the fracture behavior of nanoporous low-k organosilicate glass. By using annealing dehydration and humidity conditioning, the roles of different water types...

  20. Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water

    Directory of Open Access Journals (Sweden)

    Tiago Fernandes

    2017-03-01

    Full Text Available Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe3O4@SiO2/SiCRG and Fe3O4@SiO2/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe3O4@SiO2/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe3O4@SiO2/SiCRG biosorbents was 257 mg·g−1, which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.

  1. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza

    2017-04-15

    We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Simulation of root water uptake. II. Non-uniform transient water stress using different reduction functions

    NARCIS (Netherlands)

    Homaee, M.; Feddes, R.A.; Dirksen, C.

    2002-01-01

    The macroscopic root water uptake approach was used in the numerical simulation model HYSWASOR to test four different pressure head-dependent reduction functions. The input parameter values were obtained from the literature and derived from extensive measurements under controlled conditions in the

  3. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  4. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    Science.gov (United States)

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  5. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  6. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    Science.gov (United States)

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  7. Uptake and allocation of 15N in alpine plants. Implications for the importance of competitive ability in predicting community structure in a stressful environment

    International Nuclear Information System (INIS)

    Theodose, T.A.; Jaeger, C.H.; Bowman, W.D.; Schardt, J.C.

    1996-01-01

    Several potential components of competitive ability were determined for 13 plant species in a N-limited alpine moist meadow community in order to determine if competition had an influence on relative abundance in this stressful environment. The components of competitive ability examined were 15 N uptake rate, 15 N allocation, whole plant biomass, root:shoot ratio, and tissue N concentrations. It was hypothesized that 15 N uptake rate would be the component most correlated with relative abundance. However, 15 N uptake rate was negatively correlated with percent cover in the community. In contrast, whole plant biomass and root:shoot ratio were positively correlated with relative abundance. Tissue N concentrations and 15 N allocation were not important predictors of relative abundance. These results suggest that in a harsh environment, high resource uptake rates are not indicative of competitive ability, but may instead by a mechanism by which rare species are able to coexist with competitive dominants. (au) 47 refs

  8. The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Vendramini, Chiara; Beltran, Gemma; Nadai, Chiara; Giacomini, Alessio; Mas, Albert; Corich, Viviana

    2017-10-03

    Three vineyard strains of Saccharomyces cerevisiae, P301.4, P304.4 and P254.12, were assayed in comparison with a commercial industrial strain, QA23. The aim was to understand if nitrogen availability could influence strain competition ability during must fermentation. Pairwise-strain fermentations and co-fermentations with the simultaneous presence of the four strains were performed in synthetic musts at two nitrogen levels: control nitrogen condition (CNC) that assured the suitable assimilable nitrogen amount required by the yeast strains to complete the fermentation and low nitrogen condition (LNC) where nitrogen is present at very low level. Results suggested a strong involvement of nitrogen availability, as the frequency in must of the vineyard strains, respect to QA23, in LNC was always higher than that found in CNC. Moreover, in CNC only strain P304.4 reached the same strain frequency as QA23. P304.4 competition ability increased during the fermentation, indicating better performance when nitrogen availability was dropping down. P301.4 was the only strain sensitive to QA23 killer toxin. In CNC, when it was co-inoculated with the industrial strain QA23, P301.4 was never detected. In LNC, P301.4 after 12h accounted for 10% of the total population. This percentage increased after 48h (20%). Single-strain fermentations were also run in both conditions and the nitrogen metabolism further analyzed. Fermentation kinetics, ammonium and amino-acid consumptions and the expression of genes under nitrogen catabolite repression evidenced that vineyard yeasts, and particularly strain P304.4, had higher nitrogen assimilation rate than the commercial control. In conclusion, the high nitrogen assimilation rate seems to be an additional strategy that allowed vineyard yeasts successful competition during the growth in grape musts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  10. Relationship between root water uptake and soil respiration: A modeling perspective

    Science.gov (United States)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  11. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  12. Influence of water relations and growth rate on plant element uptake and distribution

    International Nuclear Information System (INIS)

    Greger, Maria

    2006-02-01

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution

  13. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    Science.gov (United States)

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  14. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  15. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  16. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  17. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.

    Science.gov (United States)

    Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo

    2007-12-01

    The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.

  18. Uptake of different species of iodine by water spinach and its effect to growth.

    Science.gov (United States)

    Weng, Huan-Xin; Yan, Ai-Lan; Hong, Chun-Lai; Xie, Lin-Li; Qin, Ya-Chao; Cheng, Charles Q

    2008-08-01

    A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate (IO(-)(3)), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: CH(2)ICOO(-) >I(-)>IO(-)(3). In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of IO(-)(3) and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and IO(-)(3). The nitrate content in water spinach was increased by different degrees.

  19. The rate of 45Ca uptake by two corals species at waters of Burung island, Bangka-Belitung province

    International Nuclear Information System (INIS)

    Zulkifli Dahlan; Gusti Diansyah; T Zia Ulqodry; Ania Citraresmini

    2010-01-01

    Coral reefs transplantation is the most technique used for coral reefs rehabilitation, at the present. Recently the 45 Ca technique has been using for determining growth appearances in corals because of its ability to calculate the calcification process. For this reason, the study on the rate of 45 Ca uptake by natural corals Acropora Formosa and Acropora nobilis was carried out between June and December 2009 at the waters of Burung Island, Bangka-Belitung Province. The coral fragments of about 5 cm were harvested and put into a PVC container filled with 2 liters of fresh sea water, then incubated with 45 CaCl 2 solutions with an activity of 11.04 μCi/ml for 8 hour under fluorescent light. After the incubation, the “labeled” coral fragments were transplanted to where they have been taken from, and after such period will be re-harvested to determine their 45 Ca uptake content. The results showed that the 45 Ca technique was a reliable method to calculate the rate 45 Ca uptake by coral fragments, which were studied in different depths and time periods of light exposure. There was a significant difference in the 45 Ca uptake by the two different coral species. A. Formosa up took more 45 Ca than A. nobilis did. The highest 45 Ca uptake was shown by A. Formosa at 5 m. This was true for all the lengths of time to light exposure (1, 3, 5 and 7 hours). Different pattern of 45 Ca uptake showed by A. nobilisat 10 m depth, where it could be recognized that after a drop of 45 Ca the uptake increase continuously until the end of the light exposure (7 hours). The difference in 45 Ca uptake between the coral fragments is assumed to be influence by light and the algae species living symbiotically with the coral species that will further influence the CO 2 -fixation. This process will influence the calcification process, which is expressed in 45 Ca uptake. Further studies should be carried out to exactly gathered data of all the factors which could influence the calcification

  20. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  1. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  2. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  3. Nitrogen uptake by size-fractionated phytoplankton in mangrove waters

    Digital Repository Service at National Institute of Oceanography (India)

    Dham, V.V.; Wafar, M.V.M.; Heredia, A.M.

    to January — dry and cool) and pre-monsoon (February to May — dry and hot) periods. Environmental parameters, the nutrients and rates of N uptake and the remineralisation by unfractionated plankton were measured at 3 stations (Fig. 1) over a series of 16... samples with netplankton (20 to 200 µm) and nanoplankton (0.8 to 20 µm) sized particles were obtained by serial filtration through 200 and 20 µm bolting silk and 0.8 µm glass-fibre filters, and were used for measurements of chlorophyll a (chl a...

  4. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  5. Uptake of Mn and Cd by Wild Water Spinach and Their Bioaccumulation and Translocation Factors

    OpenAIRE

    Billy Teck Huat Guan; Ferdaus Mohamat-Yusuff; Normala Halimoon; Christina Seok Yien Yong

    2017-01-01

    Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn) and cadmium (Cd) to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd by the water spinach (Ipomoea aquatica) is presented in this paper. Different concentrations of Mn and Cd were added to the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse conditions. The pla...

  6. NMR imaging of water uptake in multilayer polymeric films : stressing the role of mechanical stress

    NARCIS (Netherlands)

    Baukh, V.; Huinink, H.P.; Adan, O.C.G.; Erich, S.J.F.; Ven, van der L.G.J.

    2010-01-01

    The penetration of water into two-layer polymeric films of a hydrophilic base layer and hydrophobic top layer plays an important role in their performance. Little is known about the coupled effects of water uptake and stress in such films. To study such interactive phenomena, time-dependent

  7. The effect of water uptake on the mechanical properties of low-k organosilica glass

    Science.gov (United States)

    X. Guo; J.E. Jakes; M.T. Nichols; S. Banna; Y. Nishi; J.L. Shohet

    2013-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-...

  8. Water uptake in woody riparian phreatophytes of the southwestern United States: a stable isotope study

    International Nuclear Information System (INIS)

    Busch, D.E.; Ingraham, N.L.; Smith, S.D.

    1992-01-01

    Alluvial forest associations are often dominated by woody phreatophytes, plants that are tightly linked to aquifers for water uptake. Anthropogenic hydrological alterations (e.g., water impoundment or diversion) are of clear importance to riparian ecosystem function. Because decreased frequency of flooding and depression of water tables may, in effect, sever riparian plants from their natural water sources, research was undertaken to determine water uptake patterns for the dominant native and introduced woody taxa of riparian plant communities of the southwestern United States. At floodplain study sites along the Bill Williams and lower Colorado Rivers (Arizona, USA), naturally occurring D and 18 O were used to distinguish among potential water sources. Isotopic ratios from potential uptake locations were compared to water extracted from the dominant woody taxa of the study area (Populus fremontii, Salix gooddingii, and Tamarix ramosissima) to elucidate patterns of water absorption. Isotopic composition of water obtained from sapwood cores did not differ significantly from heartwood or branch water, suggesting that heartwood water exchange, stem capacitance, and phloem sap mixing may be inconsequential in actively transpiring Salix and Populus. There was evidence for close hydrologic linkage of river, ground, and soil water during the early part of the growing season. Surface soils exhibited D enrichment due to cumulative exposure to evaporation as the growing season progressed. Isotopic ratios of water extracted from Populus and Salix did not exhibit isotopic enrichment and were not significantly different from groundwater or saturated soil water sources, indicating a phreatophytic uptake pattern. Associations of isotopic ratios with water relations parameters indicated high levels of canopy evaporation and possible use of moisture from unsaturated alluvial soils in addition to groundwater in Tamarix. (author)

  9. The uptake of radioactive phosphorus by brown trout (Salmo trutta L.) from water and food

    International Nuclear Information System (INIS)

    Winpenny, K.; Knowles, J.F.; Smith, D.L.

    1998-01-01

    Brown trout were exposed to 32 P in their tank water (7.4 Bq l -1 ) and the uptake to muscle followed over 6 weeks. A steady-state concentration factor (C ss ) of 1.7 and a biological half-time for clearance (tb1/2)) of 45 days were calculated from the results. The low C ss ) indicates that uptake from water is not a major route of 32 P accumulation in these fish. Brown trout were given a single 32 P-spiked meal, and the uptake and clearance in muscle, liver and blood followed over 6 weeks. Assimilation of the isotope by these organs was low, the maximum activity in whole muscle reaching only 0.2-0.4% of that in the meal with lower values in the other two organs. There was no appreciable clearance of 32 P from muscle during the experiment. The slow clearance of 32 P after uptake from water and lack of any clearance after uptake from food indicates that the C ss for this isotope following uptake by either route is likely to depend on radioactive decay rather than intake rate and physiological clearance. (author)

  10. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    Directory of Open Access Journals (Sweden)

    N. J. Jarvis

    2011-11-01

    Full Text Available Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates and one at a global scale (water balances across an aridity gradient in the continental USA, are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest

  11. Relative Water Uptake as a Criterion for the Design of Trickle Irrigation Systems

    Science.gov (United States)

    Communar, G.; Friedman, S. P.

    2008-12-01

    Previously derived analytical solutions to the 2- and 3-dimensional water flow problems describing trickle irrigation are not being widely used in practice because those formulations either ignore root water uptake or refer to it as a known input. In this lecture we are going to describe a new modeling approach and demonstrate its applicability for designing the geometry of trickle irrigation systems, namely the spacing between the emitters and drip lines. The major difference between our and previous modeling approaches is that we refer to the root water uptake as to the unknown solution of the problem and not as to a known input. We postulate that the solution to the steady-state water flow problem with a root sink that is acting under constant, maximum suction defines un upper bound to the relative water uptake (water use efficiency) in actual transient situations and propose to use it as a design criterion. Following previous derivations of analytical solutions we assume that the soil hydraulic conductivity increases exponentially with its matric head, which allows the linearization of the Richards equation, formulated in terms of the Kirchhoff matric flux potential. Since the transformed problem is linear, the relative water uptake for any given configuration of point or line sources and sinks can be calculated by superposition of the Green's functions of all relevant water sources and sinks. In addition to evaluating the relative water uptake, we also derived analytical expressions for the steam functions. The stream lines separating the water uptake zone from the percolating water provide insight to the dependence of the shape and extent of the actual rooting zone on the source- sink geometry and soil properties. A minimal number of just 3 system parameters: Gardner's (1958) alfa as a soil type quantifier and the depth and diameter of the pre-assumed active root zone are sufficient to characterize the interplay between capillary and gravitational effects on

  12. An analysis of the physiological FDG uptake in the stomach with the water gastric distention method

    International Nuclear Information System (INIS)

    Kamimura, Kiyohisa; Fujita, Seigo; Yano, Tatsuhiko; Ogita, Mikio; Umemura, Yoshiro; Fujimoto, Toshiro; Nishii, Ryuichi; Wakamatsu, Hideyuki; Nagamachi, Shigeki; Nakajo, Masayuki

    2007-01-01

    Physiological FDG uptake in the stomach is a common phenomenon, especially noted at the cardia. Water intake just before scanning will result in gastric distention and thinning of the gastric wall, which in turn may lead to a reduction in the physiological uptake in the gastric wall. In the current study, we investigated whether gastric distention by water intake just before PET imaging reduces physiological FDG uptake in the stomach. The patient population comprised 60 patients who underwent whole-body FDG-PET imaging for cancer screening following gastroscopy performed within the preceding week. All patients took 400 ml of water for hydration and were administered 185 MBq of FDG intravenously. The patients were randomly divided into two groups: a group with additional water intake (AW group; n = 30) and a group without additional water intake (NW group; n = 30). In the AW group, an additional 400 ml of water was given just before PET imaging. For quantitative analysis, the stomach was classified into three areas [upper (U), middle (M) and lower (L)], and the degree of FDG uptake in each area was evaluated using standardised uptake values (SUVs). In the NW group, the mean SUVs in the U, M and L areas were 2.41 ± 0.75, 2.28 ± 0.73 and 1.61 ± 0.89, respectively, while in the AW group they were 1.82 ± 0.66, 1.73 ± 0.56 and 1.48 ± 0.49, respectively, and 2.21 ± 0.38 in the oesophago-gastric junction. The mean SUVs in the U and M areas in the AW group were significantly lower than those in the NW group (p < 0.05). Additional water intake just before PET imaging is an effective method for suppressing physiological FDG uptake in the stomach. (orig.)

  13. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  14. Effect of Gamma Irradiation on Water Uptake Rate and Gelatinization of Brown Rice

    International Nuclear Information System (INIS)

    Shu, C.S.; Lee, J.W.; Lee, Y.S.; Byun, M.W.

    2004-01-01

    Effects of gamma irradiation on brown rice quality were evaluated. Brown rice was irradiated at absorbed dose of 1, 3 or 5 kGy, and ground. Water uptake, pasting properties, and physicochemical characteristics of flour samples were tested. Water uptake rates of irradiated samples were higher than that of control, and were dose-dependent. Hydration capacity decreased in sample irradiated at 5 kGy due to leaching out of soluble compounds, whereas no differences were observed among other irradiated samples and control

  15. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  16. Tests to determine water uptake behaviour of tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Anttila, S.; Viitanen, M. (Poeyry InfRa Oy (Finland)); Keto, Paula (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-12-15

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it

  17. Tests to determine water uptake behaviour of tunnel backfill

    International Nuclear Information System (INIS)

    Dixon, David; Anttila, S.; Viitanen, M.; Keto, Paula

    2008-12-01

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it is

  18. Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles

    Directory of Open Access Journals (Sweden)

    R. M. Garland

    2005-01-01

    Full Text Available While water insoluble organics are prevalent in the atmosphere, it is not clear how the presence of such species alters the chemical and physical properties of atmospheric aerosols. Here we use a combination of FTIR spectroscopy, Transmission Electron Microscopy (TEM and Aerosol Mass Spectrometry (AMS to characterize ammonium sulfate particles coated with palmitic acid. Coated aerosols were generated by atomizing pure ammonium sulfate, mixing the particles with a heated flow of nitrogen with palmitic acid vapor, and then flowing the mixture through an in-line oven to create internally mixed particles. The mixing state of the particles was probed using the AMS data and images from the TEM. Both of these probes suggest that the particles were internally mixed. Water uptake by the mixed particles was then probed at 273 K. It was found that for ammonium sulfate containing ~20 wt% palmitic acid the deliquescence relative humidity (DRH was the same as for pure ammonium sulfate (80±3% RH. For particles with ~50 wt% palmitic acid however, the mixed particles began to take up water at relative humidities as low at 69% and continued to slowly take up water to 85% RH without fully deliquescing. In addition to studies of water uptake, water loss was also investigated. Here coatings of up to 50 wt% had no impact on the efflorescence relative humidity. These studies suggest that even if insoluble substances coat salt particles in the atmosphere, there may be relatively little effect on the resulting water uptake and loss.

  19. Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; He, R.; Berg, Rolf W.

    2004-01-01

    Acid-doped polybenzimidazole (PBI) membranes have been demonstrated for fuel cell applications with advanced features such as high operating temperatures, little humidification, excellent CO tolerance, and promising durability. The water uptake and acid doping of PBI membranes have been studied...

  20. Foliar uptake of cesium from the water column by aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States); Hinton, T.G. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States)]. E-mail: thinton@srel.edu; Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2006-07-01

    The probable occurrence and rate of foliar absorption of stable cesium ({sup 133}Cs) from the water column by aquatic macrophyte species was analyzed following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10{sup 3} L kg{sup -1} d{sup -1}) and a loss rate parameter k (d{sup -1}) were estimated for each species using time series of {sup 133}Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the {sup 133}Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u {>=} 0.75 x 10{sup 3} L kg{sup -1} d{sup -1}. Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for {sup 137}Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  1. Uptake of radioactive strontium by fishes in relation to the calcium content of the water

    International Nuclear Information System (INIS)

    Chiosila, J.

    1975-01-01

    The study attempts to compare experimental results obtained with pseudorasbora parava with regard to 85 Sr uptake at various Ca concentrations of the water (4.20 and 50 mg/l Ca) and also to compare these results with natural conditions. The water was contaminated with 500 pCi/ml 85 SrCl 2 only at the onset of the experiments. Radiostrontium uptake is much higher with a very low calcium content of the water; maximum values are reached in about 10 days. - With low or optimum calcium contents of the water, the values are 3-5 times lower and are not reached until 30 days after radioactive contamination. The fish in this Danube water experiment took up somewhat less radioactivity than in an experiment with the same amounts of Ca and Mg in a control medium. The uptake of 85 Sr in fish in dependence of the Ca content of the water varies according to the formula F.C = 2.505 x Casup(-0.909), with Ca given in Mg/l. (orig.) [de

  2. Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-09-01

    The report presents the results of a number of laboratory tests and field observations to form the basis of a physical and mathematical model that can be used for predicting water uptake and swelling in highly compacted bentonite components of an actual deposition plant. The clay buffer masses have been suggested as barriers in the Swedish KBS concepts. Two commercially available bentonites were used for the production of samples. The rate of water uptake suggests a mathematical model based on a simple diffusion equation. The rate is determined by the access of water and thousands of years may pass before saturation is obtained. The rate of swelling is governed by the negative pore pressure and the permeability. There is reasonable agreement with field observations. The observed swelling potential of old smectite-rich clays has offered the evidence. (G.B.)

  3. Radiation and storage effects on water uptake and cooking behaviour of mungbean

    International Nuclear Information System (INIS)

    Aurangzeb; Bibi, N.; Badshah, A.; Sattar, A.

    1991-01-01

    Effect of different doses of gamma irradiation (0-10 kGy) and storage for 6 months at room conditions was studied on seed size, water uptake and cooking time of mungbeans. Irradiation exhibited insignificant effect on seed weight, seed volume, density, hydration capacity/index, swelling capacity/index, as well as water hydration capacity (WHC) and pH of flour, but significantly (P .ltoreq. 0.01) reduced the cooking time of mungbean seeds (15.37 to 9.93 min.). Storage time increased the cooking time of this legume (11.55 to 12.75 min.). The water uptake parameters of seed and pH of flour decreased significantly due to storage, whereas seed size (weight and volume) remained unaffected during storage

  4. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties.

    Science.gov (United States)

    López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada

    2016-11-05

    This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    Science.gov (United States)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  6. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  7. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    International Nuclear Information System (INIS)

    Hung, Wei-Nung; Chiou, Cary T.; Lin, Tsair-Fuh

    2014-01-01

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K tw ) are measured. • Measured K tw values are nearly the same as the respective K ow . • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K tw ) for organic compounds, the log K tw values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K tw determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K tw are closely related to their respective log K ow (octanol–water), with log K ow = 1.9 to 6.5. A significant difference is observed between the present and early measured log K tw for compounds with log K ow > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K aw/lipid ) are virtually identical to the respective log K tw values, which manifests the dominant lipid-partition effect of the compounds with algae

  8. Neutron radiography for the study of water uptake in painting canvases and preparation layers

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.J. [Swiss Institute for Art Research (SIK-ISEA), Zurich (Switzerland); FOM Institute AMOLF, Amsterdam (Netherlands); Hendrickx, R.; Ferreira, E.S.B. [Swiss Institute for Art Research (SIK-ISEA), Zurich (Switzerland); Eijkel, G.; Cerjak, I. [FOM Institute AMOLF, Amsterdam (Netherlands); Kaestner, A. [Paul Scherrer Institut, Neutron Imaging and Activation Group, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland)

    2015-11-15

    Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk-glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content. (orig.)

  9. Uptake of Hg2+ by picocyanobacteria in natural water from four Andean lakes

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available In lake food webs, planktonic bacteria and algae represent the greatest bioconcentration step for Hg2+ and monomethyl-Hg (MeHg. As they are the most abundant organisms in planktonic trophic webs and also the main food resource for herbivorous plankton, they can mobilize large amounts of Hg to higher trophic levels. In Andean Patagonian lakes (Argentina, dissolved organic matter (DOM concentration and character, coupled with photo-reactions, play a central role in the complexation of Hg2+ in the water column and can even regulate the uptake of Hg2+ by planktonic algae. In this investigation we evaluated the DOM character of natural waters (NW from four Andean lakes and studied its influence on the uptake of 197Hg2+ in a strain of the picocyanobacteria Synechococcus by using Hg2+ labeled with 197Hg2+. The uptake of radiolabeled Hg2+ by Synechococcus showed different magnitude in NW of lakes Moreno, El Trébol, Morenito and Escondido. Increasing lake DOM concentration reduced the bioavailability of Hg2+ as indicated by the lower uptakes rates found in NW with higher complexity and concentration of the DOM pool. Uptakes of Hg2+ by this picocyanobacteria contrasted among NW from pelagic (surface and bottom and littoral compartments of Lake Escondido which suggest that the entry of this metal may be highly variable even in the same environment. The study of the uptake of radiolabeled Hg2+ in a set of dilutions of NW from Lake Escondido demonstrated that the bioavailability of Hg2+ decrease with increasing DOM concentration.

  10. Nitrogen uptake and fertilizer nitrogen use efficiency of wheat under different soil water conditions

    International Nuclear Information System (INIS)

    Wang Baiqun; Zhang Wei; Yu Cunzu

    1999-01-01

    The pot experiment was conducted to study the effects of soil water regime and fertilizer nitrogen rate on the yields, nitrogen uptake and fertilizer nitrogen utilization of wheat by using 15 N tracer method. The results showed that the aboveground biomass, stem yield and grain yield increased with the increase of soil moisture in the fertilizer nitrogen treatments. All the yield increased with the increase of the fertilizer nitrogen rate in the soil water treatments. It was found that both soil water regime and fertilizer nitrogen rate significantly influenced the amount of nitrogen uptake by wheat according to the variance analysis. The amount of nitrogen uptake increased with the rise of the soil moisture in fertilizer nitrogen treatments and the amount also increased with the increase of the urea nitrogen rate in the soil water regime. Soil water regimes not only had an impact on nitrogen uptake but also had a close relationship with soil nitrogen supply and fertilizer nitrogen use efficiency. The soil A values decreased in urea treatment and increased with the rise of the soil moisture in the combination treatment of urea with pig manure. The fertilizer nitrogen use efficiency rose with the rise of the soil moisture in the same fertilizer nitrogen treatment. The fertilizer nitrogen use efficiency of the urea treatment was 13.3%, 27.9% and 32.3% in the soils with 50%, 70% and 90% of the field water capacity, respectively. The fertilizer nitrogen use efficiency in the combination treatment of urea with pig manure was 20.0%, 29.9% and 34.4% in the soils of above three levels, respectively. It was concluded that the low soil moisture restricted urea nitrogen use efficiency (UNUE) and the UNUE could be raised by combination treatment of urea with manure in the soil of enough moisture

  11. Nutritional and water effect on fluoride uptake and respiration of bean seedlings. [Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, H G; Adams, D F

    1960-01-01

    Bean plants (Phaseolus vulgaris) were grown in an atmosphere containing 2.0 +/- 0.21 g F /mT (1.6 ppb). The effect of N, P, K, Fe, and Ca deficiencies and the effect of osmotic pressures of 0, 1.5, 3.0, 4.5, 6.0 and 7.5 pounds on fluoride uptake and fluoride-mediated respiration were studied. The data showed that P deficient plants took up more fluoride than plants deficient in any of the other elements studied. Fluoride-mediated respiration was phosphorous dependent, however. Plants low in Fe or K showed increased uptake of fluoride. Nitrogen had no effect on fluoride uptake under the conditions of this experiment. Plants low in Fe showed inhibition of oxygen uptake. This inhibition was accentuated by fluoride. The interactions of N, K and Ca with fluoride on respiration were complex. Neither fluoride uptake nor fluoride-mediated respiration appeared to be linked directly to the water economy of the plants. 14 references, 6 tables.

  12. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  13. Governance Regime Factors Conducive to Innovation Uptake in Urban Water Management: Experiences from Europe

    Directory of Open Access Journals (Sweden)

    Josselin Rouillard

    2016-10-01

    Full Text Available Innovative ways to manage the urban water cycle are required to deal with an ageing drinking and waste water infrastructure and new societal imperatives. This paper examines the influence of water governance in enabling transformations and technological innovation uptake in urban water management. A governance assessment framework is developed and applied in three case-studies, examining different scales and types of innovations used to tackle challenges in European urban water management. The methodology combines documentary analysis and interviews to reconstruct historical storylines of the shift in the water governance of urban water management for each site. The research provides detailed empirical observations on the factors conducive to innovation uptake at the local level. Critical governance factors such as commitment to compromise, the necessity to build political support, and the role of “entrepreneurs” and coalitions are highlighted. The paper also explores the role of discursive strategies and partnership design, as well as that of regulative, economic and communicative instruments, in creating barriers and opportunities to initiate and secure change. A number of recommendations targeted at innovators and water managers are presented in the conclusion.

  14. The role of seed coat phenolics on water uptake and early protein synthesis during germination of dimorphic seeds of halopyrum mucronatum (L.) staph

    International Nuclear Information System (INIS)

    Siddiqui, Z. S.; Khan, M.A.

    2010-01-01

    Role of seed coat phenolics on water uptake and early protein synthesis of Halopyrum mucronatum dimorphic seeds during germination were tested. Scanning electron micrographs (SEM) showed seed texture with differential deposition of secondary metabolites in both morphs. Ability of both seed morphs to retain secondary deposition was dependent on exposure to either saline or non-saline conditions. More phenols leached from the brown seed during the initial hours of soaking when compared to black seeds. Water uptake pattern was slightly different in both seed type particularly during initial hours when imbibition in black seeds showed little water uptake while in brown seeds absorption was quick in the first hour under both saline and non saline condition. Change in total protein was somewhat similar in both seeds morphs showing early increase (4 and 8 h), reaching to the maximum (12 h) and decreasing (24 and 48 h) afterward. The results are discussed in relation to seed coat phenolics, water uptake and early protein synthesis during germination. (author)

  15. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation.

    Science.gov (United States)

    Greaver, Tara L; Sternberg, Leonel L da S

    2006-09-01

    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  16. Foliar uptake of 137Cs from the water column by aquatic macrophytes

    International Nuclear Information System (INIS)

    Kelly, M.S.; Pinder, J.E. III

    1996-01-01

    A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137 Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137 Cs g -1 dry mass) or uncontaminated sediments (i.e. -1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137 Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter -1 . The plants is uncontaminated sediments rapidly accumulated 137 Cs from the water column and after 35 days of immersion had 137 Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137 Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B. (author)

  17. Uptake of 137Cs in cultured fresh water fish (Cyprinus carpio): physiological and histological effects

    International Nuclear Information System (INIS)

    Vosniakos, F.; Kesidou, A.; Kalfa, A.; Moumtzis, A.; Karakoltsidis, P.

    1991-01-01

    An experiment was conducted in fresh-water fish (Cyprinus carpio) cultured, in small water tanks, artificially contaminated with radioactive 137 Cs (3000 Bq/1) to determine the uptake of 137 Cs and its physiological and histological effects in different fish organs. It was found that 137 Cs was located in muscular tissues, gills, head muscles, liver and kidneys. Moderate amounts were found in spleen, eyes, gonads, intestine and urinary bladder. It seems that sorption was of much less importance than ingestion in the uptake of 137 Cs. The histological examination in musculature tissue, revealed an acute hyperemia with focal haemorrages which may be due to allergic effects of 137 Cs. Hyperemia and focal fatty degeneration of hepatic cells was also noted in the liver which may be due to toxic effects of 137 Cs. Diffused hyperemia has also occurred in the brain and focal degeneration of epithelial cells of renal tubules. (Author)

  18. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  19. Measurements of water uptake of maize roots: the key function of lateral roots

    Science.gov (United States)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  20. Protocols for atomistic modeling of water uptake into zeolite crystals for thermal storage and other applications

    International Nuclear Information System (INIS)

    Fasano, Matteo; Borri, Daniele; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • Numerical protocols for modeling water adsorption and infiltration into zeolite. • A priori screening of new materials for heat storage and desalination is possible. • Water uptake isotherms for bridging atomistic and engineering scales. - Abstract: We report numerical protocols for describing the water uptake process into microporous materials, with special emphasis on zeolite crystals. A better understanding and more predictive tools of the latter process are critical for a number of modern engineering applications, ranging from the optimization of loss free and compact thermal storage plants up to more efficient separation processes. Water sorption (and desorption) is indeed the key physical phenomenon to consider when designing several heat storage cycles, whereas water infiltration is to be studied when concerned with sieving through microporous materials for manufacturing selective membranes (e.g. water desalination by reverse osmosis). Despite the two quite different applications above, in this article we make an effort for illustrating a comprehensive numerical framework for predicting the engineering performances of microporous materials, based on detailed atomistic models. Thanks to the nowadays spectacular progresses in synthesizing an ever increasing number of new materials with desired properties such as zeolite with various concentrations of hydrophilic defects, we believe that the reported tools can possibly guide engineers in choosing and optimizing innovative materials for (thermal) engineering applications in the near future.

  1. Stone-ground wood pulp-reinforced polypropylene composites: Water uptake and thermal properties

    Directory of Open Access Journals (Sweden)

    Joan Pere López

    2012-11-01

    Full Text Available Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC.

  2. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  3. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    Science.gov (United States)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  4. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  5. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Nung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan (China); Chiou, Cary T., E-mail: carychio@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China); U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Lin, Tsair-Fuh, E-mail: tflin@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-30

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K{sub tw}) are measured. • Measured K{sub tw} values are nearly the same as the respective K{sub ow}. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K{sub tw}) for organic compounds, the log K{sub tw} values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K{sub tw} determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K{sub tw} are closely related to their respective log K{sub ow} (octanol–water), with log K{sub ow} = 1.9 to 6.5. A significant difference is observed between the present and early measured log K{sub tw} for compounds with log K{sub ow} > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K{sub aw/lipid}) are virtually identical to the respective log K{sub tw} values, which manifests the dominant lipid-partition effect of the compounds with algae.

  6. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice.

    Science.gov (United States)

    Zia, Zahida; Bakhat, Hafiz Faiq; Saqib, Zulfiqar Ahmad; Shah, Ghulam Mustafa; Fahad, Shah; Ashraf, Muhammad Rizwan; Hammad, Hafiz Mohkum; Naseem, Wajid; Shahid, Muhammad

    2017-10-01

    Silicon (Si) is the 2nd most abundant element in soil which is known to enhance stress tolerance in wide variety of crops. Arsenic (As), a toxic metalloid enters into the human food chain through contaminated water and food or feed. To alleviate the deleterious effect of As on human health, it is a need of time to find out an effective strategy to reduce the As accumulation in the food chain. The experiments were conducted during September-December 2014, and 2016 to optimize Si concentration for rice (Oryza sativa L.) exposed to As stress. Further experiment were carried out to evaluate the effect of optimum Si on rice seed germination, seedling growth, phosphorus and As uptake in rice plant. During laboratory experiment, rice seeds were exposed to 150 and 300µM As with and without 3mM Si supplementation. Results revealed that As application, decreased the germination up to 40-50% as compared to control treatment. Arsenic stress also significantly (P management, significantly (P˂0.05) affected the plant growth, Si and As concentrations in the plant. Arsenic uptake was relatively less under aerobic conditions. The maximum As concentration (9.34 and 27.70mgkg DW -1 in shoot and root, respectively) was found in plant treated with 300µM As in absence of Si under anaerobic condition. Similarly, anaerobic condition resulted in higher As uptake in the plants. The study demonstrated that aerobic cultivation is suitable to decrease the As uptake and in rice exogenous Si supply is beneficial to decrease As uptake under both anaerobic and aerobic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    Science.gov (United States)

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  8. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach

    Directory of Open Access Journals (Sweden)

    V. Couvreur

    2012-08-01

    Full Text Available Many hydrological models including root water uptake (RWU do not consider the dimension of root system hydraulic architecture (HA because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution SSF, the root system equivalent conductance Krs and the compensatory RWU conductance Kcomp. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation.

  9. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. © 2014 American Society of Plant Biologists. All Rights Reserved.

  10. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-01-01

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  11. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  12. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  13. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying, E-mail: maying@igsnrr.ac.cn [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing (China); State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing (China); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing (China)

    2016-04-15

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and {sup 18}O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013–2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0–20 cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20–50 cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0–20 cm (6.0–58.5%) and 20–50 cm (6.1–26.3%). There was little difference of contributions in the deep layers (50–200 cm) among treatments in 2013, whereas differences were observed in 50–90 cm at the milk stage and 50–200 cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0–50 cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r = 0.753, p < 0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management. - Highlights: • Dual stable isotopes and MixSIAR were coupled to quantify water uptake of maize. • Maize mainly used soil water in 20–50 cm at milk stage and 0–20 cm at other stages. • Fertilization treatments led to distinct water uptake pattern at 0–50 cm

  14. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments

    International Nuclear Information System (INIS)

    Ma, Ying; Song, Xianfang

    2016-01-01

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and "1"8O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013–2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0–20 cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20–50 cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0–20 cm (6.0–58.5%) and 20–50 cm (6.1–26.3%). There was little difference of contributions in the deep layers (50–200 cm) among treatments in 2013, whereas differences were observed in 50–90 cm at the milk stage and 50–200 cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0–50 cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r = 0.753, p < 0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management. - Highlights: • Dual stable isotopes and MixSIAR were coupled to quantify water uptake of maize. • Maize mainly used soil water in 20–50 cm at milk stage and 0–20 cm at other stages. • Fertilization treatments led to distinct water uptake pattern at 0–50 cm depth

  15. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  16. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    Science.gov (United States)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  17. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  18. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    Science.gov (United States)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  19. The uptake of radiationless by some fresh water aquatic biota review

    International Nuclear Information System (INIS)

    Abdel Malik, W.E.Y.; Ibrahim, A.S.; El-Shinawy, R.M.K.

    2005-01-01

    The work presented in this paper reviews many studies carried out by the authors along the last thirty years. The behaviour of the radionuclides in the aquatic ecology of Ismailia Canal stream is of great interest for the evaluation of the possible hazards that may occur to man through the movement of such radionuclides via food chain. Laboratory investigations have been carried out in order to understand the accumulation and release of some radionuclide by some aquatic biota (aquatic macrophyte aquatic plants, some snails species and some fish species) inhabiting this fresh water stream. Different parameters such as water ph, contact time, water salinity, etc. were used in these investigations. The kinetic analysis of the uptake process of some radio nuclides by certain biota was performed. From this analysis, it was possible (through the statistical methods) to investigate that the uptake process proceeded through different steps with different rates depending on the radionuclide and the biota species. It was possible to conclude that some of the selected biota can be used as biological indicators for certain radionuclides

  20. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  1. Uptake of Mn and Cd by Wild Water Spinach and Their Bioaccumulation and Translocation Factors

    Directory of Open Access Journals (Sweden)

    Billy Teck Huat Guan

    2017-01-01

    Full Text Available Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn and cadmium (Cd to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd by the water spinach (Ipomoea aquatica is presented in this paper. Different concentrations of Mn and Cd were added to the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse conditions. The plant samples exposed to heavy metals were collected to determine the metal concentrations using atomic absorption spectroscopy (AAS and the metal concentrations were found for Mn was between 1.589 to 9.696 µg/g and Cd from 5.309 to 10.947 µg/g. The correlation and regression results showed that the water-to-shoot bioaccumulation factor (BAF decreased for Mn, while root-to-shoot translocation factor (TF values increased in the order Cd > Mn to the increasing levels of metals in the water. Furthermore, it was revealed from the two-way analysis of variance (ANOVA that the different metal types influenced the BAF and TF values at different metal concentration treatments.

  2. Effect of interfacial composition on uptake of curcumin-piperine mixtures in oil in water emulsions by Caco-2 cells.

    Science.gov (United States)

    Gülseren, İbrahim; Guri, Anilda; Corredig, Milena

    2014-06-01

    Encapsulation in lipid particles is often proposed as a solution to improve curcumin bioavailability. This bioactive molecule has low water solubility and rapidly degrades during digestion. In the present study, the uptake of curcumin from oil in water emulsions, prepared with two different emulsifiers, Tween 20 and Poloxamer 407, was investigated to determine the effect of interfacial composition on absorption. Piperine was added to the curcumin to limit the degradation of curcumin because it is known to inhibit β-glucuronidase activity. The emulsions were administered to Caco-2 cell cultures, which is used as a model for intestinal uptake, and the recovery of curcumin was measured. The curcumin uptake was significantly affected by the type of interface, and the extent of curcumin uptake improved significantly by piperine addition only in the case of oil-in-water emulsions stabilized by Poloxamer 407. This work provides further evidence of the importance of interfacial composition on the delivery of bioactives.

  3. Relation of zinc levels and water soluble phosphorus in suphala [fertilizer] on uptake of phosphorus and zinc

    International Nuclear Information System (INIS)

    Mutatkar, V.K.; Chapke, V.G.

    1975-01-01

    Under pot culture, four levels of Zn 0, 2, 4 and 6 ppm, were studied in relation to 30, 50 and 100 % water soluble levels of phosphorus in suphala for the dry matter production and uptake of P and Zn by maize on acidic soil of Goa and black cotton soil of Maharashtra. 32 P and 65 Zn tracers were used for this investigation. The results revealed that application of Zn has increased the dry matter and uptake of phosphorus upto 4 ppm of Zn application and it has decreased at 6 ppm Zn level. This inhibition of P uptake was observed at all water soluble levels of P and in both the soils studied. Zn uptake by maize in both the soils under study was increased with increasing level of Zn, irrespective of water soluble level of P in suphala. (author)

  4. Calcium uptake by cowpea as influenced by mycorrhizal colonization and water stress

    International Nuclear Information System (INIS)

    Pai, G.; Bagyaraj, D.J.; Padmavathi Ravindra, T.; Prasad, T.G.

    1994-01-01

    The role of vesicular-arbuscular mycorrhizal (VAM) colonization on calcium uptake was studied under different levels of moisture stress. Pots maintained at different moisture levels were given water containing known amount of radioactive calcium. The radioactivity in different parts of the plant was assessed 60 h after giving 45 Ca to the soil. High 45 Ca activity was present in all parts of vesicular-arbuscular mycrrohizal (VAM) plants compared to non-mycorrhizal plants at all levels of moisture stress. (author). 14 refs., 1 tab

  5. Ability of sea-water bacterial consortium to produce electricity and denitrify water

    Science.gov (United States)

    Maruvada, Nagasamrat V. V.; Tommasi, Tonia; Kaza, Kesava Rao; Ruggeri, Bernardo

    Sea is a store house for varied types of microbes with an ability to reduce and oxidize substances like iron, sulphur, carbon dioxide, etc. Most of these processes happen in the sea water environment, but can be applied for purification of wastewater. In the present paper, we discuss the use of a consortium of seawater bacteria in a fuel cell to produce electricity by oxidizing organic matter and reducing nitrates. We also discuss how the growth of the bacterial consortium can lead to an increased electricity production and decreased diffusional resistance in the cell. The analysis was done using electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Here, we use bicarbonate buffered solution, which is the natural buffering agent found in sea. We show that the seawater bacterial consortium can be used in both the anode and cathode parts of the cell. The results confirm the adaptability of the seawater bacteria to different environments and can be used for various applications. Heritage, Erasmus Mundus Programme, European Commission.

  6. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  7. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.; PAYVANDI, S.; ZYGALAKIS, K.C.; SMETHURST, J.; FLIEGE, J.; ROOSE, T.

    2014-01-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil

  8. The effect of newer water-soluble contrast media on I-131 uptake by the thyroid gland

    International Nuclear Information System (INIS)

    Starinsky, R.; Horne, T.; Barr, J.; Ramot, Y.

    2006-01-01

    The aim of this study was to evaluate the effect of two water-soluble contrast media (nonionic and Dimer) on iodine uptake by the thyroid gland. Twenty-eight euthyroid patients (16 females and 12 males) were subjected to 24hrs radioiodine uptake (RAIU) studies following brain CT examinations using the above cited two water-soluble contrast media. Radioiodine uptake studies were done at one (Group-1), two (Group-2) and four (Group-3) weeks following performance of contrast enhanced CT scans. The effect of both contrast media on the thyroid uptake was found to be identical. The radio active iodine uptake (RAIU) was observed to be suppressed in 30% of patients in Group-1, 33% of patients in Group-2 and in none of the patients belonging to Group-3. On the basis of this pilot study on a limited number of patients it was concluded that dimer and non-ionic water soluble contrast media cause suppression of radio iodine uptake by the thyroid gland in a significant proportion of patients. It has also been observed that both contrast media have similar suppressive effects on radio iodine uptake by the thyroid gland. This effect is transient and does not persist beyond a period of four weeks following the administration of the contrast media. (author)

  9. Lead uptake of water plants in water stream at Kiteezi landfill site ...

    African Journals Online (AJOL)

    user

    2Chemistry Laboratory, Uganda Industrial Research Institute, P. O. Box 7086, Kampala, Uganda. Received ... contain heavy metals which compromise water quality .... MATERIALS AND METHODS ... discharged out of the waste water treatment plant pipes. ... with deionized water twice and separated into shoots, stems and.

  10. Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr and Cs from soil

    International Nuclear Information System (INIS)

    Gouthu, S.; Arie, T.; Ambe, S.; Yamaguchi, I.

    1997-01-01

    In case of radioactive fallout, persistence of long lived nuclides in soil and subsequent transfer into the food chain through plants over a long period is the key factor. The possibility of 'phytoremediation'is suggested to reduce the radionuclides in soil. To exploit the natural potential of some plants in absorbing or accumulating certain radionuclides and depleting the soil radioactivity, thirty-two plant species were tested under laboratory conditions for their comparative ability in taking up radioactive Rb, Co, Sr and Cs. Broccoli and tomato for Co; tomato, chard, sunflower and cucumber for Rb; cucumber, sunflower and turnip (Kyona) for Sr; and tomato, chard and cucumber for Cs were found to be effective compared to other species tested. (author)

  11. Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr and Cs from soil

    Energy Technology Data Exchange (ETDEWEB)

    Gouthu, S; Arie, T; Ambe, S; Yamaguchi, I [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-08-01

    In case of radioactive fallout, persistence of long lived nuclides in soil and subsequent transfer into the food chain through plants over a long period is the key factor. The possibility of `phytoremediation`is suggested to reduce the radionuclides in soil. To exploit the natural potential of some plants in absorbing or accumulating certain radionuclides and depleting the soil radioactivity, thirty-two plant species were tested under laboratory conditions for their comparative ability in taking up radioactive Rb, Co, Sr and Cs. Broccoli and tomato for Co; tomato, chard, sunflower and cucumber for Rb; cucumber, sunflower and turnip (Kyona) for Sr; and tomato, chard and cucumber for Cs were found to be effective compared to other species tested. (author). 13 refs.

  12. Uptake of uranium from underground drinking water by chlorella (Chlorella pyrendoidosa)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, Shobha; Gurg, R.P.; Shenoy, N.S.; Ferandes, Neychelle; Gopale, Rajesh S.; Jhaveri, A.S.

    2002-01-01

    Naturally occurring uranium has found at elevated levels i.e. 300-1200 ppb in underground water, especially in the areas located around uranium mines and granite rocks sites. The U.S. Environmental Protection Agency (EPA) recently adopted drinking water standards requiring a maximum uranium concentration of 20 μgl. This limit is based on nephro-toxicity, rather than on radiological hazards. The concentration of uranium is to be monitored along with other parameters in well and other sources of drinking water in these areas. During this work a low cost kit was developed for removing uranium from under-ground water used for drinking purposes. This unit is capable of reducing uranium from 1000 ppb to 15-20 ppb. Chlorella (Chlorella pyrendoidosa), a fresh water algae, was immobilised in sodium alginate in the form of beads by using 0.2 M calcium chloride. These beads were put in container and the water is stirred occasionally. 99-100 % uranium adsorbed was recovered from the beads by using 0.1 M HNO 3 . These results suggest that the uptake of uranium by Chlorella depended upon the physico-chemical adsorption on the cell surface, but not upon the biological activity and that uranium in the algal cells was coupled with the ligands, which can be easily substituted with NO 3 -1 . (author)

  13. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  14. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Science.gov (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  15. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Directory of Open Access Journals (Sweden)

    G. Cai

    2018-04-01

    Full Text Available How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ model and the physically based Couvreur (C model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC, water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities

  16. Investigation on the uptake and release ability of β-cyclodextrin functionalized Fe_3O_4 magnetic nanoparticles by methylene blue

    International Nuclear Information System (INIS)

    Zhou, Yehong; Sun, Linlin; Wang, Haixia; Liang, Wenting; Yang, Jun; Wang, Li; Shuang, Shaomin

    2016-01-01

    β-cyclodextrin functionalized magnetic nanoparticles (β-CD-MNPs) having a core–shell structure were fabricated with a layer-by-layer method by combining 3-aminopropyl triethoxysilane coated magnetic Fe_3O_4 nanoparticles (AP-MNPs) with 6-O-toluenesulfonyl-β-cyclodextrin (6-TsO-β-CD) at 70 °C. The characterization by transmission electron microscopy revealed β-CD-MNPs having an average diameter of 12 ± 2 nm and an average hydrodynamic diameter of 56.8 nm in aqueous solution by dynamic light scattering. The β-CD grafting was confirmed by Fourier-Transformed Infrared spectroscopy, and the amount of β-CD grafted on MNPs was determined as 60 mg/g by thermogravimetric analysis. The uptake and release ability of β-CD-MNPs was investigated using methylene blue (MB) as a biological staining dye by spectrophotometric method. The results showed that the uptake and release were greatly influenced by the pH value of dye solution, with a maximum loading capacity of 78.4 mg/g under pH = 8 at 25 °C, and the release was easily achieved at 73% within the first hour at physiological condition. The adsorption isotherms were examined by Langmuir and Freundlich models, and the satisfactory fitting to the Langmuir model suggested the adsorption on β-CD-MNPs as a mono-layer coverage. - Highlights: • Investigation of uptake and release of methylene blue by β-CD-MNPs. • Superparamagnetic property of β-CD-MNPs nanoparticles. • Targeted delivery with the assistance of external magnetic field. • Nanomaterials with coupled advantages of amphiphilic structure and superparamagnetism.

  17. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    Science.gov (United States)

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. © The Author 2014. Published by Oxford University Press. All rights reserved.

  18. Root - shoot - signaling in Chenopodium rubrum L. as studied by 15O labeled water uptake

    International Nuclear Information System (INIS)

    Ohya, T.; Hayashi, Y.; Tanoi, K.; Rai, H.; Nakanishi, T.M.; Suzuki, K.; Albrechtova, J.T.P.; Wagner, E.

    2005-01-01

    Full text: It has been demonstrated with C. rubrum that the different organ systems are transmitting surface action potentials which might be the basis for systemic signal transduction. Shoot tip respectively root generated action potentials travel along the stem axis. Shoot tip generated action potentials arriving at the basis can be reflected and travel upwards. The radioactive labeling technique was established at the NIRS in Inage, Japan. About 2 GBq of 15 O labeled Hoagland's solution was supplied to the plant root or cut stem in a phytotron at 25 o C with 45 % of relative humidity and continuous light. By cutting the shoot apical bud and the apices of main side branches the uptake of 15 O labeled water was inhibited in plants with intact roots but not in plants with roots cut. Because of the short half-life of 15 O (2 min), experiments could be repeated in hourly intervals. Cutting the apex probably limits root water uptake via a hydraulic-electrochemical signal. The results are discussed with respect to the significance of a continuous communication between the root system and the shoot apical meristem(s) in the adaptation of plants to their environment. (author)

  19. Early prediction of 90Sr and 137Cs content in edible parts of crops and selection of plants with high uptake ability

    International Nuclear Information System (INIS)

    Zhao Wenhu; Xu Shiming; Hou Lanxin; Shang Zhaorong

    1995-10-01

    The uptake characteristics to 90 Sr and 137 Cs of nine kinds of crops, including spring wheat, rice, soybean, vegetables etc., were studied from seedling to maturity. The change of 90 Sr content per unit of dry weight can be classified into two types--the 90 Sr content kept in the same level during the whole growing season and kept increasing with the growing period until it came to the maximum point at the time of maturity. 90 Sr and 137 Cs in the aerial part of plants were mainly distributed in leaves, but the amounts in seeds and fruits were less. The content of 90 Sr decreased but the content of 137 Cs increased from young to old leaves. So it could be concluded that early prediction of the radioactive content of edible parts according to the content of young leaves was possible. Selection of 169 species in 18 families of plants with high uptake ability of 90 Sr and 137 Cs, which grow in Qinshan region near a nuclear power plant and in Beijing region, is also reported. (8 refs., 6 figs., 16 tabs.)

  20. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  1. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  2. Leaching due to hygroscopic water uptake in cemented waste containing soluble salts

    DEFF Research Database (Denmark)

    Brodersen, K.

    1992-01-01

    conditions, condensation of water vapour will result in generation of a certain amount of liquid in the form of a strong salt solution. The volume of liquid may well exceed the storage capacity of the pore system in the cemented material and in the release of a limited amount of free contaminated solution......Considerable amounts of easily soluble salts such as sodium nitrate, sulphate, or carbonate are introduced into certain types of cemented waste. When such materials are stored in atmospheres with high relative humidity or disposed or by shallow land burial under unsaturated, but still humid....... A model of the quantitative aspects for the equilibrium situation is presented. Experiments with hygroscopic water uptake support the model and give indications about the rate of the process. The release mechanism is only thought to be important for radionuclides which are not fixed in a low...

  3. Effect of barbiturates on radiosensitivity of cells: a comparative study of electrophoretic mobility, colony forming ability and thymidine uptake on human amnion cells

    International Nuclear Information System (INIS)

    Lalwani, N.D.; Chaubal, K.A.

    1980-01-01

    Suspensions of human amnion cells were 60 Co γ-irradiated in the presence of phenobarbital or thiobarbital (50 μg/ml). The barbiturates protected the cells against the dose-dependent reduction in electrophoretic mobility (EPM) observed 4 hours after irradiation of untreated cells, although there was an initial decrease in the EPM of treated cells followed by recovery. Treated irradiated cells exhibited greater colony-forming ability than the untreated cells. Pentobarbital and phenobarbital had similar effects, but thiobarbital was not so effective. 3 H-TdR uptake increased within 4 hours of irradiation for the treated cells. The reproductive capacity of the cells was retained at doses as high as 500 rad. The results are discussed with reference to the effects of anaesthetics on cell membranes. (U.K.)

  4. Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.

    Science.gov (United States)

    Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman

    2018-01-01

    Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.

  5. Research on evaluation methods for water regulation ability of dams in the Huai River Basin

    Science.gov (United States)

    Shan, G. H.; Lv, S. F.; Ma, K.

    2016-08-01

    Water environment protection is a global and urgent problem that requires correct and precise evaluation. Evaluation methods have been studied for many years; however, there is a lack of research on the methods of assessing the water regulation ability of dams. Currently, evaluating the ability of dams has become a practical and significant research orientation because of the global water crisis, and the lack of effective ways to manage a dam's regulation ability has only compounded this. This paper firstly constructs seven evaluation factors and then develops two evaluation approaches to implement the factors according to the features of the problem. Dams of the Yin Shang ecological control section in the Huai He River basin are selected as an example to demonstrate the method. The results show that the evaluation approaches can produce better and more practical suggestions for dam managers.

  6. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  7. Uptake of Vibrio cholerae biotype eltor from contaminated water by water hyacinth (eichornia crassipes).

    Science.gov (United States)

    Spira, W M; Huq, A; Ahmed, Q S; Saeed, Y A

    1981-09-01

    Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh.

  8. Uptake of Vibrio cholerae Biotype eltor from Contaminated Water by Water Hyacinth (Eichornia crassipes)

    OpenAIRE

    Spira, William M.; Huq, Anwarul; Ahmed, Qazi Shafi; Saeed, Yusuf A.

    1981-01-01

    Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh.

  9. Water Uptake Profile In a Model Ion-Exchange Membrane: Conditions For Water-Rich Channels

    Science.gov (United States)

    2014-12-01

    these issues, more research is needed to improve their performance. Aqueous alkaline electrolytes such as potassium hydroxide (KOH) trace their begin...1.2 Water distribution Motivation Hydroxide ion transport through the membrane is fundamentally dependent on the amount and distribution of water...hydrophilic-to-hydrophobic ratio, for several reasons. First, this is the case for Nafion, the gold standard for PEM membranes; its unique pore structure

  10. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  11. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    Science.gov (United States)

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

  12. Use of gold nanoparticles to detect water uptake in vascular plants.

    Science.gov (United States)

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  13. Effects of aminoisobutyric acid on 1-aminocyclopropane-1-carboxylic acid uptake, ethylene production and content of ACC in water-stressed tomato plants

    International Nuclear Information System (INIS)

    Kalantari, Kh.M.; Bolourani, P.

    2000-01-01

    The effect of water stress on the regulation of ethylene biosynthesis has not yet clearly been established. Both the formation and utilization of aminocyclopropane-1-carboxylic acid, ACC, are considered to be major regulatory points in ethylene biosynthesis. There is evidence that ACC synthase is the key control enzyme in response to various stimuli associated with the induction of ethylene biosynthesis. It has been reported that aminoisobutyric acid, AIB, inhibits ethylene production in some plants and AIB may inhibit the conversion of ACC to ethylene. For this reason, the possibility of inhibition of ACC uptake in the presence of AIB was examined. It was observed that the rate of 14 C-ACC uptake decreased with an increase in the concentration of AIB in the solution. Calculating the percentage of ACC converted to ethylene on the basis of uptake shows that AIB inhibits the conversion of 14 C-ACC to ethylene and that this inhibition is increased with an increase in the concentration of AIB in the solution. This suggests that a portion of the inhibition of the conversion of ACC to ethylene in the presence of AIB is partly due to the competition for absorption. However, the ability of AIB to inhibit ethylene production in leaf tissue without an exogenous supply of ACC clearly indicates that AIB inhibits ethylene production. The present study was undertaken to elucidate the regulation of ethylene biosynthesis in water-stressed plants and the results are discussed

  14. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).

    Science.gov (United States)

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2013-07-01

    Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Oscillatory water sorption test for determining water uptake behavior in bread crust

    NARCIS (Netherlands)

    Nieuwenhuijzen, N.H. van; Tromp, R.H.; Hamer, R.J.; Vliet, T. van

    2007-01-01

    In this work, water sorption kinetics of bread crust are described using an oscillatory sorption test in combination with a Langmuir type equation. Both kinetic and thermodynamic information could be obtained at the same time. An advantage of applying a Langmuir type equation for a quantitative

  16. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  17. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  18. Effects of water inflow and early water uptake on buffer and backfill materials in a KBS-3V repository

    International Nuclear Information System (INIS)

    Boergesson, L.; Sanden, T.; Dueck, A.; Nilsson, U.; Goudarzi, R.; Andersson, L.; Jensen, V.

    2012-01-01

    Document available in extended abstract form only. Bentonite is an excellent sealing material when it has reached full water saturation and swelling pressure. However, bentonite is not good for sealing inflowing water from fractures with potential to build high water pressure. It cannot stop inflow of water at the depth of a repository. The water inflow into the pellets filled slots in the deposition holes and the tunnels in a KBS-3V repository is expected to continue until these slots are water filled and the water flow stopped by an end plug. Then the water pressure gradient is transferred from the fracture/bentonite interface to the plug and the bentonite will have time to homogenize and seal. This scenario leads to a number of processes that can either be harmful to the bentonite or affect the water saturation and homogenization evolution. Last year a project (EVA) started in order to investigate the processes involved by this early water inflow. The project aims at developing a model for the processes piping, erosion, water filling of pellets filled slots, early water absorption and resulting water pressure increase against the plug. The project studies the effects of water inflow in deposition holes and deposition tunnels and the emergence of piping and erosion during installation and wetting of the buffer and backfill until all slots and the pellet fillings have been water filled and piping and erosion have ceased. The project includes laboratory tests of nine different processes and modeling. The laboratory program includes tests of the following processes: 1. Erosion; 2. Piping; 3. Water flow in pellet filled slots; 4. Sealing ability of bentonite; 5. Water absorption of the bentonite blocks; 6. Formation of water or gel pockets in a pellet filled slot; 7. Formation and outflow of bentonite gel; 8. Self-sealing of cracks by eroding water; 9. Buffer swelling before placement of backfill. The laboratory tests are ongoing and preliminary results and

  19. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    Science.gov (United States)

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effect of soil acidification on root growth, nutrient and water uptake

    International Nuclear Information System (INIS)

    Marschner, H.

    1989-01-01

    Soil acidification poses various types of stress to plants, especially Al and H + toxicity in roots and Mg and Ca deficiency in roots and shoots. The importance of the various types of stress varies with plant species, location and time. Average data of the chemical composition of the bulk soil or of the molar Ca/Al or Mg/Al ratios in the soil solution without consideration of the Al species are of limited value for precise conclusions of the actual, or for predictions of the potential risk of soil-acidity-induced inhibition of root growth and of nutritional imbalances. The root-induced changes in the rhizosphere and the consequences for Al toxicity and nutrient acquisition by plants deserve more attention. Further it should be considered that roots are not only required for anchoring higher plants in the soil and for nutrient and water uptake. Roots are also important sites for synthesis of phytohormones, cytokinins and abscisic acid in particular, which are transported into the shoots and act either as signals for the water status at the soil-root interface (ABA) or as compounds required for growth and development. Inhibition in root growth may therefore affect shoot growth by means other than water and nutrient supply. (orig./vhe)

  1. Point processes statistics of stable isotopes: analysing water uptake patterns in a mixed stand of Aleppo pine and Holm oak

    Directory of Open Access Journals (Sweden)

    Carles Comas

    2015-04-01

    Full Text Available Aim of study: Understanding inter- and intra-specific competition for water is crucial in drought-prone environments. However, little is known about the spatial interdependencies for water uptake among individuals in mixed stands. The aim of this work was to compare water uptake patterns during a drought episode in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the isotope composition of xylem water (δ18O, δ2H as hydrological marker. Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks and 78 pines (plot area= 888 m2. We tested the hypothesis that both species uptake water differentially along the soil profile, thus showing different levels of tree-to-tree interdependency, depending on whether neighbouring trees belong to one species or the other. Material and Methods: We used pair-correlation functions to study intra-specific point-tree configurations and the bivariate pair correlation function to analyse the inter-specific spatial configuration. Moreover, the isotopic composition of xylem water was analysed as a mark point pattern. Main results: Values for Q. ilex (δ18O = –5.3 ± 0.2‰, δ2H = –54.3 ± 0.7‰ were significantly lower than for P. halepensis (δ18O = –1.2 ± 0.2‰, δ2H = –25.1 ± 0.8‰, pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. Research highlights: Point-process analyses revealed spatial intra-specific dependencies among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This supports niche segregation for water uptake between the two species.

  2. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Chigbo, F.E.; Smith, R.W.; Shore, F.L.

    1982-01-01

    The water hyacinth Eichornia crassipes was studied as a pollution monitor for the simultaneous accumulation of arsenic, cadmium, lead and mecury. After cultivation of the plants for 2 days in tanks containing 10 ppm of each of the metals in aqueous solution, the plants were harvested and rinsed with tap water. The leaves and stems were separated and analysed for each of the metals. The ratio of the concentration of arsenic and mercury in the leaves to the concentrations in the stems was found to be 2:1. Cadmium and lead showed a concentration ratio in leaves to stems of about 1:1. The leaf concentration of arsenic was the lowest of the metals of 0.3428 mg g/sup -1/ of dried plant material whilst the leaf concentration of cadmium was highest at 0.5740 mg g/sup -1/ of dried plant material. Control plants were grown in unpolluted water. Plants grown in Bay St. Louis, Mississippi sewage lagoon were also analysed. The mercury concentrations of the leaves of plants grown in the sewage lagoon were significantly different from the control sample which had a concentration of 0.0700 mg g/sup -1/ of dried plant material.

  3. Pre-service primary school teachers’ abilities in explaining water and air pollution scientifically

    Science.gov (United States)

    Lukmannudin; Sopandi, W.; Sujana, A.; Sukardi, R.

    2018-05-01

    The purpose of this study is to determine the ability of pre-service primary school teachers (PSPST) in explaining the phenomenon of water and air pollution scientifically. The research method used descriptive method of analysis with qualitative approach. The respondents were PSPTP at 4th semester. This study used a four-tier instrument diagnostic test. The number of subjects was 84 PSPTP at Universitas Pendidikan Indonesia, Kampus Daerah Sumedang. The results demonstrate the ability of PSPST in explaining water and air pollution scientifically. The results show that only 6% of PSPST who are able to explain the phenomenon of water pollution and only 4% of PSPST who are able to explain the phenomenon of air pollution. The fact should be attention for PSPST because these understanding are crucial in the process of learning activities in the classroom.

  4. Controlling of water collection ability by an elasticity-regulated bioinspired fiber.

    Science.gov (United States)

    Wang, Sijie; Feng, Shile; Hou, Yongping; Zheng, Yongmei

    2015-03-01

    A special artificial spider silk is presented which is fabricated by using both an elastic polymer and a fiber, and the water collection behavior is investigated. Through exerting tension in varying degree, the length of the three-phase contact line (TCL) and the area of spindle knot can be regulated readily, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. The water-hanging ability can be predicted at a given stretching ratio according to the given expression of the TCL. As a result, liquid capture or release of distinct measure can be achieved via exerting tension. This research is helpful to design smart materials for developing applications in fogwater collection, dehumidification, high-efficiency humidity control, and controllable adhesion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    Science.gov (United States)

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  6. H2WHOA - 6 to 8 glasses of water an hour: how water can distinguish physiological from pathological uptake in the GIT on PET/CT scans

    International Nuclear Information System (INIS)

    Crowther, M. D.

    2009-01-01

    Full text:Objectives: To determine the effectiveness of water as a negative contrast agent in PET/CT. To determine the amount and timing of water to be administered in order to evaluate specific regions of the gastro-intestinal tract (GIT). To evaluate whether the use of a 'bolus' of a large amount of water is effective in distinguishing physiological from pathological 18F-FDG uptake in the GIT. Method: Over the past seven months, patients who were scanned and on review had FDG-avidity in the stomach, or had FDG-avidity of an uncertain aetiology further along the GIT, were selected for further scanning. Depending on the site of FDG uptake, patients were either given 1) 2 glasses of water on the bed immediately before scanning or 2) given 6-8 glasses of water in the space of an hour and a delay preceded before scanning over the GIT. Results: To date, 11 patients who have had 13 FDG PET/CT scans have had further water-enhanced delayed imaging. 8(61.5%) scans proved water to be a useful contrast agent. In 11(84.6%) cases, an appropriate amount and timing of water ingested assisted in further evaluating a specific region. In 7(53.9%) cases a large bolus of water allowed the reporting doctor to effectively distinguish between physiological and pathological uptake in the GIT. Conclusions: Patients with gastric/gastro-oesophageal/pancreatic cancers benefit from imaging with water in the stomach or small bowel. Scanning patients with discrete, FDG uptake in the large bowel following a large 'bolus' of water can help to distinguish physiological from pathological FDG uptake.

  7. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    Directory of Open Access Journals (Sweden)

    Kurdali, Fawaz

    2013-02-01

    Full Text Available The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si and/or potassium (K applications on growth and nitrogen uptake in barley plants grown under water (FC1 and non water (FC2 stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. Dry matter (DM and N yield (NY in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the watering regime level under which the plants have been grown. Solely added K or in combination with adequate rate of Si (Si 100 were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely added Si or in combination with K significantly reduced leaves ∆13 C reflecting their bifacial effects on water use efficiency (WUE, particularly in plants grown under well watering regime. This result indicated that Si might be involved in saving water loss through reducing transpiration rate and facilitating water uptake; consequently, increasing WUE. Although the rising of soil humidity generally increased fertilizer nitrogen uptake (Ndff and its use efficiency (%NUE in barley plants, applications of K or Si fertilizers to water stressed plants resulted in significant increments of these parameters as compared with the control. Our results highlight that Si or K is not only involved in amelioration of growth of barley plants, but can also improve nitrogen uptake and fertilizer nitrogen use efficiency particularly under water deficit conditions.

  8. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water.

    Science.gov (United States)

    Lu, Jian; Wu, Jun; Stoffella, Peter J; Wilson, P Chris

    2015-01-01

    The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A Root water uptake model to compensate disease stress in citrus trees

    Science.gov (United States)

    Peddinti, S. R.; Kambhammettu, B. P.; Lad, R. S.; Suradhaniwar, S.

    2017-12-01

    Plant root water uptake (RWU) controls a number of hydrologic fluxes in simulating unsaturated flow and transport processes. Variable saturated models that simulate soil-water-plant interactions within the rizhosphere do not account for the health of the tree. This makes them difficult to analyse RWU patterns for diseased trees. Improper irrigation management activities on diseased (Phytopthora spp. affected) citrus trees of central India has resulted in a significant reduction in crop yield accompanied by disease escalation. This research aims at developing a quantitative RWU model that accounts for the reduction in water stress as a function of plant disease level (hereafter called as disease stress). A total of four research plots with varying disease severity were considered for our field experimentation. A three-dimensional electrical resistivity tomography (ERT) was performed to understand spatio-temporal distribution in soil moisture following irrigation. Evaporation and transpiration were monitored daily using micro lysimeter and sap flow meters respectively. Disease intensity was quantified (on 0 to 9 scale) using pathological analysis on soil samples. Pedo-physocal and pedo-electric relations were established under controlled laboratory conditions. A non-linear disease stress response function for citrus trees was derived considering phonological, hydrological, and pathological parameters. Results of numerical simulations conclude that the propagation of error in RWU estimates by ignoring the health condition of the tree is significant. The developed disease stress function was then validated in the presence of deficit water and nutrient stress conditions. Results of numerical analysis showed a good agreement with experimental data, corroborating the need for alternate management practices for disease citrus trees.

  10. Reducing Water Availability Impacts the Development of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 and Its Ability to Take Up and Transport Phosphorus Under in Vitro Conditions

    Directory of Open Access Journals (Sweden)

    Olivia Le Pioufle

    2018-06-01

    Full Text Available Climate change scenarios predict a higher variability in rainfall and an increased risk of water deficits during summers for the coming decades. For this reason, arbuscular mycorrhizal fungi (AMF and their mitigating effects on drought stress in plants are increasingly considered in crop management. However, the impact of a decrease in water availability on the development of AMF and their ability to take up and transport inorganic phosphorus (Pi to their hosts remain poorly explored. Here, Medicago truncatula plantlets were grown in association with Rhizophagus irregularis MUCL 41833 in bi-compartmented Petri plates. The system consisted in associating the plant and AMF in a root compartment (RC, allowing only the hyphae to extend in a root-free hyphal compartment (HC. Water availability in the HC was then lowered by increasing the concentration of polyethylene glycol-8000 (PEG-8000 from 0 to 10, 25, and 50 g L-1 (corresponding to a slight decrease in water potential of -0.024, -0.025, -0.030, and -0.056 Mpa, respectively. Hyphal growth, spore production and germination were severely impaired at the lowest water availability. The dynamics of Pi uptake by the AMF was also impacted, although total Pi uptake evaluated after 24 h stayed unchanged. The percentage of metabolically active extraradical hyphae remained above 70%. Finally, at the lowest water availability, a higher P concentration was observed in the shoots of M. truncatula. At reduced water availability, the extraradical mycelium (ERM development was impacted, potentially limiting its capacity to explore a higher volume of soil. Pi uptake was slowed down but not prevented. The sensitivity of R. irregularis MUCL 41833 to a, even small, decrease in water availability contrasted with several studies reporting tolerance of AMF to drought. This suggests a species or strain-dependent effect and support the necessity to compare the impact of water availability on morpho-anatomy, nutrient

  11. The effect of water uptake gradient in membrane electrode assembly on fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)

    2011-02-15

    Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.

  12. The uptake of uranium and radium from food and water in relation to calcium

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1988-01-01

    Observed ratios for dietary radium and calcium suggest that at least a 20 to 70 fold discrimination exists against radium uptake in the skeleton relative to calcium. It has been widely shown in many countries around the world that the relative radium to calcium ratio in the human skeleton varies from country to country, but within geographic areas, it appears to be relatively invariant with age. The ratio of radium-226 to calcium in intake, relative to the radium-226 to calcium value in the skeleton, is called the observed ratio, and varies over the world from a value of 0.013 to 0.039, with a mean of 0.024. In 1975, I inferred a mean observed ratio for uranium of 0.057 for the US. These findings suggest that man is in equilibrium with radium-226 with respect to the calcium in food and water. Most of the calcium would be ingested in diet, as would a significant amount, but not necessarily all, of the radium. The role of calcium for intake in water has not been examined

  13. The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Ehsan Ghobadi

    2018-01-01

    Full Text Available In this contribution, diffusion of water, acetone, and ethanol into a polymer matrix has been studied experimentally and numerically by finite element approaches. Moreover, the present study reports an assessment of different thermomechanical conditions of the shape-memory (SM performance, for example, stress- or strain-holding times in stress- or strain-controlled thermomechanical cycles and the effect of maximum strain. According to the results presented here, the uptake of acetone in Estane is much higher than ethanol and follows classical Fickian diffusion. Further, a series of thermomechanical measurements conducted on dry and physically (hydrolytically aged polyether urethanes revealed that incorporation of water seems to have an appreciable impact on the shape recovery ratios which can be attributed to the additional physical crosslinks. However, no obvious difference in shape fixation of dry and physically (hydrolytically aged samples could be recognized. Furthermore, by decreasing the strain-holding time, shape recovery improves significantly. Moreover, the shape fixity is found to be independent of holding time. The shape recovery ratio decreased dramatically with an increase in the stress-holding time.

  14. Μetal Uptake by Sunflower (Helianthus annuus) Irrigated with Water Polluted with Chromium and Nickel.

    Science.gov (United States)

    Stoikou, Vasiliki; Andrianos, Vangelis; Stasinos, Sotiris; Kostakis, Marios G; Attiti, Sofia; Thomaidis, Nikolaos S; Zabetakis, Ioannis

    2017-07-17

    The water aquifers of the regions of Asopos River in Viotia and Messapia in Evia (Greece) have been contaminated with hexavalent chromium (Cr (VI)) and bivalent nickel (Ni (II)). Given that these areas are the two biggest tuber producing regions of Greece, in our previous work, the cross-contamination of the food chain with these two heavy metals was quantified. In the present study, the potential of sunflower ( Helianthus annuus ) cultivation in these regions is evaluated. The scope of our study was to investigate the uptake of chromium and nickel by sunflower, in a greenhouse experiment. The study included two cultivation periods of plants in six irrigation lines with different levels of Cr (VI) and Ni (II) ranging from 0 μg/L (control) to 10,000 μg/L. In all plant parts, statistically significant increased levels of Cr (VI) and Ni (II) were found when compared to control ones. Also, a positive correlation, both for Cr and Ni, between levels of heavy metals in irrigation water and plants was observed. Following European Food Safety Authority recommendations, the obtained oil was evaluated as safe for consumption, therefore, sunflower cultivation could be a valid bioremediation solution for the Asopos and Messapia regions.

  15. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  16. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  17. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    Science.gov (United States)

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  18. Experimental evaluation of ability of Relap5 and DRAKO to calculate water hammer with phase changes

    International Nuclear Information System (INIS)

    Marcinkiewicz, Jerzy; Adamkowski, Adam; Lewandowski, Mariusz

    2007-01-01

    Mechanical loadings on pipe systems caused by water hammer with phase changes make calculation of final forces difficult in nuclear power plants. The common procedure in Sweden is to calculate the water hammer loadings, according to the classical one-dimensional theory of liquid transient flow in pipeline, and then transfer the results to strength analyses of pipeline structure. This procedure assumes that there is quasi-steady response of the pipeline structure to pressure surges - no dynamic interaction between the fluid and the pipeline construction. The hydraulic loadings are calculated with 1-D so-called 'network' programs. Commonly used in Sweden are Relap5 (Mod3.2.2 and higher) and Drako. As a third party accredited inspection body INSPECTA NUCLEAR AB reviews calculations of water hammer loadings. An important question for the reviewer (and also for the users) is knowledge about their ability to calculate the dynamic loadings. While the ability of Relap5 and DRAKO to calculate water hammer without phase changes is relatively well investigated the skills of the programs when phase changes are present need some more attention. The presented work shall be seen as an attempt to illustrate ability of Relap5, and Drako programs to calculate the water hammer loadings with phase changes. A special attention was paid to using of Relap5 for calculation of water hammer pressure surges (including some aspects of influence of discretisation of space on the calculation results). The calculations are compared with experimental results. The experiments have been conducted at a test rig designed and constructed at the Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk, Poland. The comparison of calculated and measured pressures shows some differences, only the first pressure peak, occurring before evaporation is calculated quite exactly. All next coming pressure peaks differ slightly from the measured with respect to amplitude

  19. Differential Responses of Water Uptake Pathways and Expression of Two Aquaporin Genes to Water-Deficit in Rice Seedlings of Two Genotypes

    Directory of Open Access Journals (Sweden)

    Xu Ai-hua

    2017-07-01

    Full Text Available Water-deficit (WD is a major abiotic stress constraining crop productivity worldwide. Zhenshan 97 is a drought-susceptible rice genotype, while IRAT109 is a drought-resistant one. However, the physiological basis of the difference remains unclear. These two genotypes had similar total water uptake rates under both WD and well-watered (WW conditions, and their water uptake rates under WD were significantly decreased compared with those under WW. However, the water uptake rate via the cell-to-cell pathway was significantly increased in Zhenshan 97 but decreased in IRAT109 under WD, whereas the opposite trends were observed through the apoplastic pathway. These results indicated that the stress responses and relative contributions of these two water uptake pathways were associated with rice genotype under WD. The expression levels of OsPIP2;4 and OsPIP2;5 genes were significantly higher in roots of Zhenshan 97 than in IRAT109 under the two conditions. OsPIP2;4 expression in roots was significantly up-regulated under WD, while OsPIP2;5 expression showed no significant change. These results suggest that the expression levels of OsPIP2;4 and OsPIP2;5 in rice are dependent on genotype and water availability. Compared with Zhenshan 97, IRAT109 had a higher root dry weight, water uptake rate and xylem sap flow rate, and lower leaf water potential and root porosity under WD, which might be responsible for the drought resistance in IRAT109.

  20. An improved approach for remotely sensing water stress impacts on forest C uptake.

    Science.gov (United States)

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought. © 2014 John Wiley & Sons

  1. Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability.

    Science.gov (United States)

    Pazos, Ileana M; Gai, Feng

    2012-10-18

    While the thermodynamic effects of trimethylamine oxide (TMAO), urea, and guanidine hydrochloride (GdnHCl) on protein stability are well understood, the underlying mechanisms of action are less well characterized and, in some cases, even under debate. Herein, we employ the stretching vibration of two infrared (IR) reporters, i.e., nitrile (C≡N) and carbonyl (C═O), to directly probe how these cosolvents mediate the ability of water to form hydrogen bonds with the solute of interest, e.g., a peptide. Our results show that these three agents, despite having different effects on protein stability, all act to decrease the strength of the hydrogen bonds formed between water and the infrared probe. While the behavior of TMAO appears to be consistent with its protein-protecting ability, those of urea and GdnHCl are inconsistent with their role as protein denaturants. The latter is of particular interest as it provides strong evidence indicating that although urea and GdnHCl can perturb the hydrogen-bonding property of water their protein-denaturing ability does not arise from a simple indirect mechanism.

  2. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M.

    2018-04-01

    In this work, a study of several observations of aerosol water uptake in a real (non-controlled) atmosphere, registered by remote sensing techniques, are presented. In particular, three events were identified within the Atmospheric Boundary Layer (ABL) and other two events were detected in the free troposphere (beyond the top of the ABL). Then, aerosol optical properties were measured at different relative humidity (RH) conditions by means of a multi-wavelength (MW) Raman lidar located at CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Research Centre for Energy, Environment and Technology) facilities in Madrid (Spain). Additionally, aerosol optical and microphysical properties provided by automatic sun and sky scanning spectral radiometers (CIMEL CE-318) and a meteorological analysis complement the study. However, a detailed analysis only could be carried out for the cases observed within the ABL since well-mixed atmospheric layers are required to properly characterize these processes. This characterization of aerosol water uptake is based on the curve described by the backscatter coefficient at 532 nm as a function of RH which allows deriving the enhancement factor. Thus, the Hänel parameterization is utilized, and the results obtained are in the range of values reported in previous studies, which shows the suitability of this approach to study such hygroscopic processes. Furthermore, the anti-correlated pattern observed on backscatter-related Ångström exponent (532/355 nm) and RH indicates plausible signs of aerosol hygroscopic growth. According to the meteorological analysis performed, we attribute such hygroscopic behaviour to marine aerosols which are advected from the Atlantic Ocean to the low troposphere in Madrid. We have also observed an interesting response of aerosols to RH at certain levels which it is suggested to be due to a hysteresis process. The events registered in the free troposphere, which deal with volcano

  3. Combining ability studies on yield related traits in wheat under normal and water stress conditions

    International Nuclear Information System (INIS)

    Saeed, A.; Khan, A.S.; Khaliq, I.

    2010-01-01

    Six diverse wheat cultivars/lines viz; Baviacore, Nesser, 9247, 9252, 9258 and 9267 were crossed in a complete diallel fashion to develop 30 F1 crosses, which were tested along with their parents under normal and water stress conditions. Numerical analysis was made for spike density, number of grains per spike, 100-grain weight, biological yield, grain yield and harvest index. Significant differences among genotypic mean were observed in all of the traits under both conditions. GCA and SCA differences were significant for all the traits under study except spike density and 100-grain weight in both conditions. Wheat variety Nesser showed maximum general combining ability value for spike density under water stress conditions and maximum GCA value for biological yield and grain yield under irrigated condition. The variety Baviacore proved best general combiner for number of grains per spike and harvest index under both conditions while biological yield and grain yield under water stress condition. Variety 9252 found best general combiner for 100-grain weight under both condition. The cross 9252 x Nesser showed maximum specific combining ability value for spike density and biological yield under irrigated while for 100-grain weight under water stress condition. 9258 x 9252 exhibited maximum SCA for number of grains per spike under irrigated while 9258 x Nesser under water stress condition. 9267 x Nesser showed maximum SCA for 100-grain weight under irrigated condition while spike density under water stress condition. 9258 x 9247 was proved best combiner for grain yield and harvest index irrigated while 9267 x 9258 for biological yield, grain yield and harvest index under water stress condition. (author)

  4. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    Science.gov (United States)

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging

  5. THE RELATIONS OF MORPHOLOGIC CHARACTERISTICS AND MOTOR ABILITIES OF JOUNG WATER POLO PLAYERS

    Directory of Open Access Journals (Sweden)

    Dragan Toskić

    2013-07-01

    Full Text Available The aim of our research was to determine the connection between morphologic characteristics and motor abilities of young water polo players. The sample of participants for this research can be defined as the population of water polo swimmers (N=60 aged 16 to 18, who were only included in the study under the condition that they have taken part in the water polo training process for a period of at least four years. In order to evaluate morphological characteristics of the participants we used 20 anthro¬po¬me¬tric variables (IBP to evaluated longitudinal and transversal dimenions, mass and body voluminosity and subcutaneous fatty tissue. In this study, the measurings of the sig¬ni¬ficant motor dimensions were carried by means of the following measuring instruments which the authors (Gredelj, Hošek, Metikoš, Momirović, 1975 had previously evaluated with the help of physiological mechanisms: the integration factor, based on the me¬cha¬nism for movement structure (MSK, the synergistic automatism and tonus regulation factor (SRT; the factor for excitation intensity regulation (RIE; the excitation duration re¬gulation factor (RTE. The relations between morphological and motor dimensions we¬re determined using a canonical correlation analysis. A correlation analysis was carried out and it indicated a very high correlation between dimesions morphological cha¬ra¬cte¬ri¬stics and motor abilities of young water polo players.

  6. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    International Nuclear Information System (INIS)

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised

  7. Corrosion and deuterium uptake of Zr-based alloys in supercritical water

    International Nuclear Information System (INIS)

    Khatamian, D.

    2010-01-01

    To increase the thermodynamic efficiency above 40% in nuclear power plants, the use of supercritical water as the heat transport fluid has been suggested. Zircaloy-2, -4, Zr-Cr-Fe, Zr-1Nb and Zr-2.5Nb were tested as prospective fuel cladding materials in 30 MPa D 2 O at 500 o C. Zircaloy-2 showed the highest rates of corrosion and hydriding. Although Zr-Cr-Fe initially showed a very low corrosion rate, it displayed breakaway corrosion kinetics after 50 h exposure. The best-behaved material both from a corrosion and hydrogen uptake point of view was Zr-2.5Nb. However, the Zr-2.5Nb oxide growth rate was still excessive and beyond the current CANDU design allowance. Similar coupons, coated with Cr, were also tested. The coated layer effectively prevented oxidation of the coupons except on the edges, where the coating was thinner and had some flaws. In addition, the Cr-coated Zr-2.5Nb coupons had the lowest deuterium pickup of all the alloys tested and showed no signs of accelerated or nonuniform corrosion. (author)

  8. Radioactivity in Norwegian Waters: Distribution in seawater and sediments, and uptake in marine organisms

    International Nuclear Information System (INIS)

    Heldal, Hilde Elise

    2001-01-01

    Prior to the detonation of the first thermonuclear bomb, small amounts of radioactivity, for example in mineral water, were considered to be health enriching. Negative experiences related to thermonuclear bombs and several nuclear accidents have, however, changed people's attitude towards radioactivity during the past 40-50 years. Today, there is a common concern for regular and potential accidental releases of radioactivity from sources such as Sellafield. Although this is important, incorrect assessments of the effects of these releases (e.g. created by uncritical journalism) have the potential to harm the country's fisheries and economy. Therefore, it is of major importance to document up-to-date levels of radioactive contamination of the marine environment, and be able to place these into the proper perspectives. The main topics of the thesis may be summarised as follows: (1) Distribution of Caesium-137, Plutonium-238, Plutonium-239,240 and Americium-241 in sediments with emphasis on the Spitsbergen-Bear Island area, (2) Uptake of Caesium-137 in phytoplankton representative for the Barents and Norwegian Seas phytoplankton communities (laboratory experiments), (3) Bioaccumulation of Caesium-137 in food webs in the Barents and Norwegian Seas, (4) Geographical variations of Caesium-137 in harbour porpoises (Phocoena phocoena) along the Norwegian coast, (5) Transport times for Technetium-99 from Sellafield to various locations along the Norwegian coast and the Arctic Ocean

  9. Radioactivity in Norwegian Waters: Distribution in seawater and sediments, and uptake in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, Hilde Elise

    2001-07-01

    Prior to the detonation of the first thermonuclear bomb, small amounts of radioactivity, for example in mineral water, were considered to be health enriching. Negative experiences related to thermonuclear bombs and several nuclear accidents have, however, changed people's attitude towards radioactivity during the past 40-50 years. Today, there is a common concern for regular and potential accidental releases of radioactivity from sources such as Sellafield. Although this is important, incorrect assessments of the effects of these releases (e.g. created by uncritical journalism) have the potential to harm the country's fisheries and economy. Therefore, it is of major importance to document up-to-date levels of radioactive contamination of the marine environment, and be able to place these into the proper perspectives. The main topics of the thesis may be summarised as follows: (1) Distribution of Caesium-137, Plutonium-238, Plutonium-239,240 and Americium-241 in sediments with emphasis on the Spitsbergen-Bear Island area, (2) Uptake of Caesium-137 in phytoplankton representative for the Barents and Norwegian Seas phytoplankton communities (laboratory experiments), (3) Bioaccumulation of Caesium-137 in food webs in the Barents and Norwegian Seas, (4) Geographical variations of Caesium-137 in harbour porpoises (Phocoena phocoena) along the Norwegian coast, (5) Transport times for Technetium-99 from Sellafield to various locations along the Norwegian coast and the Arctic Ocean.

  10. Radioactivity in Norwegian Waters: Distribution in seawater and sediments, and uptake in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, Hilde Elise

    2001-07-01

    Prior to the detonation of the first thermonuclear bomb, small amounts of radioactivity, for example in mineral water, were considered to be health enriching. Negative experiences related to thermonuclear bombs and several nuclear accidents have, however, changed people's attitude towards radioactivity during the past 40-50 years. Today, there is a common concern for regular and potential accidental releases of radioactivity from sources such as Sellafield. Although this is important, incorrect assessments of the effects of these releases (e.g. created by uncritical journalism) have the potential to harm the country's fisheries and economy. Therefore, it is of major importance to document up-to-date levels of radioactive contamination of the marine environment, and be able to place these into the proper perspectives. The main topics of the thesis may be summarised as follows: (1) Distribution of Caesium-137, Plutonium-238, Plutonium-239,240 and Americium-241 in sediments with emphasis on the Spitsbergen-Bear Island area, (2) Uptake of Caesium-137 in phytoplankton representative for the Barents and Norwegian Seas phytoplankton communities (laboratory experiments), (3) Bioaccumulation of Caesium-137 in food webs in the Barents and Norwegian Seas, (4) Geographical variations of Caesium-137 in harbour porpoises (Phocoena phocoena) along the Norwegian coast, (5) Transport times for Technetium-99 from Sellafield to various locations along the Norwegian coast and the Arctic Ocean.

  11. A high-flow humidograph for testing the water uptake by ambient aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H.M.; Khlystov, A.; Kos, G.P.A. [ECN Fuels Conversion and Environment, Petten (Netherlands); Tuch, T. [Institut of Medical Data Management, Biometrics and Epidemiology, Ludwig-Maximilian University, Muenich (Germany); Roth, C.; Kreyling, W. [Institute for Inhalation Biology, GSF National Research Center for Environment and Health, Neuherberg/Muenich (Germany)

    1999-10-01

    A scanning humidograph, with an air flow rate of 0.5 m{sup 3} s{sup -1} was built to investigate the uptake of water and its effect on sizing, collection and light-scattering of ambient aerosol. The performance of the system was assessed with laboratory particles of ammonium nitrate, ammonium sulfate and sodium chloride which are the major hygroscopic components of ambient aerosol. The increase in size at the deliquescence points, which ideally is a stepwise function of relative humidity, occurs over a range of 3% RH units. This is shown to be an optimum value in a system of such large dimensions. Because of the strong temperature increase of the vapor pressure of ammonium nitrate, its evaporative loss was investigated as a function of heating/drying temperature. The loss of pure test aerosol, with a mass distribution similar to that in the ambient atmosphere, was found to be acceptable for drying temperatures of up to 40C. The sizing of deliquesced aerosol by LAS-X monitors was tested and found to be a complex function of RH. In Berner low pressure impactors growth of hygroscopic aerosol was not observed, not even at an RH approaching saturation. 21 refs.

  12. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    Directory of Open Access Journals (Sweden)

    Nithinart Chitpong

    2016-12-01

    Full Text Available An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid (PAA and poly(itaconic acid (PIA to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd, productivity, and recovery of Cd(II from the membranes by regeneration. The dynamic binding capacities of Cd(II on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II, apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  13. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, P. (Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. (Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  14. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  15. Effect of water management, tillage options and phosphorus status on arsenic uptake in rice.

    Science.gov (United States)

    Talukder, A S M H M; Meisner, C A; Sarkar, M A R; Islam, M S

    2011-05-01

    High arsenic (As) concentrations in soil may lead to elevated concentrations of arsenic in agricultural products. Field experiments were conducted to examine the effects of water management (WM) and Phosphorus (P) rates on As uptake, rice growth, yield and yield attributes of winter (boro) and monsoon (aman) rice in an As contaminated soil-water at Gobindagonj, Gaibandha, Bangladesh in 2004 and 2005. Significantly, the highest average grain yields (6.88±0.07 t ha(-1) in boro 6.38±0.06 t ha(-1) in aman) were recorded in permanent raised bed (PRB; aerobic WM: Eh=+360 mV) plus 100% P amendment. There was a 12% yield increase over conventional till on flat (CTF; anaerobic WM: Eh=-56 mV) at the same P level. In boro, the As content in grain and As content in straw were about 3 and 6 times higher in CTF compared to PRB, respectively. The highest total As content (0.646±0.01 ppm in grain and 10.93±0.19 ppm in straw) was recorded under CTF, and the lowest total As content (0.247±0.01 and 1.554±0.09 ppm in grain and straw, respectively) was recorded under PRB (aerobic WM). The results suggest that grain and straw As are closely associated in boro rice. The furrow irrigation approach of the PRB treatments consistently reduced irrigation input by 29-31% for boro and 27-30% for aman rice relative to CTF treatments in 2004 and 2005, respectively, thus reducing the amount of As added to the soil from the As-contaminated irrigation water. Yearly, 30% less As was deposited to the soil compared to CTF system through irrigation water during boro season. High As concentrations in grain and straw in rice grown using CTF in the farmers' field, and the fact that using PRB reduced grain As concentrations to value less than half of the proposed food hygiene standard. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner's Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section

  17. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.

    Science.gov (United States)

    Khalvati, M A; Hu, Y; Mozafar, A; Schmidhalter, U

    2005-11-01

    Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.

  18. Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

    Science.gov (United States)

    Tripathy, S. C.; Patra, Sivaji; Vishnu Vardhan, K.; Sarkar, A.; Mishra, R. K.; Anilkumar, N.

    2018-03-01

    This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 - and SiO4 4-) concentrations increased southward from STF to PF; while ammonium (NH4 +), nitrite (NO2 -) and phosphate (PO4 3-) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4 + and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump".

  19. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    International Nuclear Information System (INIS)

    Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. - Highlights: • AgNP coated with polyvinyl pyrrolidone (PVP), PVP-AgNP were efficiently assimilated by Lymnaea stagnalis. • Water chemistry has no influence on the dietary uptake of PVP-AgNP by snails. - L. Stagnalis assimilated PVP-AgNPs efficiently from food and water chemistry had no influence on their uptake and toxicity

  20. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer’s Disease: Using Morris Water Maze and Micro-PET

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    2015-01-01

    Full Text Available Introduction. Alzheimer’s disease (AD causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8. Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD.

  1. Direct uptake of cobalt 60 by the carp (Cyprinus carpio L.) following experimental chronic or cyclical contamination of water

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Foulquier, L.

    1978-01-01

    Irrespective of the nature of experimental cobalt 60 contamination (chronic or cyclical), the activity level in the carp was highest after 32 or 35 days when the concentration factor reached 3. An analysis of cobalt 60 distribution shows preferential uptake by the kidneys. It therefore seems unlikely that the discharge rate of effluents from the nuclear industry and the resulting variations of radioactivity levels in the water significantly modify the impact of contamination on aquatic organisms [fr

  2. Measuring and modeling three-dimensional water uptake of a growing faba bean (Vicia faba) within a soil column

    Science.gov (United States)

    Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry

    2014-05-01

    A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of

  3. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  4. Sealing ability of mineral trioxide aggregate (MTA) combined with distilled water, chlorhexidine, and doxycycline.

    Science.gov (United States)

    Arruda, Roberta A A; Cunha, Rodrigo S; Miguita, Kenner B; Silveira, Cláudia F M; De Martin, Alexandre S; Pinheiro, Sérgio L; Rocha, Daniel G P; Bueno, Carlos E S

    2012-09-01

    The aim of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA Bio) combined with different mixing agents (distilled water, chlorhexidine, doxycycline), used as an apical root-end filling material. Forty-two extracted human teeth were divided into three groups (n = 12); six teeth were used as controls. Root-ends were resected at 90 degrees, 3 mm from the apex. Root-end cavities were prepared using ultrasonic tips and filled with MTA Bio plus distilled water, 2% chlorhexidine solution, or 10% doxycycline solution. Apical sealing was assessed by microleakage of 50% silver nitrate solution. Roots were longitudinally sectioned in a buccolingual plane and analyzed using an operating microscope (20× magnification). Depth of dye leakage into the dentinal walls was measured in millimeters. Results were analyzed using ANOVA and Tukey's test (P = 0.05). MTA Bio plus distilled water showed significantly higher mean leakage results (1.06 mm) when compared with MTA Bio plus doxycycline (0.61 mm), and higher, although not significant, results when compared with MTA Bio plus chlorhexidine (0.79 mm). In conclusion, replacing distilled water with two biologically active mixing agents (doxycycline and chlorhexidine) did not alter the sealing properties of MTABio. The antimicrobial properties of these combinations should be further investigated.

  5. Oxygen uptake during Wingate tests for arms and legs in swimmers and water polo players

    Directory of Open Access Journals (Sweden)

    Colantonio Emilson

    2003-01-01

    Full Text Available OBJECTIVE: The aim of the present study is to compare the values of the maximal oxygen uptake (O2 max during two consecutive bouts in Wingate tests for arms and legs in swimmers (S and water polo players (WP. METHODS: Sample - seven national level athletes (4 S and 3 WP, age 17,90 ± 2,14 years, body mass 71,41 ± 6,84 kg, height 176,65 ± 7,02 cm, % body fat 13,23 ± 4,18. Two Wingate bouts with 30 sec each with 3 min interval between them, for arms and legs in alternated days. Oxygen uptake: breath-by-breath using the gas analysis system K4 b² Cosmed. Statistical analysis: Wilcoxon test for dependent variables and Kolmogorov-Smirnov test for independent variables. RESULTS: The mean values found at the O2 peak (PO2, mean power (MP and peak power (PP for each bout of the Wingate test, for arms and legs. For Arms: PO2 = 55.16 ± 5.72 ml.kg-1.min-1, MP = 5.28 ± 0.59 watts.kg-1 and PP = 6.71 ± 0.88 watts.kg-1 got in the first bout (1st Arms and PO2 = 60.12 ± 6.10 ml.kg-1.min-1, MP = 5.03 ± 0.40 watts.kg-1 and PP = 6.25 ± 0.51 watts.kg-1, got in the second bout (2nd Arms. For legs: PO2 = 55.66 ± 6.85 ml.kg-1.min-1, MP = 4.75 ± 1.79 watts.kg-1 and PP = 7.44 ± 1.96 watts.kg-1 got in the first bout (1st Legs and PO2 = 62.09 ± 5.99 ml.kg-1.min-1, MP = 4.28 ± 1.47 watts.kg-1 and PP = 6.68 ± 1.63 watts.kg-1 got in the second bout (2nd Legs. DISCUSSION AND CONCLUSION: All variables studied did not present significant difference among arms and legs, as much the first as the second bout for arms for PO2 (p < 0.05. There was no difference between the PM mean values of the first and the second bout. But the mean of the second bout of legs was significant smaller than the first bout (p < 0.05. For the PP variable there was no difference among the mean values to the first and second bout as much for arms as for legs. It looks like to exist larger magnitude to O2 adjustment for arms than legs, that could be associated to specific demands to which S

  6. The influence of drought on the water uptake by Scots pines (Pinus sylvestris L. at different positions in the tree stand

    Directory of Open Access Journals (Sweden)

    Boczoń Andrzej

    2015-12-01

    Full Text Available Periodically occurring drought is typical for the climate of Poland. In habitats supplied exclusively with rain water, tree stands are frequently exposed to the negative effects of water deficit in the soil. The aim of this study was to examine the water uptake and consumption of two individual Scots pine trees under drought conditions. The trees were located at different positions within the stand and at the time of study were over 150 years old. Soil moisture, availability of soil water and the quantity of water uptake by the individual trees were examined by measuring the water velocity inside the trunks (Thermal Dissipation Probe method.

  7. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  8. Identification of pink-pigmented bacteria isolated from environmental water samples and their biofilm formation abilities.

    Science.gov (United States)

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Saitou, Keiko; Sugiyama, Jun-Ichi; Hara, Motonobu; Fukuyama, Masahumi

    2008-06-01

    Sixty-seven strains of pink-pigmented bacteria, which were isolated from environmental water samples collected nationwide, were identified by partial 16S rDNA sequence analysis. In addition, the biofilm formation ability of the isolates was experimentally investigated. We could identify only 2 strains at the species level: Pedobacter roseus HS-38 and Runella slithyformis HS-77. The results showed that of the strains tested, 22 strains (32.8%) were Pedobacter spp., which was most frequently identified, followed by 19 strains (28.4%) of Arcicella spp., 16 strains (23.9%) of Deinococcus spp., 5 strains (7.5%) of Roseomonas spp., 4 strains (6.0%) of Flectobacillus spp. and 1 strain (1.5%) of Runella sp. Most isolates showed low similarity values to previously known species, and they were found to be novel species. At a result, it was difficult to identify environmental water-derived pink-pigmented bacteria at the species level. On the other hand, when we measured the absorbance by the crystal violet staining to examine the quantities of biofilm formation of these strains, fifty-five (82.0%) of the 67 isolates formed biofilm. The absorbance of Deinococcus sp. HS-75 was the highest (3.56). When comparing the absorbance values among the genera, Roseomonas spp. showed the highest absorbance (mean:1.62), followed by Deinococcus spp. (mean: 1.03), and Arcicella spp. (mean: 1.01). Strains of Flectobacillus spp. (mean: 0.48) and Pedobacter spp. (mean: 0.42) showed lower absorbance values. As above, it was shown that, at the species level, the pink-pigmented bacteria in the water in the Japanese environment had various levels of ability to form biofilm.

  9. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    OpenAIRE

    Kurdali, Fawaz; Al-Chammaa, Mohammad

    2013-01-01

    The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si) and/or potassium (K) applications on growth and nitrogen uptake in barley plants grown under water (FC1) and non water (FC2) stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si 50, Si 100 and Si 200) and one fertilizer rate of K were used. Dry matter (DM) and N yield (NY) in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the wa...

  10. Data on the uptake and metabolism of the vertebrate steroid estradiol-17β from water by the common mussel, Mytilus spp.

    Directory of Open Access Journals (Sweden)

    Tamar I. Schwarz

    2016-12-01

    Full Text Available The data presented in this article primarily provide support for the research article entitled “Mussels (Mytilus spp. display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17β from water” (T.I. Schwarz, I. Katsiadaki, B.H. Maskrey, A.P. Scott, 2016 [1]. Data are presented on the ability of mussels to absorb tritiated estradiol (E2 from water. The data indicate that most of the radioactivity remaining in the water is 1,3,5(10-estratriene-3,17β-diol 3-sulfate (E2 3-S and the radioactivity in the mussel tissue is mainly in the form of fatty acid esters. The latter, following saponification, were identified by ultra-high performance liquid chromatography in conjunction with tandem mass spectrometry (UHPLC-MS/MS as intact E2. Data are included that indicate that the remaining radioactivity in the tissue is composed of E2 3-S and unidentified free metabolites. Experimental data included also relate to a the efficiency of extraction of radioactivity from tissue, b the efficiency of separation of free and esterified E2 using solvents and c possible factors affecting the recovery of radioactivity. Finally, preliminary data are provided on concentrations of immunoreactive E2 in the free and ester fractions of tissue extracts from mussels caged in the field.

  11. Study of Chrysopogon Zizanioides ability to decontaminate irrigation water in Southwest Spain

    Science.gov (United States)

    Galea Grajera, F. A.

    2009-04-01

    Conventional agriculture is characterized by the increasing use of agrochemicals to maintain and improve soil fertility. One of the main problems arising from this practise is the generation of leachates, which contain a high concentration of nitrate, nitrite, phosphate and other contaminating components, causing soil and water pollution. This is a common problem in irrigated areas such as Las Vegas Bajas del Guadiana (Extremadura, Spain). Different techniques are being developed and used to control leachate generation, however, these practises happen to be very expensive. In this situation, the emergence of alternative technologies such as phytoremediation, based on the ability of some plants to absorb and accumulate high concentrations of pollutants such as heavy metals, organic compounds and radiactive components, is being explored to restore the degraded lands and it seems very feasible, economical and environment-friendly. The Vetiver grass (Chrysopogon zizanioides) is a perennial grass originally from India, widely known for its ability to retain soil and prevent erosion. Recently, the new use of this grass for phytoremediation has stimulated research in this area. It produces up to two meter high plant with a strong dense and mainly vertical root system with emerging secondary roots which form a dense and strong network that grows horizontally and vertically to depths greater than 5 meters, useful in soil erosion control. It is vegetatively propagated and is non-invasive, resistant to pests and diseases and widely used worldwide for soil and moisture conservation and soil restoration. This study, carried out in Badajoz, in the Southwest of the Iberian Peninsula, focuses in the use of Vetiver in the area. Its adaptation to climatic and soil conditions was tested for three years. Bunches of selected species were first grown in pots and later planted in experimental plots exposed to the weather conditions in the area. When adaptation to edaphic and climatic

  12. Osmosis-induced water uptake by Eurobitum bituminized radioactive waste and pressure development in constant volume conditions

    International Nuclear Information System (INIS)

    Mariën, A.; Mokni, N.; Valcke, E.; Olivella, S.; Smets, S.; Li, X.

    2013-01-01

    Highlights: ► The water uptake by Eurobitum is studied to judge the safety of geological disposal. ► High pressures of up to 20 MPa are measured in constant volume water uptake tests. ► The morphology of leached Eurobitum samples is studied with μCT and ESEM. ► The observations are reproduced by an existing CHM formulation for Eurobitum. - Abstract: The chemo-hydro-mechanical (CHM) interaction between swelling Eurobitum radioactive bituminized waste (BW) and Boom Clay is investigated to assess the feasibility of geological disposal for the long-term management of this waste. These so-called compatibility studies include laboratory water uptake tests at Belgian Nuclear Research Center SCK-CEN, and the development of a coupled CHM formulation for Eurobitum by the International Center for Numerical Methods and Engineering (CIMNE, Polytechnical University of Cataluña, Spain). In the water uptake tests, the osmosis-induced swelling, pressure increase and NaNO 3 leaching of small cylindrical BW samples (diameter 38 mm, height 10 mm) is studied under constant total stress conditions and nearly constant volume conditions; the actual geological disposal conditions should be intermediate between these extremes. Two nearly constant volume tests were stopped after 1036 and 1555 days to characterize the morphology of the hydrated BW samples and to visualize the hydrated part with microfocus X-ray Computer Tomography (μCT) and Environmental Scanning Electron Microscopy (ESEM). In parallel, a coupled CHM formulation is developed that describes chemically and hydraulically coupled flow processes in porous materials with salt crystals, and that incorporates a porosity dependent membrane efficiency, permeability and diffusivity. When Eurobitum BW is hydrated in (nearly) constant volume conditions, the osmosis-induced water uptake results in an increasing pressure to values that can be (in theory) as high as 42.8 MPa, being the osmotic pressure of a saturated NaNO 3

  13. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    The natural diet of marine fish larvae, copepods, contain 60-350 mg I kg(-1), while live feed used in commercial hatcheries have iodine concentrations in the range of 1 mg kg(-1). Seawater is also considered to be an important source of iodine for marine fish. The question asked in this study is ......M. The uptake was partly blocked by perchlorate (ClO3-) which is a known inhibitor of the sodium iodide symporter. This indicates that the Atlantic halibut larvae accumulate iodide through both specific and non-specific uptake pathways....

  14. The effects of water management on the CO2 uptake of Sphagnum moss in a reclaimed peatland

    Directory of Open Access Journals (Sweden)

    C.M. Brown

    2017-07-01

    Full Text Available To harvest Sphagnum on a cyclic basis and rapidly accumulate biomass, active water management is necessary. The goal of this study is to determine the hydrological conditions that will maximise CO2 uptake in Sphagnum farming basins following the moss-layer transfer technique. Plot CO2 uptake doubled from the first growing season to the second, but growth was not uniform across the site. Results indicate that the seasonal oscillations in water table (WT position were more important than actual WT position for estimating Sphagnum ground cover and CO2 uptake when the seasonal WT is shallow (< -25 cm. Plots with higher productivity had a WT range (seasonal maximum – minimum less than 15 cm, a WT position which did not fluctuate more than ± 7.5 cm, and a low WT standard deviation. Each basin was a CO2 source during the second growing season, and seasonal modelled NEE ranged from 107.1 to 266.8 g CO2 m-2. Decomposition from the straw mulch accounted for over half of seasonal respiration, and the site is expected to become a CO2 sink as the straw mulch decomposes and moss cover increases. This study highlights the importance of maintaining stable moisture conditions to increase Sphagnum growth and CO2 sink functions.

  15. An experimental set-up to study carbon, water, and nitrate uptake rates by hydroponically grown plants.

    Science.gov (United States)

    Andriolo, J L; Le Bot, J; Gary, C; Sappe, G; Orlando, P; Brunel, B; Sarrouy, C

    1996-01-01

    The experimental system described allows concomitant hourly measurements of CO2, H2O, and NO3 uptake rates by plants grown hydroponically in a greenhouse. Plants are enclosed in an airtight chamber through which air flows at a controlled speed. Carbon dioxide exchange and transpiration rates are determined from respective differences of concentrations of CO2 and water vapor of the air at the system inlet and outlet. This set-up is based on the "open-system" principle with improvements made on existing systems. For instance, propeller anemometers are used to monitor air flow rates in the chamber. From their signal it is possible to continuously adjust air speed to changing environmental conditions and plant activity. The air temperature inside the system therefore never rises above that outside. Water and NO3 uptake rates are calculated at time intervals from changes in the volume and the NO3 concentration of the nutrient solution in contact with the roots. The precise measurement of the volume of solution is achieved using a balance which has a higher precision than any liquid level sensors. Nitrate concentration is determined in the laboratory from aliquots of solution sampled at time intervals. A number of test runs are reported which validate the measurements and confirm undisturbed conditions within the system. Results of typical diurnal changes in CO2, H2O, and NO3 uptake rates by fruiting tomato plants are also presented.

  16. A comparison of the diagnostic ability between waters' radiograph and computed tomography in the diagnosis of midfacial fracture

    International Nuclear Information System (INIS)

    Jeon, In Seong; Choi, Soon Chul

    1997-01-01

    This study was intended to compare the diagnostic ability between Waters' radiograph and CT in the diagnosis of midfacial fracture. The study group included 44 patients (male:32, female:12, age range: 16-74 years old) with facial injury who underwent surgery. Waters' radiograph and both axial and coronal scanning were performed before surgery, Three oral radiologists and three non-oral radiologist interpreted 44 waters' radiographs and 88 CT in three ways : 1) interpretation using waters' radiograph only, 2) interpretation using CT only, 3) interpretation using Waters' radiograph and CT. The interpretation sites were confined to the walls of maxillary sinus; anterior, posterior, medial, lateral and superior wall. ROC curves were made with the findings during surgery as a gold standard except the posterior wall, where the joint evaluation of Waters' radiograph and CT by other three oral radiologists was used. ROC areas were compared according to the interpreting methods, the interpretation sites, and groups (R group ; oral radiologist group, N group ; non-oral radiologist group). The obtained results were as followed : 1. The diagnostic ability of CT only and Waters' radiograph and CT was higher than Waters' radiograph only in both groups (P<0.05). but there was no difference between CT only and waters' radiograph and CT. 2. Generally, the diagnostic ability for the lateral antral wall was the highest and that for the posterior antral wall was the lowest in both groups (P<0.05) 3. In R group, for the anterior antral wall the diagnostic ability using CT only was increased but for the medial, lateral and superior antral walls the diagnostic ability was increased in only using Waters' radiograph and CT. 4. In N group, for the anterior and medial walls the diagnostic ability using CT only was increased, But for the posterior, lateral and superior antral walls there were no difference among three interpreting methods. 5. The diagnostic ability of R group was higher than

  17. How Do Severe Constraints Affect the Search Ability of Multiobjective Evolutionary Algorithms in Water Resources?

    Science.gov (United States)

    Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.

    2015-12-01

    This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or

  18. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  19. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    International Nuclear Information System (INIS)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo; Rabot, Eva

    2016-01-01

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  20. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo [University of Catania, Department of Biological, Geological and Environment Sciences, Catania (Italy); Rabot, Eva [Laboratoire Leon Brillouin (CNRS/CEA), Gif-Sur-Yvette (France)

    2016-11-15

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  1. Uptake of cobalt-60 from sea water and from labelled food by the common shrimp Crangon erangon (L.)

    International Nuclear Information System (INIS)

    Weers, A.W. van

    1975-01-01

    The role of two different modes of uptake in the accumulation of 60 Co by the common shrimp (Crangon crangon (L.)) is the subject of the present study. The results show that accumulation of 60 Co from sea water is a slow process. The concentration factor for whole animals reached in one month was only about 13. Most of the activity accumulated from water appears to be associated with the exoskeleton. As a consequence, moulting has a pronounced effect on the uptake pattern of 60 Co and on the subsequent retention of the radionuclide by shrimps kept in non-radioactive sea water. After single feeding of shrimps with labelled mussel flesh, 60 Co is retained according to an exponential function with a short-lived and a long-lived component. The short-lived component has a mean biological half-life of 1.2 days and accounts for about 80% of the initial activity. About 20% of the initial activity is lost with a mean biological half-life of about 10 days. After repeated feeding of labelled mussel flesh the short-lived component in the 60 Co retention is virtually absent. Cobalt-60 taken up with food is localized mainly in the digestive gland and the concentration in the edible muscles from the abdomen is relatively small. It is concluded from the present study that direct uptake from sea water will play only a minor role in the accumulation of 60 Co in the internal organs of the shrimp. 60 Co released into the marine environment will be taken up by shrimps mainly from food. The results indicate a rapid turnover of 60 Co in shrimps. (author)

  2. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  3. Content and uptake of trace metals in benthic algae, Enteromorpha and Porphyra. II. Studies on the algae cultured in sea water supplemented with various metals

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Fujiyama, T.

    1977-01-01

    In the culture of Porphyra in sea water supplemented with metals, the uptakes of Mn and Cd were relatively high and increased in proportion to culture time when the metal concentration in water was high. Fe distributed evenly in all three parts of fronds. Mn was concentrated in surface and middle layers, while Cd was accumulated mainly in the middle layer and a little in the surface layer. In general the uptake was high in the middle layer. In the uptake of Mn there was a clear distinction between light and dark conditions, that is, Mn was absorbed only during light periods while Cd was absorbed regardless of light and dark periods.

  4. Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France

    Science.gov (United States)

    Canal, N.; Calvet, J.-C.; Decharme, B.; Carrer, D.; Lafont, S.; Pigeon, G.

    2014-12-01

    The simulation of root water uptake in land surface models is affected by large uncertainties. The difficulty in mapping soil depth and in describing the capacity of plants to develop a rooting system is a major obstacle to the simulation of the terrestrial water cycle and to the representation of the impacts of drought. In this study, long time series of agricultural statistics are used to evaluate and constrain root water uptake models. The inter-annual variability of cereal grain yield and permanent grassland dry matter yield is simulated over France by the Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) generic land surface model (LSM). The two soil profile schemes available in the model are used to simulate the above-ground biomass (Bag) of cereals and grasslands: a two-layer force-restore (FR-2L) bulk reservoir model and a multi-layer diffusion (DIF) model. The DIF model is implemented with or without deep soil layers below the root zone. The evaluation of the various root water uptake models is achieved by using the French agricultural statistics of Agreste over the 1994-2010 period at 45 cropland and 48 grassland départements, for a range of rooting depths. The number of départements where the simulated annual maximum Bag presents a significant correlation with the yield observations is used as a metric to benchmark the root water uptake models. Significant correlations (p value neutral impact of the most refined versions of the model is found with respect to the simplified soil hydrology scheme. This shows that efforts should be made in future studies to reduce other sources of uncertainty, e.g. by using a more detailed soil and root density profile description together with satellite vegetation products. It is found that modelling additional subroot-zone base flow soil layers does not improve (and may even degrade) the representation of the inter-annual variability of the vegetation above-ground biomass. These results are

  5. A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO2 uptake in Mediterranean environments

    Science.gov (United States)

    Helman, David; Lensky, Itamar M.; Osem, Yagil; Rohatyn, Shani; Rotenberg, Eyal; Yakir, Dan

    2017-09-01

    Estimations of ecosystem-level evapotranspiration (ET) and CO2 uptake in water-limited environments are scarce and scaling up ground-level measurements is not straightforward. A biophysical approach using remote sensing (RS) and meteorological data (RS-Met) is adjusted to extreme high-energy water-limited Mediterranean ecosystems that suffer from continuous stress conditions to provide daily estimations of ET and CO2 uptake (measured as gross primary production, GPP) at a spatial resolution of 250 m. The RS-Met was adjusted using a seasonal water deficit factor (fWD) based on daily rainfall, temperature and radiation data. We validated our adjusted RS-Met with eddy covariance flux measurements using a newly developed mobile lab system and the single active FLUXNET station operating in this region (Yatir pine forest station) at a total of seven forest and non-forest sites across a climatic transect in Israel (280-770 mm yr-1). RS-Met was also compared to the satellite-borne MODIS-based ET and GPP products (MOD16 and MOD17, respectively) at these sites.Results show that the inclusion of the fWD significantly improved the model, with R = 0.64-0.91 for the ET-adjusted model (compared to 0.05-0.80 for the unadjusted model) and R = 0.72-0.92 for the adjusted GPP model (compared to R = 0.56-0.90 of the non-adjusted model). The RS-Met (with the fWD) successfully tracked observed changes in ET and GPP between dry and wet seasons across the sites. ET and GPP estimates from the adjusted RS-Met also agreed well with eddy covariance estimates on an annual timescale at the FLUXNET station of Yatir (266 ± 61 vs. 257 ± 58 mm yr-1 and 765 ± 112 vs. 748 ± 124 gC m-2 yr-1 for ET and GPP, respectively). Comparison with MODIS products showed consistently lower estimates from the MODIS-based models, particularly at the forest sites. Using the adjusted RS-Met, we show that afforestation significantly increased the water use efficiency (the ratio of carbon uptake to ET) in this region

  6. Self-drying: a gecko's innate ability to remove water from wet toe pads.

    Directory of Open Access Journals (Sweden)

    Alyssa Y Stark

    Full Text Available When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, similar to the active self-cleaning of dirt particles. We measured the time it took to recover maximum shear adhesion after toe pads had become wet in two groups, those that were allowed to actively walk and those that were not. Keeping in mind the importance of substrate wettability to adhesion on wet surfaces, we also tested geckos on hydrophilic glass and an intermediately wetting substrate (polymethylmethacrylate; PMMA. We found that time to maximum shear adhesion recovery did not differ in the walking groups based on substrate wettability (22.7±5.1 min on glass and 15.4±0.3 min on PMMA but did have a significant effect in the non-walking groups (54.3±3.9 min on glass and 27.8±2.5 min on PMMA. Overall, we found that by actively walking, geckos were able to self-dry their wet toe pads and regain maximum shear adhesion significantly faster than those that did not walk. Our results highlight a unexpected property of the gecko adhesive system, the ability to actively self-dry and recover adhesive performance after being rendered dysfunctional by water.

  7. [Measurement and analysis of micropore aeration system's oxygenating ability under operation condition in waste water treatment plant].

    Science.gov (United States)

    Wu, Yuan-Yuan; Zhou, Xiao-Hong; Shi, Han-Chang; Qiu, Yong

    2013-01-01

    Using the aeration pool in the fourth-stage at Wuxi Lucun Waste Water Treatment Plant (WWTP) as experimental setup, off-gas method was selected to measure the oxygenating ability parameters of micropore aerators in a real WWTP operating condition and these values were compared with those in fresh water to evaluate the performance of the micropore aerators. Results showed that the micropore aerators which were distributed in different galleries of the aeration pool had significantly different oxygenating abilities under operation condition. The oxygenating ability of the micropore aerators distributed in the same gallery changed slightly during one day. Comparing with the oxygenating ability in fresh water, it decreased a lot in the real aeration pool, in more details, under the real WWTP operating condition, the values of oxygen transfer coefficient K(La) oxygenation capacity OC and oxygen utilization E(a) decreased by 43%, 57% and 76%, respectively.

  8. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe

    Directory of Open Access Journals (Sweden)

    M. Jung

    2007-08-01

    Full Text Available Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP across European forests. Simulated GPP and leaf area index (LAI were compared with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange and LAI measurements along a temperature gradient ranging from the boreal to the Mediterranean region. The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR and radiation use efficiency (RUE, the overestimation of GPP for the boreal coniferous forests appears to be primarily related to too high simulated LAI - and thus light absorption (APAR – rather than too high radiation use efficiency. We cannot attribute the tendency of the models to underestimate GPP in the water limited region to model structural deficiencies with confidence. A likely dry bias of the input meteorological data in southern Europe may create this pattern.

    On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr but differences are apparent for different ecosystem types. In terms of absolute values, we find the agreement between site based GPP estimates and simulations acceptable when we consider uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data. Continental to global data-model comparison studies should be fostered in the future since they are necessary to identify consistent model bias along environmental

  9. Three Candida albicans potassium uptake systems differ in their ability to provide Saccharomyces cerevisiae trk1trk2 mutants with necessary potassium

    Czech Academy of Sciences Publication Activity Database

    Elicharová, Hana; Hušeková, Barbora; Sychrová, Hana

    2016-01-01

    Roč. 16, č. 4 (2016), fow039 ISSN 1567-1356 R&D Projects: GA ČR(CZ) GAP302/12/1151; GA ČR(CZ) GA16-03398S EU Projects: European Commission(XE) 606786 - ImResFun Institutional support: RVO:67985823 Keywords : Candida * potassium uptake * Hak1 transporter * Trk1 transporter * Acu1 ATPase * cation homeostasis Subject RIV: EE - Microbiology, Virology Impact factor: 3.299, year: 2016

  10. Predicting Phenologic Response to Water Stress and Implications for Carbon Uptake across the Southeast U.S.

    Science.gov (United States)

    Lowman, L.; Barros, A. P.

    2016-12-01

    Representation of plant photosynthesis in modeling studies requires phenologic indicators to scale carbon assimilation by plants. These indicators are typically the fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI) which represent plant responses to light and water availability, as well as temperature constraints. In this study, a prognostic phenology model based on the growing season index is adapted to determine the phenologic indicators of LAI and FPAR at the sub-daily scale based on meteorological and soil conditions. Specifically, we directly model vegetation green-up and die-off responses to temperature, vapor pressure deficit, soil water potential, and incoming solar radiation. The indices are based on the properties of individual plant functional types, driven by observational data and prior modeling applications. First, we describe and test the sensitivity of the carbon uptake response to predicted phenology for different vegetation types. Second, the prognostic phenology model is incorporated into a land-surface hydrology model, the Duke Coupled Hydrology Model with Prognostic Vegetation (DCHM-PV), to demonstrate the impact of dynamic phenology on modeled carbon assimilation rates and hydrologic feedbacks. Preliminary results show reduced carbon uptake rates when incorporating a prognostic phenology model that match well against the eddy-covariance flux tower observations. Additionally, grassland vegetation shows the most variability in LAI and FPAR tied to meteorological and soil conditions. These results highlight the need to incorporate vegetation-specific responses to water limitation in order to accurately estimate the terrestrial carbon storage component of the global carbon budget.

  11. Uptake of barium and strontium by cress (Lepidium sativum) in water culture and the presence of an inhibiting soluble factor

    International Nuclear Information System (INIS)

    Oestling, O.; Kopp, P.; Burkart, W.

    1991-01-01

    Seeds of cress were sown in various densities on plastic grids placed in half-litre dishes filled with either a dilute salt solution or distilled water. After 2 days the radionuclides 133 Ba, 134 Cs and 85 Sr were added, and after another 5 days the plants were harvested and the radioactivity measured by γ-ray spectrometry. Plants in alternated sparse cultures concentrated less radioactivity of Ba and Sr than the corresponding non-alternated cultures. Furthermore, when water from very dense cultures on which plants had grown for a week was sterile-filtered and added to fresh cultures, it was shown that this conditioned water strongly inhibited the uptake of Ba and Sr. The difference in radionuclide concentration in the plants as a function of plant density disappeared when the concentrations of Ca and Mg in the nutrient solution were raised to 0.15 and 0.40 mM, respectively. Apparently a chelating substance, possibly excreted from the plant roots, is responsible for the inhibition of the uptake of bivalent cations, and this agent becomes saturated when bivalent cations are present at sufficiently high concentrations. (author)

  12. EFFECT OF IMMERSION TEMPERATURE ON THE WATER UPTAKE OF POLYPROPYLENE/WOOD FLOUR/ORGANOCLAY HYBRID NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    Behzad Kord

    2011-02-01

    Full Text Available Polypropylene/wood flour/organoclay hybrid nanocomposites were melt-compounded in an internal mixer at 190 oC and 60 rpm rotor speed. Then samples were fabricated by injection molding. Effects of immersion temperature on the water uptake of hybrid nanocomposite were investigated. To meet this objective, water absorption of samples was determined after 24 h immersion in distilled water at different temperatures (25, 50, 75, and 100 °C. Results indicated that immersion temperature had a significant influence on the water absorption of composites. By increasing the temperature, water absorption increases as well. The maximum water absorption of composite is decreased by increasing the nanoclay and compatibilizer content. The morphology of nanoclay was determined by X-ray diffraction (XRD and transmission electron microscopy. The effect of morphology on water absorption was also evaluated. Due to inadequate compatibilizer, exfoliated morphology of nanoclay was not obtained, but there was evidence of intercalation. The order of intercalation for samples containing 3 phc was higher than that of 6 phc at the same PP-g-MA content due to some agglomerations of organoclay.

  13. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  14. Water uptake in free films and coatings using the Brasher and Kingsbury equation: a possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry

    International Nuclear Information System (INIS)

    Vosgien Lacombre, C.; Bouvet, G.; Trinh, D.; Mallarino, S.; Touzain, S.

    2017-01-01

    For many years, the water uptake in organic coatings was measured by EIS and/or gravimetry but differences in water content values were found in almost all studies. The Brasher-Kingsbury equation used in the electrochemical analysis (EIS) is often criticized because elementary assumptions may be unvalid. The origin of the discrepancy between both methods is still of interest because many questions remain open and this study aims to provide new insights to these questions. In this work, free films and coatings of a model epoxy-amine system were immersed in a 3 wt.% NaCl solution. The water uptake in free films was evaluated using gravimetric measurements and EIS, using the Basher-Kingsbury equation. The mass of free-films used in the EIS tests was measured and compare to gravimetric measurements while the water uptake (EIS) in free films was compared to that obtained with coatings. It was found that the mass increase of free films tested with EIS was in agreement with gravimetric measurements but was always lower than the water uptake obtained by EIS. Moreover, the water uptake in free films (EIS) was different from that obtained with coatings. In all cases, it was found that the Basher-Kingsbury equation overestimated the water uptake. It appears that the differences between EIS and gravimetric measurements can be analyzed in terms of geometrical effects. Indeed, the swelling in free films and coatings can be monitored by DMA and SECM during ageing. Finally, by mixing the experimental swelling data and the Brasher-Kingsbury equation, the same value of water uptake was obtained by EIS and gravimetry for coatings.

  15. How to put plant root uptake into a soil water flow model [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-01-01

    Full Text Available The need for improved crop water use efficiency calls for flexible modeling platforms to implement new ideas in plant root uptake and its regulation mechanisms. This paper documents the details of modifying a soil infiltration and redistribution model to include (a dynamic root growth, (b non-uniform root distribution and water uptake, (c the effect of water stress on plant water uptake, and (d soil evaporation. The paper also demonstrates strategies of using the modified model to simulate soil water dynamics and plant transpiration considering different sensitivity of plants to soil dryness and different mechanisms of root water uptake. In particular, the flexibility of simulating various degrees of compensated uptake (whereby plants tend to maintain potential transpiration under mild water stress is emphasized. The paper also describes how to estimate unknown root distribution and rooting depth parameters by the use of a simulation-based searching method. The full documentation of the computer code will allow further applications and new development.

  16. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  17. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    Science.gov (United States)

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  18. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  19. Influence of Water-jet Nozzle Geometry on Cutting Ability of Soft Material

    Directory of Open Access Journals (Sweden)

    Irwansyah Irwansyah

    2012-06-01

    Full Text Available Hygiene is main reason for food processor to use waterjet cutting system. Traditionally food cutting process is low-quality, unsafe products, procedures and direct contact between product and labor. This paper introduced a low cost waterjet system for cutting soft material as identic food material. The low cost waterjet system has been developed by using a commercial pressure pump for cleaning purposes and modified nozzle. In order to enhance waterjet pressure for cutting products, a modified waterjet nozzle was designed. Paramater design of waterjet system was setup on nozzle orifice diameter 0.5 mm, standoff distance 15 mm, length of nozzle cylindrical tube 2.5 mm. Polycarbonate, polysterene, and polyethelene materials are used as sample product with thickness 2 mm, to represent similar properties with agriculture products. The experimental results indicate good possibilities of waterjet system to cut material in appropriate profile surface. The waterjet also can be used to improve cutting finished surface of food products. Therefore, utilizing a low cost commercial pump and modified nozzle for waterjet system reduces equipment price, operational cost and environmental hazards. It indicates viable technology applied to substitute traditional cutting technology in post harvest agriculture products. Keywords: cutting ability, modified nozzle, polymer material, water-jet system

  20. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants

    International Nuclear Information System (INIS)

    Navarro, Divina A.; Bisson, Mary A.; Aga, Diana S.

    2012-01-01

    Graphical abstract: This study highlights the importance of quantum dot (QD) structural stability in preventing phytotoxicity. Overall, there is no evidence that Arabidopsis thaliana plants can internalize intact QDs within 1–7 days of exposure, with or without humic acids. Highlights: ► Potential uptake of water-dispersible CdSe/ZnS QDs by Arabidopsis was demonstrated. ► QDs were not internalized by Arabidopsis as intact particles. ► Plants exposed to Cd-, Se-, and QD + HA suspensions experienced oxidative stress. ► An effective LC–MS method proves detection of low levels of glutathione in plants. ► Uptake of Cd and/or Se leached from QDs is of major concern. - Abstract: Interest on the environmental impacts of engineered nanomaterials has rapidly increased over the past years because it is expected that these materials will eventually be released into the environment. The present work investigates the potential root uptake of water-dispersible CdSe/ZnS quantum dots (QDs) by the model plant species, Arabidopsis thaliana. Experiments revealed that Arabidopsis exposed to QDs that are dispersed in Hoagland's solution for 1–7 days did not internalize intact QDs. Analysis of Cd and Se concentrations in roots and leaves by inductively-coupled plasma mass spectrometry indicated that Cd and Se from QD-treated plants were not translocated into the leaves, and remained in the root system of Arabidopsis. Furthermore, fluorescence microscopy showed strong evidence that the QDs were generally on the outside surfaces of the roots, where the amount of QDs adsorbed is dependent on the stability of the QDs in suspension. Despite no evidence of nanoparticle internalization, the ratio of reduced glutathione levels (GSH) relative to the oxidized glutathione (GSSG) in plants decreased when plants were exposed to QD dispersions containing humic acids, suggesting that QDs caused oxidative stress on the plant at this condition.

  1. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Furukawa, J.; Yokota, H.; Tanoi, K.; Ueoka, S.; Nakanishi, T.M.; Uchida, H.; Tsuji, A.

    2001-01-01

    Real time vanadate (V 5+ ) uptake imaging in a cowpea plant by positron emitting tracer imaging system (PETIS) is presented. Vanadium-48 was produced by bombarding a Sc foil target with 50 MeV α-particles at Takasaki Ion Accelerators for Advanced Radiation application (TIARA) AVF cyclotron. Then 48 V was added to the culture solution to investigate the V distribution in a cowpea plant. The real time uptake of the 48 V was monitored by PETIS. Distribution of 48 V in a whole plant was measured after 3, 6 and 20 hours of V treatment by Bio-imaging Analyzer System (BAS). After the 20 hour treatment, vanadate was detected at the up-ground part of the plant. To know the effect of V uptake on plant activity, 18 F-labeled water uptake was analyzed by PETIS. When a cowpea plant was treated with V for 20 hours before 18 F-labeled water uptake experiment, the total amount of 18 F-labeled water absorption ws drastically decreased. Results suggest the inhibition of water uptake was mainly caused by the vanadate already moved to the up-ground part of the plant. (author)

  2. Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.H.; Wang, S.J.; Xiao, M.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies/Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Guangzhou 510275 (China); Shu, D. [School of Chemistry and Environmental, South China Normal University, Guangzhou 510006 (China)

    2010-01-01

    High molecular weight sulfonated poly(fluorenyl ether ketone nitrile)s with different equivalent weight (EW) from 681 to 369 g mequiv.{sup -1} are synthesized by the nucleophilic substitution polycondensation of various amounts of sulfonated difluorobenzophenone (SDFBP) and 2,6-difluorobenzonitrile (DFBN) with bisphenol fluorene (BPF). The synthesized copolymers are characterized by {sup 1}H NMR, FT-IR, TGA, and DSC techniques. The membranes cast from the corresponding copolymers exhibit superior thermal stability, good oxidative stability and high proton conductivity, but low water uptake due to the strong nitrile dipole interchain interactions that combine to limit swelling. Among all the membranes, the membrane with EW of 441 g mequiv.{sup -1} shows optimum properties of both high proton conductivity of 41.9 mS cm{sup -1} and low water uptake of 42.6%. Accordingly, That membrane is fabricated into a membrane electrode assembly (MEA) and evaluated in a single proton exchange membrane fuel cell (PEMFC). The experimental results indicate its similar cell performance as that of Nafion {sup registered} 117 at 70 C, but much better cell performance at higher temperatures. At the potential of 0.6 V, the current density of fuel cell using the prepared membrane and Nafion {sup registered} 117 is 0.46 and 0.25 A cm{sup -2}, respectively. The highest current density of the former reaches as high as 1.25 A cm{sup -2}. (author)

  3. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake

    International Nuclear Information System (INIS)

    Batty, Lesley C.; Younger, Paul L.

    2004-01-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H + ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development

  4. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Chammaa, M.; Mouasess, A.

    2012-09-01

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13 C in water stressed (FC1) and well watered (FC2) chickpea plants using 15 N and 13 C isotopes. Three fertilizer rates of Si (Si 5 0, Si 1 00 and Si 2 00) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si 1 00K + (FC1) and Si 5 0K + (FC2) treatments gave high enough amounts of N 2 -fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N 2 -fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si 5 0K - and Si 1 00K - ) is associated with lower Δ 13 C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ 13 C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si 1 00) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing

  5. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution.

    Science.gov (United States)

    Gulati, Parul; Ghosh, Moushumi

    2017-10-01

    Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm 2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.

  6. Vascular aspects of water uptake mechanisms in the toad skin: perfusion, diffusion, confusion

    DEFF Research Database (Denmark)

    Willumsen, Niels; Viborg, Arne L; Hillyard, Stanley D

    2007-01-01

    Blood cell flow (BCF) in the water absorbing "seat patch" region of toad skin was measured with laser Doppler flow cytometry. BCF of dehydrated toads increased by a factor of 6-8 when water contact was made and declined gradually as toads rehydrated. Water absorption was initially stimulated...... and declined in parallel with BCF. Water absorption measured during the initial rehydration period did not correlate with BCF and hydrated toads injected with AVT increased water absorption without an increase in BCF indicating the lack of an obligate relation between blood flow and water absorption....... Aquaporins 1-3 were characterized by RT-PCR analysis of seat patch skin. AQP 1 was localized in the endothelium of subepidermal capillaries and serves as a pathway for water absorption in series with the apical and basolateral membranes of the epithelium. Dehydrated toads rehydrated more rapidly from dilute...

  7. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    Science.gov (United States)

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated

  8. The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp I

    DEFF Research Database (Denmark)

    Selck, Henriette; Forbes, Valery E.

    2004-01-01

    The impact of dietary and water exposure on the accumulation and distribution of cadmium (Cd) in subcellular components of the polychaete Capitella sp. I was investigated. Worms were exposed to either dissolved Cd alone ('Water-Only' treatments; WO) or diet-bound Cd alone ('Algae-bound Only......, starvation likewise influenced the distribution of protein between mitochondria and cytosol. Cutaneous uptake and accumulation of Cd from the water was related to surface area while dietary uptake was influenced by the amount of sediment passing through the gut. Irrespective of exposure route, Cd...

  9. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko; Uchida, Hiroshi; Tsuji, Atsunori

    2001-01-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with 15 O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce 15 O-labeled water. Then the 15 O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  10. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Uchida, Hiroshi; Tsuji, Atsunori

    2001-05-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with {sup 15}O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce {sup 15}O-labeled water. Then the {sup 15}O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  11. The diagnostic ability of {sup 18}F-FDG PET/CT for mediastinal lymph node staging using {sup 18}F-FDG uptake and volumetric CT histogram analysis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won [Catholic Kwandong University College of Medicine, Department of Nuclear Medicine, International St. Mary' s Hospital, Incheon (Korea, Republic of); Kim, Eun Young [Yonsei University College of Medicine, Division of Pulmonology, Department of Internal Medicine, Seoul (Korea, Republic of); Kim, Dae Joon [Yonsei University College of Medicine, Department of Thoracic and Cardiovascular Surgery, Seoul (Korea, Republic of); Lee, Jae-Hoon [Yonsei University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Yonsei University College of Medicine, Department of Nuclear Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kang, Won Jun; Yun, Mijin [Yonsei University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Lee, Jong Doo [Catholic Kwandong University College of Medicine, Department of Radiology, International St. Mary' s Hospital, Incheon (Korea, Republic of)

    2016-12-15

    To evaluate the clinical implications of lymph node (LN) density on {sup 18}F-FDG PET/CT for mediastinal LN characterization in non-small cell lung cancer (NSCLC). One hundred and fifty-two patients with 271 mediastinal LNs who underwent PET/CT and endobronchial ultrasound-guided transbronchial needle aspiration for staging were enrolled. Maximum standardized uptake value (SUVmax), short axis diameter, LN-to-primary cancer ratio of SUVmax, and median Hounsfield unit (HU) based on CT histogram were correlated to histopathology. Of 271 nodes, 162 (59.8 %) were malignant. SUVmax, short axis diameter, and LPR of malignant LNs were higher than those of benign nodes. Among malignant LNs, 71.0 % had median HU between 25 and 45, while 78.9 % of benign LNs had values <25 HU or >45 HU. Using a cutoff value of 4.0, SUVmax showed the highest diagnostic ability for detecting malignant LNs with a specificity of 94.5 %, but showing a sensitivity of 70.4 %. Using additional density criteria (median HU 25-45) in LNs with 2.0< SUVmax ≤4.0, the sensitivity increased to 88.3 % with the specificity of 82.6 %. LN density is useful for the characterization of LNs with mild {sup 18}F-FDG uptake. The risk of mediastinal LN metastasis in NSCLC patients could be further stratified using both {sup 18}F-FDG uptake and LN density. (orig.)

  12. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe

    NARCIS (Netherlands)

    Jung, M.; Le Maire, Guerric; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; Reichstein, M.

    2007-01-01

    Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC) were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP) across European forests. Simulated GPP and leaf area index (LAI) were compared with GPP estimates based on flux

  13. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  14. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    Science.gov (United States)

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Oxygen uptake in water polo, comparison and agreement in cycle ergometer and eggbeater kick: A pilot study

    Directory of Open Access Journals (Sweden)

    Ligia Ignêz Engelmann

    Full Text Available Abstract The aim of this study was to compare and verify the agreement of maximal oxygen uptake (VO2 max values obtained from tests on land and in water. Twelve recreational water polo players (30.5 ± 7.7 years; 79.2 ± 7.2 kg body mass; 179.1 ± 5.9 cm height were assessed in two phases: (1 in laboratory with maximal test on a cycle ergometer and (2 in a swimming pool with maximal test in eggbeater kick. Maximum values obtained in the two tests (respectively, cycle ergometer, and eggbeater kick: VO2 max = 40.2 ± 2.7 ml.kg-1.min-1 and 38.4 ± 5.7 ml.kg-1.min-1; RER = 1.17 ± 0.08 and 1.19 ± 0.12; HR max = 181.4 ± 11.7 bpm and 179 ± 11.7 bpm; IEP = 20 and 20 did not show significant differences. According to the Bland-Altman analyses, there were acceptable limits of agreement between the two tests (land and water. Therefore, it can be concluded that the eggbeater kick test is a specific and valid protocol to asses VO2 max in water polo players.

  16. Studies on different concentration of lead (Pb and sewage water on Pb uptake and growth of Radish (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Qudratullah Khan

    2014-04-01

    Full Text Available To investigate the accumulation of lead (Pb by radish (Raphanus sativus cultivars a study was carried out at Department of Soil and Environmental Sciences, Gomal University, Dera Ismail Khan (Pakistan, during 2012. Two radish varieties i.e., exotic and local, were used. The treatments included sewage water and different concentrations of Pb @ 25, 100, 200 and 400 mg L-1. The results showed that the total biomass of both the radish varieties were nonsignificantly influenced by the applied Pb concentrations and sewage water, except for root diameter which were significantly greater in the local cultivar (3.261 cm.Pb treatments significantly reduced the growth and yield of both the cultivars. While the Pb uptake by the root and leaf of radish plants was increased by the increasing the applied Pb levels, with the highest value for root (19.008 mg kg-1 and leaf (16.134 mg kg-1 in the treatment receiving the highest applied Pb concentrations. The total biomass, fresh weight of root and root diameter was found significantly higher except for Pb @ 400 mg L-1, in the plants receiving sewage water as compared to the control and different levels of Pb. The interaction amongst the varieties and treatments were found significantly different for various parameters. Thus, it can be concluded, that the use of sewage water and Pb contaminated wastewater results in higher metal concentration in the radish root and may lead to different types of health problems to consumers.

  17. A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO2 uptake in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    D. Helman

    2017-09-01

    Full Text Available Estimations of ecosystem-level evapotranspiration (ET and CO2 uptake in water-limited environments are scarce and scaling up ground-level measurements is not straightforward. A biophysical approach using remote sensing (RS and meteorological data (RS–Met is adjusted to extreme high-energy water-limited Mediterranean ecosystems that suffer from continuous stress conditions to provide daily estimations of ET and CO2 uptake (measured as gross primary production, GPP at a spatial resolution of 250 m. The RS–Met was adjusted using a seasonal water deficit factor (fWD based on daily rainfall, temperature and radiation data. We validated our adjusted RS–Met with eddy covariance flux measurements using a newly developed mobile lab system and the single active FLUXNET station operating in this region (Yatir pine forest station at a total of seven forest and non-forest sites across a climatic transect in Israel (280–770 mm yr−1. RS–Met was also compared to the satellite-borne MODIS-based ET and GPP products (MOD16 and MOD17, respectively at these sites.Results show that the inclusion of the fWD significantly improved the model, with R =  0.64–0.91 for the ET-adjusted model (compared to 0.05–0.80 for the unadjusted model and R =  0.72–0.92 for the adjusted GPP model (compared to R =  0.56–0.90 of the non-adjusted model. The RS–Met (with the fWD successfully tracked observed changes in ET and GPP between dry and wet seasons across the sites. ET and GPP estimates from the adjusted RS–Met also agreed well with eddy covariance estimates on an annual timescale at the FLUXNET station of Yatir (266 ± 61 vs. 257 ± 58 mm yr−1 and 765 ± 112 vs. 748 ± 124 gC m−2 yr−1 for ET and GPP, respectively. Comparison with MODIS products showed consistently lower estimates from the MODIS-based models, particularly at the forest sites. Using the adjusted RS–Met, we show that afforestation

  18. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    OpenAIRE

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality a...

  19. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    Science.gov (United States)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  20. Vegetation and overburden cover on phosphogypsum: Effects on radon emission, runoff water quality, and plant uptake of fluoride and radium

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.G. [Florida Institute of Phosphate Research, Bartow, FL (United States)

    1997-12-31

    Phosphogypsum is a byproduct of phosphate fertilizer production, and more than 700 million metric tons have accumulated on 2,500 ha in Florida. Field research was conducted to compare the benefits of capping phosphogypsum with overburden (up to 15 cm in depth) from mined sites versus treatment of the phosphogypsum with minimal amendments. After four growing seasons, vegetation cover was excellent (no bare ground) on plots amended with dolomitic limestone or capped with overburden. However, more species became established with an overburden cap. Fluoride uptake by bermudagrass (Cynodon dactylon) was high when grown directly on phosphogypsum (895 mg kg{sup -1} in leaf tissue) and was reduced slightly by a 15 cm overburden cap (670 mg kg{sup -1}). Unexpectedly, radium ({sup 226}Ra) uptake in bermudagrass grown directly on phosphogypsum (0.6 pCi g{sup -1}) was less than when grown on the overburden cap (1.8 pCi g{sup -1}). The presence of grass cut the radon ({sup 222}Rn) efflux from phosphogypsum in half (from 24 pCi m{sup -2} s{sup -1} to 11 pCi m{sup -2} s{sup -1}), while 15 cm of overburden, in addition to grass cover, halved it again (down to 5 pCi m{sup -2} s{sup -1}). Vegetation cover on phosphogypsum resulted in a 30-fold decrease in electrical conductivity and a 5-fold decrease in the fluoride concentration of surface runoff water. Runoff water quality from vegetated plots was equally good with or without a 15 cm overburden cap on top of the phosphogypsum.

  1. CO2 uptake of Opuntia ficus-indica (L. Mill. whole trees and single cladodes, in relation to plant water status and cladode age

    Directory of Open Access Journals (Sweden)

    Giorgia Liguori

    2013-02-01

    Full Text Available Most of net photosynthesis determinations in Opuntia ficus-indica come from measurements on individual cladodes. However, they have limitations when used to scale up to whole canopy gas exchange, because a large variability of carbon assimilation may occur within the canopy, due to, among others, differences in cladode age and intercepted radiation or individual cladode response to abiotic stresses. The aim of this work was to evaluate the application of open gas exchange chambers, simultaneously applied around the whole canopy, to measure net CO2 uptake, continuously over a 24 h period, in single Opuntia ficus-indica (L. Mill. potted trees and in relation with their water status. Net CO2 uptake was also measured for single cladodes differentiated by age. O. ficus-indica trees continued their photosynthetic activity 60 days after the irrigation was stopped, when soil water content was lower than 5%. At this stage, current-year and 1-year-old cladodes had become flaccid but still the daily net CO2 uptake of non-irrigated trees kept the same rate than at the beginning of the experiment, while watered trees had doubled their net CO2 uptake. The highest instantaneous rates and total daily net CO2 uptake for both well-watered and non-irrigated trees occurred 60 days after the onset of the dry period, when maximal instantaneous rates were 11.1 in well-watered trees and 8.4 mol m–2 s–1 in non-irrigated trees. During the drought period, the chlorenchyma fresh weight decreased by 45% and 30%, in 1- and 2-yearold drought cladodes respectively, and marginally increased in currentyear ones (+20%. Net CO2 uptake for 1-year-old and 2-year-old cladodes changed only at highest photosynthetic photon flux density and temperatures, and average seasonal net CO2 uptake of 2-year-old cladodes was 15% lower than for 1-year-old ones. Whole-tree gas exchange measurements applied for the first time to O. ficus-indica indicated that whole cactus pear trees maintain

  2. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements

    Directory of Open Access Journals (Sweden)

    R. J. Gustafsson

    2005-01-01

    Full Text Available The hygroscopicity of mineral aerosol samples has been examined by three independent methods: diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and differential mobility analysis. All three methods allow an evaluation of the water coverage of two samples, CaCO3 and Arizona Test dust, as a function of relative humidity. For the first time, a correlation between absolute gravimetric measurements and the other two (indirect methods has been established. Water uptake isotherms were reliably determined for both solids which at 298 K and 80% relative humidity exhibited similar coverages of ~4 monolayers. However, the behaviour at low relative humidity was markedly different in the two cases, with Arizona Test Dust showing a substantially higher affinity for water in the contact layer. This is understandable in terms of the chemical composition of these two materials. The mobility analysis results are in good accord with field observations and with our own spectroscopic and gravimetric measurements. These findings are of value for an understanding of atmospheric chemical processes.

  3. Mapping water exchange rates in rat tumor xenografts using the late-stage uptake following bolus injections of contrast agent.

    Science.gov (United States)

    Bailey, Colleen; Moosvi, Firas; Stanisz, Greg J

    2014-05-01

    To map the intra-to-extracellular water exchange rate constant in rat xenografts using a two-compartment model of relaxation with water exchange and a range of contrast agent concentrations and compare with histology. MDA-MB-231 cells were xenografted into six nude rats. Three bolus injections of gadodiamide were administered. When uptake in the tumor demonstrated a steady-state, T1 data were acquired by spoiled gradient recalled acquisitions at four flip angles. A global fit of data to a two-compartment model incorporating exchange was performed, assuming a distribution volume of 20% of the rat. Voxels that did not reach steady-state and were excluded from parametric maps tended to be in large necrotic areas. TUNEL-negative (nonapoptotic) regions tended to have well-defined error bounds, with an average intra-to-extracellular exchange rate constant of 0.6 s(-1) . Apoptotic regions had higher exchange, but poorly determined upper bounds, with goodness of fit similar to that for a model assuming infinitely fast exchange. A lower bound of >3 s(-1) was used to establish voxels where the exchange rate constant was fast despite a large upper bound. Water exchange rates were higher in apoptotic regions, but examination of statistical errors was an important step in the mapping process. Copyright © 2013 Wiley Periodicals, Inc.

  4. Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport

    DEFF Research Database (Denmark)

    Nielsen, Robert; Larsen, Erik Hviid

    2007-01-01

    (V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased delta......C(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.......Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1...

  5. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  6. Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.

    Science.gov (United States)

    Ranathunge, Kosala; Steudle, Ernst; Lafitte, Renee

    2003-06-01

    in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.

  7. Response of Cotton to Irrigation Methods and Nitrogen Fertilization: Yield Components, Water-Use Efficiency, Nitrogen Uptake, and Recovery

    International Nuclear Information System (INIS)

    Janat, M.

    2009-01-01

    Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)

  8. Pressure Heads and Simulated Water Uptake Patterns for a Severely Stressed Bean Crop

    NARCIS (Netherlands)

    Durigon, A.; Santos, dos M.A.; Lier, van Q.D.; Metselaar, K.

    2012-01-01

    In modeling, actual crop transpiration as a function of soil hydraulic conditions is usually estimated from a water content or pressure head dependent reduction function. We compared the performance of the empirical pressure head based reduction function of Feddes (FRF) and a more physically based

  9. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  10. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory

  11. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  12. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China.

    Science.gov (United States)

    Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong

    2016-09-01

    Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.

  13. Factors Affecting the Ability of Agriculture to Pay Irrigation-Water Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hagood, M. A. [Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome (Italy)

    1967-11-15

    There are no universally acceptable standard criteria for determining how much agriculture can pay for irrigation water. Justification of cost will depend upon the country's need to develop its soil and water resources for food, for international trade, and for its cumulative effect on other industries in comparison with other possible uses and their over-all contributions to the economy. Social and political conditions often have as much or more influence on development cost decisions than do strictly economic analyses. Many studies indicate that US $0.10/1000 US gal is an upper limit of acceptable costs for developing irrigation water at present economic levels. Under private development and on projects where water users must pay total water costs, methods are available for making feasibility budgets based on present prices. Because of inflation, world food shortage, recessions, future population and other unknown factors, it is hazardous to predict how much farmers or agriculture can pay for irrigation water. Better utilization of water available now offers opportunities for ''developing'' sources at costs much less than those for sources such as sea-water conversion. (author)

  14. Cs-134 transfer from water or food to the Ciprinid Tinca tinca Linnaeus: uptake and loss kinetics

    International Nuclear Information System (INIS)

    Corisco, J.A.G.; Carreiro, M.C.V.

    1991-01-01

    Experiments with 134 Cs and the fish Tinca tinca Linnaeus (fam. Cyprinidae), as a part of a more extensive work, concerning a simplified freshwater trophic chain using water from Fratel dam, (at Tejo River), were undertaken. Direct uptake from water, during a period of about 30 days, leads to a kinetics expressed by the power function: CF (t) = 0.58 t 0.781 (t in days), the concentration factor (CF) referred to wet weight. Retention study, showed the existence of two biological half-lives, Tb 1 = 7 days and Tb 2 = 87 days, which might concern respectively, the 134 Cs desorption from the transit organs and the loss of the assimilated isotope from the storage organs. In the accumulation through the food chain, using planktonic crustacean Daphnia magna Straus (Cladocera) as prey, a transfer factor (TF) related to wet weight of both fish and prey, is estimated through the power function: TF (t) = 0.022 t 0.578 (t in days). Finally, the retention study following the food pathway contamination, stresses the existence of one long term component, with half-life Tb = 61 days. The transfer factor kinetics seems to point out to a rather slow process, leading to lower 134 Cs concentration values, than the contamination through the water. The loss of the assimilated 134 Cs, uptaken through both pathways, water or food, is a slow process. The longer biological half-life is very important in Radiological Protection, once it may be attributed to the radionuclide loss from the muscular mass. (author)

  15. Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics

    Directory of Open Access Journals (Sweden)

    U. Dusek

    2011-09-01

    Full Text Available We investigate the CCN activity of freshly emitted biomass burning particles and their hygroscopic growth at a relative humidity (RH of 85%. The particles were produced in the Mainz combustion laboratory by controlled burning of various wood types. The water uptake at sub- and supersaturations is parameterized by the hygroscopicity parameter, κ (c.f. Petters and Kreidenweis, 2007. For the wood burns, κ is low, generally around 0.06. The main emphasis of this study is a comparison of κ derived from measurements at sub- and supersaturated conditions (κG and κCCN, in order to see whether the water uptake at 85% RH can predict the CCN properties of the biomass burning particles. Differences in κGand κCCN can arise through solution non-idealities, the presence of slightly soluble or surface active compounds, or non-spherical particle shape. We find that κG and κCCN agree within experimental uncertainties (of around 30% for particle sizes of 100 and 150 nm; only for 50 nm particles is κCCN larger than κG by a factor of 2. The magnitude of this difference and its dependence on particle size is consistent with the presence of surface active organic compounds. These compounds mainly facilitate the CCN activation of small particles, which form the most concentrated solution droplets at the point of activation. The 50 nm particles, however, are only activated at supersaturations higher than 1% and are therefore of minor importance as CCN in ambient clouds. By comparison with the actual chemical composition of the biomass burning particles, we estimate that the hygroscopicity of the water-soluble organic carbon (WSOC fraction can be represented by a κWSOC value of approximately 0.2. The effective hygroscopicity of a typical wood burning particle can therefore be represented by a linear mixture of an inorganic component with κ ≅ 0.6, a WSOC

  16. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    Science.gov (United States)

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  17. Water uptake and stress development in bentonites and bentonite-sand buffer materials

    International Nuclear Information System (INIS)

    Dixon, D.A.; Wan, A.W-L.; Gray, M.N.; Miller, S.H.

    1996-10-01

    The development of swelling pressure and the transfer of pore water pressures through dense bentonite and bentonite-sand materials are examined in this report. This report focuses on the swelling pressure and total pressure developed in initially unsaturated specimens allowed access to free water on one end. The bentonite in this wetted region rapidly develops its full swelling pressure and this pressure is transferred upwards through the specimen. Hence, the bentonite plug will exert a pressure approximately equivalent to the swelling pressure even though only a small region of the plug is actually saturated. A number of specimens were tested with total pressure sensors mounted normal and parallel to the axis of compaction. Lateral pressures developed long before the wetting front reached sensor locations, suggesting stress transfer through the unsaturated portions of these specimens. On achieving saturation, specimens were found to have similar swelling pressures both normal to and parallel to the axis of compaction. This indicates that there is little or no specimen anisotropy induced by the compaction process. Tests were conducted on specimens allowed only to take on a limited quantity of water and it was found that density anisotropy was induced as the result of the swelling pressures generated by the buffer. The wetted skin of buffer developed a considerable pressure and compressed a region of buffer immediately above the wetted region. The results suggest that the buffer material placed in a disposal vault will rapidly develop and transfer swelling pressures as a result of the saturation of a limited region or 'skin' within the emplacement site. The total pressure ultimately present on the container surface should be the sum of the swelling and hydraulic components. (author). 14 refs., 4 tabs., 8 figs

  18. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  19. THE STUDY OF CADMIUM UPTAKE BY WATER HYACINTH (EICHHORNIA CRASSIPES USING A NATURAL MODELLING APPROACH

    Directory of Open Access Journals (Sweden)

    Tamara E. Romanova

    2012-06-01

    Full Text Available The results of the investigation on the accumulation of cadmium by water hyacinth, depending on the conditions of pollutant exposure and the presence of various additives are discussed. The main specialty of this study is that all the experiments were carried out in natural conditions using the approach based on the application of the capacities called minicosms. It allowed estimating hit consequences of pollutant on ecosystem most really having made experiment in the conditions as much as possible close to the natural. In this article a very important problem of an accuracy and reliability of the results of trace elements determination in plants is also debated. As a result of carried investigations it was shown that the degree of cadmium extraction by hyacinth from contaminated natural water while maintaining the viability of the plants depends on the way of pollutant introducing into the reservoir and the maximum (about 79% value is observed in the case of it’s gradual entry.

  20. Uptake and effects of americium-241 on a brackish-water amphipod

    Energy Technology Data Exchange (ETDEWEB)

    Hoppenheit, M.; Murray, C.N.; Woodhead, D.S.

    1980-01-01

    The present paper reports the results of experimental work undertaken using the brackish-water amphipod Gammarus duebeni duebeni and the transuranium nuclide americium-241. Data on the accumulation of this actinide showed that the larger fraction of the total body burden is associated with the exoskeleton. It was found that the body burden remained constant in the range pH 8.0-6.5 even though the water concentration changed markedly. It would thus appear that the concept of a concentration factor should be re-examined and it is proposed that a factor should be defined in terms of environmental and chemical parameters which represent the bioavailable fraction of the actinide. The effect of americium on survival and moulting was studied at two activity concentrations; the dose rates and absorbed doses under the experimental conditions employed have been estimated. The differences in survival rates between the control and irradiated groups were statistically analyzed and the significant difference at the higher concentration is believed to be due to a synergism between physiological stress and radiotoxicity of americium rather than the chemical toxicity of the element.

  1. Uptake and effects of americium-241 on a brackish-water amphipod

    International Nuclear Information System (INIS)

    Hoppenheit, M.; Murray, C.N.; Woodhead, D.S.

    1980-01-01

    The present paper reports the results of experimental work undertaken using the brackish-water amphipod Gammarus duebeni duebeni and the transuranium nuclide americium-241. Data on the accumulation of this actinide showed that the larger fraction of the total body burden is associated with the exoskeleton. It was found that the body burden remained constant in the range pH 8.0-6.5 even though the water concentration changed markedly. It would thus appear that the concept of a concentration factor should be re-examined and it is proposed that a factor should be defined in terms of environmental and chemical parameters which represent the bioavailable fraction of the actinide. The effect of americium on survival and moulting was studied at two activity concentrations; the dose rates and absorbed doses under the experimental conditions employed have been estimated. The differences in survival rates between the control and irradiated groups were statistically analyzed and the significant difference at the higher concentration is believed to be due to a synergism between physiological stress and radiotoxicity of americium rather than the chemical toxicity of the element. (orig.) [de

  2. Invasive alien plants and water resources in South Africa: current understanding, predictive ability and research challenges

    CSIR Research Space (South Africa)

    Gorgens, AHM

    2004-01-01

    Full Text Available were made by combining the results of hydrological experiments, conducted to assess the effects of afforestation with alien trees on water resources, with an ecological understanding of the spread and establishment of invasive trees. The forecasts were...

  3. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  4. Knowledges and abilities catalog for nuclear power plant operators: pressurized water reactors

    International Nuclear Information System (INIS)

    1985-07-01

    This document catalogs roughly 5300 knowledges and abilities of reactor operators and senior reactor operators. It results from a reanalysis of much larger job-task analysis data base compiled by the Institute of Nuclear Power Operations (INPO). Knowledges and abilities are cataloged for 45 major power plant systems and 38 emergency evolutions, grouped according to 11 fundamental safety functions (e.g., reactivity control and reactor coolant system inventory control). With appropriate sampling from this catalog, operator licensing examinations having content validity can be developed. A structured sampling procedure for this catalog is under development by the Nuclear Regulatory Commission (NRC) and will be published as a companion document, ''Examiners' Handbook for Developing Operator Licensing Examinations'' (NUREG-1121). The examinations developed by using the catalog and handbook will cover those topics listed under Title 10, Code of Federal Regulations, Part 55

  5. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    Science.gov (United States)

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  6. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  7. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  8. Water binding of proteins in the processing frankfurter-type sausages. Part. 1. Water-binding ability of freeze-dried meat fractions containing myofibrillar and stromal proteins.

    Science.gov (United States)

    Heinevetter, L; Gassmann, B; Kroll, J

    1987-01-01

    As soon as possible and 48 h after slaughter respectively, from both blade-bone muscle groups of cattle and pig carcasses the "thick pieces" were excised, extracted, and fractionated. Residues and precipitates from water and salt extracts resulted were freeze-dried, and an improved Baumann capillary suction apparatus was used to measure their water binding capacity (WBC) with and without addition of 2% sodium chloride and/or heating to 80 degrees C. With one exception the WBC results followed a relative pattern demonstrating the final residues (stromal proteins and leavings of myofibrillar proteins) binding the highest amount of added water, precipitates of dialysis (mainly containing myofibrillar proteins) a remarkable amount and powdered meats the least. As scanning electron micrographs confirmed, there were no fibrous structures in the precipitates resulted from dialysis of salt solutions (1.0 mol/1). Heating decreased the spontaneous water uptake of all fractions. Addition of sodium chloride had only a noticeable capillary-suction and swelling effect on unheated samples. Hence swelling of undissolved protein structures (extraction of myosin and possibly of actomyosin) is therefore not the only way for water binding in frankfurter-type sausages.

  9. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics.

    Science.gov (United States)

    Li, Xin; Zhu, Xiumei; Qiu, Liyan

    2016-04-15

    Polymersomes represent a promising pharmaceutical vehicle for the delivery of hydrophilic therapeutic agents. However, modification of polymersomes with molecules that confer targeting functions remains challenging because of the strict requirements regarding the weight fractions of the hydrophilic and hydrophobic block polymers. In this study, based on the compatibility between cholesterol and polymeric carriers, polymersomes self-assembled by amphiphilic graft polyphosphazenes were endowed with a targeting function by incorporating the cholesterol-linked aptamer through a simple dialysis method. The aqueous interior of the polymersomes was employed to encapsulate water-soluble doxorubicin hydrochloride. In vivo experiments in tumor-bearing mice showed that the aptamer-anchored vesicle targeted accumulation at the tumor site, favorable penetration through tumor tissue, and incremental endocytosis into tumor cells. Correspondingly, the aptamer-anchored vesicle decreased systemic toxicity and effectively suppressed the growth of subcutaneous MCF-7 xenografts. These findings suggested that vesicles modified with targeted groups via hydrophobic supermolecular interactions could provide a platform for selective delivery of hydrophilic drug. Polymersomes have represented a promising type of pharmaceutical vehicles due to their predominant physical properties. However, it is still a challenge to endow polymersomes with active target function because of strict requirements of the weight fractions of hydrophilic polymer block to hydrophobic one. In this research, by taking advantage of the supermolecular interactions between amphiphilic graft polyphosphazene and cholesterol which was linked to aptamer AS1411, we prepared a targeted functional polymersome (PEP-DOX·HCl-Ap) through a simple method with high loading of water soluble anti-cancer drug doxorubicin hydrochloride. The in vivo experiments in MCF-7 tumor-bearing mice demonstrated several advantages of PEP

  10. Water uptake by and movement through a Backfilled KBS-3V deposition tunnel: results of large-scale simulations

    International Nuclear Information System (INIS)

    Dixon, D.A.; Ramqvist, G.; Jonsson, E.; Gunnarsson, D.; Hansen, J.

    2010-01-01

    resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. In terms of water movement through a pellet-block system, it was consistently observed that water will not initially be distributed uniformly and there is potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or can develop highly erosive flow paths through the clay block assembly. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. The 1/2-scale simulations had water inflow rates of 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were monitored. Water influx of up to 0.5 l/min (30 l/h) at a single location was diverted by the pellets, creating essentially horizontal flow channels (pipes) along the chamber wall - pellet interface thereby directing the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and the distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features persisted. The exiting water typically carried only limited eroded material but could cause localized disturbance to the face of the backfill. Longer duration tests or those with very long flow paths show a tendency for the flow to shift towards the crown of the test chamber. Backfill exposed to point-source inflows higher than approximately 0

  11. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time

    Directory of Open Access Journals (Sweden)

    Victor Selin

    2018-01-01

    Full Text Available Despite intense recent interest in weakly bound nonlinear (“exponential” multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL films composed of poly(methacrylic acid (PMAA and quaternized poly-2-(dimethylaminoethyl methacrylate (QPC on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR, and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR. The results suggest that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.

  12. Skin hydration: interplay between molecular dynamics, structure and water uptake in the stratum corneum.

    Science.gov (United States)

    Mojumdar, Enamul Haque; Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma

    2017-11-16

    Hydration is a key aspect of the skin that influences its physical and mechanical properties. Here, we investigate the interplay between molecular and macroscopic properties of the outer skin layer - the stratum corneum (SC) and how this varies with hydration. It is shown that hydration leads to changes in the molecular arrangement of the peptides in the keratin filaments as well as dynamics of C-H bond reorientation of amino acids in the protruding terminals of keratin protein within the SC. The changes in molecular structure and dynamics occur at a threshold hydration corresponding to ca. 85% relative humidity (RH). The abrupt changes in SC molecular properties coincide with changes in SC macroscopic swelling properties as well as mechanical properties in the SC. The flexible terminals at the solid keratin filaments can be compared to flexible polymer brushes in colloidal systems, creating long-range repulsion and extensive swelling in water. We further show that the addition of urea to the SC at reduced RH leads to similar molecular and macroscopic responses as the increase in RH for SC without urea. The findings provide new molecular insights to deepen the understanding of how intermediate filament organization responds to changes in the surrounding environment.

  13. Oil-Repellent Antifogging Films with Water-Enabled Functional and Structural Healing Ability.

    Science.gov (United States)

    Xu, Fuchang; Li, Xiang; Li, Yang; Sun, Junqi

    2017-08-23

    Healable oil-repellent antifogging films are fabricated by layer-by-layer assembly of hyaluronic acid (HA) and branched poly(ethylenimine) (bPEI), followed by immersion in the aqueous solutions of perfluorooctanesulfonic acid potassium salt (PFOS). The loading of PFOS endows the HA/bPEI films with oil repellency while maintaining its original hydrophilicity. The resulting films have an excellent antifogging ability, and various organic liquids can easily slide down the slightly tilted films (touch screens, antigraffiti coatings for signs and shop windows, and antifogging coatings for lenses, mirrors, and windshields.

  14. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  15. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment

    Directory of Open Access Journals (Sweden)

    Mohamed I. Azzam

    2017-10-01

    Full Text Available This study aims to determine the impact of five main drains as sources of antibiotics resistant bacteria in River Nile at Rosetta branch, and to generate a baseline data on their virulence ability. Out of 212 bacterial isolates, 39.2% and 60.8% were recovered from drains and Rosetta branch, respectively. Susceptibility of bacteria to different antibiotics showed multiple antibiotics resistances (MAR for the majority of isolates. Meanwhile, sensitivity was mostly directed to ofloxacin and norfloxacin antibiotics. Calculated MAR index values (>0.25 classified area of study as potentially health risk environment. Testing virulence ability of bacteria from drains showed positive results (65%. Contrastively, virulent strains in Rosetta branch were mostly lacking in this study. Concluding remarks justify the strong correlation (r = +0.82 between MAR and virulence of bacteria in polluted aquatic ecosystems, and highlight the potential of drains as reactors for their amplification and dissemination. The study suggests regular monitoring for antibiotics resistance in native bacteria of River Nile, prohibition of unregulated use of antibiotics, and proper management for wastes disposal.

  16. Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis).

    Science.gov (United States)

    Baldermann, Susanne; Yang, Ziyin; Sakai, Miwa; Fleischmann, Peter; Morita, Akio; Todoroki, Yasushi; Watanabe, Naoharu

    2013-05-01

    Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons β-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development. © 2012 Society of Chemical Industry.

  17. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, P. [Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  18. Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material

    International Nuclear Information System (INIS)

    Dewanckele, J.; De Kock, T.; Fronteau, G.; Derluyn, H.; Vontobel, P.; Dierick, M.; Van Hoorebeke, L.; Jacobs, P.; Cnudde, V.

    2014-01-01

    Euville and Savonnières limestones were weathered by acid test and this resulted in the formation of a gypsum crust. In order to characterize the crystallization pattern and the evolution of the pore structure below the crust, a combination of high resolution X-ray computed tomography and SEM–EDS was used. A time lapse sequence of the changing pore structure in both stones was obtained and afterwards quantified by using image analysis. The difference in weathering of both stones by the same process could be explained by the underlying microstructure and texture. Because water and moisture play a crucial role in the weathering processes, water uptake in weathered and non-weathered samples was characterized based on neutron radiography. In this way the water uptake was both visualized and quantified in function of the height of the sample and in function of time. In general, the formation of a gypsum crust on limestone slows down the initial water uptake in the materials. - Highlights: • Time lapse sequence in 3D of changing pore structures inside limestone • A combination of X-ray CT, SEM and neutron radiography was used. • Quantification of water content in function of time, height and weathering • Characterization of weathering processes due to gypsum crystallization

  19. A water-responsive shape memory ionomer with permanent shape reconfiguration ability

    Science.gov (United States)

    Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin

    2018-04-01

    In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.

  20. Neuromuscular and technical abilities related to age in water-polo players.

    Science.gov (United States)

    De Siati, Fabio; Laffaye, Guillaume; Gatta, Giorgio; Dello Iacono, Antonio; Ardigò, Luca Paolo; Padulo, Johnny

    2016-08-01

    Testing is one of the important tasks in any multi-step sport programme. In most ball games, coaches assess motor, physical and technical skills on a regular basis in early stages of talent identification in order to further athletes' development. The purpose of the study was to investigate anthropometric variables and vertical jump heights as a free throw effectiveness predictor in water-polo players of different age groups. Two hundred and thirty-six young (10-18 years) male water-polo players partitioned into three age groups underwent anthropometric variables' measures and squat- and countermovement-jump tests, and performed water-polo free throws. Anthropometric variables, vertical jump heights and throw speed - as a proxy for free throw effectiveness - resulted different over age groups. Particularly, throw speed changed from 9.28 to 13.70 m · s(-1) (+48%) from younger to older players. A multiple-regression model indicated that body height, squat-jump height and throw time together explain 52% of variance of throw speed. In conclusion, tall height, high lower limb power and throwing quickness appeared to be relevant determinants for effective free throws. Such indications can help coaches during talent identification and development processes, even by means of novel training strategies. Further research is needed over different maturity statuses.

  1. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    Science.gov (United States)

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    International Nuclear Information System (INIS)

    Dixon, D.; Jonsson, E.; Hansen, J.; Hedin, M.; Ramqvist, G.

    2011-04-01

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  3. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  4. Effects of low level prenatal beta-irradiation of tritiated water on postnatal behavior, learning and memory ability in mice

    International Nuclear Information System (INIS)

    Wang Bing; Zhou Xiangyan

    1993-01-01

    Pregnant adult C57 BL/6J strain mice, randomly assigned to 1 of 4 experimental groups, were irradiated with exponentially decreasing doses of tritium beta-rays but group 1 (used as a control) by single injection of tritiated water (HTO) at their 12.5 th day of gestation. Offsprings of male, received accumulative doses of 0, 0.5, 1.10 or 0.30 Gy in uterus were trained or examined on learning and memory ability or with behavioral tests. Significant dose-response relationships for alternations in those test were found due to exposure to 0.10 Gy or above. These results indicate that exposure to HTO during the fetal period in mice results in dose-dependent alteration in postnatal behavior, learning and memory ability. 0.05-0.10 Gy exposure may represent a threshold for the experimental conditions of this research using these parameters

  5. Manganese in Drinking Water and Cognitive Abilities and Behavior at 10 Years of Age: A Prospective Cohort Study.

    Science.gov (United States)

    Rahman, Syed Moshfiqur; Kippler, Maria; Tofail, Fahmida; Bölte, Sven; Hamadani, Jena Derakhshani; Vahter, Marie

    2017-05-26

    Cross-sectional studies have indicated impaired neurodevelopment with elevated drinking water manganese concentrations (W-Mn), but potential susceptible exposure windows are unknown. We prospectively evaluated the effects of W-Mn, from fetal life to school age, on children's cognitive abilities and behavior. We assessed cognitive abilities and behavior in 1,265 ten-year-old children in rural Bangladesh using the Wechsler Intelligence Scale for Children (WISC-IV) and the Strengths and Difficulties Questionnaire (SDQ), respectively. Manganese in drinking water used during pregnancy and by the children at 5 y and 10 y was measured using inductively coupled plasma mass spectrometry. The median W-Mn was 0.20 mg/L (range 0.001–6.6) during pregnancy and 0.34mg/L (cognitive abilities. Stratifying by gender (p for interaction in general cognitive ability measures in girls but not in boys. W-Mn at all time points was associated with an increased risk of conduct problems, particularly in boys (range 24–43% per mg/L). At the same time, the prenatal W-Mn was associated with a decreased risk of emotional problems [odds ratio (OR)=0.39 (95% CI: 0.19, 0.82)] in boys. In girls, W-Mn was mainly associated with low prosocial scores [prenatal W-Mn: OR=1.48 (95% CI: 1.06, 1.88)]. Elevated prenatal W-Mn exposure was positively associated with cognitive function in girls, whereas boys appeared to be unaffected. Early life W-Mn exposure appeared to adversely affect children's behavior. https://doi.org/10.1289/EHP631.

  6. Determination of the Ability to Measure Traces of Water in Dehydrated Residues of Waste Water by IR Diffuse Reflectance Spectra

    Science.gov (United States)

    Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.

    2018-01-01

    Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.

  7. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd; Berendse, Frank; Robroek, Bjorn

    2014-05-01

    Northern peatlands represent one of the largest global carbon stores that can potentially be released by water table drawdown during extreme summer droughts. Small precipitation events may moderate negative impacts of deep water levels on carbon uptake by sustaining photosynthesis of peatmoss (Sphagnum spp.), the key species in these ecosystems. We experimentally assessed the importance of the temporal distribution of precipitation for Sphagnum water supply and carbon uptake during a stepwise decrease in water levels in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species representative of three contrasting habitats in northern peatlands (Sphagnum fuscum, S. balticum and S. majus). For shallow water levels, capillary rise was the most important source of water for peatmoss photosynthesis and precipitation did not promote carbon uptake irrespective of peatmoss species. For deep water levels, however, precipitation dominated over capillary rise and moderated adverse effects of drought on carbon uptake by peat mosses. The ability to use the transient water supply by precipitation was species-specific: carbon uptake of S. fuscum increased linearly with precipitation frequency for deep water levels, whereas S. balticum and S. majus showed depressed carbon uptake at intermediate precipitation frequencies. Our results highlight the importance of precipitation for carbon uptake by peatmosses. The potential of precipitation to moderate drought impact, however, is species specific and depends on the temporal distribution of precipitation and water level. These results also suggest that modelling approaches in which water level depth is used as the only state variable determining water availability in the living moss layer and (in)directly linked to Sphagnum carbon uptake may have serious drawbacks. The predictive power of peatland ecosystem models may be reduced when deep water levels prevail, as precipitation

  8. Calibration of neutron moisture gauges and their ability to spatially determine soil water content in environmental studies

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Martinez, J.L.; Langhorst, G.J.

    1994-10-01

    Several neutron moisture gauges were calibrated, and their ability to spatially determine soil water content was evaluated. In 1982, the midpoint of sensitivity of each neutron probe to the detection of hydrogen was determined, as well as the radius of investigation of each probe in crushed Bandelier Tuff with varying water contents. After determining the response of one of the moisture gauges to changes in soil water at the soil-air interface, a neutron transport model was successfully calibrated to predict spatial variations in soil water content. The model was then used to predict various shapes and volumes of crushed Bandelier Tuff interrogated by the neutron moisture gauge. From 1991 through 1994, six neutron moisture gauges were calibrated for soil water determinations in a local topsoil and crushed Bandelier Tuff, as well as for a sample of fine sand and soils from a field experiment at Hill Air Force Base. Statistical analysis of the calibration results is presented and summarized, and a final summary of practical implications for future neutron moisture gauge studies at Los Alamos is included

  9. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  10. Impacts of Different Water Pollution Sources on Antioxidant Defense Ability in Three Aquatic Macrophytes in Assiut Province, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed A.A. Gadallah

    2014-08-01

    Full Text Available The present study was undertaken to evaluate the impacts of surface water pollution with wastes coming from sewage effluents (Site 2, agricultural runoff (Site 4 and oils and detergents factory (Site 3 on the stability of leaf membrane (measured as injury %, hydrogen peroxide (H2O2, ascorbic acid (Asc A, lipid peroxidation, chlorophyll (Chl content, soluble sugars (SS, soluble proteins (SP and total free amino acids (TAA of Cyperus alopeucroides, Persicaria salicifolia and Echinochloa stagnina. Concentration of H2O2, MDA and TAA were higher in the three plants collected from polluted sites as compared with those of plants grown in control Nile site (Site1. The opposite was true for Asc A, SS and SP where their concentrations reduced significantly in response to water pollution. Leaf membrane was more damaged (high injury % in plants exposed to wastes from different sources than in plants growing at control site. The results of this study indicated that water pollution reduced the oxidative defense abilities in the three plants through reduction of Asc A activities, enhancement of H2O2 production and increasing MDA accumulation. In addition it impaired the metabolic activity through lowering the SS and SP contents and enhancement of TAA accumulation and increase membrane injury. The over production of hydrogen peroxide by the studied aquatic plants under water pollution could be used as an oxygen source needed to oxidize the more resistant organic and inorganic pollutants and used for pollution control and municipal and industrial wastewater treatment.

  11. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Science.gov (United States)

    Baldy, Virginie; Thiebaut, Gabrielle; Fernandez, Catherine; Sagova-Mareckova, Marketa; Korboulewsky, Nathalie; Monnier, Yogan; Perez, Thierry; Tremolieres, Michele

    2015-01-01

    Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1) P-PO4(3-) and hypertrophic state, 300 μg x l(-1) P-PO4(3-)) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  12. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Directory of Open Access Journals (Sweden)

    Virginie Baldy

    Full Text Available Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch. St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine or soft (Vosges water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1 P-PO4(3- and hypertrophic state, 300 μg x l(-1 P-PO4(3- on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer. Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic. The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  13. Repeated Sprint Ability in Elite Water Polo Players and Swimmers and its Relationship to Aerobic and Anaerobic Performance

    Directory of Open Access Journals (Sweden)

    Yoav Meckel

    2013-12-01

    Full Text Available The purpose of this study was to determine indices of swimming repeated sprint ability (RSA in 19 elite water polo players compared to 16 elite swimmers during a repeated sprint swimming test (RST, and to examine the relationships between these indices and aerobic and anaerobic performance capabilities in both groups. Indices of RSA were determined by the ideal sprint time (IS, the total sprint time (TS, and the performance decrement (PD recorded during an 8 x 15-m swimming RST. Single long - (800-m and short-(25-m distance swim tests were used to determined indices of aerobic and anaerobic swimming capabilities, respectively. The water polo players exhibited lower RSA swimming indices, as well as lower scores in the single short and long swim distances, compared to the swimmers. Significant relationships were found between the 25- m swim results and the IS and the TS, but not the PD of both the swimmers and the water polo players. No significant relationships were found between the 800-m swim results and any of the RSA indices in either the swimmers or the water polo players. No significant relationships were found between the 25-m and the 800-m swim results in either the swimmers or the water polo players. The results indicate that swimmers posses better RSA as well as higher anaerobic and aerobic capabilities, as reflected by the single short- and long-distance swim tests, compared to water polo players. The results also indicate that, as for running and cycling, repeated sprint swim performance is strongly related to single sprint performance.

  14. Influence of water management and fertilizer application on "1"3"7Cs and "1"3"3Cs uptake in paddy rice fields

    International Nuclear Information System (INIS)

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-01-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on "1"3"7Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ("1"3"3Cs) in the plants was also determined as an analogue for predicting "1"3"7Cs behavior after long-term aging of soil "1"3"7Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher "1"3"7Cs and "1"3"3Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on "1"3"7Cs and "1"3"3Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between "1"3"7Cs and "1"3"3Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period

  15. Beneficial Use of Produced Water from Oil and Gas Operations for Agriculture: Effects on Crop Health and Crop Uptake of Contaminants

    Science.gov (United States)

    Sedlacko, E.; Blaine, A. C.; Haynes, K. M.; Higgins, C. P.

    2016-12-01

    The balance between water conservation and energy generation is difficult to maintain. Oil and gas (O&G) companies look to dispose of produced water in safe, economical ways, while farmers desperate for water seek plentiful sources to maintain their fields. The solution seems simple—purify the water from O&G operations and deliver it to the farmers for irrigation to ensure a reliable source of food. Unfortunately, little research has been conducted to date that could provide purification guidelines, risk warnings, or standard methods for how to implement this solution. In addition, multiple barriers to implementation including regulatory, economic, liability, and social license considerations, must be addressed. This presentation contains data regarding the uptake of compounds two crops, Triticum aestivum (spring wheat) and Helianthus annus (sunflower), grown in a controlled greenhouse environment and irrigated with different dilutions of raw and treated produced water from O&G operations. Differences in plant height, plant color, leaf area, and plant mass were examined, and additional laboratory analyses were conducted on the plants to detect uptake of inorganic and organic substances. Plant stress was also assessed both qualitatively and through plant hormone analysis. In addition, this project provided the opportunity for K-12 teachers to become involved in university research through a new National Science Foundation Research Experience for Teachers (RET) program at Colorado School of Mines. The subsequent impacts of this food-energy-water nexus research on local communities and local STEM curricula via the RET program will also be highlighted.

  16. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    by calculating statistical indices such as maximum error (ME, normalized root mean square error (nRMSE, modeling efficiency (EF, and coefficient of residual mass (CRM. At the end of the experiment, dry matter yield at the different treatments was measured and relative yield was calculated by dividing dry matter yield of treatments on dry matter yield at no stress treatment (control treatment. Leaching requirement in experimental treatments was calculated by Ayarset al., (2012 equation. Results and Discussion: The results indicated that Basil threshold value based on soil salinity was 2.25 dSm-1 with the yield reduction of 7.2% per dSm-1. The mathematical model of van Genuchten and Hoffman (1984 had a higher precision than other models in simulating Basil yield reduction function based on saturated soil extract salinity. The overall observations revealed that van Genuchten and Hoffman (1984, Steppuhnet al., (2005 and Homaeeet al., (2002 models were accurate for simulating Basil root water uptake and yield response to saturated soil extract salinity. Considering the presented results, it seems that among math-empirical models for salinity stress conditions, model of van Genuchten and Hoffman (1984 is more accurate than Maas and Hoffman (1977, Dirksen and Augustijn (1988 and Homaeeet al., (2002a models. The works of Green et al., (2006 and Skaggs et al., (2006 came to the same conclusion. Our work indicated that mostly statistical models have lower precision than math-empirical models. Steppuhn et al., (2005a reported that statistical models had the higher accuracy than math-empirical model of Maas and Hoffman (1977 and among statistical models, the modified Weibull model had the best fit on measured data which is in good agreement with the results of this study. Conclusion: The goals of this research were to evaluate Basil response to saturated soil extract salinity, to estimate threshold value of Basil crop coefficients, to obtain yield reduction gradient, and also to

  17. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients.

    Science.gov (United States)

    Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-11-01

    Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.

  18. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere.

    Directory of Open Access Journals (Sweden)

    Pablo Bogino

    Full Text Available Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria is protection against water deprivation (desiccation or osmotic effect. The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.

  19. Studies in uptake and turnover of tritiated water vapour (HTO) by vegetables. Untersuchungen zur Aufnahme und zum Umsatz von tritiiertem Wasserdampf (HTO) in Gemuesepflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Roller, M.

    1989-02-01

    The aerial parts of vegetables were exposed to tritiated water vapour for up to three days in a plant growth chamber. The species used were Raphanus sativus L., Phaseolus vulgaris K. and Daucus carota L. (red radish, bean and carrot). The increase of specific activity of tissue free water as collected by freeze drying which was observed in the aerial parts of plants is explained by direct uptake of tritiated water vapour by the exposed part of the plant. It shows different characteristics for the several organs. No translocation of water from the laminae into other parts of the plant was observed. After combustion of dry matter tritium activity was detectable in the oxidation water for all parts of the plants. Kinetics of the specific activity of organically bound tritium in leaves can be described by a single curve. The lower - steep - part of the curve is increasing approximately with the uptake rate of HTO; this is explained by reversible binding of tritium by isotopic exchange reactions. The upper - flat - part of the curve represents tritium bound by light dependent reducing reactions of photosynthesis; it is increasing with a rate similar to the growth rate of leaves. (orig./KG).

  20. Benthic O-2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique

    DEFF Research Database (Denmark)

    Rovelli, Lorenzo; Attard, Karl M.; Bryant, Lee D.

    2015-01-01

    , was a channel-like sound in Northern Norway at a depth of 220 m. Both sites were characterized by the presence of live mounds of the reef framework-forming scleractinian Lophelia pertusa and reef-associated fauna such as sponges, crustaceans and other corals. The measured O-2 uptake at the 2 sites varied...... times higher than the global mean for soft sediment communities at comparable depths. The measurements document the importance of CWC communities for local and regional carbon cycling and demonstrate that the EC technique is a valuable tool for assessing rates of benthic O2 uptake in such complex...

  1. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserotto, B. [Departamento de Fisiologia, Universidade Federal de Santa Maria, 97105.900 Santa Maria, RS (Brazil); Chowdhury, M.J. [Department of Biology, McMaster University, Hamilton, Ont., L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, Hamilton, Ont., L8S 4K1 (Canada)]. E-mail: woodcm@mcmaster.ca

    2005-03-25

    The objective of this study was to examine the effects of chronically elevated dietary Ca{sup 2+} (as CaCO{sub 3}), alone and in combination with elevated dietary Cd, on survival, growth, and Cd and Ca{sup 2+} accumulation in several internal compartments in juvenile rainbow trout (Oncorhynchus mykiss). In addition, effects on short-term branchial uptake and internal distribution of newly accumulated waterborne Ca{sup 2+} and Cd during acute waterborne Cd exposure (50 {mu}g/L as CdNO{sub 3} for 3 h) were monitored using radiotracers ({sup 45}Ca, {sup 65}Cd). Fish were fed with four diets: 20 mg Ca{sup 2+}/g food (control), 50 mg Ca{sup 2+}/g food, 300 {mu}g Cd/g food, and 50 mg Ca{sup 2+}/g + 300 {mu}g Cd/g food for 30 days. There were no significant effects on growth, mortality, or total body Ca{sup 2+} accumulation. The presence of elevated Ca{sup 2+}, Cd, or Ca{sup 2+} + Cd in the diet all reduced waterborne Ca{sup 2+} uptake in a short-term experiment (3 h), though the inhibitory mechanisms appeared to differ. The effects were marked after 15 days of feeding, but attenuated by 30 days, except when the diet was elevated in both Ca{sup 2+} and Cd. The presence of elevated Ca{sup 2+} in the diet had only modest influence on Cd uptake from the water during acute Cd challenges but greatly depressed Cd uptake from the diet and accumulation in most internal tissues. None of the treatment diets prevented the decreases in waterborne Ca{sup 2+} uptake and new Ca{sup 2+} accumulation in internal tissues caused by acute exposure to waterborne Cd. In conclusion, there are complex interactions between waterborne and dietary effects of Ca{sup 2+} and Cd. Elevated dietary Ca{sup 2+} protects against both dietary and waterborne Cd uptake, whereas both waterborne and dietary Cd elevations cause reduced waterborne Ca{sup 2+} uptake.

  2. Research on the water resources regulation ability model of dams in the Huai He River Basin considering ecological and management factors

    Science.gov (United States)

    Shui, Y.; Liu, H. C.; Li, L. H.; Yu, G. G.; Liu, J.

    2016-08-01

    Research that assesses the scheduling ability of dams gamers a great deal of attention due to the global water resource crisis. These studies can provide useful and practical suggestions for scheduling the water resources of dams to solve problems, such as addressing ecological water needs and so on. Recent studies have primarily evaluated the schedule ability of dams according to their quantifiable attributes, such as water quantity, flow velocity, etc. However, the ecological and management status can directly determine the possibility and efficiency of a dam's water resource scheduling. This paper presents an evaluation model to assess the scheduling capacity of dams that takes into consideration ecological and management factors. In the experiment stage, this paper takes the Sha Ying river of the Huai He River Basin as an example to evaluate the scheduling ability of its dams. The results indicate that the proposed evaluation model can provide more precise and practical suggestions.

  3. Uptake of N-nitrosodimethylamine (NDMA) from water by phreatophytes in the absence and presence of perchlorate as a co-contaminant.

    Science.gov (United States)

    Yifru, Dawit D; Nzengung, Valentine A

    2006-12-01

    The uptake and fate of the emerging contaminants N-nitrosodimethylamine (NDMA) and perchlorate in phreatophytes was studied in a hydroponics system under greenhouse conditions. NDMA is a potent carcinogen, and perchlorate disrupts the functioning ofthe human thyroid gland. The rate of removal of NDMA from solution by rooted cuttings of black willow (Salix nigra) and hybrid poplar (Populus deltoides x nigra, DN34) trees varied seasonally, with faster removal in summer months when transpiration rates were highest. A linear correlation between the volume of water transpired and mass of NDMA removed from the root zone was observed, especially at higher NDMA concentrations. In bioreactors dosed with both NDMA (0.7-1.0 mg L(-1)) and perchlorate (27 mg L(-1)), no competitive uptake of NDMA and perchlorate was observed. While NDMA was primarily removed from solution by plant uptake, perchlorate was predominantly removed by rhizodegradation. In the presence of NDMA, a slower rate of rhizodegradation of perchlorate was observed, but still significantly faster than the rate of NDMA uptake. For experiments conducted with radiolabeled NDMA, 46.4 +/- 1.1% of the total 14C-activity was recovered in the plant tissues and 47.5% was phytovolatilized. The 46.4 +/- 1.1% recovered in the plants was distributed as follows: 18.8 +/- 1.4% in leaves, 15.9 +/- 5.9% in stems, 7.6 +/- 3.2% in branches, and 3.5 +/- 3.3% in roots. The poor extractability of NDMA with methanol-water (1:1 v/v) from stem and leaf tissues suggested that some fraction of NDMA was assimilated. The calculated transpiration stream concentration factor (TSCF) of 0.28 +/- 0.06 suggests that NDMA is passively taken up by phreatophytes, and mainly phytovolatilized.

  4. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C.

    2005-01-01

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 μM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as log K Hg-gill = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as log K Hg-NOM = 18.0 with about 0.5 μmol binding sites per mg C, representing strong binding of Hg to NOM

  5. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, Joel [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Dunbar, Michael [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Brown, Stephanie [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Nichols, Joel [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Winter, Anna [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Hughes, Christopher [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada); Playle, Richard C. [Department of Biology, Wilfrid Laurier University, Waterloo, Ont., N2L 3C5 (Canada)]. E-mail: rplayle@wlu.ca

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 {mu}M total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as log K {sub Hg-gill} = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as log K {sub Hg-NOM} = 18.0 with about 0.5 {mu}mol binding sites per mg C, representing strong binding of Hg to NOM.

  6. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 microM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as logK(Hg-gill) = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as logK(Hg-NOM) = 18.0 with about 0.5 micromol binding sites per mg C, representing strong binding of Hg to NOM.

  7. The Potential of the Nutrient Uptake and Outcome network (NUOnet) to Contribute to Soil and Water Conservation

    Science.gov (United States)

    With the national and global environmental challenges that we have related to nutrient management, there is a need to use large quantities of information to solve the complex agricultural challenges humanity faces. USDA-ARS is developing a national network called the Nutrient Uptake and Outcome netw...

  8. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water.

    Science.gov (United States)

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Fang, Min; Czajkowski, Kevin P

    2010-08-15

    Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine.

  9. Assessing the Ability of Vegetation Indices to Identify Shallow Subsurface Water Flow Pathways from Hyperspectral Imagery Using Machine Learning: Application

    Science.gov (United States)

    Doctor, K.; Byers, J. M.

    2017-12-01

    Shallow underground water flow pathways expressed as slight depressions are common in the land surface. Under conditions of saturated overland flow, such as during heavy rain or snow melt, these areas of preferential flow might appear on the surface as very shallow flowing streams. When there is no water flowing in these ephemeral channels it can be difficult to identify them. It is especially difficult to discern the slight depressions above the subsurface water flow pathways (SWFP) when the area is covered by vegetation. Since the soil moisture content in these SWFP is often greater than the surrounding area, the vegetation growing on top of these channels shows different vigor and moisture content than the vegetation growing above the non-SWFP area. Vegetation indices (VI) are used in visible and near infrared (VNIR) hyperspectral imagery to enhance biophysical properties of vegetation, and so the brightness values between vegetation atop SWFP and the surrounding vegetation were highlighted. We performed supervised machine learning using ground-truth class labels to determine the conditional probability of a SWFP at a given pixel given either the spectral distribution or VI at that pixel. The training data estimates the probability distributions to a determined finite sampling accuracy for a binary Naïve Bayes classifier between SWFP and non-SWFP. The ground-truth data provides a test bed for understanding the ability to build SWFP classifiers using hyperspectral imagery. SWFP were distinguishable in the imagery within corn and grass fields and in areas with low-lying vegetation. However, the training data is limited to particular types of terrain and vegetation cover in the Shenandoah Valley, Virginia and this would limit the resulting classifier. Further training data could extend its use to other environments.

  10. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    Science.gov (United States)

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. The Ability of Watercress (Nasturtiumofficinale and Pennyroyal (Menthapulegium in Clean up Excess Nitrate and Phosphate of Water

    Directory of Open Access Journals (Sweden)

    Z. Ahmadpoor

    2016-02-01

    Full Text Available Introduction: There is necessary to clean up the nitrate and phosphate from surface waters before effluence of them to environment and eutrophication formation because of water health importance and considering to nitrate and phosphate consequences. Nitrate and ammonium as the - forms of inorganic and nitrogen have been subjected to the center of issues related to environment pollutants and water resources in a long time. The nitrate is more important than other inorganic nitrogen forms such as ammonium because of various reasons such as high dynamics and causing diseases such as some of digestion system and lymph nodes cancers in adults and methemoglobinemia in infants. Therefore the maximum concentration of this ion in drinking water has been determined as 45 mg.Lit-1 by WHO. Regarding the importance of the water health and the complications due to existence of some compounds such as nitrate and phosphate, in this experiment, the possibility of elimination or decreasing excess nitrate and phosphate from water in hydroponic conditions using of two watercress and pennyroyal plants was evaluated. Watercress(Nasturtiumofficinale and pennyroyal (Menthapulegiumwere selected because of some properties such as adaptability with the most climates of Iranamd less requirements care. Materials and Methods: Two RCD factorial experiments were carried out to evaluate the ability of watercress and pennyroyal to biosorption of nitrate and phosphate from polluted water in hydroponic conditions. First factor was plant species including watercress and pennyroyal. Second factor included nitrate (50, 100, 150 Mg/L and phosphate (5, 10, 15 Mg/L in first and second experiment respectively.The final concentrations of nitrate and phosphate in water was measured using spectrophotometer in wavelength of 410 nm and 690 nm by sulphatebrucine and chloride methods , respectively, which are mentioned in Standard Methods for the Examination of Water and Wastewater. At the end

  12. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  13. Effects of PEG-Induced Water Deficit in Solanum nigrum on Zn and Ni Uptake and Translocation in Split Root Systems

    Directory of Open Access Journals (Sweden)

    Urs Feller

    2015-06-01

    Full Text Available Drought strongly influences root activities in crop plants and weeds. This paper is focused on the performance of the heavy metal accumulator Solanum nigrum, a plant which might be helpful for phytoremediation. The water potential in a split root system was decreased by the addition of polyethylene glycol (PEG 6000. Rubidium, strontium and radionuclides of heavy metals were used as markers to investigate the uptake into roots, the release to the shoot via the xylem, and finally the basipetal transport via the phloem to unlabeled roots. The uptake into the roots (total contents in the plant was for most makers more severely decreased than the transport to the shoot or the export from the shoot to the unlabeled roots via the phloem. Regardless of the water potential in the labeling solution, 63Ni and 65Zn were selectively redistributed within the plant. From autoradiographs, it became evident that 65Zn accumulated in root tips, in the apical shoot meristem and in axillary buds, while 63Ni accumulated in young expanded leaves and roots but not in the meristems. Since both radionuclides are mobile in the phloem and are, therefore, well redistributed within the plant, the unequal transfer to shoot and root apical meristems is most likely caused by differences in the cell-to-cell transport in differentiation zones without functional phloem (immature sieve tubes.

  14. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2011-01-01

    The impact of elevated CO2, periodic drought and warming on photosynthesis and leaf characteristics of the evergreen dwarf shrub Calluna vulgaris in a temperate heath ecosystem was investigated. Photosynthesis was reduced by drought in midsummer and increased by elevated CO2 throughout the growing...... season, whereas warming only stimulated photosynthesis early in the year. At the beginning and end of the growing season, a T × CO2 interaction synergistically stimulated plant carbon uptake in the combination of warming and elevated CO2. At peak drought, the D × CO2 interaction antagonistically down......-regulated photosynthesis, suggesting a limited ability of elevated CO2 to counteract the negative effect of drought. The response of photosynthesis in the full factorial combination (TDCO2) could be explained by the main effect of experimental treatments (T, D, CO2) and the two-factor interactions (D × CO2, T × CO2...

  15. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    Science.gov (United States)

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  16. Water-Stable Metal-Organic Framework with Three Hydrogen-Bond Acceptors: Versatile Theoretical and Experimental Insights into Adsorption Ability and Thermo-Hydrolytic Stability.

    Science.gov (United States)

    Roztocki, Kornel; Lupa, Magdalena; Sławek, Andrzej; Makowski, Wacław; Senkovska, Irena; Kaskel, Stefan; Matoga, Dariusz

    2018-03-19

    A new microporous cadmium metal-organic framework was synthesized both mechanochemically and in solution by using a sulfonyl-functionalized dicarboxylate linker and an acylhydrazone colinker. The three-dimensional framework is highly stable upon heating to 300 °C as well as in aqueous solutions at elevated temperatures or acidic conditions. The thermally activated material exhibits steep water vapor uptake at low relative pressures at 298 K and excellent recyclability up to 260 °C as confirmed by both quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) method as well as adsorption isotherm measurements. Reversible isotherms and hysteretic isobars recorded for the desorption-adsorption cycles indicate the maximum uptake of 0.19 g/g (at 298 K, up to p/p 0 = 1) or 0.18 g/g (at 1 bar, within 295-375 K range), respectively. The experimental isosteric heat of adsorption (48.9 kJ/mol) indicates noncoordinative interactions of water molecules with the framework. Exchange of the solvent molecules in the as-made material with water, performed in the single-crystal to single-crystal manner, allows direct comparison of both X-ray crystal structures. The single-crystal X-ray diffraction for the water-loaded framework demonstrates the orientation of water clusters in the framework cavities and reveals their strong hydrogen bonding with sulfonyl, acyl, and carboxylate groups of the two linkers. The grand canonical Monte Carlo (GCMC) simulations of H 2 O adsorption corroborate the experimental findings and reveal preferable locations of guest molecules in the framework voids at various pressures. Additionally, both experimental and GCMC simulation insights into the adsorption of CO 2 (at 195 K) on the activated framework are presented.

  17. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions

    International Nuclear Information System (INIS)

    Lottermoser, Bernd G.; Ashley, Paul M.

    2011-01-01

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. - Highlights: → In tropical Australia, Eleocharis equisetina grows in an acid mine tailings pond. → Eleocharis equisetina excludes environmentally significant elements from its biomass. → Inspections of equatorial mined lands can reveal metal-excluding aquatic macrophytes. → Such plants are of use in land and water remediation in tropical regions. - The metal-excluding aquatic macrophyte Eleocharis equisetina is of use in land and water remediation in tropical regions.

  18. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Lottermoser, Bernd G., E-mail: Bernd.Lottermoser@utas.edu.au [School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001 (Australia); Ashley, Paul M. [Earth Sciences, University of New England, Armidale, New South Wales 2351 (Australia)

    2011-10-15

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. - Highlights: > In tropical Australia, Eleocharis equisetina grows in an acid mine tailings pond. > Eleocharis equisetina excludes environmentally significant elements from its biomass. > Inspections of equatorial mined lands can reveal metal-excluding aquatic macrophytes. > Such plants are of use in land and water remediation in tropical regions. - The metal-excluding aquatic macrophyte Eleocharis equisetina is of use in land and water remediation in tropical regions.

  19. The 13C isotope discrimination technique for identifying durum wheat cultivars efficient in uptake and use of water

    International Nuclear Information System (INIS)

    Mechergui, M.; Snane, M.H.

    1996-01-01

    The water balance model using a neutron moisture probe and the 13 C isotope discrimination method were used in this field to rank durum wheat genotypes for water use efficiency. The results presented focus on the first two years of a five-year study. Eighteen durum wheat cultivars were used in the first experiment. The 13 C/ 12 C ratio was measured to examine the correlation between this ratio and the water use efficiency. Total water consumption was calculated and the grain and straw yields and other parameters were also recorded. The results show differences between cultivars with respect to water use efficiency, 13 C discrimination and grain yield. From this experiment, four cultivars were selected for a detailed study in the second year. The data from this study show that there is a positive correlation between grain water use efficiency and Δ. Thus, it may be possible to use Δ as a tool for screening out water use efficient cultivars in semi-arid regions. (author). 12 refs, 5 figs, 1 tab

  20. The {sup 13}C isotope discrimination technique for identifying durum wheat cultivars efficient in uptake and use of water

    Energy Technology Data Exchange (ETDEWEB)

    Mechergui, M; Snane, M H [Departement de Genie Rural et des Eaux et Forets, Tunis (Tunisia). Inst. National Agronomique de Tunisie

    1996-07-01

    The water balance model using a neutron moisture probe and the {sup 13}C isotope discrimination method were used in this field to rank durum wheat genotypes for water use efficiency. The results presented focus on the first two years of a five-year study. Eighteen durum wheat cultivars were used in the first experiment. The {sup 13}C/{sup 12}C ratio was measured to examine the correlation between this ratio and the water use efficiency. Total water consumption was calculated and the grain and straw yields and other parameters were also recorded. The results show differences between cultivars with respect to water use efficiency, {sup 13}C discrimination and grain yield. From this experiment, four cultivars were selected for a detailed study in the second year. The data from this study show that there is a positive correlation between grain water use efficiency and {Delta}. Thus, it may be possible to use {Delta} as a tool for screening out water use efficient cultivars in semi-arid regions. (author). 12 refs, 5 figs, 1 tab.

  1. Development and uptake of scenarios to support water resources planning, development and management: examples from South Africa

    CSIR Research Space (South Africa)

    Funke, Nicola S

    2013-05-01

    Full Text Available The international agenda on water resources development reflects societal needs, political agendas, economic realities and the state of resources. The industrial revolution, which started in the 18th century, brought social and economic prosperity...

  2. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, puranium concentration in plant and the substrate (r=0.88, puranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (puranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions.

    Science.gov (United States)

    Bowles, Timothy M; Barrios-Masias, Felipe H; Carlisle, Eli A; Cavagnaro, Timothy R; Jackson, Louise E

    2016-10-01

    Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  5. Airborne Hyperspectral Evaluation of Maximum Gross Photosynthesis, Gravimetric Water Content, and CO2 Uptake Efficiency of the Mer Bleue Ombrotrophic Peatland

    Directory of Open Access Journals (Sweden)

    J. Pablo Arroyo-Mora

    2018-04-01

    Full Text Available Peatlands cover a large area in Canada and globally (12% and 3% of the landmass, respectively. These ecosystems play an important role in climate regulation through the sequestration of carbon dioxide from, and the release of methane to, the atmosphere. Monitoring approaches, required to understand the response of peatlands to climate change at large spatial scales, are challenged by their unique vegetation characteristics, intrinsic hydrological complexity, and rapid changes over short periods of time (e.g., seasonality. In this study, we demonstrate the use of multitemporal, high spatial resolution (1 m2 hyperspectral airborne imagery (Compact Airborne Spectrographic Imager (CASI and Shortwave Airborne Spectrographic Imager (SASI sensors for assessing maximum instantaneous gross photosynthesis (PGmax in hummocks, and gravimetric water content (GWC and carbon uptake efficiency in hollows, at the Mer Bleue ombrotrophic bog. We applied empirical models (i.e., in situ data and spectral indices and we derived spatial and temporal trends for the aforementioned variables. Our findings revealed the distribution of hummocks (51.2%, hollows (12.7%, and tree cover (33.6%, which is the first high spatial resolution map of this nature at Mer Bleue. For hummocks, we found growing season PGmax values between 8 μmol m−2 s−1 and 12 μmol m−2 s−1 were predominant (86.3% of the total area. For hollows, our results revealed, for the first time, the spatial heterogeneity and seasonal trends for gravimetric water content and carbon uptake efficiency for the whole bog.

  6. Linking phytoplankton nitrogen uptake, macronutrients and chlorophyll- a in SW Atlantic waters: The case of the Gulf of San Jorge, Argentina

    Science.gov (United States)

    Paparazzo, Flavio E.; Williams, Gabriela N.; Pisoni, Juan P.; Solís, Miriam; Esteves, José L.; Varela, Diana E.

    2017-08-01

    We compared biological and chemical parameters in surface waters of the Gulf of San Jorge to better understand carbon export and the factors that control phytoplankton production in an area of the Argentinian Continental Shelf, a vastly under sampled region of the SW Atlantic Ocean. In April of 2012, we estimated new and regenerated primary production in the Gulf by measuring nitrate and ammonium uptake, respectively. We also measured macronutrient, and in situ chlorophyll-a concentrations, which were compared to chlorophyll-a estimates from remote sensing. Although the Gulf of San Jorge presents high levels of chlorophyll-a and primary production, the relationship between these parameters is not straightforward. Previous studies showed that surface chlorophyll-a explains only part of the variance in euphotic-zone integrated primary production, and that satellite-derived chlorophyll-a underestimates in situ primary production. Our results showed large spatial variability in the Gulf, with transitional physico-chemical conditions, such as fronts, that could favor an increase in biological production. In situ chlorophyll-a concentrations were highest at the mid-shelf station (6.0 mg m- 3) and lowest at the northernmost location by an order of magnitude. Remote sensing measurements of chlorophyll-a underestimated our in situ chlorophyll-a concentrations. Total nitrogen (nitrate + ammonium) uptake showed relatively similar rates throughout the study area (≈ 130 nM-N d- 1), except in the northernmost station where it was much lower (53 nM-N d- 1). This north region had a distinct water mass and maximal levels of macronutrients (nitrate ≈ 6 μM, ammonium ≈ 1.2 μM, phosphate ≈ 1.2 μM and silicic acid ≈ 4 μM). For the entire sampling region, chlorophyll-a concentrations strongly correlated with total nitrogen uptake (r = 0.76, n = 8, p < 0.05) and new primary production (r = 0.78, n = 8, p < 0.05). Values of the f-ratio were 0.9 in mid-shelf, and ranged

  7. Uptake of γ-emitting radionuclides by aquatic biota exposed to contaminated water before and after passage through the ground

    International Nuclear Information System (INIS)

    Cushing, C.E.; Rickard, W.H.; Watson, D.G.

    1984-01-01

    Three experimental systems were designed to investigate the differential accumulation of radionuclides by biota from low-level aqueous effluents after passage through the ground. One system received river water (control), one received dilute low-level radioactive effluents (trench), and the third received the low-level effluents after it had percolated through about 260 m or porous gravel (springs). Biota studied included filamentous green algae, clams (Corbicula), goldfish (Carassius auratus), carp (Cyprinus carpio), and Veronica. Trophic level differences in accumulation of the various radionuclides from the diluted trench water were not consistent but generally followed the pattern algae > goldfish > molluscs > carp. Cobalt-60 was accumulated to the highest level of any radionuclide, and accumulation levels at the three sites were directly related to the concentration of 60 Co in the water. Manganese-54, 59 Fe, and 106 Ru were also accumulated to measurable levels in biota at the springs site indicating their bioavailability after passage through the ground

  8. Changes in carbon uptake and allocation patterns in Quercus robur seedlings in response to elevated CO2 and water stress: an evaluation with 13C labelling

    International Nuclear Information System (INIS)

    Vivin, P.; Guehl, J.M.

    1997-01-01

    A semi-closed (CO2)-C-13 labelling system (1.5% C-13) was used to assess both carbon uptake and allocation within pedunculate oak seedlings (Quercus robur L) grown under ambient (350 vpm) and elevated (700 vpm) atmospheric CO2 concentration ([CO2]) and in either well-watered or droughted conditions. Pulse-chase C-13 labelling data highlighted the direct positive effect of elevated CO2 on photosynthetic carbon acquisition. Consequently, in well-watered conditions, CO2-enriched plants produced 1.52 times more biomass (dry mass at harvest) and 1.33 times more dry root matter (coarse plus fine roots) over the 22-week growing period than plants grown under ambient [CO2]. The root/shoot biomass ratio was decreased both by drought and [CO2], despite lower N concentrations in CO2-enriched plants. However, both long-term and short-term C allocation to fine roots were not altered by CO2, and relative specific allocation (RSA), a parameter expressing sink strength, was hip her in all plant organs under 700 vpm compared to 350 vpm. Results showed that C availability for growth and metabolic processes was greater in fine roots of oaks grown under an elevated CO2 atmosphere irrespective of soil water availability [fr

  9. Biochar amendment of fluvio-glacial temperate sandy subsoil: Effects on maize water uptake, growth and physiology

    DEFF Research Database (Denmark)

    Ahmed, Fauziatu; Arthur, Emmanuel; Plauborg, Finn

    2018-01-01

    Coarse sandy soils have poor water retention capacity, which may constrain crop growth during drought. We investigated the effect of biochar amendment to subsoil on crop physiological processes and maize yield, comparing irrigated and drought conditions. A two-year greenhouse experiment was condu......Coarse sandy soils have poor water retention capacity, which may constrain crop growth during drought. We investigated the effect of biochar amendment to subsoil on crop physiological processes and maize yield, comparing irrigated and drought conditions. A two-year greenhouse experiment...... was conducted with one-time application of straw biochar at concentrations of 0%, 1%, 2% and 3% (B0, B1, B2 and B3). Maize was planted twice in the same large pots one week and again 12 months after biochar application. Plants were fully irrigated until flowering; thereafter, half of them were subjected...... to drought. Our results indicate B2 and B3 increased soil water content at field capacity. Leaf water potential, stomatal conductance, photosynthesis and transpiration were maintained in B2 and B3 during the drying cycle in year one and in all biochar levels in year two. In the first year, B3 induced...

  10. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    Science.gov (United States)

    Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick

    2016-01-01

    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...

  11. Effects of HPMC substituent pattern on water up-take, polymer and drug release: An experimental and modelling study.

    Science.gov (United States)

    Caccavo, Diego; Lamberti, Gaetano; Barba, Anna Angela; Abrahmsén-Alami, Susanna; Viridén, Anna; Larsson, Anette

    2017-08-07

    The purpose of this study was to investigate the hydration behavior of two matrix formulations containing the cellulose derivative hydroxypropyl methylcellulose (HPMC). The two HPMC batches investigated had different substitution pattern along the backbone; the first one is referred to as heterogeneous and the second as homogenous. The release of both the drug molecule theophylline and the polymer was determined. Additionally, the water concentrations at different positions in the swollen gel layers were determined by Magnetic Resonance Imaging. The experimental data was compared to predicted values obtained by the extension of a mechanistic Fickian based model. The hydration of tablets containing the more homogenous HPMC batch showed a gradual water concentration gradient in the gel layer and could be well predicted. The hydration process for the more heterogeneous batch showed a very abrupt step change in the water concentration in the gel layer and could not be well predicted. Based on the comparison between the experimental and predicted data this study suggests, for the first time, that formulations with HPMC of different heterogeneities form gels in different ways. The homogeneous HPMC batch exhibits a water sorption behavior ascribable to a Ficḱs law for the diffusion process whereas the more heterogeneous HPMC batches does not. This conclusion is important in the future development of simulation models and in the understanding of drug release mechanism from hydrophilic matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Science.gov (United States)

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  13. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    OpenAIRE

    M. Sarai Tabrizi; H. Babazadeh; M. Homaee; F. Kaveh Kaveh; M. Parsinejad

    2016-01-01

    Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil respon...

  14. Fluoride uptake into the developing enamel and dentine of sheep incisors following daily ingestion of fluoridated milk or water

    International Nuclear Information System (INIS)

    Cuttress, T.W.; Suckling, G.W.; Gao, J.; Coote, G.E.

    1996-01-01

    The caries preventive action of fluoride is common knowledge, although some of the mechanisms involved remain equivocal. At present, raised local levels of fluoride at, or in, the surface of tooth enamel is the most commonly accepted explanation of the anti-cariogenic action of fluoride. However, fluoride incorporated as fluorapatite into the tooth during its formation remains a possible alternative or complementary anti-cariogenic mechanism. If so, regular ingestion of fluoride during tooth formation is beneficial. Although use of fluoridated water is the preferred method in public health programmes, access to suitable potable water is required, and often this in not feasible. Fresh, preserved, or dried cow's milk products are widely used as nutritional and dietary items in most populations, particularly for young children. Milk is a practical, controllable means for regular delivery of fluoride. Processing of milk is commonly centralised and uses standardised conditions, allowing easy supplementation of fluoride for distribution to communities. The purpose of this study was to resolve the question of availability of fluoride ingested in milk compared with fluoride ingested in water by measuring fluoride deposition in the developing permanent incisors of young sheep. Incisors were analysed using a proton microprobe. (author). 18 refs., 1 tabs., 3 figs

  15. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  16. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    NARCIS (Netherlands)

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of

  17. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Tadanobu, E-mail: nakat@nies.go.jp [Asian Environment Research Group, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Process Hydrology Section, Centre for Ecology and Hydrology (CEH), Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Hashimoto, Shizuka [Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2011-08-15

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. - Highlights: > Simulation procedure with multi-scale was newly developed. > Latent heat flux in water-holding pavement had strong impact on hydrothermal changes. > Model predicted effect of urban geometry and anthropogenic exhaustion. > Effective management of water resources is powerful for ameliorating heat island. - This study indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle in urban area.

  18. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis

    International Nuclear Information System (INIS)

    Nakayama, Tadanobu; Hashimoto, Shizuka

    2011-01-01

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. - Highlights: → Simulation procedure with multi-scale was newly developed. → Latent heat flux in water-holding pavement had strong impact on hydrothermal changes. → Model predicted effect of urban geometry and anthropogenic exhaustion. → Effective management of water resources is powerful for ameliorating heat island. - This study indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle in urban area.

  19. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd E A T M; Berendse, Frank; Robroek, Bjorn J M

    2014-07-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown. We experimentally assessed the importance of precipitation frequency for Sphagnum water supply and carbon uptake during a stepwise decrease in water tables in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species (Sphagnum majus, Sphagnum balticum and Sphagnum fuscum) representative of three hydrologically distinct peatland microhabitats (hollow, lawn and hummock) and expected to differ in their water table-precipitation relationships. Precipitation contributed significantly to peatmoss water supply when the water table was deep, demonstrating the importance of precipitation during drought. The ability to exploit transient resources was species-specific; S. fuscum carbon uptake increased linearly with precipitation frequency for deep water tables, whereas carbon uptake by S. balticum and S. majus was depressed at intermediate precipitation frequencies. Our results highlight an important role for precipitation in carbon uptake by peatmosses. Yet, the potential to moderate the impact of drought is species-specific and dependent on the temporal distribution of precipitation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Removal of Heavy Metals from Leachate Using Electro-Assisted Phytoremediation (EAPR and Up-Take by Water Hyacinth (Eichornia crassipes

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra

    2018-05-01

    Full Text Available The garbage disposal management using landfill system produces an unpleasant odor of wastewater (i.e. leachate which can disrupt the groundwater equilibrium in the rainy season. The combination of electro-assisted and phytoremediation which is hereinafter referred as Electro-Assisted Phytoremediation (EAPR for removal of heavy metals from leachate has been demonstrated in a laboratory-scale experiment. A batch reactor setting was used to evaluate the potential removal and uptake of heavy metals (Fe, Cu, Cd, and Pb concentration by water hyacinth (Eichornia crassipes in the aquatic environment. An EAPR system was carried out for 11 d using constant voltage of 2 V. The results showed that the heavy metals concentration in the leachate decreased significantly for Cu, Fe, Cd and Pb metals from their initial concentration. The EAPR process could reduce as much as 77.8, 22, 31.6 and 30.0%, respectively for Fe, Cu, Cd, and Pb. Decreasing of heavy metals was followed by decreasing of TDS, electrical conductivity but increased DO concentration. Chlorophyll content in a treated plant with EAPR system showed that the water hyacinth could cope with the stress condition meanwhile accumulated high heavy metal concentration from the leachate.

  1. Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry

    International Nuclear Information System (INIS)

    Owen, Stewart F.; Huggett, Duane B.; Hutchinson, Thomas H.; Hetheridge, Malcolm J.; Kinter, Lewis B.; Ericson, Jon. F.; Sumpter, John P.

    2009-01-01

    Pharmaceuticals in the environment (PIE) are of importance since these compounds are designed to affect biological receptors/enzymes that are often conserved across vertebrate families. Across-species extrapolation of these therapeutic targets suggests potential for impacting amphibia and fish in the aquatic environment. Due to the scarcity of relevant ecotoxicological data, the long-tem impact of PIE remains a research question. Efficient use of mammalian data has been proposed to better understand and predict the potential for a given pharmaceutical to impact the environment. Using a model cardiovascular pharmaceutical (propranolol, a non-specific β 1 /β 2 -adrenergic antagonist), the hypothesis that mammalian data can be used to predict toxicity in fish was tested. Rainbow trout (Oncorhynchus mykiss (Walbaum)) have β-adrenergic signalling mechanisms analogous to human cardiovascular receptors that respond to pharmacological doses of agonists and antagonists. Trout absorbed propranolol from water such that after 40 days of exposure, the linear relationship was [plasma] = 0.59[water] (n = 31, r = 0.96). Growth rate was affected only at very high aqueous concentrations (10-day growth NOEC = 1.0 and growth LOEC = 10 mg/l). Growth recovered with time (40-day growth NOEC = 10 mg/l), suggesting possible adaptation to the pharmaceutical, although the internal plasma concentration in trout exposed to 10 mg propranolol/l of water was higher than the mammalian therapeutic plasma concentration. Additional endpoints suggested subtle changes of liver and heart size at much lower concentrations may have occurred, although these were not concentration-related. There was, however, a dose-dependent effect upon overall body condition. The trout plasma concentrations at these effective aqueous concentrations fell within the range of mammalian effective plasma concentrations, supporting the potential for developing 'read-across' from mammalian pharmacology safety data to fish

  2. How trees uptake carbon, release water and cool themselves in air: a marriage between biophysics and turbulent fluid dynamics

    Science.gov (United States)

    Banerjee, Tirtha; Linn, Rodman

    2017-11-01

    Resolving the role of the biosphere as a terrestrial carbon sink and the nature of nonlinear couplings between carbon and water cycles across a very wide range of spatiotemporal scales constitute the scope of this work. To achieve this goal, plant physiology models are coupled with atmospheric turbulence simulations. The plant biophysics code is based on the following principles: (1) a model for photosynthesis; (2) a mass transfer model through the laminar boundary layer on leaves; (3) an optimal leaf water use strategy regulated by stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Leaf-level outputs are upscaled to plant, canopy and landscape scales using HIGRAD/FIRETEC, a high fidelity large eddy simulation (LES) framework developed at LANL. The coupled biophysics-CFD code can take inputs such as wind speed, light availability, ambient CO2 concentration, air temperature, site characteristics etc. and can deliver predictions for leaf temperature, transpiration, carbon assimilation, sensible and latent heat flux, which is used to illustrate the complex the complex interaction between trees and their surrounding environments. These simulation capabilities are being used to study climate feedbacks of forests and agroecosystems.

  3. Uptake of radionuclides caesium and cobalt

    International Nuclear Information System (INIS)

    Lukac, P.; Foldesova, M.

    1995-01-01

    By means of chemical treatment ammonium, potassium, sodium and H-form of zeolite were prepared. The chemical modifications of zeolite were carried out with: 2M solution of NaNO 3 , NH 4 NO 3 , KNO 3 ; 0,1M solution of HCl; NaOH solution of different concentration. The method of model radioactive solution was used to find the sorption ability for cesium and cobalt every modified zeolite. The model solution were 0.05M solution of cobalt labelled by 60 Co or cesium labelled by 137 Cs. The highest sorption ability was observed for zeolite modified by NaOH. The influence of pH on uptake of cesium and cobalt by modified zeolite was searched as well. The experimental data (leaching tests, compressive strength measurement and porosity) were measured for the case the Cs and Cs from model water solution and radioactive waste water were up taken on chemically modified zeolite and were subsequently incorporated into cement casts on blast furnace cement slags basis. The leachability was tested in water, in basis solution and in acid solution. The leachability in water and basic solution was negligible, in acid solution it was less than 4% which is inside of value of applied measure method. The compressive strength, porosity and leaching experiment are hopefully and show good mechanical stability and good retention of observed radionuclides in samples exposed in leaching solutions. (J.K.)

  4. Uptake of radionuclides caesium and cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Lukac, P; Foldesova, M [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    By means of chemical treatment ammonium, potassium, sodium and H-form of zeolite were prepared. The chemical modifications of zeolite were carried out with: 2M solution of NaNO{sub 3}, NH{sub 4}NO{sub 3}, KNO{sub 3}; 0,1M solution of HCl; NaOH solution of different concentration. The method of model radioactive solution was used to find the sorption ability for cesium and cobalt every modified zeolite. The model solution were 0.05M solution of cobalt labelled by {sup 60}Co or cesium labelled by {sup 137}Cs. The highest sorption ability was observed for zeolite modified by NaOH. The influence of pH on uptake of cesium and cobalt by modified zeolite was searched as well. The experimental data (leaching tests, compressive strength measurement and porosity) were measured for the case the Cs and Cs from model water solution and radioactive waste water were up taken on chemically modified zeolite and were subsequently incorporated into cement casts on blast furnace cement slags basis. The leachability was tested in water, in basis solution and in acid solution. The leachability in water and basic solution was negligible, in acid solution it was less than 4% which is inside of value of applied measure method. The compressive strength, porosity and leaching experiment are hopefully and show good mechanical stability and good retention of observed radionuclides in samples exposed in leaching solutions. (J.K.).

  5. Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Stewart F. [Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH (United Kingdom); Global Safety Health and Environment, AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon, TQ5 8BA (United Kingdom); Huggett, Duane B. [Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT 06340 (United States); Hutchinson, Thomas H.; Hetheridge, Malcolm J. [Global Safety Health and Environment, AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon, TQ5 8BA (United Kingdom); Kinter, Lewis B. [AstraZeneca Pharmaceuticals US, 1800 Concord Pike, Wilmington, DE 19850 (United States); Ericson, Jon. F. [Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT 06340 (United States); Sumpter, John P., E-mail: john.sumpter@brunel.ac.uk [Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH (United Kingdom)

    2009-07-26

    Pharmaceuticals in the environment (PIE) are of importance since these compounds are designed to affect biological receptors/enzymes that are often conserved across vertebrate families. Across-species extrapolation of these therapeutic targets suggests potential for impacting amphibia and fish in the aquatic environment. Due to the scarcity of relevant ecotoxicological data, the long-tem impact of PIE remains a research question. Efficient use of mammalian data has been proposed to better understand and predict the potential for a given pharmaceutical to impact the environment. Using a model cardiovascular pharmaceutical (propranolol, a non-specific {beta}{sub 1}/{beta}{sub 2}-adrenergic antagonist), the hypothesis that mammalian data can be used to predict toxicity in fish was tested. Rainbow trout (Oncorhynchus mykiss (Walbaum)) have {beta}-adrenergic signalling mechanisms analogous to human cardiovascular receptors that respond to pharmacological doses of agonists and antagonists. Trout absorbed propranolol from water such that after 40 days of exposure, the linear relationship was [plasma] = 0.59[water] (n = 31, r = 0.96). Growth rate was affected only at very high aqueous concentrations (10-day {sup growth}NOEC = 1.0 and {sup growth}LOEC = 10 mg/l). Growth recovered with time (40-day {sup growth}NOEC = 10 mg/l), suggesting possible adaptation to the pharmaceutical, although the internal plasma concentration in trout exposed to 10 mg propranolol/l of water was higher than the mammalian therapeutic plasma concentration. Additional endpoints suggested subtle changes of liver and heart size at much lower concentrations may have occurred, although these were not concentration-related. There was, however, a dose-dependent effect upon overall body condition. The trout plasma concentrations at these effective aqueous concentrations fell within the range of mammalian effective plasma concentrations, supporting the potential for developing 'read-across' from

  6. Deep repository - engineered barrier systems. Half scale tests to examine water uptake by bentonite pellets in a block-pellet backfill system

    International Nuclear Information System (INIS)

    Dixon, David; Lundin, Cecilia; Oertendahl, Ellinor; Hedin, Mikael; Ramqvist, Gunnar

    2008-12-01

    In order to examine the behaviour of water entering a section of tunnel that had recently been backfilled using a combination of bentonite pellets and compacted, smectitic clay blocks, a series of large-scale tests have been completed. These tests, done at a scale of approximately 0.5 that of an emplacement tunnel were completed in a mock-up constructed in the Buffer Laboratory at SKB's Aespoe Hard Rock Laboratory. A total of 12 tests, undertaken under well controlled conditions were completed, examining the effects of inflow rate, inflow location and time on assemblies of blocks and pellets. Water was supplied to the assembly at rates ranging from 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were all monitored for periods of 3 to 7 days. The testing time was selected to simulate a reasonable duration for unanticipated backfilling interruption. Longer durations were not necessary and risked both the stability of the system and the loss of the early stage conditions through progression of swelling and homogenization. Testing determined that initial water movement through backfill is largely controlled by the pellets. Water influx of up to 30 l/h at a single location was diverted by the pellets forming essentially horizontal flow channels (pipes) along the chamber wall - pellet interface. These piping features directed the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features remained for the duration of the test. The exiting water typically carried only limited eroded material but could cause some disruption of the downstream face of the

  7. Deep repository - engineered barrier systems. Half scale tests to examine water uptake by bentonite pellets in a block-pellet backfill system

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Lundin, Cecilia (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Oertendahl, Ellinor (NCC (Sweden)); Hedin, Mikael (Aangpannefoereningen, Stockholm (Sweden)); Ramqvist, Gunnar (Eltekno AB (Sweden))

    2008-12-15

    In order to examine the behaviour of water entering a section of tunnel that had recently been backfilled using a combination of bentonite pellets and compacted, smectitic clay blocks, a series of large-scale tests have been completed. These tests, done at a scale of approximately 0.5 that of an emplacement tunnel were completed in a mock-up constructed in the Buffer Laboratory at SKB's Aespoe Hard Rock Laboratory. A total of 12 tests, undertaken under well controlled conditions were completed, examining the effects of inflow rate, inflow location and time on assemblies of blocks and pellets. Water was supplied to the assembly at rates ranging from 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were all monitored for periods of 3 to 7 days. The testing time was selected to simulate a reasonable duration for unanticipated backfilling interruption. Longer durations were not necessary and risked both the stability of the system and the loss of the early stage conditions through progression of swelling and homogenization. Testing determined that initial water movement through backfill is largely controlled by the pellets. Water influx of up to 30 l/h at a single location was diverted by the pellets forming essentially horizontal flow channels (pipes) along the chamber wall - pellet interface. These piping features directed the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features remained for the duration of the test. The exiting water typically carried only limited eroded material but could cause some disruption of the downstream face of

  8. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    Science.gov (United States)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  9. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.

    Science.gov (United States)

    Barbeta, Adrià; Peñuelas, Josep

    2017-12-01

    Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.

  10. The Effect of Beaver Activity on the Ammonium Uptake and Water Residence Time Characteristics of a Third-Order Stream Reach

    Science.gov (United States)

    Briggs, M.; Gooseff, M. N.; Wollheim, W. M.; Peterson, B. J.; Morkeski, K.

    2009-12-01

    Increasing beaver populations within low gradient basins in the northeastern United States are fundamentally changing the way water and dissolved nutrients are exported through these stream networks to the coast. Beaver dams can increase water residence time and contact with organic material, promote anoxic conditions and enhance both surface and hyporheic transient storage; all of these may have an impact on biogeochemical reactivity and nutrient retention. To quantitatively assess some of these effects we co-injected NaCl and NH4+ into the same 3rd-order stream reach in Massachusetts, USA under pre- and post-dam conditions. These experiments were done at similar discharge rates to isolate the impacts of a large natural beaver dam (7 m X 1.3 m) on the low-gradient (0.002) system where variable discharge also imparts a strong control on residence time. During the post-dam experiment there was an estimated 2300 m3 of water impounded behind the structure, which influenced more than 300 m of the 650 m stream reach. Our results showed that median transport time through the reach increased by 160% after dam construction. Additionally the tracer tailing time normalized to the corresponding median transport time increased from 1.08 to 1.51, indicating a pronounced tailing of the tracer signal in the post-dam condition. Data collected within the beaver pond just upstream of the dam indicated poor mixing and the presence of preferential flow paths through the generally stagnant zone. The uptake length (Sw) for NH4+ was 1250 m under the pre-dam condition, and may have changed for the post-dam reach in part because of the observed changes in residence time. As beaver population growth continues within these basins the consequences may be a smoothing of the outlet hydrograph and increased nutrient and organic matter removal and storage along the stream network.

  11. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  12. Effect of Na, Ca and pH on simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable isotopes

    International Nuclear Information System (INIS)

    Komjarova, I.; Blust, R.

    2009-01-01

    The present study investigates the effects of Na + , Ca 2+ and pH on the kinetics of Cd, Cu, Ni, Pb, and Zn uptake in Daphnia magna at low exposure concentrations measured using a stable isotope technique. Using experimental data the uptake rate constants were calculated for each metal individually on the basis of total metal concentrations. The copper uptake was not significantly affected by variations in chemical composition of the test medium. Calcium had a suppressing effect on the uptake of Cd, Ni, Pb and Zn. Specifically, Cd and Ni uptake rate constants decreased with increases in calcium concentrations from 0.1 to 2.5 mM. The uptake of Zn and Pb was significantly suppressed only at 2.5 mM Ca. The effect of sodium was less clear. There was no effect of varying sodium concentrations on the Ni uptake rate constants. Cd and Pb showed an increase in uptake rate constants at elevated sodium concentrations (2-8 mM Na + for Cd and 8 mM Na + for Pb). A bell-shaped response on increasing Na + concentrations was observed for Zn with a maximum value of uptake rate constant at the middle value (2 mM Na + ). Variation in pH of the medium affected Cd, Ni and Zn uptake processes. When Daphnia were exposed to acidic conditions (pH 6), the Cd and Ni uptake rate constants were the highest, while similarly low values were observed at neutral and basic conditions. In contrast, the uptake rates of Zn were linearly increasing with increasing pH of the medium.

  13. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    International Nuclear Information System (INIS)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-01-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn_6O_4(OH)_4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn_6O_4(OH)_4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn_6O_4(OH)_4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)_3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO_2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ("2C) and monodentate ("1V) geometries, at the expense of the present bidentate mononuclear ("2E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn_6O_4(OH)_4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the "2C and "1V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn_6O_4(OH)_4 • Sn_6O_4(OH)_4 transformation to SnO_2 after Cr(VI) reduction to Cr(III) • Strong Cr(III) sorption onto SnO_2 by formation of inner sphere complexes • Cr(III) sorption

  14. The policy implications of urban open space commercial vegetable farmers' willingness and ability to pay for reclaimed water for irrigation in Kumasi, Ghana.

    Science.gov (United States)

    Amponsah, Owusu; Vigre, Håkan; Braimah, Imoro; Schou, Torben Wilde; Abaidoo, Robert Clement

    2016-03-01

    The acute waste management problems, coupled with the proliferation of small scale industries in many developing countries, make low quality water treatment before use inevitable in the long run. These industries have the potential to discharge effluent containing chemicals and heavy metals into the environment. The indiscriminative use of pharmaceutical products by households in many of these countries is another source of health concern. Low quality water treatment in these countries has however been hampered by the high cost of infrastructure provision and maintenance. Cost-sharing among stakeholders appears to be a promising strategy to finance and maintain the wastewater treatment infrastructure. In this study therefore, the willingness and ability of urban open space commercial vegetable farmers to pay for reclaimed water for irrigation purposes has been assessed. One hundred open space commercial vegetable farmers and four vegetable farmers' associations were selected and interviewed in Kumasi in Ghana using semi-structured interview schedules and interview guides respectively. The results of the study show that approximately three out of every five vegetable farmers were willing to pay for reclaimed water for irrigation. The results further show that the probability of being willing to pay by farmers who agreed that the current water they used for irrigation was harmful is approximately 5.3 times greater than that of those who did not. The analysis of the farmers' ability to pay revealed that all the farmers would be capable of paying for reclaimed water at a price of US$0.11/m(3). This has implications for land tenure security and vegetable consumers' willingness to pay higher prices for the produce.

  15. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    Science.gov (United States)

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of

  16. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  17. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  18. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.

    Science.gov (United States)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10μg/L for drinking water. Moreover, an uptake capacity of 7.2μg/mg at breakthrough concentration of 10μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Assessing the Ability of Vegetation Indices to Identify Shallow Subsurface Water Flow Pathways from Hyperspectral Imagery Using Machine Learning: Methodology

    Science.gov (United States)

    Byers, J. M.; Doctor, K.

    2017-12-01

    A common application of the satellite and airborne acquired hyperspectral imagery in the visible and NIR spectrum is the assessment of vegetation. Various absorption features of plants related to both water and chlorophyll content can be used to measure the vigor and access to underlying water sources of the vegetation. The typical strategy is to form hand-crafted features from the hyperspectral data cube by selecting two wavelengths to form difference or ratio images in the pixel space. The new image attempts to provide greater contrast for some feature of the vegetation. The Normalized Difference Vegetation Index (NDVI) is a widely used example formed from the ratio of differences and sums at two different wavelengths. There are dozens of these indices that are ostensibly formed using insights about the underlying physics of the spectral absorption with claims to efficacy in representing various properties of vegetation. In the language of machine learning these vegetation indices are features that can be used as a useful data representation within an algorithm. In this work we use a powerful approach from machine learning, probabilistic graphical models (PGM), to balance the competing needs of using existing hydrological classifications of terrain while finding statistically reliable features within hyperspectral data for identifying the generative process of the data. The algorithm in its simplest form is called a Naïve Bayes (NB) classifier and can be constructed in a data-driven estimation procedure of the conditional probability distributions that form the PGM. The Naïve Bayes model assumes that all vegetation indices (VI) are independent of one another given the hydrological class label. We seek to test its validity in a pilot study of detecting subsurface water flow pathways from VI. A more sophisticated PGM will also be explored called a tree-augmented NB that accounts for the probabilistic dependence between VI features. This methodology provides a

  20. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    Science.gov (United States)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  1. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Natália R. Barboza

    2017-10-01

    Full Text Available Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn, is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil. Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II, up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.

  2. Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2011-11-01

    Full Text Available The influence of the properties of fine particles on the formation of clouds and precipitation in the tropical atmosphere is of primary importance to their impacts on radiative forcing and the hydrological cycle. Measurements of aerosol number size distribution, hygroscopicity in both sub- and supersaturated regimes and composition were taken between March and July 2008 in the tropical rainforest in Borneo, Malaysia, marking the first study of this type in an Asian tropical rainforest. Hygroscopic growth factors (GF at 90 % relative humidity (RH for the dry diameter range D0 = 32–258 nm, supersaturated water uptake behaviour for the dry diameter range D0 = 45–300 nm and aerosol chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA, a Droplet Measurement Technologies Cloud Condensation Nuclei counter (CCNc and an Aerodyne Aerosol Mass Spectrometer (AMS respectively.

    The hygroscopicity parameter κ was derived from both CCNc and HTDMA measurements, with the resulting values of κ ranging from 0.05–0.37, and 0.17–0.37, respectively. Although the total range of κ values is in good agreement, there are inconsistencies between CCNc and HTDMA derived κ values at different dry diameters. Results from a study with similar methodology performed in the Amazon rainforest report values for κ within a similar range to those reported in this work, indicating that the aerosol as measured from both sites shows similar hygroscopic properties. However, the derived number of cloud condensation nuclei (NCCN were much higher in the present experiment than the Amazon, resulting in part from the increased total particle number concentrations observed in the Bornean rainforest. This contrast between the two environments may be of substantial importance in describing the impacts of particles in the tropical atmosphere.

  3. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae.

    Directory of Open Access Journals (Sweden)

    Susana Pallarés

    Full Text Available A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae and Enochrus (Hydrophilidae. Their osmoregulatory strategy (osmoconformity or osmoregulation was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1. In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1 across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1, respectively, and maintained osmotic gradients over 3500 mosmol kg(-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels

  4. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  5. Extracellular esterases of phylloplane yeast Pseudozyma antarctica induce defect on cuticle layer structure and water-holding ability of plant leaves.

    Science.gov (United States)

    Ueda, Hirokazu; Mitsuhara, Ichiro; Tabata, Jun; Kugimiya, Soichi; Watanabe, Takashi; Suzuki, Ken; Yoshida, Shigenobu; Kitamoto, Hiroko

    2015-08-01

    Aerial plant surface (phylloplane) is a primary key habitat for many microorganisms but is generally recognized as limited in nutrient resources. Pseudozyma antarctica, a nonpathogenic yeast, is commonly isolated from plant surfaces and characterized as an esterase producer with fatty acid assimilation ability. In order to elucidate the biological functions of these esterases, culture filtrate with high esterase activity (crude enzyme) of P. antarctica was applied onto leaves of tomato and Arabidopsis. These leaves showed a wilty phenotype, which is typically associated with water deficiency. Furthermore, we confirmed that crude enzyme-treated detached leaves clearly lost their water-holding ability. In treated leaves of both plants, genes associated to abscisic acid (ABA; a plant stress hormone responding osmotic stress) were activated and accumulation of ABA was confirmed in tomato plants. Microscopic observation of treated leaf surfaces revealed that cuticle layer covering the aerial epidermis of leaves became thinner. A gas chromatography-mass spectrometry (GC-MS) analysis exhibited that fatty acids with 16 and 18 carbon chains were released in larger amounts from treated leaf surfaces, indicating that the crude enzyme has ability to degrade lipid components of cuticle layer. Among the three esterases detected in the crude enzyme, lipase A, lipase B, and P. antarctica esterase (PaE), an in vitro enzyme assay using para-nitrophenyl palmitate as substrate demonstrated that PaE was the most responsible for the degradation. These results suggest that PaE has a potential role in the extraction of fatty acids from plant surfaces, making them available for the growth of phylloplane yeasts.

  6. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Pinakidou, Fani; Kaprara, Efthimia [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos [Aristotle University of Thessaloniki, School of Physics, Department of Solid State Physics, 54124 Thessaloniki (Greece); Mitrakas, Manassis, E-mail: manasis@eng.auth.gr [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece)

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn{sub 6}O{sub 4}(OH){sub 4}) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn{sub 6}O{sub 4}(OH){sub 4} for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn{sub 6}O{sub 4}(OH){sub 4} can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH){sub 3} precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO{sub 2}, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ({sup 2}C) and monodentate ({sup 1}V) geometries, at the expense of the present bidentate mononuclear ({sup 2}E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn{sub 6}O{sub 4}(OH){sub 4} in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the {sup 2}C and {sup 1}V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn{sub 6}O{sub 4}(OH){sub 4} • Sn{sub 6}O{sub 4}(OH){sub 4} transformation to SnO{sub 2} after Cr

  7. Experimental evaluation of ability of Relap5, Drako, Flowmaster2TM and program using unsteady wall friction model to calculate water hammer loadings on pipelines

    International Nuclear Information System (INIS)

    Marcinkiewicz, Jerzy; Adamowski, Adam; Lewandowski, Mariusz

    2008-01-01

    Mechanical loadings on pipe systems caused by water hammer (hydraulic transients) belong to the most important and most difficult to calculate design loadings in nuclear power plants. The most common procedure in Sweden is to calculate the water hammer loadings on pipe segments, according to the classical one-dimensional (1D) theory of liquid transient flow in a pipeline, and then transfer the results to strength analyses of pipeline structure. This procedure assumes that there is quasi-steady respond of the pipeline structure to pressure surges-no dynamic interaction between the fluid and the pipeline construction. The hydraulic loadings are calculated with 1D so-called 'network' programs. Commonly used in Sweden are Relap5, Drako and Flowmaster2-all using quasi-steady wall friction model. As a third party accredited inspection body Inspecta Nuclear AB reviews calculations of water hammer loadings. The presented work shall be seen as an attempt to illustrate ability of Relap5, Flowmaster2 and Drako programs to calculate the water hammer loadings. A special attention was paid to using of Relap5 for calculation of water hammer pressure surges and forces (including some aspects of influence of Courant number on the calculation results) and also the importance of considering the dynamic (or unsteady) friction models. The calculations are compared with experimental results. The experiments have been conducted at a test rig designed and constructed at the Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk, Poland. The analyses show quite small differences between pressures and forces calculated with Relap5, Flowmaster2 and Drako (the differences regard mainly damping of pressure waves). The comparison of calculated and measured pressures and also a force acting on a pre-defined pipe segment shows significant differences. It is shown that the differences can be reduced by using unsteady friction models in calculations

  8. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  9. Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells.

    Science.gov (United States)

    Itoh, Tomohiro; Umekawa, Hayato; Furuichi, Yukio

    2005-03-01

    The 40% ethanol eluent of the fraction of hot-water extract from adzuki beans (EtEx.40) adsorbed onto DIAION HP-20 resin has many biological activities, for example, antioxidant, antitumorigenesis, and intestinal alpha-glucosidase suppressing activities. This study examined the inhibitory effect of EtEx.40 on experimental lung metastasis and the invasion of B16-BL6 melanoma cells. EtEx.40 was found significantly to reduce the number of tumor colonies. It also inhibited the adhesion and migration of B16-BL6 melanoma cells into extracellular matrix components and their invasion into reconstituted basement membrane (matrigel) without affecting cell proliferation in vitro. These in vivo data suggest that EtEx.40 possesses a strong antimetastatic ability, which might be a lead compound in functional food development.

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... uptake measurements are obtained at different times. For example, you may have uptake measurements at four to ... medicine procedures can be time consuming. It can take several hours to days for the radiotracer to ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. It is a measurement of ... potential to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... known as a thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. ... eating can affect the accuracy of the uptake measurement. Jewelry and other metallic accessories should be left ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  17. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  18. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Tilbrook, Bronte

    2007-01-01

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 30 0 S to 50 0 S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing

  19. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  20. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  1. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles; Sulaimani, Anwar Ali; El Yagoubi, Jalal; Mulle, Matthieu; Verdu, Jacques

    2017-01-01

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes

  2. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  3. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  4. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture.

    Science.gov (United States)

    Voogt, Wim; Holwerda, Harmen T; Khodabaks, Rashied

    2010-04-15

    Iodine is an essential trace element for humans. Two billion individuals have insufficient iodine intake. Biofortification of vegetables with iodine offers an excellent opportunity to increase iodine intake by humans. The main aim was to study the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce, grown in water culture. In both a winter and summer trial, dose rates of 0, 13, 39, 65, and 90 or 129 microg iodine L(-1), applied as iodate (IO(3)(-)) or iodide (I(-)), did not affect plant biomass, produce quality or water uptake. Increases in iodine concentration significantly enhanced iodine content in the plant. Iodine contents in plant tissue were up to five times higher with I(-) than with IO(3)(-). Iodine was mainly distributed to the outer leaves. The highest iodide dose rates in both trials resulted in 653 and 764 microg iodine kg(-1) total leaf fresh weight. Biofortification of lettuce with iodine is easily applicable in a hydroponic growing system, both with I(-) and IO(3)(-). I(-) was more effective than IO(3)(-). Fifty grams of iodine-biofortified lettuce would provide, respectively, 22% and 25% of the recommended daily allowance of iodine for adolescents and adults. (c) 2010 Society of Chemical Industry.

  5. FDG uptake in the stomach

    International Nuclear Information System (INIS)

    Yun, M. J.; Cho, H. J.; Cho, E. H.; Kim, T. S.; Kang, W. J.; Lee, J. D.

    2007-01-01

    This study was performed to evaluate histopathologic features of advanced gastric cancer (AGC) to predict FDG uptake on PET. 153 patients(102 men; mean age, 55 y) were diagnosed with AGC by surgery were included in this study. PET images were evaluated by visual and semi-quantitative analysis of FDG uptake in primary tumors. Primary tumors size were measured and divided according to Borrmann classification. Tumor histology was classified under WHO classification, depth of invasion and Iymphovascular invasion. The tumors were also grouped by high cellular(cellularity = 50%) and low cellular group (<50%). Microscopic growth type was based on Lauren classification. Stromal fibrosis degree and inflammatory cell infiltration amount was graded as low(none∼mild), or high(moderate∼severe). Lymph node metastases was assessed in all patients. Statistical analyses were performed to evaluate differences in SUV as to histopathologic factors. Of the 153 patients, 21 patients(14%) had primary tumor invisible on initial whole body images. After water ingestion, the tumors became visible in 15 of the 21 patients due to disappearance of physiologic stomach uptake. Polypoid or ulcerofungating tumors, high cellularity, intestinal growth pattern, and larger tumors significantly predicted increased tumor SUVs. Well or moderately differentiated adenocarcinoma tended to show high cellularity and intestinal growth pattern. Poorly differentiated adenocarcinoma had diverse spectrum of histopathology. Signet ring cell carcinomas were mostly ulceroinfiltrative or diffusely infiltrative in macroscopic type and diffuse in microscopic tumor growth. Mucinous adenocarcinomas were mostly low in cellularity. FDG uptake patterns are useful in representing histopathologic characteristics of the entire tumor in gastric cancers. The degree of FDG uptake depends on tumor size, macroscopic type, cellularity, and microscopic growth pattern and it shows no association with well known important prognostic

  6. Heavy metals and their radionuclides uptake by Bacillus Licheniformis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Ahmed, M.M.; Abo-state, M.A.M.; Sarhan, M.; Faroqe, M.

    2007-01-01

    Bacillus licheniformis is a gram positive spore forming bacterium. Different concentrations of cobalt affected the ability of Co uptake and growth of Bacillus licheniformis. As the concentration increased, both the uptake and growth were decreased. Maximum Co uptake was found at ph 7.0, while for growth was ph 8.0. The optimum temperature for uptake and growth was 40 degree C and 20% inoculum size represents the maximum cobalt uptake by Bacillus licheniformis. Also, maximum uptake was recorded after 72 hours, incubation period. As the concentration of cesium was increased till 400 mg/l, the uptake was also increased. The optimum cesium uptake and growth was at ph 8.0. The optimum growth was at 45 degree C while Cs uptake was found at 35 degree C and 15% inoculum size represented the maximum Cs uptake. After 72 hour incubation period, maximum Cs uptake was recorded. Generally, Bacillus licheniformis removed more than 80% of Co and 50% of Cs from the broth medium. Addition of clay to Bacillus licheniformis increased both Co or Cs uptake. Bacillus licheniformis was gamma resistant and 10 KGy reduced the viability by 5.3 log cycles. The irradiated and non-irradiated cultures can grow on 500 or 700 mg Co or Cs. Bacillus licheniformis removed 99.32% of the Co radionuclides and 99.28% of Cs radionuclides

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  9. Uptake kinetics of arsenic by lettuce cultivars under hydroponics ...

    African Journals Online (AJOL)

    Arsenic (As) uptake ability based on kinetic parameters by two lettuce cultivars; Sijibaiye (SJBY) and Texuanyanlingsun (TXYLS) was investigated in nutrient solution containing eight levels of arsenic (As). Depletion of As from solution was monitored over a period of 24 h at regular time to estimate As uptake kinetics of the ...

  10. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    Science.gov (United States)

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  11. Identification of durum wheat genotypes with efficiency on the uptake and Use of water using Carbon-13 discrimination and neutron moisture meter

    International Nuclear Information System (INIS)

    Mechergui, M.; Daaloul, A.; Snane, M.H.

    1995-01-01

    Carbon-13 isotope discrimination method and water balance model Using neutron probe are the two tools used in this study to genotypes for water use efficiency. It is a three years experiment and the results presented will be for the last year. Four durum wheat Cvs were selected and planted in a randomnized block design with 6 replicates. Total consumption of water was calculated. Grain and strow yields and other parameters were recorded. The carbon isotope ratio which illustrates carbon 13 dicrimination is measured for each genotype in grain and strow. The total and the grain water use efficiency were calculated and correlated to the G C-13 isotope dicrimination to compare genotypes between them. The main results presented in this paper revealed that. Carbon-13 discrimination technique is an excellent screening technique for screening for water use in cultivars in semi-arid conditions. 2 fig., 3 tabs

  12. Identification of durum wheat genotypes with efficiency on the uptake and Use of water using Carbon-13 discrimination and neutron moisture meter

    Energy Technology Data Exchange (ETDEWEB)

    Mechergui, M; Daaloul, A [Institut National Agronomique de Tunisie, 43, Avenue Charles Nicolle - 1082 Tunis Mahrajene - (Tunisia); Snane, M H [Institut National Agronomique de (Tunisia)

    1995-10-01

    Carbon-13 isotope discrimination method and water balance model Using neutron probe are the two tools used in this study to genotypes for water use efficiency. It is a three years experiment and the results presented will be for the last year. Four durum wheat Cvs were selected and planted in a randomnized block design with 6 replicates. Total consumption of water was calculated. Grain and strow yields and other parameters were recorded. The carbon isotope ratio which illustrates carbon 13 dicrimination is measured for each genotype in grain and strow. The total and the grain water use efficiency were calculated and correlated to the G C-13 isotope dicrimination to compare genotypes between them. The main results presented in this paper revealed that. Carbon-13 discrimination technique is an excellent screening technique for screening for water use in cultivars in semi-arid conditions. 2 fig., 3 tabs.

  13. The Uptake by Plants of Diethylstilboestrol and of Its Glucuronide

    DEFF Research Database (Denmark)

    Gregers Hansen, B.

    1964-01-01

    The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments. It is con......The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments...

  14. Toma, transporte y metabolismo del agua y nutrientes en la planta Water and minerals uptake, transport and metabolism in the plants

    Directory of Open Access Journals (Sweden)

    Arjona Díaz Harvey

    1996-12-01

    Full Text Available Desde el punto de vista de la termodinámica, sistema es una región de espacio o cantidad de materia sobre la cual enfocamos nuestra atención. Los sistemas interactúan entre sí. El potencial hídrico de cualquier sistema o parte de un sistema que contiene agua o que puede contener agua es una medida de la máxima energía del agua en el sistema, disponible para hacer trabajo. EI agua en el sistema suelo-planta-atmosfera se mueve siguiendo un gradiente de potencial hídrico, el cual es mayor en el suelo y menor en la atmosfera. Los minerales absorbidos de la solución del suelo por la raíz siguen esta corriente, llamada corriente transpiratoria.

    From the thermodynamic point of view, a system is a region of space or quantity of matter on which we focus our attention. Systems interact among themselves. The water potential of any system or part of a system that contains water, or could contain water, is a measure of the maximum energy of the water In the system available to do work. Water in the soil-plant-atmosphere-system moves following a water potential gradient which is greater in the soil and lower in the atmosphere. Minerals absorved by the roots  in the soil solution follow this water stream, which is called the transpiration stream.

  15. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    Science.gov (United States)

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information about your thyroid’s size, shape, position and function that is often unattainable using other imaging procedures. ... thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. Nuclear medicine is ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... When radiotracer is taken by mouth, in either liquid or capsule form, it is typically swallowed up ... radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... RAIU) is also known as a thyroid uptake. It is a measurement of thyroid function, but does ... they offer the potential to identify disease in its earliest stages as well as a patient’s immediate ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... its radioactivity over time. It may also pass out of your body through your urine or stool ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... procedures within the last two months that used iodine-based contrast material. Your doctor will instruct you ... a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a ...

  10. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure (TROPLVL-(vegetation)), and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs.

  11. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    International Nuclear Information System (INIS)

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure [TROPLVL-(vegetation)], and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs

  12. Uptake of intact TPGS (d-alpha-tocopheryl polyethylene glycol 1000 succinate) a water-miscible form of vitamin E by human cells in vitro

    International Nuclear Information System (INIS)

    Traber, M.G.; Thellman, C.A.; Rindler, M.J.; Kayden, H.J.

    1988-01-01

    The mechanism by which TPGS (alpha-tocopheryl succinate esterified to polyethylene glycol 1000 [PEG 1000]) delivers tocopherol (vitamin E) was studied in human fibroblasts and erythrocytes and a human intestinal cell line, Caco-2. The total cellular tocopherol content of saponified samples of fibroblasts or Caco-2 incubated for 4 h with TPGS (4 mumol/L) increased 10-fold without an increase in the free tocopherol content of nonsaponified samples. A 24-h incubation resulted in a free tocopherol content of approximately 20%, suggesting that intracellular hydrolysis of ester bonds had occurred. The increase in total tocopherol content after a 4-h incubation with TPGS was temperature dependent; no change was measurable at 4 degrees C. Addition of metabolic inhibitors during incubation with TPGS at 37 degrees C did not prevent the increase. [ 14 C]TPGS (synthesized from [ 14 C]PEG 1000) was taken up by Caco-2 cells but [ 14 C]PEG 1000 was not. The intracellular total tocopherol (pmol) equaled the [ 14 C]TPGS (pmol), unequivocally demonstrating uptake of the intact TPGS molecule

  13. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells

    Directory of Open Access Journals (Sweden)

    Alexis L. Mraz

    2018-01-01

    Full Text Available Legionella pneumophila (L. pneumophila is an infectious disease agent of increasing concern due to its ability to cause Legionnaires’ Disease, a severe community pneumonia, and the difficulty in controlling it within water systems. L. pneumophila thrives within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from disinfectants and other environmental stressors. While there is a great deal of information regarding how L. pneumophila interacts with protozoa and human macrophages (host for human infection, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. The lifecycle of L. pneumophila within host cells involves three processes: uptake, growth, and egression from the host cell. The complexity of these three processes would risk conflation of the concepts; therefore, this review details the available information regarding how L. pneumophila invades host cells (uptake within the context of data needed to model this process, while a second review will focus on growth and egression. The overall intent of both reviews is to detail how the steps in L. pneumophila’s lifecycle in drinking water systems affect human infectivity, as opposed to detailing just its growth and persistence in drinking water systems.

  14. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Patrick, P.H.

    1985-06-01

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  15. Water uptake of trees in a montane forest catchment and the geomorphological potential of root growth in Boulder Creek Critical Zone Observatory, Rocky Mountains, Colorado

    Science.gov (United States)

    Skeets, B.; Barnard, H. R.; Byers, A.

    2011-12-01

    The influence of vegetation on the hydrological cycle and the possible effect of roots in geomorphological processes are poorly understood. Gordon Gulch watershed in the Front Range of the Rocky Mountains, Colorado, is a montane climate ecosystem of the Boulder Creek Critical Zone Observatory whose study adds to the database of ecohydrological work in different climates. This work sought to identify the sources of water used by different tree species and to determine how trees growing in rock outcrops may contribute to the fracturing and weathering of rock. Stable isotopes (18O and 2H) were analyzed from water extracted from soil and xylem samples. Pinus ponderosa on the south-facing slope consumes water from deeper depths during dry periods and uses newly rain-saturated soils, after rainfall events. Pinus contorta on the north -facing slope shows a similar, expected response in water consumption, before and after rain. Two trees (Pinus ponderosa) growing within rock outcrops demonstrate water use from cracks replenished by new rains. An underexplored question in geomorphology is whether tree roots growing in rock outcrops contribute to long-term geomorphological processes by physically deteriorating the bedrock. The dominant roots of measured trees contributed approximately 30 - 80% of total water use, seen especially after rainfall events. Preliminary analysis of root growth rings indicates that root growth is capable of expanding rock outcrop fractures at an approximate rate of 0.6 - 1.0 mm per year. These results demonstrate the significant role roots play in tree physiological processes and in bedrock deterioration.

  16. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    Science.gov (United States)

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-01-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by

  17. Water absorption enhances the uptake of mannitol and decreases Cr-EDTA/mannitol permeability ratios in cat small intestine in situ

    NARCIS (Netherlands)

    Bijlsma, P. B.; Fihn, B. M.; Sjöqvist, A.; Groot, J. A.; Taminiau, J. A. J. M.; Jodal, M.

    2002-01-01

    Background: Recently, we hypothesized that mannitol absorption in human intestinal permeability tests is a reflection of small intestinal water absorption and is dependent mainly on the efficiency of the countercurrent multiplier in the villi. This may affect the outcome of clinical double-sugar

  18. Uptake of cadmium from hydroponic solutions by willows (Salix spp ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2011-11-16

    Nov 16, 2011 ... which indicated that cadmium uptake across the plasma membrane was ... to cadmium pollution in water-soil-plant systems because .... plants were separated into roots and shoots, blotted dry with paper tissue .... Analysis of the kinetic constants for cadmium uptake ..... proteins (Welch and Norvell, 1999).

  19. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  20. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Science.gov (United States)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  1. The policy implications of urban open space commercial vegetable farmers' willingness and ability to pay for reclaimed water for irrigation in Kumasi, Ghana

    DEFF Research Database (Denmark)

    Amponsah, Owusu; Vigre, Håkan; Braimah, Imoro

    2016-01-01

    The acute waste management problems, coupled with the proliferation of small scale industries in many developing countries, make low quality water treatment before use inevitable in the long run. These industries have the potential to discharge effluent containing chemicals and heavy metals...... that all the farmers would be capable of paying for reclaimed water at a price of US$0.11/m3. This has implications for land tenure security and vegetable consumers' willingness to pay higher prices for the produce....

  2. Thyroid uptake software

    International Nuclear Information System (INIS)

    Alonso, Dolores; Arista, Eduardo

    2003-01-01

    The DETEC-PC software was developed as a complement to a measurement system (hardware) able to perform Iodine Thyroid Uptake studies. The software was designed according to the principles of Object oriented programming using C++ language. The software automatically fixes spectrometric measurement parameters and besides patient measurement also performs statistical analysis of a batch of samples. It possesses a PARADOX database with all information of measured patients and a help system with the system options and medical concepts related to the thyroid uptake study

  3. A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants.

    Science.gov (United States)

    Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2016-11-01

    The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Are parents just treading water? The impact of participation in swim lessons on parents' judgments of children's drowning risk, swimming ability, and supervision needs.

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Schwebel, David C; Hagel, Brent

    2013-01-01

    Drowning is a leading cause of child mortality globally. Strategies that have been suggested to reduce pediatric drowning risk include increased parental awareness of children's swimming ability and drowning risk, improved adult supervision of child swimmers, and providing swim lessons to children. This study explored how parents' beliefs relevant to children's drowning risk, perception of children's swimming ability, and judgments of supervision needs changed as children aged two through 5 years accumulated experience in swim lessons, and compared a parent group who received regular, detailed feedback about their child's swim skills with one that did not. Parents completed questionnaire measures near the beginning and end of a series of 10 weekly swim lessons. Results revealed that parental accuracy in judging children's swimming abilities remained relatively poor even though it improved from the beginning to the end of the swim lessons. Supervision needs were underestimated and did not vary with program or change over the course of swim lessons. Children's ability to keep themselves from drowning was overestimated and did not change over lessons or vary with program; parents believed that children could save themselves from drowning by the age of 6.21 years. Parents who had experienced a close call for drowning showed greater awareness of children's drowning risk and endorsed more watchful and proximal supervision. Results suggest that expanding learn-to-swim programs to include a parent-focused component that provides detailed tracking of swim skills and delivers messaging targeting perceptions of children's drowning risk and supervision needs may serve to maximize the drowning protection afforded by these programs. Delivering messaging in the form of 'close-call' drowning stories may prove especially effective to impact parents' supervision practices in drowning risk situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ignacio Boron

    2015-07-01

    Full Text Available Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O2 and •ŸNO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels interrupted by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify Ÿ•NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, Ÿ•NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations affect both the tunnels accessibility as well as the affinity of distal site water molecules, thus modifying the ligand access to the iron. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.

  6. Testing the behaviour of different kinetic models for uptake/release of radionuclides between water and sediments when implemented in a marine dispersion model

    International Nuclear Information System (INIS)

    Perianez, R.

    2004-01-01

    Three kinetic models for adsorption/release of 137 Cs between water and sediments have been tested when they are included in a previously validated dispersion model of the English Channel. Radionuclides are released to the Channel from La Hague nuclear fuel reprocessing plant (France). The kinetic models are a 1-step model consisting of a single reversible reaction, a 2-step model consisting of two consecutive reversible reactions and an irreversible model consisting of three parallel reactions: two reversible and one irreversible. The models have been tested under three typical situations that correspond to the source terms that can generally be found: instantaneous release, continuous release and redissolution of radionuclides from contaminated sediments. Differences between the models become more evident when contact times between water and sediments are larger (continuous release) and in the case of redissolution from sediments. Time scales for the redissolution process are rather different between the three models. The 1-step model produces a redissolution that is too fast when compared with experimental evidence. The irreversible model requires that saturation effects of the irreversible phase are included. Probably, the 2-step model represents the best compromise between ease and level of detail of the description of sorption/release processes

  7. Pigmentation, anesthesia, behavioral factors, and salicylate uptake.

    Science.gov (United States)

    Jastreboff, P J; Issing, W; Brennan, J F; Sasaki, C T

    1988-02-01

    In four experiments, 54 pigmented rats were used to examine the time course of sodium salicylate uptake in serum, cerebrospinal fluid, and perilymph. Subjects were tested under sodium pentobarbital anesthesia or while conscious. Compared with previously reported data from albino rats, pigmented subjects generally showed increased salicylate uptake. Moreover, the data suggested two different, time-dependent clearance mechanisms in conscious animals not observed in anesthetized rats. Daily injections of salicylate did not produce an accumulation of salicylate in serum. Systematically higher levels of salicylate were observed in perilymph compared with cerebrospinal fluid. Behavioral procedures, including water deprivation and conditioned suppression of ongoing drinking levels, had no effect on salicylate levels.

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information. The thyroid scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is a gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body ...

  10. Radioactive uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Horak, O

    1986-01-01

    The fundamentals of radionuclide uptake by plants, both by leaves and roots are presented. Iodine, cesium, strontium and ruthenium are considered and a table of the measured concentrations in several agricultural plants shortly after the Chernobyl accident is presented. Another table gives the Cs and Sr transfer factors soil plants for some plants. By using them estimates of future burden can be obtained.

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... of a typical probe counter used for thyroid uptake exams. The patient sits with the camera directed at the neck for five minutes, and then the leg for ...

  12. Thyroid Scan and Uptake

    Science.gov (United States)

    ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... of a typical probe counter used for thyroid uptake exams. The patient sits with the camera directed at the neck for five minutes, and then the leg for ...

  13. Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation

    International Nuclear Information System (INIS)

    Zhang Jianhua; Wang Naiyan; Zhang Fengshou

    2012-01-01

    Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N + into Taikonglian No.1, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.1, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.

  14. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  15. Electronic and Spatial Structures of Water-Soluble Dinitrosyl Iron Complexes with Thiol-Containing Ligands Underlying Their Ability to Act as Nitric Oxide and Nitrosonium Ion Donors

    OpenAIRE

    Vanin, Anatoly F.; Burbaev, Dosymzhan Sh.

    2011-01-01

    The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe+(NO+)2] core ({Fe(NO)2}7 according to the Enemark-Feltham classification). Similarly, the {(RS−)2Fe+(NO+)2}+ structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d7 electron configuration of the iron atom and predomin...

  16. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  17. UV-radiation induced changes in antibiotic markers, chemical composition of water soluble polysaccharides and nodulation ability of Rhizobium trifolic 11B

    International Nuclear Information System (INIS)

    Ghai, Jyotsna; Ghai, S.K.; Kalra, M.S.

    1983-01-01

    Rhizobium trifolii 11B, which formed effective nodules on its host. Trifolium alexanderinum L. was UV-irradiated to isolate mutants. Out of the 9 variants isolated only 1 strain, viz. 21M11B produced more water soluble polysaccharide [752 mg (100 ml -1 )] than the parent 15 different antibiotics was similar only in two (22M11B and 26M11B) of the 9 UV-mutants. Compositional studies revealed that the water soluble polysaccharides from all strains contained glucose and galactose in the molar ratio of 7:1. Glucuronic acid which was present (2.33 per cent) in the water soluble polysaccharide from strain 11B was absent in all but 2UV-mutants (4.22per cent in 6M11B and 4.04per cent