WorldWideScience

Sample records for water tunnels test facilities

  1. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  2. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  3. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  4. Design and Testing of an Educational Water Tunnel

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    A new water tunnel is designed and tested for educational and research purposes at Northern Arizona University. The university currently owns an educational wind tunnel with a test section of 12in X 12in X 24in. However, due to limited size of test section and range of Reynolds numbers, its application is currently limited to very few experiments. In an effort to expand the educational and research capabilities, a student team is tasked to design, build and test a water tunnel as a Capstone Senior Design project. The water tunnel is designed to have a test section of 8in X 8in X 36in. and be able to test up to Re = 50E3. Multiple numerical models are used to optimize the flow field inside the test section before building the physical apparatus. The water tunnel is designed to accommodate multiple experiments for drag and lift studies. The built-in die system can deliver up to three different colors to study the streamlines and vortex shedding from the surfaces. During the first phase, a low discharge pump is used to achieve Re = 4E3 to test laminar flows. In the second phase, a high discharge pump will be used to achieve targeted Re = 50E3 to study turbulent flows.

  5. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  6. The use of wind tunnel facilities to estimate hydrodynamic data

    Science.gov (United States)

    Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale

    2016-03-01

    Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  7. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  8. Design and Development of Low-Cost Water Tunnel for Educational Purpose

    Science.gov (United States)

    Zahari, M.; Dol, S. S.

    2015-04-01

    The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.

  9. Design of a High-Reynolds Number Recirculating Water Tunnel

    Science.gov (United States)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  10. Validation of a wind tunnel testing facility for blade surface pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Antoniou, I.; Soerensen, N.N.; Madsen, H.A.

    1998-04-01

    This report concerns development and validation of a 2d testing facility for airfoil pressure measurements. The VELUX open jet wind tunnel was used with a test stand inserted. Reynolds numbers until 1.3 million were achieved with an airfoil chord of 0.45 m. The aerodynamic load coefficients were found from pressure distribution measurements and the total drag coefficient was calculated from wake rake measurements. Stationary inflow as well as dynamic inflow through pitching motion was possible. Wind tunnel corrections were applied for streamline curvature and down-wash. Even though the wind tunnel is not ideal for 2d testing, the overall quality of the flow was acceptable with a uniform flow field at the test stand position and a turbulence intensity of 1 % at the inlet of the test section. Reference values for free stream static and total pressure were found upstream of the test stand. The NACA 63-215 airfoil was tested and the results were compared with measurements from FFA and NACA. The measurements agreed well except for lift coefficient values at high angles of attack and the drag coefficient values at low angles of attack, that were slightly high. Comparisons of the measured results with numerical predictions from the XFOIL code and the EllipSys2D code showed good agreement. Measurements with the airfoil in pitching motion were carried out to study the dynamic aerodynamic coefficients. Steady inflow measurements at high angles of attack were used to investigate the double stall phenomenon. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 82 ills., 16 refs.

  11. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01

    correctly image the tunnel. This report represents a preliminary step in the development of a methodology to convert numerical predictions of rock properties to an estimation of the extent of rock damage around an underground facility and its corresponding seismic velocity, and the corresponding application to design a testing methodology for tunnel detection.

  12. Reactivation of the Shock-Tunnel Facility at Fort Cronkhite. Final report

    International Nuclear Information System (INIS)

    1982-05-01

    This final report describes the results of work undertaken to reactivate the Shock Tunnel Facility at Battery Townsley, Fort Cronkhite, Marin County, California. The facility has been reactivated and can not be utilized for blast testing. The major emphasis will be testing of concepts pertaining to programs of interest to the Federal Emergency Management Agency (FEMA) and in particular to civil defense oriented research. However, a wide variety of testing requirements can be accommodated. For example, past programs at the facility have included: tests of debris from trees subjected to blast for Bell Telephone Laboratories; tests of the response of aluminum hull panels to blast loading and of the response of a model surface effects ship for the Naval Ship Research and Development center, and tests of the response of a radome prototype to blast loading conducted for ANCOM (the radome manufacturer). The Shock Tunnel Facility is located in a former coastal defense 16-inch gun emplacement constructed by the US Army beginning in 1938. It was converted in 1967 to serve as a facility for full-scale testing of the loading and response of structural elements and civil defense equipment. It remained in operation until November 1976 when Battery Townsley was turned over to the National Park Service. Work under the present purchase order consisted of the following major tasks: (I) cleanup and secure the facility, (II) reactivate the shock tunnel, and (III) design permanent facility improvements

  13. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  14. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  15. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  16. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    International Nuclear Information System (INIS)

    Dixon, D.; Jonsson, E.; Hansen, J.; Hedin, M.; Ramqvist, G.

    2011-04-01

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  17. Buffet test in the National Transonic Facility

    Science.gov (United States)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  18. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: (1) Removing and disposing of a shack and its contents; (2) Disposing of debris from within the shack and in the vicinity of the tunnel entrance; (3) Verifying that the tunnel is empty; (4) Welding screened covers over tunnel vent holes to limit access and allow ventilation; and (5) Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  19. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  20. Sodium-water reaction test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi

    1976-01-01

    In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)

  1. Wind tunnel test of musi VI bridge

    Science.gov (United States)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  2. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    Science.gov (United States)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  3. Low Speed Wind Tunnel Facility (LSWTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility consists of a large-scale, low-speed open-loop induction wind tunnel which has been modified to house a linear turbine cascade. A 125-hp...

  4. An apparatus to estimate the hydrodynamic coefficients of autonomous underwater vehicles using water tunnel testing.

    Science.gov (United States)

    Nouri, N M; Mostafapour, K; Bahadori, R

    2016-06-01

    Hydrodynamic coefficients or hydrodynamic derivatives of autonomous underwater vehicles (AUVs) play an important role in their development and maneuverability. The most popular way of estimating their coefficients is to implement captive model tests such as straight line tests and planar motion mechanism (PMM) tests in the towing tanks. This paper aims to develop an apparatus based on planar experiments of water tunnel in order to estimate hydrodynamic derivatives due to AUVs' acceleration and velocity. The capability of implementing straight line tests and PMM ones using mechanical oscillators located in the downstream flow of the model is considered in the design procedure of the system. The hydrodynamic derivatives that resulted from the acceleration and velocity of the AUV model were estimated using the apparatus that we developed. Static and dynamics test results were compared for the similar derivatives. The findings showed that the system provided the basis for conducting static tests, i.e., straight-line and dynamic tests that included pure pitch and pure heave. By conducting such tests in a water tunnel, we were able to eliminate errors related to the time limitation of the tests and the effects of surface waves in the towing tank on AUVs with applications in the deep sea.

  5. Test of prototype liquid-water-content meter for aircraft use

    Science.gov (United States)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  6. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  7. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  8. Synthesis of Cation and Water Free Cryptomelane Type OMS-2 Cathode Materials: The Impact of Tunnel Water on Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Poyraz, Altug S.; Huang, Jianping; Zhang, Bingjie; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2017-01-01

    Cryptomelane type manganese dioxides (α-MnO2, OMS-2) are interesting potential cathode materials due to the ability of their one dimensional (1D) tunnels to reversibly host various cations including Li+and an accessible stable 3+/4+ redox couple. Here, we synthesized metal cation free OMS-2 materials where the tunnels were occupied by only water and hydronium ions. Water was subsequently removed from the tunnels. Cation free OMS-2 and Dry-OMS-2 were used as cathodes in Li based batteries to investigate the role of tunnel water on their electrochemistry. The initial discharge capacity was higher for Dry-OMS-2 (252 mAh/g) compared to OMS-2 (194 mAh/g), however, after 100 cycles Dry-OMS-2 and OMS-2 delivered 137 mAh/g and 134 mAh/g, respectively. Li+ion diffusion was more facile for Dry-OMS as evidenced by rate capability, at 400 mA/g. Dry-OMS-2 delivered 135mAh/g whereas OMS-2 delivered ~115 mAh/g. This first report of the impact of tunnel water on the electrochemistry of OMS-2 type materials demonstrates that the presence of tunnel water in OMS-2 type materials negatively impacts the electrochemistry.

  9. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  10. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  11. Aerodynamic and related hydrodynamic studies using water facilities

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Related problems, experiences and advancements in aeronautical and maritime fluid dynamics through the use of water facilities are reviewed. In recent years there has been an increasing use of water facilities for aerodynamic investigations. These include water tunnels, towing channels, and stationary tanks. Examples include basic research problems as well as flow fields around fighter aircraft, inlet flows, recirculation flow patterns associated with VTOL, ramjet simulation, etc., and, in general, 3-D flows with vortices or separated regimes as prominent features. The Symposium was organized to provide an appropriate forum for the exchange of information within the aeronautical and maritime fluid dynamics community.

  12. Test facility for fast gas injections into a vessel filled with water

    International Nuclear Information System (INIS)

    Wilhelm, D.; Kirstahler, M.

    1987-11-01

    The Fast Gas Injection Facility (SGI) was set up to study the hydrodynamics during the expansion of a gas bubble into a vessel filled with water. The gas stored in a pressure vessel expands against gravity through a circular duct into a large cylindrical vessel partly with water. This report covers the description of the test facility and the data acquisition. Results of the first test series are added. (orig.) [de

  13. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  14. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  15. Tests to determine water uptake behaviour of tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Anttila, S.; Viitanen, M. (Poeyry InfRa Oy (Finland)); Keto, Paula (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-12-15

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it

  16. Tests to determine water uptake behaviour of tunnel backfill

    International Nuclear Information System (INIS)

    Dixon, David; Anttila, S.; Viitanen, M.; Keto, Paula

    2008-12-01

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it is

  17. Shock-tunnel combustor testing for hypersonic vehicles

    Science.gov (United States)

    Loomis, Mark P.

    1994-01-01

    Proposed configurations for the next generation of transatmospheric vehicles will rely on air breathing propulsion systems during all or part of their mission. At flight Mach numbers greater than about 7 these engines will operate in the supersonic combustion ramjet mode (scramjet). Ground testing of these engine concepts above Mach 8 requires high pressure, high enthalpy facilities such as shock tunnels and expansion tubes. These impulse, or short duration facilities have test times on the order of a millisecond, requiring high speed instrumentation and data systems. One such facility ideally suited for scramjet testing is the NASA-Ames 16-Inch shock tunnel, which over the last two years has completed a series of tests for the NASP (National Aero-Space Plane) program at simulated flight Mach numbers ranging from 12-16. The focus of the experimental programs consisted of a series of classified tests involving a near-full scale hydrogen fueled scramjet combustor model in the semi-free jet method of engine testing whereby the compressed forebody flow ahead of the cowl inlet is reproduced (see appendix A). The AIMHYE-1 (Ames Integrated Modular Hypersonic Engine) test entry for the NASP program was completed in April 1993, while AIMHYE-2 was completed in May 1994. The test entries were regarded as successful, resulting in some of the first data of its kind on the performance of a near full scale scramjet engine at Mach 12-16. The data was distributed to NASP team members for use in design system verification and development. Due to the classified nature of the hardware and data, the data reports resulting from this work are classified and have been published as part of the NASP literature. However, an unclassified AIAA paper resulted from the work and has been included as appendix A. It contains an overview of the test program and a description of some of the important issues.

  18. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  19. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    Science.gov (United States)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  20. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  1. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  2. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    Science.gov (United States)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  3. A 1:8.7 Scale Water Tunnel Verification & Validation Test of an Axial Flow Water Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Arnold A. [Pennsylvania State Univ., University Park, PA (United States); Straka, William A. [Pennsylvania State Univ., University Park, PA (United States); Meyer, Richard S. [Pennsylvania State Univ., University Park, PA (United States); Jonson, Michael L. [Pennsylvania State Univ., University Park, PA (United States)

    2014-09-01

    As interest in waterpower technologies has increased over the last few years, there has been a growing need for a public database of measured data for these devices. This would provide a basic understanding of the technology and means to validate analytic and numerical models. Through collaboration between Sandia National Laboratories, Penn State University Applied Research Laboratory, and University of California, Davis, a new marine hydrokinetic turbine rotor was designed, fabricated at 1:8.7-scale, and experimentally tested to provide an open platform and dataset for further study and development. The water tunnel test of this three-bladed, horizontal-axis rotor recorded power production, blade loading, near-wake characterization, cavitation effects, and noise generation. This report documents the small-scale model test in detail and provides a brief discussion of the rotor design and an initial look at the results with comparison against low-order modeling tools. Detailed geometry and experimental measurements are released to Sandia National Laboratories as a data report addendum.

  4. Investigation of water accumulation in an offgas test facility HEPA housing

    International Nuclear Information System (INIS)

    Speed, D.L.; Burns, D.B.; Van Pelt, W.B.; Burns, H.H.

    1997-01-01

    The Consolidated Incineration Facility, at the Department of Energy's Savannah River Site, is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. During CIF's pretrial burn campaigns in 1995, an appreciable amount of water was recovered from the HEPA housings. Questions were immediately raised as to the source of the water, and the degree of wetness of the filters during operation. There are two primary issues involved: Water could reduce the life expectancy and performance of the HEPA filters, housing, and associated ducting, and wet HEPAs also present radiological concerns for personnel during filter change-out. A similar phenomenon was noted at the Offgas Components Test Facility (OCTF), a 1/10 scale pilot of CIF's air pollution control system. Tests at OCTF indicated the water's most likely origin to be vapor condensing out from the flue gas stream due to excessive air in-leakage at housing door seals, ducting flanges, and actual holes in the ducting. The rate of accumulation bears no statistical correlation to such process parameters as steam flow, reheater outlet temperature and offgas velocity in the duct. Test results also indicated that the HEPA filter media is moistened by the initial process flow while the facility is being brought on line. However, even when the HEPA filters were manually drenched prior to startup, they became completely dry within four hours of the time steam was introduced to the reheater. Finally, no demonstrable relationship was found between the degree of filter media wetness and filter dP

  5. Origin of the water drained by the tunnel Graton

    International Nuclear Information System (INIS)

    Plata B, A.

    1992-12-01

    The research of the origin of the water drained by the Graton tunnel was attempted using isotope techniques. During the period of studies (April 1989-October 1992), four field work was executed to sample waters for chemistry, stable isotope and Tritium analysis, an to inject tracers and verify the possible infiltration from the Rimac and Blanco rivers to the tunnel. The results of the stable isotope analysis show that the water drained by the Graton tunnel comes from a basin around 300 meters above the average altitude of the basin where the Graton is located. The Tritium analysis show that the water is relatively modern. Using the model of total mixing, the residence times of the water drained at the km 0.5 and 2.5 are in the order to 45 years. The conductivities of the water of the tunnel is higher than the Rimac river ones because the influence of mine water. The chemical analysis of the water sampled at the downstream end of the tunnel, show that the conservative ions of the water kept almost constant during more than two years. The results of the work with artificial tracer show that there is no significant leakage from the Rimac and Blanco rivers to the Graton tunnel. So far, it can be concluded as a preliminary approach that the Graton tunnel drains relatively modern water originated in another basin. The hydrodynamics of the area of study seems to include a large storage on underground water in the system. The topography, geology and isotopic composition of the water samples, points to the upper Mantaro river basin as the possible source of part of the water drained by the Graton tunnel. (authors). 20 p. 2 figs., 7 ills., 4 tabs

  6. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  7. COR1 Engineering Test Unit Measurements at the NCAR/HAO Vacuum Tunnel Facility, October-November 2002

    Science.gov (United States)

    Thompson, William

    2002-01-01

    The Engineering Test Unit (ETU) of COR1 was made in two configurations. The first configuration, ETU-1, was for vibration testing, while the second, ETU-2, was for optical testing. This is a report on the optical testing performed on ETU-2 at the NCAR/HAO Vacuum Tunnel Facility during the months of October and November, 2002. This was the same facility used to test the two previous breadboard models. In both configurations, the first two tube sections were complete, with all optical elements aligned. The vibration model ETU-1 had the remaining tube sections attached, with mass models for the remaining optics, for the various mechanisms, and for the focal plane assembly. It was then converted into the optical model ETU-2 by removing tube sections 3 to 5, and mounting the remaining optics on commercial mounts. (The bandpass filter was also installed into tube 2, which had been replaced in ETU-1 by a mass model, so that pre- and post-vibration optical measurements could be made.) Doublet 2 was installed in a Newport LP-2 carrier, and aligned to the other optics in the first two tube sections. The LP-2 adjustment screws were then uralened so that the alignment could be maintained during shipping. Because neither the flight polarizer nor Hollow Core Motor were available, they were simulated by a commercial polarizer and rotational mount, both from Oriel corporation. The Oriel rotational stage was not designed for vacuum use, but it was determined after consultation with the company, and lab testing, that the stage could be used in the moderate vacuum conditions at the NCAR/HAO facility. The shutter and focal plane assembly were simulated with the same camera used for the previous two breadboard tests. The focal plane mask was simulated with a plane of BK7 glass with a mask glued on, using the same procedure as for the Lyot spot on Doublet 1, and mounted in an adjustable LP-2 carrier. Two masks were made, one made to the precise specifications of the optical design, the

  8. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  9. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    Science.gov (United States)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  10. Reflooding phenomena of German PWR estimated from CCTF [Cylindrical Core Test Facility], SCTF [Slab Core Test Facility] and UPTF [Upper Plenum Test Facility] results

    International Nuclear Information System (INIS)

    Murao, Y.; Iguchi, T.; Sugimoto, J.

    1988-09-01

    The reflooding behavior in a PWR with a combined injection type ECCS was studied by comparing the test results from Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF) and Upper Plenum Test Facility (UPTF). Core thermal-hydraulics is discussed mainly based on SCTF test data. In addition, the water accumulation behavior in hot legs and the break-through characteristics at tie plate are discussed

  11. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area

  12. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  13. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  14. Construction and commissioning test report of the CEDM test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K.

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system

  15. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain

  16. Post-test analysis of the experiment 5.2C - total loss of feed water at the BETHSY test facility

    Energy Technology Data Exchange (ETDEWEB)

    Krepper, E; Schaefer, F

    1998-10-01

    The BETHSY-test facility is a 1:100 scaled thermohydraulic model of a 900 MW(el) pressurized water reactor (FRAMATOME). The test facility is mainly designed to investigate various accident scenarios and to provide an experimental data base for code validation and for the verification of accident management measures. (orig.)

  17. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  18. Experimental observation of a multi-dimensional mixing behavior of steam-water flow in the MIDAS test facility

    International Nuclear Information System (INIS)

    Kweon, T. S.; Yun, B. J.; Ah, D. J.; Ju, I. C.; Song, C. H.; Park, J. K.

    2001-01-01

    Multi-dimensional thermal-hydraulic hehavior, such as ECC (Emergency Core Cooling) bypass, ECC penetration, steam-water condensation and accumulated water level, in an annular downcomer of a PWR (Pressurized Water Reactor) reactor vessel with a DVI(Direct Vessel Injection) injection mode is presented based on the experimental observations in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water facility. From the steady-state tests to similate a late reflood phase of LBLOCA (Large Break Loss-of-Coolant Accidents), major thermal-hydraulic phenomena in the downcomer are quantified under a wide range of test conditions. Especially, isothermal lines show well multi-dimensional phenomena of phase interaction between steam and water in the annulus downcomer. Overall test results show that multi-dimensional thermal-hydraulic behaviors occur in the downcomer annulus region as expected. The MIDAS test facility is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of a 1400 MWe PWR type of nuclear reactor, with focusing on understanding multi-dimensional thermal-hydraulic phenomena in annulus downcomer with various types of safety injection location during refill or reflood phase of a LBLOCA in PWR

  19. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  20. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  1. Disposal facility in Olkiluoto, description of above ground facilities in tunnel transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or a by vehicle along the access tunnel. (orig.)

  2. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Science.gov (United States)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  3. Design Development of SMART ECC Water Asymmetric Two-phase choking test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Il; Cho, Seok; Ko, Yung Joo; Shin, Yong Cheol; Kwon, Tae Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    SMART pressurized water reactor type is different from the existing integral NSSS commercial pressurized water reactor system which is equipped with the main features. In addition RCS piping is removed and the feature of the SBLOCA is a major design break accident. The TASS / SMR code is analyzed SMART SBLOCA. In order to verify analysis code, SMART analysis for verification of conservatism is promoting using data for experiments with Integral Effect Test and Separate Effect. In this paper, the design feature of the SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) is described. SWAT is linearly reduced to a 1/5 ratio while the geometrical shape is conserved. In major shape of SMART ECC injection performance test, distortions which caused by gravitational effects are minimized. Because both the emergency core cooling water injection nozzle height and the break nozzle height match the RCP Suction Nozzle height in test section of the main forms. The main part of the test section is SG-side upper down-comer. The boundary conditions are saturated steam and water flow condition and drain flow rate to control the collapsed water level in the down-comer

  4. A solution to water vapor in the National Transonic Facility

    Science.gov (United States)

    Gloss, Blair B.; Bruce, Robert A.

    1989-01-01

    As cryogenic wind tunnels are utilized, problems associated with the low temperature environment are being discovered and solved. Recently, water vapor contamination was discovered in the National Transonic Facility, and the source was shown to be the internal insulation which is a closed-cell polyisocyanurate foam. After an extensive study of the absorptivity characteristics of the NTF thermal insulation, the most practical solution to the problem was shown to be the maintaining of a dry environment in the circuit at all times. Utilizing a high aspect ratio transport model, it was shown that the moisture contamination effects on the supercritical wing pressure distributions were within the accuracy of setting test conditions and as such were considered negligible for this model.

  5. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  6. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  7. Hybrid Wing Body Model Identification Using Forced-Oscillation Water Tunnel Data

    Science.gov (United States)

    Murphy, Patrick C.; Vicroy, Dan D.; Kramer, Brian; Kerho, Michael

    2014-01-01

    Static and dynamic testing of the NASA 0.7 percent scale Hybrid Wing Body (HWB) configuration was conducted in the Rolling Hills Research Corporation water tunnel to investigate aerodynamic behavior over a large range of angle-of-attack and to develop models that can predict aircraft response in nonlinear unsteady flight regimes. This paper reports primarily on the longitudinal axis results. Flow visualization tests were also performed. These tests provide additional static data and new dynamic data that complement tests conducted at NASA Langley 14- by 22-Foot Subsonic Tunnel. HWB was developed to support the NASA Environmentally Responsible Aviation Project goals of lower noise, emissions, and fuel burn. This study also supports the NASA Aviation Safety Program efforts to model and control advanced transport configurations in loss-of-control conditions.

  8. Water Tunnel Studies of Dynamic Wing Flap Effects

    Science.gov (United States)

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WATER TUNNEL...Master’s Thesis 4. TITLE AND SUBTITLE WATER TUNNEL STUDIES OF DYNAMIC WING FLAP EFFECTS 5. FUNDING NUMBERS 6. AUTHOR(S) Edgar E. González 7. PERFORMING...ABSTRACT (maximum 200 words ) The flow features developing over a two-element NACA 0012 airfoil, with the rear portion serving as a trailing edge flap

  9. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    Science.gov (United States)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  10. Wind tunnel tests of a deep seabed penetrator model

    International Nuclear Information System (INIS)

    Visintini, L.; Murray, C.N.

    1991-01-01

    C.C.R. Euratom Ispra are currently involved in studies on the possibility of storing radioactive wastes in deep ocean sediment beds. The report summarizes the results of wind tunnel tests performed in March 1985 on a 1:2.5 scale model of a European Standard Penetrator in Aermacchi low speed wind tunnel. Tests covered the measurement of overall fluid dynamic forces at varying angle of attack and measurement of unsteady pressures acting on the instrumentation head protruding in the penetrator's wake. Overall force coefficients were found to be in good agreement with predictions. Unsteady pressures were found to be much smaller than expected so that no mechanical damage to instrumentation is to be foreseen even at the high dynamic pressures typical of the penetrator moving into water. The present work has been undertaken under contract 2450-84-08 ED ISP I of C.C.R. EURATOM ISPRA

  11. Mechanism of water inrush in tunnel construction in karst area

    Directory of Open Access Journals (Sweden)

    Liping Li

    2016-05-01

    Full Text Available With the rapid developing trend of long, large and deep construction characteristics for underground engineering in the world, China has the largest number of karst tunnels with the wide scales and great difficulties. As the hydrogeological conditions are becoming unprecedentedly complex, water inrush disaster becomes the bottleneck problem for the further development of traffic tunnels. Based on the statistical analysis of a large number of cases of water inrush in karst tunnels, influence factors of water inrush have been put forward from the view of karst hydrogeological factors and engineering disturbance of human factors. Karst hydrogeological factors include geological defect, strata dip, formation lithology, landform and underground level. Human factors of engineering disturbance include excavation and reinforcement geological prediction, monitoring and measurement of surrounding rock. It also introduces some geological disasters caused by the water inrush in tunnel excavation. In terms of the formation of water inrush channel, water inrush types are divided into geological defects inrush, non-geological defects inrush and the combination. Conclusions will be beneficial to further research on hazards control of underground construction.

  12. ANALYSIS OF FACTORS CAUSING WATER DAMAGE TO LOESS DOUBLE-ARCHED TUNNEL BASED ON TFN-AHP

    Directory of Open Access Journals (Sweden)

    Mao Zheng-jun

    2017-04-01

    Full Text Available In order to analysis the factors causing water damage to loess double-arched tunnel, this paper conducts field investigation on water damage to tunnels on Lishi-Jundu Expressway in Shanxi, China, confirms its development characteristics, builds an index system (covering 36 evaluation indexes for construction condition, design stage, construction stage, and operation stage for the factors causing water damage to loess double-arched tunnel, applies TFN-AHP (triangular fuzzy number-analytic hierarchy process in calculating the weight of indexes at different levels, and obtains the final sequence of weight of the factors causing water seepage to loess double-arched tunnel. It is found out that water damage to loess double-arched tunnel always develops in construction joints, expansion joints, settlement joints, and lining joints of tunnel and even around them; there is dotted water seepage, linear water seepage, and planar water seepage according to the trace and scope of water damage to tunnel lining. The result shows that water damage to loess double-arched tunnel mainly refers to linear water seepage, planar water seepage is also developed well, and partition and equipment box at the entrance and exit of tunnel are prone to water seepage; construction stage is crucial for controlling water damage to loess double-arched tunnel, atmospheric precipitation is the main water source, and the structure defect of double-arched tunnel increases the possibility of water seepage; the final sequence for weight of various factors is similar to the actual result.

  13. Performance confirmation operation of water environment control facility

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Tomita, Kenji; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Hanawa, Hiroshi; Kanno, Masaru; Sakuta, Yoshiyuki

    2015-09-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. The material irradiation test facility is used for IASCC study, and consists of mainly three equipments. This report described performance operating test of the water environmental control facilities for IASCC study carried out 2013 fiscal year. (author)

  14. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    Energy Technology Data Exchange (ETDEWEB)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta [Lappeenranta University of Technology, P.O. 20 53851 Lappeenranta (Finland); Sairanen, Risto [Radiation and Nuclear Safety Authority, P.O. 14 00881 Helsinki (Finland)

    2008-07-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  15. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    International Nuclear Information System (INIS)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta; Sairanen, Risto

    2008-01-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  16. East Area Irradiation Test Facility: Preliminary FLUKA calculations

    CERN Document Server

    Lebbos, E; Calviani, M; Gatignon, L; Glaser, M; Moll, M; CERN. Geneva. ATS Department

    2011-01-01

    In the framework of the Radiation to Electronics (R2E) mitigation project, the testing of electronic equipment in a radiation field similar to the one occurring in the LHC tunnel and shielded areas to study its sensitivity to single even upsets (SEU) is one of the main topics. Adequate irradiation test facilities are therefore required, and one installation is under consideration in the framework of the PS East area renovation activity. FLUKA Monte Carlo calculations were performed in order to estimate the radiation field which could be obtained in a mixed field facility using the slowly extracted 24 GeV/c proton beam from the PS. The prompt ambient dose equivalent as well as the equivalent residual dose rate after operation was also studied and results of simulations are presented in this report.

  17. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    Science.gov (United States)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  18. Transfer tunnel transporter system for the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Petty, J.A.; Miller, S.C.; Richards, J.T.

    1981-01-01

    The detail design is complete and fabrication is approximately 75% complete on the Transfer Tunnel Transporter System. This system provides material handling capability for large, bulky equipment between two hot cells in a new Breeder Reactor Program support facility, the Fuels and Materials Examination Facility. One hot cell has an air atmosphere, the other a high purity inert gas atmosphere which must be maintained during transfer operations. System design features, operational capabilities and remote recovery provisions are described

  19. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  20. The PANDA facility and first test results

    International Nuclear Information System (INIS)

    Dreier, J.; Huggenberger, M.; Aubert, C.; Bandurski, T.; Fischer, O.; Healzer, J.; Lomperski, S.; Strassberger, H.J.; Varadi, G.; Yadigaroglu, G.

    1996-01-01

    The PANDA test facility at the Paul Scherrer Institute is used to study the long-term performance of the Simplified Boiling Water Reactor's passive containment cooling system. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensable gases in the system. The facility is in 1:1 vertical scale and 1:25 scale for volume, power etc. Extensive facility characterization tests and steady-state passive containment condenser performance tests are presented. The results of the base case test of a series of transient system behaviour tests are reviewed. The first PANDA tests exhibited reproducibility, and indicated that the Simplified Boiling Water Reactor's containment is likely to be favorably responsive and highly robust to changes in the thermal transport patterns. (orig.) [de

  1. Small-scale tunnel test for blast performance

    International Nuclear Information System (INIS)

    Felts, J E; Lee, R J

    2014-01-01

    The data reported here provide a validation of a small-scale tunnel test as a tool to guide the optimization of new explosives for blast performance in tunnels. The small-scale arrangement consisted of a 2-g booster and 10-g sample mounted at the closed end of a 127 mm diameter by 4.6-m long steel tube with pressure transducers along its length. The three performance characteristics considered were peak pressure, initial energy release, and impulse. The relative performance from five explosives was compared to that from a 1.16-m diameter by 30-m long tunnel that used 2.27-kg samples. The peak pressure values didn't correlate between the tunnels. Partial impulse for the explosives did rank similarly. The initial energy release was determined from a one-dimensional point-source analysis, which nearly tracked with impulse suggesting additional energy released further down the tunnel for some explosives. This test is a viable tool for optimizing compositional variations for blast performance in target scenarios of similar geometry.

  2. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  3. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  4. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  5. Rock mechanical conditions at the Aespoe HRL. A study of the correlation between geology, tunnel maintenance and tunnel shape

    International Nuclear Information System (INIS)

    Andersson, Christer; Soederhaell, Joergen

    2001-12-01

    the horseshoe shaped tunnel TASF at the 450 m level has been compared to the maintenance work in the adjacent TBM tunnel. No maintenance has been performed in the TBM tunnel but TASF have been scaled and bolted several time and was finally shotcreted. The TASF tunnel has some larger areas with Smaaland granite and fine-grained granite. The modelling does not indicate problems due to stress concentrations. It is therefore probable that the granites are rather fractured and therefore needs more scaling. The water flow in the Aespoe HRL is continually monitored. During the first five years of operation the water flow has had an average decrease of approximately 4% per year. The water flow in two other facilities owned by SKB, SFR and CLAB has been monitored for the last 12 years. These two facilities also show a decrease of the water flow of approximately 4% per year

  6. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  7. The Inter Facility Testing of a Standard Oscillating Water Column (OWC) Type Wave Energy Converter (WEC)

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Thomsen, Jonas Bjerg

    This report describes the behavior and preliminary performance of a simplified standard oscillating water column (OWC) wave energy converter (WEC). The same tests will be conducted at different scales at 6 different test facilities and the results obtained will be used for comparison. This project...

  8. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  9. Toward an Integrated Optical Data System for Wind Tunnel Testing

    National Research Council Canada - National Science Library

    Ruyten, Wim

    1999-01-01

    ...) of the test article in a wind tunnel test. The theory for such P&A determinations is developed and applied to data from a recent pressure sensitive paint test in AEDC's 16 ft transonic wind tunnel...

  10. Final environmental assessment for a refinement of the power delivery component of the Southern Nevada Water Authority Treatment and Transmission Facility

    International Nuclear Information System (INIS)

    1998-07-01

    The Southern Nevada Water Authority (SNWA) is designing and constructing a system of regional water supply facilities to meet current and projected water demands and increase system reliability. The existing Southern Nevada Water system is being upgraded with a number of improvements to increase the capacity of the system. However, even the expanded system is expected to be unable to meet projected peak daily water demands by the year 1999. As a result, new facilities are being designed and constructed to operate in conjunction with the upgraded Southern Nevada Water system. These new facilities, known as the Southern Nevada Water Authority Treatment and Transmission Facility (SNWA-TTF), include four primary components: a new raw water intake; new transmission facilities including below ground pipelines, tunnels, and above ground pumping stations; a water treatment facility; and new power supply facilities. Because existing power supplies would not be adequate for the new water treatment facilities, new power facilities, consisting of two new 230 kV-69 kV substations and new 69 and 230 kV power lines, are being constructed. This environmental assessment is specifically on the new power facilities

  11. An automated tunnel evaporation measurement system for confined spaces

    Science.gov (United States)

    Salve, Rohit

    2002-04-01

    An automated tunnel evaporation-rate measurement system (TEMS) has been designed to measure automatically the evaporation from a cylinder 0·30 m in diameter and 0·10 m tall. This cylinder continuously maintains a constant height of water, with losses to evaporation replenished from a stilling cylinder connected to a water reservoir. The evaporation rate is measured by a transducer located at the bottom of the stilling well. The TEMS was tested over a period of 3 months in an underground research facility with relatively strong wind effects, changing temperature, and changing humidity. During this period, the TEMS continued to function uninterrupted, automatically measuring the evaporation amounts along a tunnel and an enclosed niche. These observations suggest that this tool can be useful for investigations of evaporation processes both in enclosed and ventilated environments. Published in 2002 by John Wiley & Sons, Ltd.

  12. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  13. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  14. Geology and History of Water-Containment Ponds at U12n, U12t, and U12e Tunnels, Rainier Mesa, Nevada National Security Site

    International Nuclear Information System (INIS)

    Huckins-Gang, H.; Townsend, M.

    2011-01-01

    Tunnels constructed in Rainier Mesa at the Nevada National Security Site (formerly Nevada Test Site) intersected water-producing areas (perched well above the regional groundwater system) during mining and drilling. There was enough overall sustained flow from three of the tunnel complexes (U12n, U12t, and U12e, also known as N-Tunnel, T-Tunnel, and E-Tunnel), that ponds were constructed in drainages below the portals to contain the discharged water. Water flow has now been blocked from N-Tunnel and T-Tunnel, and the ponds there are dry; however, E-Tunnel continues to produce water. The Underground Test Area Sub-Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is examining the possibility that contaminants from the tunnel complexes may be able to reach the regional groundwater flow system. Because some radiologically contaminated water was conveyed to these ponds, the ponds have been viewed as a potential source of groundwater contamination (in addition to the tunnel complexes themselves but part of the same hydrologic source term). Although the regional water table is very deep (greater than 305 meters [1,000 feet]) beneath the pond locations, some of the ponds were constructed on carbonate rocks, which some scientists think might provide a 'fast path' to the regional groundwater system. This report describes the geology and hydrologic conditions in the area of these three sets of tunnel ponds to aid in determining whether the ponds should be modeled as sources of contaminant migration. Data concerning the locations of the ponds, the volume of effluent discharged, and the concentration of tritium and other radionuclides in the water have been compiled from published and unpublished sources and included also.

  15. Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics

    Science.gov (United States)

    Dufrene, Aaron T.

    The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is

  16. Uncertainty and risk assessment of leakage in water tunnels - a case from Nepal Himalaya

    OpenAIRE

    Panthi, Krishna Kanta; Nilsen, Bjørn

    2008-01-01

    Safety and stability are the key issues in underground excavations. Making tunnels water tight plays an important role in this regards. Water leakage problems in unlined or shotcrete lined water tunnels are not new issues. In many occasions severe water inflow as well as leakage problems have been faced that not only reduced stability of the rock mass surrounding the tunnel, but also valuable water has been lost from it, causing safety risk as well as huge economic loss to the projects. I...

  17. The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes

    Science.gov (United States)

    Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano

    2005-12-01

    We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.

  18. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Science.gov (United States)

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  19. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Directory of Open Access Journals (Sweden)

    Turid Knutsen

    2010-06-01

    Full Text Available The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM is investigated. The alkaline oxygen evolution reaction (OER was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  20. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  1. The design of an aerosol test tunnel for occupational hygiene investigations

    Science.gov (United States)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  2. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    Science.gov (United States)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to

  3. OFF-Stagnation point testing in plasma facility

    Science.gov (United States)

    Viladegut, A.; Chazot, O.

    2015-06-01

    Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.

  4. Character and levels of radioactive contamination of underground waters at Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, S.; Lukashenko, S.; Turchenko, Y. [Institute of radiation safety and ecology (Kazakhstan)

    2014-07-01

    According to the data of RK government commission, 470 explosions have been set off at the Semipalatinsk Test Site (STS), inclusive of 26 surface, 90 in the air and 354 underground nuclear explosions (UNE), 103 of those have been conducted in tunnels and 251 - in boreholes. Underground nuclear explosions have been conducted at STS in horizontal mines, called - 'tunnels' ('Degelen' test site) and vertical mines called 'boreholes' ('Balapan' and 'Sary-Uzen' test sites). Gopher cavities of boreholes and tunnels are in different geotechnical conditions, that eventually specify migration of radioactive products with underground waters. Central cavities of UNE in holes are located significantly below the level of distribution of underground water. High temperature remains for a long time due to presence of overlying rock mass. High temperatures contribute to formation of thermal convection. When reaching the cavity, the water heat up, dissolve chemical elements and radionuclides and return with them to the water bearing formation. In the major part of 'Balapan' site for underground water of regional basin is characterized by low concentrations of radionuclides. High concentrations of {sup 137}Cs in underground water have been found only in immediate vicinity to 'warfare' boreholes. Formation of radiation situation in the 'Balapan' test site area is also affected by local area of underground water discharge. It is located in the valley of Shagan creek, where the concentration of {sup 3}H reaches 700 kBq/l. Enter of underground water contaminated with tritium into surface water well continue. In this case it is expected that tritium concentration in discharge zone can significantly change, because this migration process depends on hydro geological factors and the amount of atmospheric precipitation. Central cavities of nuclear explosions, made in tunnels, are above the level of underground

  5. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    International Nuclear Information System (INIS)

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ 18 O and δ 2 H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local

  6. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    Science.gov (United States)

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  7. New generation of free-piston shock tunnels

    Science.gov (United States)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  8. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  9. Final report of the borehole, shaft, and tunnel sealing test. Vol. 3

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Ramqvist, G.

    1987-02-01

    Like the borehole and shaft plugging tests, the tunnel test gave evidence of the very effective sealing power of Na betonite. The test arrangement consisted of a 9 m long 1.5 m diameter steel tube surrounded by sand and cast in concrete plugs at each end. These plugs contained bentonite forming 'O-ring' sealings at the concrete/rock interface. The test had the form of injecting water into the sand and measuring the leakage that took place through the adjacent rock and along the plug. It was concluded that the drop in leakage from more than 200 l at 100 kPa water pressure early in the test to 75 l at 3 MPa pressure at the end was due partly to the swelling pressure exerted by the bentonite on the rock and by penetration of bentonite into water-bearing rock fractures. The major sealing process appears to be the establishment of a very tight bentonite/rock interface. (orig./HP)

  10. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  11. Analysis of acoustic data from UK sodium/water reaction test facilities

    International Nuclear Information System (INIS)

    Rowley, R.; Mcknight, J.A.; Airey, J.

    1990-01-01

    This paper describes acoustic measurements made during a number of sodium/water reaction experiments in the UK. The tests have included water and steam injections through both realistic (fatigue crack) defects and machined orifices and have covered a range of experimental conditions including those appropriate to the inlet and outlet regions of the EFR steam generators. Injection rates were typically in the range 0.1 to 30 g/s. Where possible, gas injections were also included in the test programme for comparison, since it is anticipated that a practical SGU acoustic leak detection system would include a facility for gas injections to allow system calibration, and to confirm transmission properties within the SGU. The test sections were instrumented with accelerometers on waveguides and in some cases included an under-sodium microphone situated about 300mm above the reaction zone. Tape recordings were made during the tests and used for detailed analysis off-line, although an audible output from one of the acoustic channels was used to monitor the progress of the injections and provide information for the rig operators. A comparison of the signal amplitudes measured during the experiments with typical reactor background noise was made and an estimate of the detection sensitivity of an acoustic monitoring system was deduced. 3 refs, 5 figs, 1 tab

  12. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  13. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    Science.gov (United States)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  14. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  15. An Assessment of the Usefulness of Water Tunnels for Aerodynamic Investigations

    Science.gov (United States)

    2012-12-01

    a wide range of research projects, including the prediction of the performance of gas- turbine engines under conditions of pulsating flow, parametric...number-insensitive flows is water-tunnel testing of a thin rectangular flat plate having an aspect ratio of 2 – see Figure 4 from Kaplan , Altman & Ol... Kaplan , Altman & Ol, (2007). 7. Flow Over Circular-Type Bodies 7.1 Circular Cylinders The flow around a circular cylinder located at right angles

  16. Evolution, calibration, and operational characteristics of the two-dimensional test section of the Langley 0.3-meter transonic cryogenic tunnel

    Science.gov (United States)

    Ladson, Charles L.; Ray, Edward J.

    1987-01-01

    Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.

  17. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  18. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  19. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  20. Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities

    International Nuclear Information System (INIS)

    Gray, H.E.

    1993-01-01

    The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy's Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques

  1. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  2. A study for the KAERI research tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Hwang, Y. S.; Park, H. S.; Park, S. K.; Park, B. Y.; Bang, K. S.; Kuh, J. H.; Kang, K. H

    1997-12-01

    Major goal of the R and D on the KAERI Research Tunnel in 1997 are 1) concept development of the KAERI research tunnel and its major units 2) computer simulation of facilities 3) study on thermo-hydro mechanical coupling in the vicinity of a waste repository 4) effect of excavated distrubed zone. In addition supplementary site investigation to understand the distribution of stresses in the site was done along with long term monitoring of the water table. (author). 44 refs., 16 tabs., 36 figs

  3. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  4. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  5. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  6. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...... the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process...

  7. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  8. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Silva, Mário A. B. da; Lapa, Celso M.F.

    2016-01-01

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  9. Wind tunnel evaluation of the RAAMP sampler. Final report

    International Nuclear Information System (INIS)

    Vanderpool, R.W.; Peters, T.M.

    1994-11-01

    Wind tunnel tests of the Department of Energy RAAMP (Radioactive Atmospheric Aerosol Monitoring Program) monitor have been conducted at wind speeds of 2 km/hr and 24 km/hr. The RAAMP sampler was developed based on three specific performance objectives: (1) meet EPA PM10 performance criteria, (2) representatively sample and retain particles larger than 10 microm for later isotopic analysis, (3) be capable of continuous, unattended operation for time periods up to 2 months. In this first phase of the evaluation, wind tunnel tests were performed to evaluate the sampler as a potential candidate for EPA PM10 reference or equivalency status. As an integral part of the project, the EPA wind tunnel facility was fully characterized at wind speeds of 2 km/hr and 24 km/hr in conjunction with liquid test aerosols of 10 microm aerodynamic diameter. Results showed that the facility and its operating protocols met or exceeded all 40 CFR Part 53 acceptance criteria regarding PM10 size-selective performance evaluation. Analytical procedures for quantitation of collected mass deposits also met 40 CFR Part 53 criteria. Modifications were made to the tunnel's test section to accommodate the large dimensions of the RAAMP sampler's instrument case

  10. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    Science.gov (United States)

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  11. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  12. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  13. Tunnel system for ocean cooling water for Point Lepreau

    International Nuclear Information System (INIS)

    Pullerits, K.

    1980-01-01

    The New Brunswick Electric Power Commission is building a 600 MW nuclear generating station at Point Lepreau. Of major consideration in the design of a nuclear power plant is the enormous heat loss from the plant's operation, and the effective disposal of this heat energy through condensers and turbines into the environment. Heat diffusion was a factor in the selection of the Point Lepreau site. High tides with peak velocities of up to three knots cause effective mixing of the ocean waters and provide a heat sink large enough for two 600 MW units. It was decided to locate an intake tunnel off the east side of the peninsula and an outlet tunnel off the west side, surface structures having been ruled out because of possible wave damage. In addition to water flow rate and velocity, the protection of fish and shellfish, wave impact, and navigational clearance requirements had to be considered in the design of the intake structure. A surge tank was included in the outfall system. Construction of the tunnels is described. (LL)

  14. Definition of Capabilities Needed for a Single Event Effects Test Facility

    International Nuclear Information System (INIS)

    Riemer, Bernie; Gallmeier, Franz X.

    2014-01-01

    doubling overall test capacity per HETS operating hour. Using about 1 kilowatt (kW) of proton power extracted from the accelerator before injection in the accumulator ring, its operation would be unnoticeable by neutron scattering users at the SNS target station. The H beam laser stripping technique would allow for control of beam power on the HETS target independent from power delivered to the SNS. Large systems with frontal areas of up to 1 x 2 m 2 could be accommodated with integral high-energy flux values (above 10 megaelectron-volt, or MeV) to at most 10 4 n/cm 2 /s; components could also be tested with flux levels to at most 10 7 n/cm 2 /s on beam sizes of up to 0.2 x 0.2 m 2 . Selectable moderating material and neutron filters would allow tailoring of the neutron spectrum to user demands; charged particle deflectors could be switched to allow or deflect protons, pions, and muons. It is estimated that HETS would take 5 years to complete after award of contract, including engineering design and construction. Commissioning would take at least another 6 months. Interference with SNS principal operations was not considered in the construction time estimate; connection of the proton transport line and tunnel from the accelerator high energy beam transport (HEBT) and construction around existing site utilities would require careful planning and coordination with beam operations at the SNS. A high-energy (HE) neutron test facility using an available beam line on the SNS target station is a technically and financially attractive option. Inspired by the new ChipIR instrument on the ISIS TS 2 spallation source in the UK, a similar facility could be placed on an unused beam line in the SNS instrument hall [e.g., on beam line 8 (both A and B channels would be needed) or on beam line 10]. The performance would approach that of an HETS (~80%), but it would be operationally more limited, with only a single user at a time. Space is more limited, so the maximum system size would be

  15. Definition of Capabilities Needed for a Single Event Effects Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2014-12-01

    allow for simultaneous testing activity effectively doubling overall test capacity per HETS operating hour. Using about 1 kilowatt (kW) of proton power extracted from the accelerator before injection in the accumulator ring, its operation would be unnoticeable by neutron scattering users at the SNS target station. The H beam laser stripping technique would allow for control of beam power on the HETS target independent from power delivered to the SNS. Large systems with frontal areas of up to 1 x 2 m² could be accommodated with integral high-energy flux values (above 10 megaelectron-volt, or MeV) to at most 104 n/cm²/s; components could also be tested with flux levels to at most 107 n/cm²/s on beam sizes of up to 0.2 x 0.2 m². Selectable moderating material and neutron filters would allow tailoring of the neutron spectrum to user demands; charged particle deflectors could be switched to allow or deflect protons, pions, and muons. It is estimated that HETS would take 5 years to complete after award of contract, including engineering design and construction. Commissioning would take at least another 6 months. Interference with SNS principal operations was not considered in the construction time estimate; connection of the proton transport line and tunnel from the accelerator high energy beam transport (HEBT) and construction around existing site utilities would require careful planning and coordination with beam operations at the SNS. A high-energy (HE) neutron test facility using an available beam line on the SNS target station is a technically and financially attractive option. Inspired by the new ChipIR instrument on the ISIS TS 2 spallation source in the UK, a similar facility could be placed on an unused beam line in the SNS instrument hall [e.g., on beam line 8 (both A and B channels would be needed) or on beam line 10]. The performance would approach that of an HETS (~80%), but it would be operationally more limited, with only a single user

  16. Application Of Artificial Intelligence To Wind Tunnels

    Science.gov (United States)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  17. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    Palomaeki, J.; Ristimaeki, L.

    2013-10-01

    The purpose of the facility description is to be a specific summary report of the scope of Posiva's nuclear facilities (encapsulation plant and disposal facility) in Olkiluoto. This facility description is based on the 2012 designs and completing Posiva working reports. The facility description depicts the nuclear facilities and their operation as the disposal of spent nuclear fuel starts in Olkiluoto in about 2020. According to the decisions-in-principle of the government, the spent nuclear fuel from Loviisa and Olkiluoto nuclear power plants in operation and in future cumulative spent nuclear fuel from Loviisa 1 and 2, Olkiluoto 1, 2, 3 and 4 nuclear power plants, is permitted to be disposed of in Olkiluoto bedrock. The design of the disposal facility is based on the KBS-3V concept (vertical disposal). Long-term safety concept is based on the multi-barrier principle i.e. several release barriers, which ensure one another so that insufficiency in the performance of one barrier doesn't jeopardize long-term safety of the disposal. The release barriers are the following: canister, bentonite buffer and deposition tunnel backfill, and the host rock around the repository. The canisters are installed into the deposition holes, which are bored to the floor of the deposition tunnels. The canisters are enveloped with compacted bentonite blocks, which swell after absorbing water. The surrounding bedrock and the central and access tunnel backfill provide additional retardation, retention, and dilution. The nuclear facilities consist of an encapsulation plant and of underground final disposal facility including other aboveground buildings and surface structures serving the facility. The access tunnel and ventilation shafts to the underground disposal facility and some auxiliary rooms are constructed as a part of ONKALO underground rock characterization facility during years 2004-2014. The construction works needed for the repository start after obtaining the construction

  18. Shock Tunnel Studies of Scramjet Phenomena 1993

    Science.gov (United States)

    Stalker, R. J.; Bakos, R. J.; Morgan, R. G.; Porter, L.; Mee, D.; Paull, A.; Tuttle, S.; Simmons, J. M.; Wendt, M.; Skinner, K.

    1995-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology and hypervelocity pulse test facilities are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 10 under NASA Grant NAGw-674.

  19. Suppression of background noise in a transonic wind-tunnel test section

    Science.gov (United States)

    Schutzenhofer, L. A.; Howard, P. W.

    1975-01-01

    Some exploratory tests were recently performed in the transonic test section of the NASA Marshall Space Flight Center 14-in. wind tunnel to suppress the background noise. In these tests, the perforated walls of the test section were covered with fine wire screens. The screens eliminated the edge tones generated by the holes in the perforated walls and significantly reduced the tunnel background noise. The tunnel noise levels were reduced to such a degree by this simple modification at Mach numbers 0.75, 0.9, 1.1, 1.2, and 1.46 that the fluctuating pressure levels of a turbulent boundary layer could be measured on a 5-deg half-angle cone.

  20. 11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis

    Science.gov (United States)

    Hawke, Veronica M.

    2015-01-01

    The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.

  1. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  2. Correlations of Platooning Track Test and Wind Tunnel Data

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, Michael P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Sharonville, OH (United States)

    2018-02-02

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 to Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.

  3. Investigation of potential water inflow into a ventilated tunnel of the proposed low/intermediate-level waste repository in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Eugster, S.M. [Swiss Federal Institute of Technology, Zurich (Switzerland); Senger, R.K. [INTERA Inc., Austin, TX (United States)

    1995-03-01

    Design calculations of two-phase flow phenomena associated with the construction and ventilation of a tunnel were investigated to estimate the potential water inflow through discrete water-conducting features (WCFs) into the tunnel. The physical processes that were considered in numerical simulations include the transient propagation of the pressure decline into the formation (Valanginian Marl, initially fully saturated, no dissolved gas) as a result of the tunnel construction. Ventilation of the tunnel results in a reduction in relative humidity of the tunnel air which, in turn, causes evaporation of water at the tunnel wall and the potential development of an unsaturated zone into the formation. The objective of this study is to investigate under what conditions the tunnel wall appears wet or dry, i.e. whether WCFs can be identified in a ventilated tunnel by mapping water inflow patterns. The simulation results indicate that inflow to the tunnel decreases with time approaching steady state flow rates under single-phase flow conditions, which is lower than the evaporation rate. The water inflow rate decreased more rapidly for a first model scenario (WCF parallel to the tunnel axis), caused by linear flow through the WCF, than for a second model scenario (WCF perpendicular to the tunnel axis), characterized by radial flow toward the tunnel. Similarly, the desaturation zone extends farther into the WCF under linear flow than under radial flow.

  4. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    /FORCE Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...... Re range, as did the force coefficients obtained from dynamic and static tests....

  5. Origin of the water drained by the tunnel Graton; Origen de las aguas que drena el tunel Graton

    Energy Technology Data Exchange (ETDEWEB)

    Plata B, A [International Atomic Energy Agency, Vienna (Austria). Dept. of Research and Isotopes; Rojas M, R [Instituto Peruano de Energia Nuclear, Lima (Peru)

    1992-12-01

    The research of the origin of the water drained by the Graton tunnel was attempted using isotope techniques. During the period of studies (April 1989-October 1992), four field work was executed to sample waters for chemistry, stable isotope and Tritium analysis, an to inject tracers and verify the possible infiltration from the Rimac and Blanco rivers to the tunnel. The results of the stable isotope analysis show that the water drained by the Graton tunnel comes from a basin around 300 meters above the average altitude of the basin where the Graton is located. The Tritium analysis show that the water is relatively modern. Using the model of total mixing, the residence times of the water drained at the km 0.5 and 2.5 are in the order to 45 years. The conductivities of the water of the tunnel is higher than the Rimac river ones because the influence of mine water. The chemical analysis of the water sampled at the downstream end of the tunnel, show that the conservative ions of the water kept almost constant during more than two years. The results of the work with artificial tracer show that there is no significant leakage from the Rimac and Blanco rivers to the Graton tunnel. So far, it can be concluded as a preliminary approach that the Graton tunnel drains relatively modern water originated in another basin. The hydrodynamics of the area of study seems to include a large storage on underground water in the system. The topography, geology and isotopic composition of the water samples, points to the upper Mantaro river basin as the possible source of part of the water drained by the Graton tunnel. (authors). 20 p. 2 figs., 7 ills., 4 tabs.

  6. Full scale BWR containment LOCA response test at the INKA test facility

    International Nuclear Information System (INIS)

    Wagner, Thomas; Leyer, Stephan

    2015-01-01

    KERENA is an innovative boiling water reactor concept with passive safety systems (Generation III+) of AREVA. The reactor is an evolutionary design of operating BWRs (Generation II). In order to verify the functionality and performance of the KERENA safety concept required for the transient and accident management, the test facility “Integral Teststand Karlstein” (INKA) was built at Karlstein (Germany). It is a mock-up of the KERENA boiling water reactor containment, with integrated pressure suppression system. The complete chain of passive safety components is available. The passive components and the levels are represented in full scale. The volume scaling of the containment compartments is approximately 1:24. The reactor pressure vessel (RPV) is simulated via the steam accumulator of the Karlstein Large Valve Test Facility. This vessel provides an energy storage capacity of approximately 1/6 of the KERENA RPV and is supplied by a Benson boiler with a thermal power of 22 MW. With respect to the available power supply, the containment- and system-sizing of the facility is by far the largest one of its kind worldwide. From 2009 to 2012, several single component tests were conducted (Emergency Condenser, Containment Cooling Condenser, Core Flooding System etc.). On March 21st, 2013, the worldwide first large-scale only passively managed integral accident test of a boiling water reactor was simulated at INKA. The integral test measured the combined response of the KERENA passive safety systems to the postulated initiating event was the “Main Steam Line Break” (MSLB) inside the Containment with decay heat simulation. The results of the performed integral test (MSLB) showed that the passive safety systems alone are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them as response to an anticipated accident scenario

  7. Upgraded Features of Newly Constructed Fuel Assembly Mechanical Characterization Test Facility in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Lee, Young Ho; Kim, Soo Ho; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Fuel assembly mechanical characterization test facility (FAMeCT) in KAERI is newly constructed with upgraded functional features such as increased loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. The facility building is compactly designed in the scale of 3rd floor building and has regions for assembly-wise mechanical test equipment, dynamic load (seismic) simulating test system, small scale hydraulic loop and component wise test equipment. Figure 1 shows schematic regional layout of the facility building. Mechanical test platform and system is designed to increase loading capacity for axial compression test. Structural stability of the support system of new upper core plate simulator is validated through a limit case functional test. Fuel assembly mechanical characterization test facility in KAERI is newly constructed and upgraded with advanced functional features such as uprated loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. This paper briefly introduce the test facility construction and scope of the facility and is focused on the upgraded design features of the facility. Authors hope to facilitate the facility more in the future and collaborate with the industry.

  8. SMART Rotor Development and Wind Tunnel Test

    Science.gov (United States)

    2009-09-01

    amplifier and control system , and data acquisition, processing, and display systems . Boeing�s LRTS (Fig. 2), consists of a sled structure that...Support Test Stand Sled Tail Sting Outrigger Arm Figure 2: System integration test at whirl tower Port Rotor Balance Main Strut Flap Tail...demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind tunnel testing

  9. Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement

    OpenAIRE

    Brown, Kenneth Alexander

    2016-01-01

    The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m L...

  10. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  11. Project assembling and commissioning of a rewetting test facility

    International Nuclear Information System (INIS)

    Rezende, H.C.

    1985-08-01

    A test facility (ITR - Instalacao de Testes de Remolhamento) has been erected at the Thermal-hydraulics Laboratory of CDTN, dedicated to the investigation of the basic phenomena that can occur during the reflood phase of a Loss of Coolant Accident (LOCA) in a Pressurized Water Reactor (PWR), utilizing tubular and annular test sections. The present work consists in a presentation of the facility design and a report of its commissioning. The mechanical aspects of the facility, its power supply system and its instrumentation are described. The results of the instruments calibration and two operational tests are presented and a comparison is done with calculations perfomed usign a computer code. (Author) [pt

  12. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  13. Proposed aeroelastic and flutter tests for the National Transonic Facility

    Science.gov (United States)

    Stevenson, J. R.

    1981-01-01

    Tests that can exploit the capability of the NTF and the transonic cryogenic tunnel, or lead to improvements that could enhance testing in the NTF are discussed. Shock induced oscillation, supersonic single degree control surface flutter, and transonic flutter speed as a function of the Reynolds number are considered. Honeycombs versus screens to smooth the tunnel flow and a rapid tunnel dynamic pressure reducer are recommended to improve tunnel performance.

  14. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  15. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  16. RIA testing capability of the transient reactor test facility

    International Nuclear Information System (INIS)

    Crawford, D.C.; Swanson, R.W.

    1999-01-01

    The advent of high-burnup fuel implementation in LWRs has generated international interest in high-burnup LWR fuel performance. Recent testing under simulated RIA conditions has demonstrated that certain fuel designs fail at peak fuel enthalpy values that are below existing regulatory criteria. Because many of these tests were performed with non-prototypically aggressive test conditions (i.e., with power pulse widths less than 10 msec FWHM and with non-protoypic coolant configurations), the results (although very informative) do not indisputably identify failure thresholds and fuel behavior. The capability of the TREAT facility to perform simulated RIA tests with prototypic test conditions is currently being evaluated by ANL personnel. TREAT was designed to accommodate test loops and vehicles installed for in-pile transient testing. During 40 years of TREAT operation and fuel testing and evaluation, experimenters have been able to demonstrate and determine the transient behavior of several types of fuel under a variety of test conditions. This experience led to an evolution of test methodology and techniques which can be employed to assess RIA behavior of LWR fuel. A pressurized water loop that will accommodate RIA testing of LWR and CANDU-type fuel has completed conceptual design. Preliminary calculations of transient characteristics and energy deposition into test rods during hypothetical TREAT RIA tests indicate that with the installation of a pressurized water loop, the facility is quite capable of performing prototypic RIA testing. Typical test scenarios indicate that a simulated RIA with a 72 msec FWHM pulse width and energy deposition of 1200 kJ/kg (290 cal/gm) is possible. Further control system enhancements would expand the capability to pulse widths as narrow as 40 msec. (author)

  17. Nuclear combined heat and power - analyses of hot water pipeline breaks in a service tunnel with Apros simulation software

    International Nuclear Information System (INIS)

    Henttonen, T.; Paananen, M.

    2010-01-01

    This paper presents a computer model and simulation results for a long-distance heat transport system. The system can be used e.g. to transport heat from a nuclear power plant with combined heat and power (CHP) production. CHP production is considered for new build NPP projects in Finland. Emphasis is on the environmental conditions during a hot water pipeline break in a service tunnel. The modelled pipeline system is designed to transport 1000 MW of heat over a distance of 77 km for district heating purposes. The hot water pipeline is assumed to be 1200 mm diameter with a water temperature of 120 deg. C. Cooled water returns with a temperature of 55 - 60 deg. C in a similar 1200 mm diameter pipe. Both pipelines are installed to a service tunnel which is excavated into bedrock and divided into 2 kilometres long compartments. Both the 77 km long pipeline and the tunnel are modelled with Apros simulation software. A leak is modelled from the pipeline to the tunnel and the results are analyzed. This paper includes three different leak sizes (1 %, 10 % and 100 % of the pipeline's cross-sectional area). The leaks are calculated with water temperatures of 95 deg. C and 120 deg. C in the pipeline. Apros calculates dynamically the phenomena inside the pipeline with two-phase 6-equation calculation model. The tunnel conditions are calculated with a lumped parameter model. The size of the leak has a substantial effect on the leak's consequences in the tunnel. Also the water temperature in the pipeline influences the results strongly. If the water temperature is over 100 deg. C, a considerable amount of the water boils as it leaks to the tunnel. The boiling of water makes the conditions in the tunnel much more severe than they would otherwise be. If there is a substantial flow out of the tunnel, the air in the tunnel can be replaced by hot steam. Obviously, this can mean hazardous conditions in the tunnel. (authors)

  18. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  19. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  20. Water Inrush Analysis of the Longmen Mountain Tunnel Based on a 3D Simulation of the Discrete Fracture Network

    Science.gov (United States)

    Xiong, Ziming; Wang, Mingyang; Shi, ShaoShuai; Xia, YuanPu; Lu, Hao; Bu, Lin

    2017-12-01

    The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.

  1. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  2. BWR Full Integral Simulation Test (FIST) program: facility description report

    International Nuclear Information System (INIS)

    Stephens, A.G.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented

  3. Status of the SXFEL Facility

    Directory of Open Access Journals (Sweden)

    Zhentang Zhao

    2017-06-01

    Full Text Available The Shanghai soft X-ray Free-Electron Laser facility (SXFEL is being developed in two steps; the SXFEL test facility (SXFEL-TF, and the SXFEL user facility (SXFEL-UF. The SXFEL-TF is a critical development step towards the construction a soft X-ray FEL user facility in China, and is under commissioning at the Shanghai Synchrotron Radiation Facility (SSRF campus. The test facility is going to generate 8.8 nm FEL radiation using an 840 MeV electron linac passing through the two-stage cascaded HGHG-HGHG or EEHG-HGHG (high-gain harmonic generation, echo-enabled harmonic generation scheme. The construction of the SXFEL-TF started at the end of 2014. Its accelerator tunnel and klystron gallery were ready for equipment installation in April 2016, and the installation of the SXFEL-TF linac and radiator undulators were completed by the end of 2016. In the meantime, the SXFEL-UF, with a designated wavelength in the water window region, began construction in November 2016. This was based on upgrading the linac energy to 1.5 GeV, and the building of a second undulator line and five experimental end-stations. Construction status and the future plans of the SXFEL are reported in this paper.

  4. Cryogenic Wind Tunnel Models. Design and Fabrication

    Science.gov (United States)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  5. The WR-1 corrosion test facility

    International Nuclear Information System (INIS)

    Murphy, E.V.; Simmons, G.R.

    1978-07-01

    This report describes a new Corrosion Test Facility which has recently been installed in the WR-1 organic-cooled research reactor. The irradiation facility is a single insert, installed in a reactor site, which can deliver a fast neutron flux density of 2.65 x 10 17 neutrons/(m 2 .s) to specimens under irradiation. A self-contained controlled-chemistry cooling water circuit removes the gamma- and neutron-heat generated in the insert and specimens. Specimen temperatures typically vary from 245 deg C to 280 deg C across the insert core region. (author)

  6. UPTF test 21D counterpart test in the MIDAS test facility

    International Nuclear Information System (INIS)

    Yoon, B. C.; Ah, D. J.; Joo, I. C.; Kwon, T. S.; Park, W. M.; Song, C. H.

    2002-01-01

    This paper describes the experimental results of UPTF Test 21D counterpart tests in the downcomer during the late reflood phase of LBLOCA. The experiments have been performed in the MIDAS test facility using superheated steam and water. The test condition was determined,based on the test results of UPTF Test 21D, by applying the 'modified linear scaling method of 1/4.077 length scale. The tests of ECC direct bypass and void height are performed separately to estimate each phenomena quantitatively. The tests were carried out by varying the injection steam flow rate of intact cold legs widely to investigate the effect of steam flow rate on the direct bypass fraction and void height. In the tests, separate effect tests have been performed in cases of DVI-1,DVI- 2 and DVI-1 and 2 injections to see the direct bypass fraction according to the DVI nozzle combination. From the tests, we found that the fraction of direct ECC bypass and the void height observed in the MIDAS test facility reasonably well agree with those of UPTF test 21- D. It confirms that the applied 'modified linear scaling law' reproduces major thermal hydraulics phenomena in the downcomer during the LBLOCA reflood phase

  7. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  8. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  9. Early effects of water inflow into a deposition hole. Laboratory tests results

    International Nuclear Information System (INIS)

    Sanden, Torbjoern; Boergesson, Lennart

    2010-12-01

    During the installation of buffer and canister in a deposition hole a number of different problems can arise. The problems are mainly connected to water flow from fractures in the rock into the deposition hole. At some conditions it probably will be necessary to protect the installed buffer blocks with a special sheet made of rubber or plastic. This report deals with two processes that can occur and are possible to strongly influence the buffer during installation: 1. Erosion. Erosion of bentonite from the deposition hole up to the voids in the tunnel backfill. This process will continue until a tunnel plug have been built and the voids in the backfill are filled with water. 2. Heave. Early wetting of the pellets filling may cause a heave of the buffer blocks that will decrease the density of the buffer. An erosion model has been suggested /Sanden et al. 2008b/ which makes it possible to estimate the amount of eroded material for a certain water flow rate during a certain time. In order to verify the model and investigate how the buffer in a deposition hole behaves when exposed to a water flow, a number of different tests have been performed: - Test type 1. Simulation of water flow out from a deposition hole. The deposition hole was made of steel and had a radial scale of 1:4 and a height of 0.6 meter. The pellets slot was scaled 1:1. After filling the deposition hole with buffer blocks and pellets, a constant water flow was applied in a point at the bottom. The discharged water at the top was collected and the amount of eroded material determined. The displacement of the blocks and pellets surfaces was also measured during the test. - Test type 2. The influence of test length on the erosion rate was investigated by performing tests with Plexiglas tubes of different lengths (0.4 and 4 meter). The tubes were positioned vertically, filled with pellets and a point inflow was applied in the bottom. The discharged water was collected at the top and the amount of eroded

  10. Early effects of water inflow into a deposition hole. Laboratory tests results

    Energy Technology Data Exchange (ETDEWEB)

    Sanden, Torbjoern; Boergesson, Lennart (Clay Technology AB, Lund (Sweden))

    2010-12-15

    During the installation of buffer and canister in a deposition hole a number of different problems can arise. The problems are mainly connected to water flow from fractures in the rock into the deposition hole. At some conditions it probably will be necessary to protect the installed buffer blocks with a special sheet made of rubber or plastic. This report deals with two processes that can occur and are possible to strongly influence the buffer during installation: 1. Erosion. Erosion of bentonite from the deposition hole up to the voids in the tunnel backfill. This process will continue until a tunnel plug have been built and the voids in the backfill are filled with water. 2. Heave. Early wetting of the pellets filling may cause a heave of the buffer blocks that will decrease the density of the buffer. An erosion model has been suggested /Sanden et al. 2008b/ which makes it possible to estimate the amount of eroded material for a certain water flow rate during a certain time. In order to verify the model and investigate how the buffer in a deposition hole behaves when exposed to a water flow, a number of different tests have been performed: - Test type 1. Simulation of water flow out from a deposition hole. The deposition hole was made of steel and had a radial scale of 1:4 and a height of 0.6 meter. The pellets slot was scaled 1:1. After filling the deposition hole with buffer blocks and pellets, a constant water flow was applied in a point at the bottom. The discharged water at the top was collected and the amount of eroded material determined. The displacement of the blocks and pellets surfaces was also measured during the test. - Test type 2. The influence of test length on the erosion rate was investigated by performing tests with Plexiglas tubes of different lengths (0.4 and 4 meter). The tubes were positioned vertically, filled with pellets and a point inflow was applied in the bottom. The discharged water was collected at the top and the amount of eroded

  11. An Assessment of the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    Science.gov (United States)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.

    2015-01-01

    The NASA Glenn Icing Research tunnel has been using an Icing Blade technique to measure cloud liquid water content (LWC) since 1980. The IRT conducted tests with SEA Multi-Element sensors from 2009 to 2011 to assess their performance in measuring LWC. These tests revealed that the Multi-Element sensors showed some significant advantages over the Icing Blade, particularly at higher water contents, higher impingement rates, and large drop sizes. Results of these and other tests are presented here.

  12. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  13. Simulation of hydrogen releases from fuel-cell vehicles in tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Houf, William G.; Evans, Greg H.; James, Scott C. [Sandia National Labs., Livermore, CA (United States); Merilo, Erik; Groethe, Mark [SRI International, Menlo Park, CA (United States)

    2010-07-01

    Simulation results for a hydrogen fuel-cell vehicle in a full-scale tunnel have been performed for the case where hydrogen gas is vented from the vehicle as a result of thermal activation of the pressure relief device (PRD). The same modeling approach used in the full-scale tunnel modeling was validated in a scaled model by comparing simulated results with measured results from a series of scaled-tunnel test experiments performed at the SRI Corral Hollow test facility. Results of the simulations were found to be in good agreement with the experimental data. Finally, a rudimentary risk analysis indicated that the level of potential risk from hydrogen vehicles accidents involving thermally activated PRDs in tunnels does not appear to significantly increase the current level of individual risk to the public from everyday life. (orig.)

  14. Studying the Effect of Tunnel Depth Variation on the Specific Energy of TBM, Case Study: Karaj–Tehran (Iran Water Conveyance Tunnel

    Directory of Open Access Journals (Sweden)

    Majid Mirahmadi

    2016-09-01

    Full Text Available The tunnel-boring machine (TBM is a common piece of equipment used in tunneling projects. For planning a mechanical excavation project, prediction of TBM performance and the specification of design elements such as required forces are critical. The specific energy of excavation (SE, i.e. drilling energy consumption per unit volume of rock mass, is a crucial parameter for performance prediction of a TBM. In this study, the effect of variation of tunnel depth on SE by considering the post-failure behavior of rock mass was investigated. Several new relations between SE and tunnel depth are proposed according to the statistical analysis obtained from Karaj – Tehran Water Conveyance Tunnel real data. The results showed that there is a direct relation between both parameters and. Polynomial equations are proposed as the best expression of the correlation between these parameters.

  15. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S., E-mail: gupta@becker-technologies.com [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Schmidt, E.; Laufenberg, B. von; Freitag, M.; Poss, G. [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Funke, F. [AREVA GmbH, P.O. Box 1109, 91001 Erlangen (Germany); Weber, G. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Forschungszentrum, Boltzmannstraße 14, 85748 Garching (Germany)

    2015-12-01

    Highlights: • Large scale facility for investigating representative LWR severe accident scenarios. • Coupled effect tests in the field of thermal-hydraulics, hydrogen, aerosol and iodine. • Measurement techniques improved and adapted for severe accident conditions. • Testing of passive mitigation systems (e.g. PAR) under accident conditions. • THAI data application for validation and development of CFD and LP codes. - Abstract: The test facility THAI (thermal-hydraulics, hydrogen, aerosol, and iodine) aims at addressing open questions concerning gas distribution, behaviour of hydrogen, iodine and aerosols in the containment of light water reactors during severe accidents. Main component of the facility is a 60 m{sup 3} stainless steel vessel, 9.2 m high and 3.2 m in diameter, with exchangeable internals for multi-compartment investigations. The maximal design pressure of the vessel is 14 bar which allows H{sub 2} combustion experiments at a severe accident relevant H{sub 2} concentration level. The facility is approved for the use of low-level radiotracer I-123 which enables the measurement of time resolved iodine behaviour. The THAI test facility allows investigating various accident scenarios, ranging from turbulent free convection to stagnant stratified containment atmospheres and can be combined with simultaneous use of hydrogen, iodine and aerosol issues. THAI experimental research also covers investigations related to mitigation systems employed in light water reactor containments by performing experiments on, e.g. pressure suppression pool hydrodynamics, performance behaviour of passive autocatalytic recombiners, and spray interaction with hydrogen–steam–air flames in phenomenon orientated and coupled-effects experiments. The THAI experimental data have been widely used for the validation and further development of Lumped Parameter and Computational Fluid Dynamics codes with 3D capabilities, e.g. International Standard Problems ISP-47 (thermal

  16. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  17. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    International Nuclear Information System (INIS)

    Hardy, J.E.; Hess, R.A.; Hylton, J.O.

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions

  18. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    Science.gov (United States)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  19. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  20. Evolution Characteristic Analysis of Pressure-arch of a Double-arch Tunnel in Water-rich Strata

    Directory of Open Access Journals (Sweden)

    C. L. Li

    2016-03-01

    Full Text Available It is of importance to analyze the morphological characterization, the evolution process and the skewed effect of pressure-arch of a double-arch tunnel in the water-rich strata. Taking a buried depth 80 m double-arch tunnel as an example, a computational model of the double-arch tunnel was built by using FLAC3D technique. Then considering some aspects including groundwater conditions, tunnel depth, construction sequences and permeability coefficients, the coupling effect of stress field and seepage field in the pressure-arch of the double-arch tunnel was analyzed. The results show that the thickness of the pressure-arch induced by step-by-step excavation and display a step-descent skewed distribution from the left to the right of the double-arch tunnel. The permeability coefficient has a significant influence on the shape and the skewed effect of the pressure arch. The excavation of the bench method has a better arching condition than that of the expanding method. The abtained results provide a basic reference for the rock reinforcement design and safety construction of double-arch tunnels in the water-rich strata.

  1. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  2. Test facility for rewetting experiments at CDTN

    International Nuclear Information System (INIS)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C.

    2015-01-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  3. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  4. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  5. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  6. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  7. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    Science.gov (United States)

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.

  8. One consideration about rational design of the multi tunnels in geological disposal facility

    International Nuclear Information System (INIS)

    Mizutani, Kazuhiko; Hiramoto, Masayuki; Morita, Atsushi

    2008-01-01

    In the geological disposal facility of the high-level radioactive waste, a group of galleries is designed in parallel at the depth of more than 300 m below surface. This is an unprecedented structure in the field of conventional engineering, and it is necessary to take this characteristic into consideration in the design of the galleries. In the geological disposal facility, as well as ensuring the dynamic stability of the gallery during construction and operational periods, it is necessary to dynamic characteristic of rock mass for long-term stability after the closure. In this study, analysis of the 'multi tunnels model' which represents the whole gallery group was performed and the results about load to act on a pillar. (author)

  9. Evaluation of tunnel seismic prediction (TSP) result using the Japanese highway rock mass classification system for Pahang-Selangor Raw Water Transfer Tunnel

    Science.gov (United States)

    Von, W. C.; Ismail, M. A. M.

    2017-10-01

    The knowing of geological profile ahead of tunnel face is significant to minimize the risk in tunnel excavation work and cost control in preventative measure. Due to mountainous area, site investigation with vertical boring is not recommended to obtain the geological profile for Pahang-Selangor Raw Water Transfer project. Hence, tunnel seismic prediction (TSP) method is adopted to predict the geological profile ahead of tunnel face. In order to evaluate the TSP results, IBM SPSS Statistic 22 is used to run artificial neural network (ANN) analysis to back calculate the predicted Rock Grade Points (JH) from actual Rock Grade Points (JH) using Vp, Vs and Vp/Vs from TSP. The results show good correlation between predicted Rock Grade points and actual Rock Grade Points (JH). In other words, TSP can provide geological profile prediction ahead of tunnel face significantly while allowing continuously TBM excavation works. Identifying weak zones or faults ahead of tunnel face is crucial for preventative measures to be carried out in advance for a safer tunnel excavation works.

  10. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  11. GERDA test facility for pressurized water reactors with straight tube steam generators

    International Nuclear Information System (INIS)

    Ahrens, G.; Haury, G.; Lahner, K.; Schatz, A.

    1983-01-01

    A number of large-scale experimental facilities have been constructed and operate in order to experiment on the thermodynamic and thermohydraulic behaviour of nuclear facilities in case of LOCA. Most of them were designed for ''large leak'' accidents, but as ''small leak'' accidents became the focus of interest, such experiments were also carried out. Experiments carried out with this arrangement for PWR-type reactors with straight-tube steam generators are only partially evaluable. BBR and B and W therefore cooperated in the construction of the test facility GERDA, designed for testing reactors of BBR design. It supplied relevant experimental results for the nuclear power plant at Muelheim-Kaerlich. (orig.) [de

  12. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  13. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  14. Tunnel boring waste test plan

    International Nuclear Information System (INIS)

    Patricio, J.G.

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs

  15. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  16. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  17. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  18. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  19. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    Science.gov (United States)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.

    2012-12-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.

  20. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D.V.; Lempert, W.R. [The Ohio State University, Departments of Mechanical and Aerospace Engineering, Columbus, OH (United States); Miller, J.D.; Meyer, T.R. [Iowa State University, Department of Mechanical Engineering, Ames, IA (United States); Parker, R.; Wadham, T.; Holden, M. [CUBRC, Buffalo, NY (United States); Danehy, P.M. [NASA Langley Research Center, Hampton, VA (United States)

    2012-12-15

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single {proportional_to}10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs. (orig.)

  1. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  2. Forecasting and prevention of water inrush during the excavation process of a diversion tunnel at the Jinping II Hydropower Station, China.

    Science.gov (United States)

    Hou, Tian-Xing; Yang, Xing-Guo; Xing, Hui-Ge; Huang, Kang-Xin; Zhou, Jia-Wen

    2016-01-01

    Estimating groundwater inflow into a tunnel before and during the excavation process is an important task to ensure the safety and schedule during the underground construction process. Here we report a case of the forecasting and prevention of water inrush at the Jinping II Hydropower Station diversion tunnel groups during the excavation process. The diversion tunnel groups are located in mountains and valleys, and with high water pressure head. Three forecasting methods are used to predict the total water inflow of the #2 diversion tunnel. Furthermore, based on the accurate estimation of the water inrush around the tunnel working area, a theoretical method is presented to forecast the water inflow at the working area during the excavation process. The simulated results show that the total water flow is 1586.9, 1309.4 and 2070.2 m(3)/h using the Qshima method, Kostyakov method and Ochiai method, respectively. The Qshima method is the best one because it most closely matches the monitoring result. According to the huge water inflow into the #2 diversion tunnel, reasonable drainage measures are arranged to prevent the potential disaster of water inrush. The groundwater pressure head can be determined using the water flow velocity from the advancing holes; then, the groundwater pressure head can be used to predict the possible water inflow. The simulated results show that the groundwater pressure head and water inflow re stable and relatively small around the region of the intact rock mass, but there is a sudden change around the fault region with a large water inflow and groundwater pressure head. Different countermeasures are adopted to prevent water inrush disasters during the tunnel excavation process. Reasonable forecasting the characteristic parameters of water inrush is very useful for the formation of prevention and mitigation schemes during the tunnel excavation process.

  3. BACEKO II. Flow-through, open-front and saturation tests of pre-compacted backfill blocks in a quarter-scale test tunnel

    International Nuclear Information System (INIS)

    Keski-Kuha, E.; Nemlander, R.; Koho, P.

    2013-11-01

    The series of tests performed in BACEKO II project examined three different block materials for potential use in backfilling the repository; Friedland clay, 40/60-mixture of bentonite (40 %) and crushed rock (60 %) and Milos B clay in conjunction with pellet materials Cebogel QSE and Milos B clay. The testing program consisted of 9 tests, that continued the 1/4-scale tests executed in BACEKO 2008. The block backfilling degree of the 1/4-scale test tunnels was 73.8 % which was consistent with the material ratios associated with filling a repository tunnel having a 10 % over-excavation ratio. Some of these tests were conducted using a restraint installed at the front face of the setup and open-front tests were subsequently added in order to establish the time span which an open backfill front can remain stable should an interruption in the backfilling process occur. Additionally one flow-through test with higher salinity water (7 % TDS versus the 3,5 % TDS used in all other tests), was performed for an assembly constructed using Friedland clay. The rate of test assembly, consumption of materials and achieved densities were all monitored. During the tests, the erosion rates, progression of saturation and development of total pressure were monitored. In disassembling the tests, samples were collected for gravimetric water content measurement, the erosion pathways were identified and the sections were photographed with an infrared camera to illustrate the moister areas in the backfill. The greatest amounts of eroded material were observed in open-front tests where exiting water removed clay from the face of the backfill and formed a deepening channel in the block backfill. The open-front tests remained stable only until the outflow emerged. The properties of the pellet layer depend on the as-placed conditions which were operatordependant and also affect the outflow times. There was not much difference in the amount of erosion observed for the different block materials

  4. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    International Nuclear Information System (INIS)

    Yang, Jun; Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru

    2013-01-01

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities

  5. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  6. Geotechnical aspects of tunnel construction in deep clay formations for radioactive waste disposal

    International Nuclear Information System (INIS)

    De Moor, E.K.

    1987-01-01

    The significant factors affecting the construction of tunnels in deep clay formations for radioactive waste disposal were outlined. Two aspects of tunneling were discussed; the feasibility of tunnel construction and changes in pore water pressure that might occur with time. Some results of model tunnel tests and analyses were presented. (U.K.)

  7. Parallel Dynamic Analysis of a Large-Scale Water Conveyance Tunnel under Seismic Excitation Using ALE Finite-Element Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-01-01

    Full Text Available Parallel analyses about the dynamic responses of a large-scale water conveyance tunnel under seismic excitation are presented in this paper. A full three-dimensional numerical model considering the water-tunnel-soil coupling is established and adopted to investigate the tunnel’s dynamic responses. The movement and sloshing of the internal water are simulated using the multi-material Arbitrary Lagrangian Eulerian (ALE method. Nonlinear fluid–structure interaction (FSI between tunnel and inner water is treated by using the penalty method. Nonlinear soil-structure interaction (SSI between soil and tunnel is dealt with by using the surface to surface contact algorithm. To overcome computing power limitations and to deal with such a large-scale calculation, a parallel algorithm based on the modified recursive coordinate bisection (MRCB considering the balance of SSI and FSI loads is proposed and used. The whole simulation is accomplished on Dawning 5000 A using the proposed MRCB based parallel algorithm optimized to run on supercomputers. The simulation model and the proposed approaches are validated by comparison with the added mass method. Dynamic responses of the tunnel are analyzed and the parallelism is discussed. Besides, factors affecting the dynamic responses are investigated. Better speedup and parallel efficiency show the scalability of the parallel method and the analysis results can be used to aid in the design of water conveyance tunnels.

  8. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  9. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    At HLW repository, the temperature change due to the decay heat in near field can affect the hydraulic, mechanical, and chemical behaviors and influence on the repository safety. Therefore, the understanding of the thermal behavior in near field is essential for the site selection, design, as well as operation of the repository. In this study, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. At first, similar in situ tests at foreign URLs were reviewed and summarized the major conclusions from the tests. After then an adequate design of heater, observation sensors, and data logging system were developed and installed with a consideration of the site condition and test purposes. In order to minimize the effect of hydraulic phenomenon, a relatively day zone was chosen for the in situ test. Joint distribution and characteristics in the zone were surveyed and the rock mass properties were determined with various laboratory tests. In this study, an adequate location for an in situ borehole heater test was chosen. Also a heater for the test was designed and manufactured and the sensors for measuring the rock behavior were installed. It was possible to observe that stiff joints are developed overwhelmingly in the test area from the joint survey at the tunnel wall. The major rock and rock mass properties at the test site could be determined from the thermo-mechanical laboratory tests using the rock cores retrieved from the site. The measured data were implemented in the three-dimensional computer simulation. From the modeling using FLAC3D code, it was possible to find that the heat convection through the tunnel wall can influence on temperature distribution in rock. Because of that it was necessary to installed a blocking wall to minimize the effect of ventilation system on the heater test, which is carrying out nearby the tunnel wall. The in situ borehole heater test is the first

  10. Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1995-10-01

    Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0

  11. The TOPFLOW multi-purpose thermohydraulic test facility

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Kruessenberg, A.-K.; Weiss, F.-P.; Prasser, H.-M.

    2002-01-01

    The TOPFLOW (Transient Two Phase Flow Test Facility) multi-purpose thermohydraulic test facility is being built for studies of steady-state and transient flow phenomena in two-phase flows, and for the development and validation of the models contained in CFD (Computational Fluid Dynamics) codes. The facility is under construction at the Institute for Safety Research of the Rossendorf Research Center (FZR). It will be operated together with the Dresden Technical University and the Zittau/Goerlitz School for Technology, Economics and Social Studies within the framework of the Nuclear Technology Competence Preservation Program. TOPFLOW, with its test sections and its flexible concept, is available as an attractive facility also to users from all European countries. Experiments are planned in these fields, among others: - Transient two-phase flows in vertical and horizontal pipes and pipes of any inclination as well as in geometries typical of nuclear reactors (annulus, hot leg). - Boiling in large vessels and water pools (measurements of steam generation, 3D steam content distribution, turbulence, temperature stratification). - Test of passive components and safety systems. - Condensation in horizontal pipes in the absence and presence of non-condensable gases. The construction phase of TOPFLOW has been completed more or less on schedule. Experiments can be started after a commissioning phase in the 3rd quarter of 2002. (orig.) [de

  12. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Science.gov (United States)

    2010-07-01

    ... the sampler inlet opening centered in the sampling zone. To meet the maximum blockage limit of § 53.62(c)(1) or for convenience, part of the test sampler may be positioned external to the wind tunnel... = reference method sampler volumetric flow rate; and t = sampling time. (iii) Remove the reference method...

  13. Use of heat from tunnel water from the low-level Gotthard and Loetschberg tunnels - Final report phase I - Basic heat potential; Waermenutzung Tunnelwasser. Basistunnel Loetschberg und Gotthard

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, G; Dups, Ch

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of investigations made into the possible use of the drainage water collected in the low-level tunnels under the Swiss Alps for heating purposes. The report presents the findings of the first phase of the project concerning basic data on the amount of heat available, possible areas for its use and details concerning the integration in the general planning of the building and operation of the tunnels. Details of the thermal potential, based on prognoses for drainage water quantities made by the tunnel builders are presented. Possible uses of the heat, such as for the heating of residential buildings in towns near the ends of the tunnels are discussed and reference is made to further reports on concrete projects in Frutigen and Bodio. The authors emphasise the importance of the careful co-ordination with AlpTransit, the builders of the tunnel, and of planning the use of the heat in good time.

  14. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    Science.gov (United States)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  15. Performance evaluation of the Solar Building Test Facility

    Science.gov (United States)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  16. Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel

    Science.gov (United States)

    Boyce, R. R.; Takahashi, M.; Stalker, R. J.

    2005-12-01

    Available test time is an important issue for ground-based flow research, particularly for impulse facilities such as shock tunnels, where test times of the order of several ms are typical. The early contamination of the test flow by the driver gas in such tunnels restricts the test time. This paper reports measurements of the driver gas arrival time in the test section of the T4 free-piston shock-tunnel over the total enthalpy range 3 17 MJ/kg, using a time-of-flight mass spectrometer. The results confirm measurements made by previous investigators using a choked duct driver gas detector at these conditions, and extend the range of previous mass spectrometer measurements to that of 3 20 MJ/kg. Comparisons of the contamination behaviour of various piston-driven reflected shock tunnels are also made.

  17. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  18. Discussion on karst tunnel water inrush and prevention%谈岩溶隧道突水与防治

    Institute of Scientific and Technical Information of China (English)

    张高青

    2016-01-01

    简要概括了岩溶的定义,从地质、气象、施工三方面,分析了影响岩溶隧道突水的主要因素,论述了岩溶隧道突水造成的危害,提出了岩溶隧道突水的预防与治理措施,为岩溶隧道突水防治提供理论依据。%This paper briefly generalized the definition of karst,from the geology,meteorology,construction three aspects,analyzed the main fac-tors influence of karst tunnel water inrush,discussed the disasters caused by karst tunnel water inrush,put forward the prevention and treatment measures of karst tunnel water inrush,provided theoretical basis for prevention and control of karst tunnel water inrush.

  19. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  20. Concept of scaled test facility for simulating the PWR thermalhydraulic behaviour

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1990-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant, to simulation of small break Loss-of-Coolant Accident. The computer code RELAP 5/ MOD1 has been utilized to simulate the accident and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermal-hydraulic behaviours of the two sistema. (author)

  1. I and C functional test facility user guide

    International Nuclear Information System (INIS)

    Kwon, Ki Chun

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ''C'' language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author)

  2. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  3. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  4. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  5. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  6. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  7. Refurbishment of JMTR pure water facility

    International Nuclear Information System (INIS)

    Asano, Norikazu; Hanakawa, Hiroki; Kusunoki, Hidehiko; Satou, Shinichi

    2012-05-01

    In the refurbishment of JMTR, facilities were classified into which (1) were all updated, (2) were partly updated, and (3) were continuance used by the considerations of the maintenance history, the change parts availability and the latest technology. The JMTR pure water facility was classified into all updated facility based on the consideration. The Update construction was conducted in between FY2007 and FY2008. The refurbishment of JMTR pure water facility is summarized in this report. (author)

  8. Study on the bearing capacity of embedded chute on shield tunnel segment

    Science.gov (United States)

    Fanzhen, Zhang; Jie, Bu; Zhibo, Su; Qigao, Hu

    2018-05-01

    The method of perforation and steel implantation is often used to fix and install pipeline, cables and other facilities in the shield tunnel, which would inevitably do damage to the precast segments. In order to reduce the damage and the resulting safety and durability problems, embedded chute was set at the equipment installation in one shield tunnel. Finite element models of segment concrete and steel are established in this paper. When water-soil pressure calculated separately and calculated together, the mechanical property of segment is studied. The bearing capacity and deformation of segment are analysed before and after embedding the chute. Research results provide a reference for similar shield tunnel segment engineering.

  9. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Science.gov (United States)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  10. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  11. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Govind Mallick

    2017-08-01

    Full Text Available Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs from hydrothermally grown Ni(OH2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (∼0.7 V electron tunneling than the parent Ni(OH2.

  12. Performance of smokeless gasoline fire test facility

    International Nuclear Information System (INIS)

    Griffin, J.F.; Watkins, R.A.

    1978-01-01

    Packaging for radioactive materials must perform satisfactorily when subjected to temperatures simulating an accident involving a fire. The new thermal test facility has proved to be a reliable method for satisfactorily performing the required test. The flame provides sufficient heat to assure that the test is valid, and the temperature can be controlled satisfactorily. Also, the air and water mist systems virtually eliminate any smoke and thereby exceed the local EPA requirements. The combination of the two systems provides an inexpensive, low maintenance technique for elimination of the smoke plume

  13. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    International Nuclear Information System (INIS)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens; Starsec, Peter

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is established

  14. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens [WSP Sweden, Stockholm (Sweden) ; Starsec, Peter [SGI, Linkoeping (Sweden)

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is

  15. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  16. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  17. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    International Nuclear Information System (INIS)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation

  18. Development of a Microphone Phased Array Capability for the Langley 14- by 22-Foot Subsonic Tunnel

    Science.gov (United States)

    Humphreys, William M.; Brooks, Thomas F.; Bahr, Christopher J.; Spalt, Taylor B.; Bartram, Scott M.; Culliton, William G.; Becker, Lawrence E.

    2014-01-01

    A new aeroacoustic measurement capability has been developed for use in open-jet testing in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 tunnel). A suite of instruments has been developed to characterize noise source strengths, locations, and directivity for both semi-span and full-span test articles in the facility. The primary instrument of the suite is a fully traversable microphone phased array for identification of noise source locations and strengths on models. The array can be mounted in the ceiling or on either side of the facility test section to accommodate various test article configurations. Complementing the phased array is an ensemble of streamwise traversing microphones that can be placed around the test section at defined locations to conduct noise source directivity studies along both flyover and sideline axes. A customized data acquisition system has been developed for the instrumentation suite that allows for command and control of all aspects of the array and microphone hardware, and is coupled with a comprehensive data reduction system to generate information in near real time. This information includes such items as time histories and spectral data for individual microphones and groups of microphones, contour presentations of noise source locations and strengths, and hemispherical directivity data. The data acquisition system integrates with the 14x22 tunnel data system to allow real time capture of facility parameters during acquisition of microphone data. The design of the phased array system has been vetted via a theoretical performance analysis based on conventional monopole beamforming and DAMAS deconvolution. The performance analysis provides the ability to compute figures of merit for the array as well as characterize factors such as beamwidths, sidelobe levels, and source discrimination for the types of noise sources anticipated in the 14x22 tunnel. The full paper will summarize in detail the design of the instrumentation

  19. Subcritical neutron generator-test facility for nuclear waste transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilo, I.V.; Kolomiets, A.A.; Kozodaev, A.M. [ITEP, Moscow (Russian Federation)] [and others

    1995-10-01

    The development of the optimal design of high power facility for NPP transmutation and for a number of applications can not be carried out without preliminary tests of much cheaper prototypes. It has been proposed to combine in new test facility 36 MeV Linac ISTRA constructed in ITEP, original Be target and subcritical blanket that will be mounted on the place of partly disassembled heavy water ITEP experimental reactor. The basic parameters of Linac, schemes of the target and blanket are described. It will provide the direct experiments on installation which can be considered as prototype for future linac driven high power facilities.

  20. 2-MW plasmajet facility thermal tests of concrete

    International Nuclear Information System (INIS)

    Goin, K.L.

    1977-07-01

    A test was made in the 2-Megawatt Plasmajet Facility to obtain experimental data relative to the thermal response of concrete to incident heat flux. 14.6 cm diameter by 8.0 cm long concrete cylinders were positioned in a supersonic flow of heated nitrogen from an arc heater. The end of the concrete cylinders impacted by the flow were subjected to heat fluxes in the range of 0.13 to 0.35 kW/cm 2 . Measurements included cold wall surface heat flux and pressure distributions, surface and indepth temperatures, ablation rates, and surface emission spectrographs. The test was part of the Sandia light water reactor safety research program and complements similar tests made in the Radiant Heat Facility at heat fluxes from 0.03 to 0.12 kW/cm 2 . A description of the tests and a tabulation of test data are included

  1. Air-water tests in support of LLTR series II Test A-4

    International Nuclear Information System (INIS)

    Chen, K.

    1980-07-01

    A series of tests injecting air into a tank of stagnant water was conducted in June 1980 utilizing the GE Plenum Mixing Test Facility in San Jose, California. The test was concerned with investigating the behavior of air jets at a submerged orifice in water over a wide range of flow rates. The main objective was to improve the basic understanding of gas-liquid phenomena (e.g., leak dynamics, gas bubble agglomeration, etc.) in a simulated tube bundle through visualization. The experimental results from these air-water tests will be used as a guide to help select the leak size for LLTR Series II Test A-4 because air-water system is a good simulation of water-sodium mixture

  2. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  3. Water uptake by and movement through a Backfilled KBS-3V deposition tunnel: results of large-scale simulations

    International Nuclear Information System (INIS)

    Dixon, D.A.; Ramqvist, G.; Jonsson, E.; Gunnarsson, D.; Hansen, J.

    2010-01-01

    Document available in extended abstract form only. Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and clay-based materials for backfilling the deposition tunnels of a repository utilizing the KBS-3V deposition concept. This paper summarises the results obtained in intermediate and large-scale simulations to evaluate water movement into and through backfill consisting of bentonite pellets and pre-compacted clay blocks. The main objectives of Baclo Phase III were related to examining backfill materials, deposition concepts and their importance to the clay-block and pellet backfilling concept. Bench-scale studies produced a large body of information on how various processes (e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer), might affect the hydro-mechanical evolution of backfill components. The tests described in this paper examined the movement of water into and through assemblies of clay blocks and bentonite pellets/granules and represent a substantial up-scaling and inclusion of parameters that more closely simulate a field situation. In total, 27 intermediate-scale tests have been completed and 18 large-scale tests (∼ 1/2-tunnel cross-section) will be completed at SKB's Aespoe HRL by mid 2010. At intermediate-scale, point inflow rates ranging from 0.01 to 1.0 l/min were applied to block - dry pellet assemblies and water movement into and through the system was monitored. Tests determined that it is critical to provide clay blocks with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls

  4. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  5. Water NSTF Design, Instrumentation, and Test Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.

    2017-08-01

    The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric

  6. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  7. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  8. Elastic-Plastic Numerical Analysis of Tunnel Stability Based on the Closest Point Projection Method Considering the Effect of Water Pressure

    Directory of Open Access Journals (Sweden)

    Zhan-ping Song

    2016-01-01

    Full Text Available To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM. Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.

  9. Scaling and design report of ECC performance test facility (SWAT) of SMART

    International Nuclear Information System (INIS)

    Cho, Seok; Ko, Yong Ju; Cho, Young Il; Kim, Jeong Tak; Choi, Nam Hyun; Shin Yong Chul; Park, Choon Kyong; Kwon, Tae Soon; Lee, Sung Jae

    2010-12-01

    SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) was designed by 1/5 scaling ratio using the modified linear scaling method. The design characteristics of the SMART such that the elevation of RCP suction nozzles is the same with that of the ECC injection nozzles are maintained to reduce a distortion caused by the gravitational effect. Thermal hydraulic phenomena in a test facility designed by the modified linear scaling method can be simulated more accurately than those by the full-height and reduced area scaling method. The main part of the test section is SG-side upper down-comer. The boundary conditions are saturated steam and water flow condition and drain flow rate to control the collapsed water level in the down-comer. The test data of the SWAT can produce the well-defined boundary condition to validate the thermal hydraulic analysis code for the SMART

  10. Scaling and design report of ECC performance test facility (SWAT) of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Ko, Yong Ju; Cho, Young Il; Kim, Jeong Tak; Choi, Nam Hyun; Shin Yong Chul; Park, Choon Kyong; Kwon, Tae Soon; Lee, Sung Jae [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) was designed by 1/5 scaling ratio using the modified linear scaling method. The design characteristics of the SMART such that the elevation of RCP suction nozzles is the same with that of the ECC injection nozzles are maintained to reduce a distortion caused by the gravitational effect. Thermal hydraulic phenomena in a test facility designed by the modified linear scaling method can be simulated more accurately than those by the full-height and reduced area scaling method. The main part of the test section is SG-side upper down-comer. The boundary conditions are saturated steam and water flow condition and drain flow rate to control the collapsed water level in the down-comer. The test data of the SWAT can produce the well-defined boundary condition to validate the thermal hydraulic analysis code for the SMART

  11. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    Science.gov (United States)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  12. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  13. The test section of the COSIMA blowdown test facility

    International Nuclear Information System (INIS)

    Bruederle, F.; Hain, K.

    1980-08-01

    The test section of the COSIMA blowdown test facility has been designed as a geometric analogy of the core of a pressurized water reactor for a shortened single fuel rod simulator. Its design and instrumentation together with the whole loop allow to simulate out of pile and trace by measurements the energy and hydraulic conditions arising in a blowdown. Special attention is being given in this report to one particular design problem: the number of load cycles up to incipient cracking of the test section as a pressure vessel containing hot water at high pressures and subjected to extreme rates of temperature variation in excess of 300 K/min. The methods of calculating cyclic loads as specified in the German Technical Rules for Boilers (TRD) have been supplemented in such a way that the number of load cycles up to incipient cracking may now be determined not only by the mean wall temperature, which is difficult to measure, but equally also well by the outer wall temperature, which is easy to measure precisely. (orig.) [de

  14. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  16. Results of pressurized-slot measurements in the G-Tunnel underground facility

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Mann, K.L.; Dodds, D.J.

    1989-01-01

    A rock-mechanics field-testing program is underway at Sandia National Laboratories (SNL) as part of the YMP. SNL has the responsibility for assessing the repository design and performance as well as characterizing the geomechanical behavior of the rock. SNL has conducted field experiments in G-Tunnel in Rainier Mesa at the NTS, where tuffs similar to those at Yucca Mountain, the potential repository site, are found. Later experiments are planned as part of the YMP Exploratory Shaft investigations at Yucca Mountain. Major geomechanical factors in repository developments are determinations of the stress state and the deformability of the rock mass (described by the modulus of deformation). One feature of SNL's rock-mechanics program was the development of a testing program for cutting thin slots in a jointed welded tuff and utilizing flatjacks for pressurizing these thin-slots on a relatively, large scale. Objectives in the pressurized-slot testing in G-Tunnel have been to apply and possibly improve methods for (1) utilizing the flatjack cancellation (FC) method for measuring stresses normal to the slot and (2) measuring the modulus of deformation of the jointed rock surrounding the slot. This paper discusses the results of field measurements in and around a single slot and evaluates potential applications and limitations. 10 refs., 1 fig., 4 tabs

  17. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  18. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    Science.gov (United States)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of

  19. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  20. Installation of the water environment irradiation facility for the IASCC research under the BWR irradiation environment (1)

    International Nuclear Information System (INIS)

    Okada, Yuji; Magome, Hirokatsu; Hanawa, Hiroshi; Ohmi, Masao; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Shibata, Mitsunobu; Yonekawa, Akihisa; Ueda, Haruyasu

    2013-10-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material is advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. This material irradiation test facility and power ramping test facility for doing the neutron irradiation test of the fuel and material for light water reactors is scheduled to be manufactured and installed between the 2008 fiscal year and the 2012 fiscal year. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from the 2008 fiscal year to the 2010 fiscal year. (author)

  1. Ventilation design for Yucca Mountain Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Jurani, R.S.

    1995-01-01

    Yucca Mountain, located in Southern Nevada approximately 160 km northwest of Las Vegas, is currently the site of intensive surface-based and underground investigations. The investigations are required to determine if the site is suitable for long term isolation of the Nation's high level nuclear waste inventory. A major component of the program is the Exploratory Studies Facility, or ESF. The ESF, when completed, will consist of approximately 25,600 meters of tunnels and drifts. The network of tunnels and drifts will house and support a wide array of testing programs conceived to provide physical information about the site. Information on geologic, geomechanical, and hydrologic data will be used in the repository design if the site is found suitable. Besides a few special requirements, the general ESF ventilation criteria during construction are similar to that of commercial tunneling and mining operations. The minimum air velocity at the Tunnel Boring Machine (TBM) and other active mining faces is 0.51 meter per second (m/s) (100 feet per minute [fpm]). Airways, estimated leakages and ventilation controls are converted into equivalent resistances for input to mine ventilation network computer simulations. VNETPC Version 3.1 computer software is used to generate the ventilation models for optimized system design and component selection. Subsequently, actual performance of the ventilation system will be verified and validated to comply with applicable nuclear regulatory quality assurance requirements. Dust control in the ESF is dependent on effective dust collection, enclosure, and airflow dilution. Minimum use of water, as feasible, is necessary to avoid adding moisture to the potential repository horizon. The limitation of water use for test drilling and TBM operation, and the rigid compliance with applicable federal and state regulations, make the ESF a ventilation design challenge

  2. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  3. Cost and schedule estimate to construct the tunnel and shaft remedial shielding concept, Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-30

    The report provides an estimate of the cost and associated schedule to construct the tunnel and shaft remedial shielding concept. The cost and schedule estimate is based on a preliminary concept intended to address the potential radiation effects on Line D and Line Facilities in event of a beam spill. The construction approach utilizes careful tunneling methods based on available excavation and ground support technology. The tunneling rates and overall productivity on which the cost and project schedule are estimated are based on conservative assumptions with appropriate contingencies to address the uncertainty associated with geological conditions. The report is intended to provide supplemental information which will assist in assessing the feasibility of the tunnel and shaft concept and justification for future development of this particular aspect of remedial shielding for Line D and Line D Facilities.

  4. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  5. Analysis of the tritium-water (T-H2O) system for a fusion material test facility

    International Nuclear Information System (INIS)

    Hassanein, A.; Smith, D.L.; Sze, D.K.; Reed, C.B.

    1992-04-01

    The need for a high flux, high energy neutron test facility to evaluate performance of fusion reactor materials is urgent. An accelerator based D-Li source is generally accepted as the most reasonable approach to a high flux neutron source in the near future. The idea is to bombard a high energy (35 MeV) deuteron beam into a lithium target to produce high energy neutrons to simulate the fusion environment. More recently it was proposed to use a 21 MeV triton beam incident on a water jet target to produce the required neutron source for testing and simulating fusion material environments. The advantages of such a system are discussed. Major concerns regarding the feasibility of this system are also highlighted

  6. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  7. Storm water permitting for oil and gas facilities

    International Nuclear Information System (INIS)

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  8. Dose calculations for the concrete water tunnels at 190-C Area, Hanford Site

    International Nuclear Information System (INIS)

    Kamboj, S.; Yu, C.

    1997-01-01

    The RESRAD-BUILD code was used to calculate the radiological dose from the contaminated concrete water tunnels at the 190-C Area at the Hanford Site. Two exposure scenarios, recreationist and maintenance worker, were considered. A residential scenario was not considered because the material was assumed to be left intact (i.e., the concrete would not be rubbleized because the location would not be suitable for construction of a house). The recreationist was assumed to use the tunnel for 8 hours per day for 1 week as an overnight shelter. The maintenance worker was assumed to spend 20 hours per year working in the tunnel. Six exposure pathways were considered in calculating the dose. Three external exposure pathways involved penetrating radiation emitted directly from the contaminated tunnel floor, emitted from radioactive particulates deposited on the tunnel floor, and resulting from submersion in airborne radioactive particulates. Three internal exposure pathways involved inhalation of airborne radioactive particulates; inadvertent direct ingestion of removable, contaminated material on the tunnel floor; and inadvertent indirect ingestion of airborne particulates deposited on the tunnel floor. The gradual removal of surface contamination over time and the ingrowth of decay products were considered in calculating the dose at different times. The maximum doses were estimated to be 1.5 mrem/yr for the recreationist and 0.34 mrem/yr for the maintenance worker

  9. Field Lysimeter Test Facility status report IV: FY 1993

    International Nuclear Information System (INIS)

    Gee, G.W.; Felmy, D.G.; Ritter, J.C.; Campbell, M.D.; Downs, J.L.; Fayer, M.J.; Kirkham, R.R.; Link, S.O.

    1993-10-01

    At the U.S. Department of Energy's Hanford Site near Richland, Washington, a unique facility, the Field Lysimeter Test Facility (FLTF) is used to measure drainage from and water storage in soil covers. Drainage has ranged from near zero amounts to more than 50% of the applied water, with the amount depending on vegetative cover and soil type. Drainage occurred from lysimeters with coarse soils and gravel covers, but did not occur from capillary barrier-type lysimeters (1.5 m silt loam soil over coarse sands and gravels) except under the most extreme condition tested. For capillary barriers that were irrigated and kept vegetation-free (bare surface), no drainage occurred in 5 of the past 6 years. However, this past year (1992--1993) a record snowfall of 1,425 mm occurred and water storage in the irrigated, bare-surfaced capillary barriers exceeded 500 mm resulting in drainage of more than 30 mm from these barriers. In contrast, capillary barriers, covered with native vegetation (i.e., shrubs and grasses) did not drain under any climatic condition (with or without irrigation). In FY 1994, the FLTF treatments will be increased from 11 to 17 with the addition of materials that will simulate portions of a prototype barrier planned for construction in 1994 at the Hanford Site. The 17 FLTF treatments are designed to test the expected range of surface soil, vegetation, and climatic conditions encountered at the Hanford Site and will assist in evaluating final surface barrier designs for a waste disposal facility

  10. A Study of Critical Flowrate in the Integral Effect Test Facilities

    International Nuclear Information System (INIS)

    Kim, Yeongsik; Ryu, Sunguk; Cho, Seok; Yi, Sungjae; Park, Hyunsik

    2014-01-01

    In earlier studies, most of the information available in the literature was either for a saturated two-phase flow or a sub-cooled water flow at medium pressure conditions, e. g., up to about 7.0 MPa. The choking is regarded as a condition of maximum possible discharge through a given orifice and/or nozzle exit area. A critical flow rate can be achieved at a choking under the given thermo-hydraulic conditions. The critical flow phenomena were studied extensively in both single-phase and two-phase systems because of its importance in the LOCA analyses of light water reactors and in the design of other engineering areas. Park suggested a modified correlation for predicting the critical flow for sub-cooled water through a nozzle. Recently, Park et al. performed an experimental study on a two-phase critical flow with a noncondensable gas at high pressure conditions. Various experiments of critical flow using sub-cooled water were performed for a modeling of break simulators in thermohydraulic integral effect test facilities for light water reactors, e. g., an advanced power reactor 1400MWe (APR1400) and a system-integrated modular advanced reactor (SMART). For the design of break simulators of SBLOCA scenarios, the aspect ratio (L/D) is considered to be a key parameter to determine the shape of a break simulator. In this paper, an investigation of critical flow phenomena was performed especially on break simulators for LOCA scenarios in the integral effect test facilities of KAERI, such as ATLAS and FESTA. In this study, various studies on the critical flow models for sub-cooled and/or saturated water were reviewed. For a comparison among the models for the selected test data, discussions of the comparisons on the effect of the diameters, predictions of critical flow models, and break simulators for SBLOCA in the integral effect test facilities were presented

  11. A Study of Critical Flowrate in the Integral Effect Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongsik; Ryu, Sunguk; Cho, Seok; Yi, Sungjae; Park, Hyunsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In earlier studies, most of the information available in the literature was either for a saturated two-phase flow or a sub-cooled water flow at medium pressure conditions, e. g., up to about 7.0 MPa. The choking is regarded as a condition of maximum possible discharge through a given orifice and/or nozzle exit area. A critical flow rate can be achieved at a choking under the given thermo-hydraulic conditions. The critical flow phenomena were studied extensively in both single-phase and two-phase systems because of its importance in the LOCA analyses of light water reactors and in the design of other engineering areas. Park suggested a modified correlation for predicting the critical flow for sub-cooled water through a nozzle. Recently, Park et al. performed an experimental study on a two-phase critical flow with a noncondensable gas at high pressure conditions. Various experiments of critical flow using sub-cooled water were performed for a modeling of break simulators in thermohydraulic integral effect test facilities for light water reactors, e. g., an advanced power reactor 1400MWe (APR1400) and a system-integrated modular advanced reactor (SMART). For the design of break simulators of SBLOCA scenarios, the aspect ratio (L/D) is considered to be a key parameter to determine the shape of a break simulator. In this paper, an investigation of critical flow phenomena was performed especially on break simulators for LOCA scenarios in the integral effect test facilities of KAERI, such as ATLAS and FESTA. In this study, various studies on the critical flow models for sub-cooled and/or saturated water were reviewed. For a comparison among the models for the selected test data, discussions of the comparisons on the effect of the diameters, predictions of critical flow models, and break simulators for SBLOCA in the integral effect test facilities were presented.

  12. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  13. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  14. Testing measurements of airflow velocity in road tunnels

    Directory of Open Access Journals (Sweden)

    Danišovič Peter

    2017-01-01

    Full Text Available Within the project entitled “Models of formation and spread of fire to increase safety of road tunnels”, it was necessary to devise a method how to record airflow velocity during the fire in situ tests in road tunnels. Project is in first year of its solution so one testing measurement was performed to check the functionality of anemometers selected for this project and the first in situ measurement was also performed just a few days ago.

  15. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  16. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  17. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  18. Blasting Impact by the Construction of an Underground Research Tunnel in KAERI

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2005-12-01

    The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated by drill and blasting method using high-explosives. In order not to disturb the operation at the research facilities such as HANARO reactor, it is critical to develop a blasting design , which will not influence on the facilities, even though several tens of explosives are detonated almost simultaneously. To develop a reasonable blasting design, a test blasting at the site should be performed. A preliminary analysis for predicting the expected vibration and noise by the blasting for the construction of the underground research tunnel was performed using a typical empirical equation. From the study, a blasting design could be developed not to influence on the major research facilities in KAERI. For the validation of the blasting design, a test blasting was carried out at the site and the parameters of vibration equation could be determined using the measured data during the test blasting. Using the equation, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The study would verify the applicability of blasting method for the construction of a research tunnel in a rock mass and that would help the design and construction of large scale underground research laboratory, which might be carried out in the future. It is also meaningful to accumulate technical experience for enhancing the reliability and effectiveness of the design and construction of the HLW disposal repository, which will be constructed in deep underground by drill and blasting technique

  19. Structure and tunneling dynamics in a model system of peptide co-solvents: Rotational spectroscopy of the 2,2,2-trifluoroethanol⋯water complex

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Javix; Xu, Yunjie, E-mail: yunjie.xu@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2014-06-21

    The hydrogen-bonding topology and tunneling dynamics of the binary adduct, 2,2,2-trifluoroethanol (TFE)⋯water, were investigated using chirped pulse and cavity based Fourier transform microwave spectroscopy with the aid of high level ab initio calculations. Rotational spectra of the most stable binary TFE⋯water conformer and five of its deuterium isotopologues were assigned. A strong preference for the insertion binding topology where water is inserted into the existing intramolecular hydrogen-bonded ring of TFE was observed. Tunneling splittings were detected in all of the measured rotational transitions of TFE⋯water. Based on the relative intensity of the two tunneling components and additional isotopic data, the splitting can be unambiguously attributed to the tunneling motion of the water subunit, i.e., the interchange of the bonded and nonbonded hydrogen atoms of water. The absence of any other splitting in the rotational transitions of all isotopologues observed indicates that the tunneling between g+ and g− TFE is quenched in the TFE⋯H{sub 2}O complex.

  20. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  1. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  2. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  3. The design of models for cryogenic wind tunnels. [mechanical properties and loads

    Science.gov (United States)

    Gillespie, V. P.

    1977-01-01

    Factors to be considered in the design and fabrication of models for cryogenic wind tunnels include high model loads imposed by the high operating pressures, the mechanical and thermodynamic properties of materials in low temperature environments, and the combination of aerodynamic loads with the thermal environment. Candidate materials are being investigated to establish criteria for cryogenic wind tunnel models and their installation. Data acquired from these tests will be provided to users of the National Transonic Facility.

  4. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  5. NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel

    Science.gov (United States)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; hide

    2011-01-01

    Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.

  6. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  7. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    International Nuclear Information System (INIS)

    Haagenstad, T.

    1999-01-01

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility

  8. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  9. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    1990-10-01

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  10. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  11. Field Lysimeter Test Facility: Protective barrier test results (FY 1990, the third year)

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.

    1990-11-01

    The Field Lysimeter Test Facility (FLTF) was constructed to test protective barriers for isolating low-level radioactive and hazardous wastes from the biosphere. Protective barriers are specially configured earth materials placed over near-surface wastes to prevent intrusion of water, plants, and animals. Low-level radioactive waste is stored in near-surface repositories at the Hanford Site and can be transported into the biosphere by water, plants, and animals. The purpose of the FLTF is to measure water balance within barriers as precipitation is partitioned to evaporation (including transpiration), storage, and drainage. Runoff was prevented by raised edges on the lysimeters. Water balance in protective barriers depends on the water-holding capacity of the soil, the gradient of a potential, and the conductivity of the underlying capillary barrier. Current barrier design uses soil with a high water storage capacity and a capillary barrier underlying the soil to increase its water storage capacity. This increased storage capacity is to hold water, which would normally drain, near the the surface where evaporation can cycle it back to the atmosphere. 7 refs., 23 figs., 5 tabs

  12. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  13. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  14. In-situ failure test in the research tunnel at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Johansson, E.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Hakala, M. [Gridpoint Finland Oy (Finland); Heikkilae, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Rock Engineering

    2000-05-01

    A failure test suitable for execution in the Research Tunnel at Olkiluoto has been planned to study the failure of rock in-situ. The objectives of the in-situ failure test is to assess the applicability of numerical modelling codes and methods to the study of rock failure and associated crack propagation and to develop a novel technique to be used to determine the strength of rock in-situ. The objective of this study was to make a preliminary design of the failure test, assess the technical feasibility of the test and to give input information for further numerical modelling of the test. The design of the failure test is reported and results of preliminary modelling are given. The input information for future modelling includes a study of rock properties, fracture propagation in rock, in-situ stresses and the development of techniques for using the expanding agent to produce artificial stress field. The study showed that mechanical properties such as strength of gneissic tonalite, the main rock type in the Research Tunnel, depends highly on the orientation of schistocity. The in-situ failure test was shown to be technically feasible and a state of stress high enough to cause failure can be created artificially by using a proper expansive agent and design. (orig.)

  15. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  16. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  17. A Bibliography of Transonic Dynamics Tunnel (TDT) Publications

    Science.gov (United States)

    Doggett, Robert V.

    2016-01-01

    The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.

  18. Validation of US3D for Capsule Aerodynamics using 05-CA Wind Tunnel Test Data

    Science.gov (United States)

    Schwing, Alan

    2012-01-01

    Several comparisons of computational fluid dynamics to wind tunnel test data are shown for the purpose of code validation. The wind tunnel test, 05-CA, uses a 7.66% model of NASA's Multi-Purpose Crew Vehicle in the 11-foot test section of the Ames Unitary Plan Wind tunnel. A variety of freestream conditions over four Mach numbers and three angles of attack are considered. Test data comparisons include time-averaged integrated forces and moments, time-averaged static pressure ports on the surface, and Strouhal Number. The applicability of the US3D code to subsonic and transonic flow over a bluff body is assessed on a comprehensive data set. With close comparison, this work validates US3D for highly separated flows similar to those examined here.

  19. Temperature measurements from a horizontal heater test in G-Tunnel

    International Nuclear Information System (INIS)

    Lin, Wunan; Ramirez, A.L.; Watwood, D.

    1991-10-01

    A horizontal heater test was conducted in G-Tunnel, Nevada Test Site, to study the hydrothermal response of the rock mass due to a thermal loading. The results of the temperature measurements are reported here. The measured temperatures agree well with a scoping calculation that was performed using a model which investigates the transport of water, vapor, air, and heat in fractured porous media. Our results indicate that the temperature field might be affected by the initial moisture content of the rock, the fractures in the rock, the distance from the free surface of the alcove wall, and the temperature distribution on the heater surface. Higher initial moisture content, higher fracture density, and cooling from the alcove wall tend to decrease the measured temperature. The temperature on top of the horizontal heater can was about 30 degrees C greater than at the bottom throughout most of the heating phase, causing the rock temperatures above the heater to be greater than those below. Along a radius from the center of the heater, the heating created a dry zone, followed by a boiling zone and condensation zone. Gravity drainage of the condensed water in the condensation zone had a strong effect on the boiling process in the test region. The temperatures below and to the side of the heater indicated a region receiving liquid drainage from an overlying region of condensation. We verified that a thermocouple in a thin-wall tubing measures the same temperature as one grouted in a borehole

  20. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  1. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  2. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  3. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  4. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    Science.gov (United States)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  5. Impulse Force Balance for Ultrashort Duration Hypersonic Test Facilities

    Directory of Open Access Journals (Sweden)

    P. Singh

    2015-01-01

    Full Text Available This paper presents the measurement of side force, pitching, and yawing moments on a model, using an accelerometer force balance, in a short duration hypersonic shock tunnel. The test model is a blunt-nosed, flapped delta wing, mounted on a support sting through a force balance. The flexible rubber bushes constituting the balance allow the model to float freely on the sting during the test. The accelerometers were located in the model to record accelerations in the directions of interest. The model was tested in shock tunnel at Mach 8 at different angles of incidence with the freestream. Dynamic calibration of the test assembly was carried out for the acquisition of impulse response functions for the above components of force and moments, using an impulse hammer. The convolution technique was applied to derive the impulse response functions. The accelerometer outputs from the model in the hypersonic freestream were processed using the respective impulse response functions to derive the unknown aerodynamic force and moments. The newly adopted convolution technique has been found very effective for data reduction from accelerometer force balances developed for shock tunnel applications.

  6. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    Science.gov (United States)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  7. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  8. Control system of test and research facilities for nuclear energy industry

    International Nuclear Information System (INIS)

    1983-01-01

    IHI manufactures several kinds of test and research facilities used for research and development of new type power reactor and solidification system of high level radioactive liquid waste and safety research of light water reactor. These facilities are usually new type plants themselves, so that their control systems have to be designed individually for each plant with the basic conception. They have many operation modes because of their purposes of research and development, so the operation has to be automatized and requires the complicated sequence control system. In addition to these requirements, the detail design is hardly fixed on schedule and often modified during the initial start up period. Therefore, the computer control system was applied to these facilities with CRT display for man-machine communication earlier than to commercial power plants, because in the computer system the control logic is not hard wired but soft programmed and can be easily modified. In this paper, two typical computer control systems, one for PWR reflood test facility and another for mock-up test facility for solidification of liquid waste, are introduced. (author)

  9. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  10. Design for the National RF Test Facility at ORNL

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; Becraft, W.R.

    1983-01-01

    Conceptual and preliminary engineering design for the National RF Test Facility at Oak Ridge National Laboratory (ORNL) has been completed. The facility will comprise a single mirror configuration embodying two superconducting development coils from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program on either side of a cavity designed for full-scale antenna testing. The coils are capable of generating a 1.2-T field at the axial midpoint between the coils separated by 1.0 m. The vacuum vessel will be a stainless steel, water-cooled structure having an 85-cm-radius central cavity. The facility will have the use of a number of continuous wave (cw), radio-frequency (rf) sources at levels including 600 kW at 80 MHz and 100 kW at 28 GHz. Several plasma sources will provide a wide range of plasma environments, including densities as high as approx. 5 x 10 13 cm -3 and temperatures on the order of approx. 10 eV. Furthermore, a wide range of diagnostics will be available to the experimenter for accurate appraisal of rf testing

  11. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    Science.gov (United States)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  12. Upper Bound Solution for the Face Stability of Shield Tunnel below the Water Table

    Directory of Open Access Journals (Sweden)

    Xilin Lu

    2014-01-01

    Full Text Available By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesion c, surcharge load q, and soil gravity γ multiplied by their corresponding coefficients Nc, Nq, and Nγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.

  13. Comparison of Stereo-PIV and Plenoptic-PIV Measurements on the Wake of a Cylinder in NASA Ground Test Facilities.

    Science.gov (United States)

    Fahringer, Timothy W.; Thurow, Brian S.; Humphreys, William M., Jr.; Bartram, Scott M.

    2017-01-01

    A series of comparison experiments have been performed using a single-camera plenoptic PIV measurement system to ascertain the systems performance capabilities in terms of suitability for use in NASA ground test facilities. A proof-of-concept demonstration was performed in the Langley Advanced Measurements and Data Systems Branch 13-inch (33- cm) Subsonic Tunnel to examine the wake of a series of cylinders at a Reynolds number of 2500. Accompanying the plenoptic-PIV measurements were an ensemble of complementary stereo-PIV measurements. The stereo-PIV measurements were used as a truth measurement to assess the ability of the plenoptic-PIV system to capture relevant 3D/3C flow field features in the cylinder wake. Six individual tests were conducted as part of the test campaign using three different cylinder diameters mounted in two orientations in the tunnel test section. This work presents a comparison of measurements with the cylinders mounted horizontally (generating a 2D flow field in the x-y plane). Results show that in general the plenoptic-PIV measurements match those produced by the stereo-PIV system. However, discrepancies were observed in extracted pro les of the fuctuating velocity components. It is speculated that spatial smoothing of the vector fields in the stereo-PIV system could account for the observed differences. Nevertheless, the plenoptic-PIV system performed extremely well at capturing the flow field features of interest and can be considered a viable alternative to traditional PIV systems in smaller NASA ground test facilities with limited optical access.

  14. Drainage water use from the railway Mont d'Or tunnel in Vallorbe, Switzerland; Centrale du Bief-Rouge. Recuperation des eaux du tunnel du Mont d'Or a Vallorbe - Rapport 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gerodetti, M.

    2009-02-15

    The 6'097 m long Railway Tunnel under the Mont d'Or (western Switzerland, under the Jura mountains) was constructed at the beginning of the 20{sup th} century and inaugurated on 16 May 1915. During the construction there was an important break-in of water in the tunnel that flooded the whole construction area. Since the completion of the tunnel, the water incursion is drained and conveyed to the Swiss entrance. The flow rate coming from the tunnel is constant at about 120 l/s and didn't show any variation during all the past decades. The idea of using the tunnel water energy in a turbine is thought of since a long time. Considering the present situation on the energy sector, the 'Societe electrique du Chatelard' (the local electricity utility) with the support of the municipal authority, decided now to realize this concept and to turbine the water from the tunnel, also known as 'Bief Rouge', for power generation. The 'Bief Rouge' project consists in catching the flow at the Vallorbe entrance of the tunnel and conducting it into a new penstock down to the river Orbe situated some 65 m downhill where electricity will be produced in a new small-scale power plant. The planned scheme will have an electrical power of 54.5 kW and be located in a new building near the existing sewage pumping station of Vallorbe. The total investment cost is 1.3 million CHF and includes the construction of a new headwater basin, a penstock, a power plant and a tailrace channel as well as the electro-mechanical equipment for power production. Based on a mean annual power production of some 465,000 kWh, the retail price of the kWh has been evaluated to 21 Swiss cents/kWh. (author)

  15. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  16. New in-pile water loop facility for IASCC studies at JMTR

    International Nuclear Information System (INIS)

    Tsukada, T.; Tsuji, H.; Nakajima, H.; Komori, Y.; Ito, H.

    2002-01-01

    Irradiation assisted stress corrosion cracking (IASCC) is caused by the synergistic effects of neutron and gamma radiation, residual and applied stresses and high temperature water environment on the structural materials of vessel internals. IASCC has been studied since the beginning of the 1980's and the phenomenological knowledge on IASCC is accrued extensively. However, mainly due to the experimental difficulties, data for the mechanistic understanding and prediction of failures of the specific in-vessel components are still insufficient and further well-controlled experiments are needed [1]. In recent years, efforts to perform the in-pile materials test for IASCC study have been made at some research reactors [2-4]. At JAERI, a high temperature water loop facility was designed to install at the Japan Materials Testing Reactor (JMTR) to carry out the in-core IASCC testing. This report describes an overview of design and specification of the loop facility. (authors)

  17. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  18. CSNI Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer Codes

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.

  19. A Supermagnetic Tunnel Full of Subatomic Action

    CERN Document Server

    2008-01-01

    Last year, before the gigantic hadron supercollider at CERN research facility was installed underground, a photographer captured this picture of a 1,950 metric ton tunnel containing giant magnets that will be placed in a tunnel and kept at near-zero temperatures.

  20. Radiological operating experience at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bunch, W.L.; Prevo, P.R.

    1986-11-01

    The Fast Flux Test Facility has been in operation for approximately five years, including about one thousand days of full power operation of the Fast Test Reactor. During that time the collective dose equivalents received by operating personnel have been about two orders of magnitude lower than those typically received at commercial light water reactors. No major contamination problems have been encountered in operating and maintaining the plant, and release of radioactive gas to the environment has been minimal and well below acceptable limits. All shields have performed satisfactorily. Experience to date indicates an apparent radiological superiority of liquid metal reactor systems over current light water plants

  1. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  2. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  3. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  4. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    Science.gov (United States)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; hide

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  5. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  6. Wind tunnel tests on a one-foot diameter SR-7L propfan model

    Science.gov (United States)

    Aljabri, Abdullah S.

    1987-01-01

    Wind tunnel tests have been conducted on a one-foot diameter model of the SR-7L propfan in the Langley 16-Foot and 4 x 7 Meter Wind Tunnels as part of the Propfan Test Assessment (PTA) Program. The model propfan was sized to be used on a 1/9-scale model of the PTA testbed aircraft. The model propeller was tested in isolation and wing-mounted on the aircraft configuration at various Mach numbers and blade pitch angles. Agreement between data obtained from these tests and data from Hamilton Standard validate that the 1/9-scale propeller accurately simulates the aerodynamics of the SR-7L propfan. Predictions from an analytical computer program are presented and show good agreement with the experimental data.

  7. Testing of tunnel support: dynamic load testing of rock support containment systems (eg wire mesh).

    CSIR Research Space (South Africa)

    Ortlepp, WD

    1997-07-01

    Full Text Available The objective of this project was to determine the performance characteristics of containment elements of tunnel support in common use in South African mines under dynamic loading. The magnitude of the energy levels in this testing had...

  8. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  9. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  10. The construction of solid waste form test and inspection facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Lee, Kang Moo; Jung, In Ha; Kim, Sung Hwan; Yoo, Jeong Woo; Lee, Jong Youl; Bae, Sang Min

    1988-01-01

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  11. Boundary Layer Transition and Trip Effectiveness on an Apollo Capsule in the JAXA High Enthalpy Shock Tunnel (HIEST) Facility

    Science.gov (United States)

    Kirk, Lindsay C.; Lillard, Randolph P.; Olejniczak, Joseph; Tanno, Hideyuki

    2015-01-01

    Computational assessments were performed to size boundary layer trips for a scaled Apollo capsule model in the High Enthalpy Shock Tunnel (HIEST) facility at the JAXA Kakuda Space Center in Japan. For stagnation conditions between 2 MJ/kg and 20 MJ/kg and between 10 MPa and 60 MPa, the appropriate trips were determined to be between 0.2 mm and 1.3 mm high, which provided kappa/delta values on the heatshield from 0.15 to 2.25. The tripped configuration consisted of an insert with a series of diamond shaped trips along the heatshield downstream of the stagnation point. Surface heat flux measurements were obtained on a capsule with a 250 mm diameter, 6.4% scale model, and pressure measurements were taken at axial stations along the nozzle walls. At low enthalpy conditions, the computational predictions agree favorably to the test data along the heatshield centerline. However, agreement becomes less favorable as the enthalpy increases conditions. The measured surface heat flux on the heatshield from the HIEST facility was under-predicted by the computations in these cases. Both smooth and tripped configurations were tested for comparison, and a post-test computational analysis showed that kappa/delta values based on the as-measured stagnation conditions ranged between 0.5 and 1.2. Tripped configurations for both 0.6 mm and 0.8 mm trip heights were able to effectively trip the flow to fully turbulent for a range of freestream conditions.

  12. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  13. Study of physical resistance of the disposal facility for accidental artificial event in LLW disposal facility

    International Nuclear Information System (INIS)

    Ogawa, Suihei; Irie, Masaaki; Uchida, Masahiro

    2013-11-01

    This report refer to results of examine what follows for structural stability evaluation for the LLW disposal facility in depth over general human activity in underground. Study of physically resistance on the facility for accidental artificial event, namely tunneling an operation facing the disposal facility in future. Physically resistance to excavation of tunneling etc. in disposal facility is studied based on supposing of Tunnel Boring Machine as an excavator, paying attention to reinforcement bar in concrete and steel plate of waste package, as feature of strength in these material differs from rock strength. And it is examined not only resistibility on excavation but also about hard situations of excavation in tunneling works, and namely give thorough consideration to critical quantity of cutting to reinforcement bar and steel plate that could keep resistibility on excavation based on tunneling velocity and limits time furthermore. It requests necessity of evaluation in consider with metal corrosion that status alteration on disposal facility is considered with on timescale. Period of keep on the physically resistance is estimated by velocity of metal corrosion consequently. The physically resistance is kept until metal corrosion reach remaining its material, giving a limits of the physically resistance on inside of facility. Main point of physically resistance in the report will be made the good use of a practice to physically resistance evaluation of in safety assessment. (author)

  14. Melt water interaction tests. PREMIX tests PM10 and PM11

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A.; Schuetz, W.; Will, H. [Forschungszentrum Karlsruhe Inst. fuer Reaktorsicherheit, Karlsruhe (Germany)

    1998-01-01

    A series of experiments is being performed in the PREMIX test facility in which the mixing behaviour is investigated of a hot alumina melt discharged into water. The major parameters have been: the melt mass, the number of nozzles, the distance between the nozzle and the water, and the depth of the water. The paper describes the last two tests in which 20 kg of melt were released through one and three nozzles, respectively, directly into the water whose depth was 500 mm. The melt penetration and the associated phenomena of mixing are described by means of high-speed films and various measurements. The steam production and, subsequently, the pressure increased markedly only after the melt had reached the bottom of the pool. Spreading of the melt across the bottom caused violent boiling in both tests. Whereas the boiling lasted for minutes in the single-jet test, a steam explosion occurred in the triple-jet test about one second after the start of melt penetration. (author)

  15. Results of an experiment in a Zion-like geometry to investigate the effect of water on the containment basement floor on direct containment heating (DCH) in the Surtsey Test Facility: The IET-4 test

    International Nuclear Information System (INIS)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.; Nichols, R.T.

    1992-09-01

    This document discusses the fourth experiment of the Integral Effects Test (IET-4) series which was conducted to investigate the effects of high pressure melt ejection on direct containment heating. Scale models (1:10) of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. ne RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 3.5-cm exit hole to simulate the ablated hole in the RPV bottom head that would be tonned by tube ejection in a severe nuclear power plant accident. The reactor cavity model contained 3.48 kg of water with a depth of 0.9 cm that corresponded to condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected into the scaled reactor cavity by 6.7 MPa steam. IET-4 replicated the third experiment in the IET series (IET-3), except the Surtsey vessel contained slightly more preexisting oxygen (9.6 mol.% vs. 9.0 mol.%), and water was placed on the basement floor inside the crane wall. The cavity pressure measurements showed that a small steam explosion occurred in the cavity at about the same time as the steam explosion in IET-1. The oxygen in the Surtsey vessel in IET-4 resulted in a vigorous hydrogen bum, which caused a significant increase in the peak pressure, 262 kPa compared to 98 kPa in the IET-1 test. EET-3, with similar pre-existing oxygen concentrations, also had a large peak pressure of 246 kPa

  16. Comparison of Force and Moment Coefficients for the Same Test Article in Multiple Wind Tunnels

    Science.gov (United States)

    Deloach, Richard

    2013-01-01

    This paper compares the results of force and moment measurements made on the same test article and with the same balance in three transonic wind tunnels. Comparisons are made for the same combination of Reynolds number, Mach number, sideslip angle, control surface configuration, and angle of attack range. Between-tunnel force and moment differences are quantified. An analysis of variance was performed at four unique sites in the design space to assess the statistical significance of between-tunnel variation and any interaction with angle of attack. Tunnel to tunnel differences too large to attribute to random error were detected were observed for all forces and moments. In some cases these differences were independent of angle of attack and in other cases they changed with angle of attack.

  17. Development of a vacuum leak test method for large-scale superconducting magnet test facilities

    International Nuclear Information System (INIS)

    Kawano, Katsumi; Hamada, Kazuya; Okuno, Kiyoshi; Kato, Takashi

    2006-01-01

    Japan Atomic Energy Agency (JAEA) has developed leak detection technology for liquid helium temperature experiments in large-scale superconducting magnet test facilities. In JAEA, a cryosorption pump that uses an absorbent cooled by liquid nitrogen with a conventional helium leak detector, is used to detect helium gas that is leaking from pressurized welded joints of pipes and valves in a vacuum chamber. The cryosorption pump plays the role of decreasing aerial components, such as water, nitrogen and oxygen, to increase the sensitivity of helium leak detection. The established detection sensitivity for helium leak testing is 10 -10 to 10 -9 Pam 3 /s. A total of 850 welded and mechanical joints inside the cryogenic test facility for the ITER Central Solenoid Model Coil (CSMC) experiments have been tested. In the test facility, 73 units of glass fiber-reinforced plastic (GFRP) insulation break are used. The amount of helium permeation through the GFRP was recorded during helium leak testing. To distinguish helium leaks from insulation-break permeation, the helium permeation characteristic of the GFRP part was measured as a function of the time of helium charging. Helium permeation was absorbed at 6 h after helium charging, and the detected permeation is around 10 -7 Pam 3 /s. Using the helium leak test method developed, CSMC experiments have been successfully completed. (author)

  18. Water, sanitation and hygiene in Jordan's healthcare facilities.

    Science.gov (United States)

    Khader, Yousef Saleh

    2017-08-14

    Purpose The purpose of this paper is to determine water availability, sanitation and hygiene (WSH) services, and healthcare waste management in Jordan healthcare facilities. Design/methodology/approach In total, 19 hospitals (15 public and four private) were selected. The WSH services were assessed in hospitals using the WSH in health facilities assessment tool developed for this purpose. Findings All hospitals (100 percent) had a safe water source and most (84.2 percent) had functional water sources to provide enough water for users' needs. All hospitals had appropriate and sufficient gender separated toilets in the wards and 84.2 percent had the same in outpatient settings. Overall, 84.2 percent had sufficient and functioning handwashing basins with soap and water, and 79.0 percent had sufficient showers. Healthcare waste management was appropriately practiced in all hospitals. Practical implications Jordan hospital managers achieved major achievements providing access to drinking water and improved sanitation. However, there are still areas that need improvements, such as providing toilets for patients with special needs, establishing handwashing basins with water and soap near toilets, toilet maintenance and providing sufficient trolleys for collecting hazardous waste. Efforts are needed to integrate WSH service policies with existing national policies on environmental health in health facilities, establish national standards and targets for the various healthcare facilities to increase access and improve services. Originality/value There are limited WSH data on healthcare facilities and targets for basic coverage in healthcare facilities are also lacking. A new assessment tool was developed to generate core WSH indicators and to assess WSH services in Jordan's healthcare facilities. This tool can be used by a non-WSH specialist to quickly assess healthcare facility-related WSH services and sanitary hazards in other countries. This tool identified some areas

  19. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dirndorfer, Stefan

    2017-01-17

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  20. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan

    2017-01-01

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  1. Wind tunneling testing and analysis relating to the spinning of light aircraft

    Science.gov (United States)

    Mccormick, B. W.; Zilliac, G. G.; Ballin, M. G.

    1984-01-01

    Included is a summary of two studies related to the spinning of light aircraft. The first study was conducted to demonstrate that the aerodynamic forces and moments acting on a tail of a spinning aircraft can be obtained from static wind-tunnel tests. The second study analytically investigated spinning using a high angle-of-attack aerodynamic model derived from a static wind-tunnel data base. The validity of the aerodynamic model is shown by comparisons with rotary-balance data and forced-oscillation tests. The results of a six-degree-of-freedom analysis show that the dynamics and aerodynamics of the steep- and flat-spin modes of a modified Yankee have been properly modeled.

  2. Evaluation of scaling concepts for integral system test facilities

    International Nuclear Information System (INIS)

    Condie, K.G.; Larson, T.K.; Davis, C.B.

    1987-01-01

    A study was conducted by EG and G Idaho, Inc., to identify and technically evaluate potential concepts which will allow the U.S. Nuclear Regulatory Commission to maintain the capability to conduct future integral, thermal-hydraulic facility experiments of interest to light water reactor safety. This paper summarizes the methodology used in the study and presents a rankings for each facility concept relative to its ability to simulate phenomena identified as important in selected reactor transients in Babcock and Wilcox and Westinghouse large pressurized water reactors. Established scaling methodologies are used to develop potential concepts for scaled integral thermal-hydraulic experiment facilities. Concepts selected included: full height, full pressure water; reduced height, reduced pressure water; reduced height, full pressure water; one-tenth linear, full pressure water; and reduced height, full scaled pressure Freon. Results from this study suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Local heat transfer phenomena is best scaled by the full height facility, while the reduced height facilities provide better scaling where multi-dimensional phenomena are considered important. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena which are heavily dependent on quality can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time-consuming process

  3. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    International Nuclear Information System (INIS)

    Dufay-Chanat, L; Bremer, J; Casas-Cubillos, J; Koettig, T; Vauthier, N; Van Weelderen, R; Winkler, T; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point.This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests. (paper)

  4. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    Science.gov (United States)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  5. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    Science.gov (United States)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  6. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    Shallow land burial has been a common practice for disposing radioactive waste materials since the beginning of plutonium production operations. Accurate monitoring of radionuclide transport and factors causing transport within the burial sites is essential to minimizing risks associated with disposal. However, monitoring has not always been adequate. Consequently, the Department of Energy (DOE) has begun a program aimed at better assuring and evaluating containment of radioactive wastes at shallow land burial sites. This program includes a technological base for monitoring transport. As part of the DOE program, Pacific Northwest Laboratory (PNL) is developing geohydrologic monitoring systems to evaluate burial sites located in arid regions. For this project, a field test facility was designed and constructed to assess monitoring systems for near-surface disposal of radioactive waste and to provide information for evaluating site containment performance. The facility is an integrated network of monitoring devices and data collection instruments. This facility is used to measure water and radionuclide migration under field conditions typical of arid regions. Monitoring systems were developed to allow for measurement of both mass and energy balance. Work on the facility is ongoing. Continuing work includes emplacement of prototype monitoring instruments, data collection, and data synthesis. At least 2 years of field data are needed to fully evaluate monitoring information

  7. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  8. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  9. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  10. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  11. Nature of radioactive contamination of components of ecosystems of streamflows from tunnels of Degelen massif

    International Nuclear Information System (INIS)

    Panitskiy, A.V.; Lukashenko, S.N.

    2015-01-01

    The paper provides data on environmental contamination due to radionuclides' migration with water. As a result of investigations there was obtained data on character of contamination of soil cover, surface water and underflow from tunnels of Degelen massif. Character of radionuclides' spatial distribution in environment was also shown. Mobility ranges of radionuclides' vertical and horizontal movements have been established in soils both across and along the stream flow. There was also shown a possibility to forecast radionuclides' concentration in soil by specific activity of these radionuclides in water. Different concentrations of radionuclides in associated components of the ecosystem (surface waters – ground waters – soils) have shown disequilibrium of their condition in this system. Generalization of investigation results for tunnel water streams' with water inflows, chosen as investigation objects in this work, allows to forecast radionuclides' behavior in meadow soils and other ecosystems of water streams from tunnels of Degelen test site. Based on analysis of curves, describing radionuclides' behavior in horizontal direction, we can forecast, that at this stage 137 Cs and 239+240 Pu would not be distributed more than 1.5 km from the access to the daylight surface, 90 Sr – not more than 2 km. - Highlights: • Contamination of soil cover, surface water and groundwater from tunnels of Degelen nuclear test area. • Radionuclides in associated components of the ecosystem showed disequilibrium. • Forecast that 137 Cs and 239+240 Pu will not be distributed more than 1.5 km from tunnel exits. • Forecast that 90 Sr will not be distributed more than 2 km

  12. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  13. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  14. CIRCUS and DESIRE: Experimental facilities for research on natural-circulation-cooled boiling water reactors

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Haden, T.H.J.J. van der; Zboray, R.; Manera, A.; Mudde, R.F.

    2002-01-01

    At the Delft University of Technology two thermohydraulic test facilities are being used to study the characteristics of Boiling Water Reactors (BWRs) with natural circulation core cooling. The focus of the research is on the stability characteristics of the system. DESIRE is a test facility with freon-12 as scaling fluid in which one fuel bundle of a natural-circulation BWR is simulated. The neutronic feedback can be simulated artificially. DESIRE is used to study the stability of the system at nominal and beyond nominal conditions. CIRCUS is a full-height facility with water, consisting of four parallel fuel channels and four parallel bypass channels with a common riser or with parallel riser sections. It is used to study the start-up characteristics of a natural-circulation BWR at low pressures and low power. In this paper a description of both facilities is given and the research items are presented. (author)

  15. Diagnosis of carpal tunnel syndrome: interobserver reliability of the blinded scratch-collapse test

    NARCIS (Netherlands)

    Blok, Robin D.; Becker, Stéphanie J. E.; Ring, David C.

    2014-01-01

    The reliability of the scratch-collapse test for diagnosis of carpal tunnel syndrome (CTS) has not been tested by independent investigators. This study measured the reliability of the scratch-collapse test comparing the treating hand surgeon and blinded evaluators. We performed a prospective

  16. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  17. Protection against water or mud inrush in tunnels by grouting: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2016-10-01

    Full Text Available Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.

  18. Low-level wastewater treatment facility process control operational test report

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1996-01-01

    This test report documents the results obtained while conducting operational testing of a new TK 102 level controller and total outflow integrator added to the NHCON software that controls the Low-Level Wastewater Treatment Facility (LLWTF). The test was performed with WHC-SD-CP-OTP 154, PFP Low-Level Wastewater Treatment Facility Process Control Operational Test. A complete test copy is included in appendix A. The new TK 102 level controller provides a signal, hereafter referred to its cascade mode, to the treatment train flow controller which enables the water treatment process to run for long periods without continuous operator monitoring. The test successfully demonstrated the functionality of the new controller under standard and abnormal conditions expected from the LLWTF operation. In addition, a flow totalizer is now displayed on the LLWTF outlet MICON screen which tallies the process output in gallons. This feature substantially improves the ability to retrieve daily process volumes for maintaining accurate material balances

  19. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  20. Seepage into PEP tunnel

    International Nuclear Information System (INIS)

    Weidner, H.

    1990-01-01

    The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel

  1. Experimental results of the SMART ECC injection performance with reduced scale of test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Il; Cho, Seok; Ko, Yung Joo; Shin, Yong Cheol; Kwon, Tae Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    SMART pressurized water reactor type is different from the existing integral NSSS commercial pressurized water reactor system which is equipped with the main features. In addition, RCS piping is removed and the feature of the SBLOCA is a major design break accident. SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) test facility is to simulate the 2 inch SBLOCA of the SMART using with reduced scale. The Test was performed to produce experimental data for the validation of the TASS/SMR-S thermal hydraulic analysis code, and to investigate the related thermal hydraulic phenomena in the down-comer region during the 2 inch SBLOCA of the safety inject line. The particular phenomena for the observation are ECC bypass and multi-dimensional flow characteristics to verify the effectiveness and performance of the safety injection system. In this paper, the corresponding steady state test conditions, including initial and boundary conditions along with major measuring parameters, and related experimental results were described

  2. Intraneural blood flow analysis during an intraoperative Phalen's test in carpal tunnel syndrome.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Awara, Kousuke; Takeno, Kenichi; Miyazaki, Tsuyoshi; Kubota, Masafumi; Negoro, Kohei; Baba, Hisatoshi

    2010-08-01

    Phalen's test has been one of the most significant of clinical signs when making a clinical diagnosis of idiopathic carpal tunnel syndrome (CTS). However, it is unknown whether intraneural blood flow changes during Phalen's test in patients with CTS. In this study, an intraoperative Phalen's test was conducted in patients with CTS to observe the changes in intraneural blood flow using a laser Doppler flow meter. During Phalen's test, intraneural blood flow showed a sharp decrease, which lasted for 1 min. Intraneural blood flow decreased by 56.7%-100% (average, 78.0%) in the median nerve relative to the blood flow before the test. At 1 min after completing the test, intraneural blood flow returned to the baseline value. After carpal tunnel release, there was no marked decrease in intraneural blood flow. This study demonstrated that the blood flow in the median nerve is reduced when Phalen's test is performed in vivo. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    Science.gov (United States)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  4. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  5. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  6. The use of wind tunnel facilities to estimate hydrodynamic data

    Directory of Open Access Journals (Sweden)

    Hoffmann Kristoffer

    2016-01-01

    In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  7. Excavation damage zone tracer experiment in the floor of the room 415 test tunnel

    International Nuclear Information System (INIS)

    Frost, L.H.; Everitt, R.A.

    1997-03-01

    A 3.5-m-diameter test tunnel was constructed on the 420 Level of AECL's Underground Research Laboratory using a mechanical excavation technique. The orientation of the tunnel was chosen to maximize the stress ratio in the plane perpendicular to the tunnel axis in order to promote and study stress-induced excavation damage. The resulting excavation damage zone (EDZ) is characterized by a distinct breakout notch in both the floor and roof of the tunnel. In the floor of the tunnel, the main flow pathway within the EDZ is within a zone of intense grain-size fracturing (process zone) located at the tip of the breakout notch; virtually no flow occurs outside this region. A tracer experiment was performed within the EDZ in the floor of the tunnel to characterize the solute transport properties (permeability, transport porosity and dispersivity) within the process zone, as well as to develop and demonstrate methods for determining the transport properties within EDZs of underground tunnels. The experiment was performed as a constant head test by continuously injecting a constant concentration of iodide tracer into a region of the process zone, and by monitoring tracer breakthrough from the zone at a distance 1.5 m away. An equivalent-porous-media approach was taken in analysing fluid flow and solute transport through the process zone. Based on mass flux calculations, the hydraulic conductivity and transport porosity of the process zone are estimated to be 7.4 x 10 -7 m/s and 2.7 % respectively. Based on an analytic solution that represents tracer transport within the process zone as one-dimensional advective diffusive transport in a finite homogeneous porous medium, the longitudinal dispersivity and transport porosity of the zone are estimated to be 0.60 m and 3.3 % respectively. The transport porosity values estimated by both the mass flux and analytic calculations compare quite well. (author)

  8. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  9. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  10. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  11. The water purification system for the low background counting test facility of the Borexino experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Balata, M.; Cadonati, L.; Laubenstein, M.; Heusser, G.; Giammarchi, M.G.; Scardaoni, R.; Torri, V.; Cecchet, G.; De Bari, A.; Perotti, A.

    1996-01-01

    The Borexino experiment, for the study of solar neutrino physics, requires radiopurity at the level of 5 x 10 -16 g/g 238 U equivalent (or 6 x 10 -9 Bq/kg) on a detector mass of many tons of scintillator. Feasibility studies are performed in a counting test facility now operating at LNGS, which consists of 4 t of liquid scintillator viewed by 100 photomultipliers and shielded by 100 t of water. The accomplishment of this goal requires the shielding liquid, water, to be at the 10 -13 g/g contamination level (1.2 x 10 -6 Bq/kg) or better. This paper describes the water purification system; it consists of a combination of several purification processes to remove particulate, radioactive ions, dissolved gases and other impurities. Residual contaminations are measured by analytical or direct-counting techniques. For radon measurement, particularly challenging at this low activity levels, a low background counting method has been developed. (orig.)

  12. Evaluation of the scratch collapse test for the diagnosis of carpal tunnel syndrome

    NARCIS (Netherlands)

    Makanji, H. S.; Becker, S. J. E.; Mudgal, C. S.; Jupiter, J. B.; Ring, D.

    2014-01-01

    This prospective study measured and compared the diagnostic performance characteristics of various clinical signs and physical examination manoeuvres for carpal tunnel syndrome (CTS), including the scratch collapse test. Eighty-eight adult patients that were prescribed electrophysiological testing

  13. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  14. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Jones, Robert C. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Bullard, Thomas F. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Ashbaugh, Laurence J. [Southern Nevada Courier Service, NV (United States); Griffin, Wayne R. [Stoller-Navarro Joint Venture, Las Vegas, NV (United States)

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  15. Water Supply and Sanitation Facility Accessibility in Off-Campus ...

    African Journals Online (AJOL)

    Water Supply and Sanitation Facility Accessibility in Off-Campus Houses ... on drinking water source, rate of illness, type and usage of sanitation facilities. ... wells, unprotected dug wells; while others during the wet season harvest rain water.

  16. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  17. Communication: Isotopic effects on tunneling motions in the water trimer

    International Nuclear Information System (INIS)

    Videla, Pablo E.; Rossky, Peter J.; Laria, D.

    2016-01-01

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H 2 O] 3 and [D 2 O] 3 , at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H 2 O] 3 than in [D 2 O] 3 . Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments

  18. Wind Tunnel Testing of Active Control System for Bridges

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...... are regulated by servo motors. Neural networks are used to position the flaps in the optimal positions....

  19. Hydrodynamic Tunneling of 440 GeV SPS protons in Solid Material: Production of Warm Dense Matter at CERN HiRadMat Facility

    Science.gov (United States)

    Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto

    2013-10-01

    Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.

  20. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  1. Experimental evaluation of square bar and fractal grid-generated turbulent flow inside recirculating water tunnel

    Science.gov (United States)

    Bornemeier, Matthew; Luznik, Luksa

    2017-11-01

    High resolution, two dimensional PIV measurements of grid-generated turbulence in the US Naval Academy's recirculating water tunnel (1.8m test section with 0.41m x 0.41m cross sectional area) are presented for two different grid designs. The first grid is a uniform square bar grid with mesh width, M =3.9cm, bar thickness t0 = 1cm, a streamwise thickness of 1cm and resulting solidity of 44%, similar to the conventional grid used by Krogstad and Davidson (2012). The other is Mazellier & Vassilicos' (2010) square fractal grid, SFG17, with fractal iteration count, N =4, thickness ratio tr = 17 and length ratio Lr = 8. Grid patterns differ from the published designs by a circular hole with 4.30cm diameter in the middle that will accept, in future experiments, a shaft connected to an axisymmetric rotating wake generator with diameter, D. Grids were designed to generate turbulence of specific integral length scale of O(D) and intensity of 6% at the prescribed downstream location. Mean tunnel centerline velocity is 2 m/s and measurements are made in a streamwise vertical center plane with nominal individual field of view (FOV) of 12x8 cm2. Spatial coverage in the test section is accomplished by ``tiling'' individual FOV with approximately 2cm overlap. Results will focus on characterizing resulting turbulence in the test section and discussion will include comparison between published results and the present measurements.

  2. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States)

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  3. Review on conformance of JMTR reactor facility to safety design examination guides for water-cooled reactors for test and research

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Naka, Michihiro; Sakuta, Yoshiyuki; Hori, Naohiko; Matsui, Yoshinori; Miyazawa, Masataka

    2009-03-01

    The safety design examination guides for water-cooled reactors for test and research are formulated as fundamental judgements on the basic design validity for licensing from a viewpoint of the safety. Taking the refurbishment opportunity of the JMTR, the conformance of the JMTR reactor facility to current safety design examination guides was reviewed with licensing documents, annexes and related documents. As a result, it was found that licensing documents fully satisfied the requirements of the current guides. Moreover, it was found that the JMTR reactor facility itself also satisfied the guides requirements as well as the safety performance, since the facility with safety function such as structure, systems, devices had been installed based on the licensing documents under the permission by the regulation authority. Important devices for safety have been produced under authorization of regulating authority. Therefore, it was confirmed that the licensing was conformed to guides, and that the JMTR has enough performance. (author)

  4. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  5. LIGS measurements in the nozzle reservoir of a free-piston shock tunnel

    Science.gov (United States)

    Altenhöfer, P.; Sander, T.; Koroll, F.; Mundt, Ch.

    2018-02-01

    Free-piston shock tunnels are ground-based test facilities allowing the simulation of reentry flow conditions in a simple and cost-efficient way. For a better understanding of the processes occurring in a shock tunnel as well as for an optimal comparability of experimental data gained in shock tunnels to numerical simulations, it is highly desirable to have the best possible characterization of the generated test gas flows. This paper describes the final step of the development of a laser-induced grating spectroscopy (LIGS) system capable of measuring the temperature in the nozzle reservoir of a free-piston shock tunnel during tests: the successful adaptation of the measurement system to the shock tunnel. Preliminary measurements were taken with a high-speed camera and a LED lamp in order to investigate the optical transmissibility of the measurement volume during tests. The results helped to successfully measure LIGS signals in shock tube mode and shock tunnel mode in dry air seeded with NO. For the shock tube mode, six successful measurements for a shock Mach number of about 2.35 were taken in total, two of them behind the incoming shock (p ≈ 1 MPa, T ≈ 600 K) and four after the passing of the reflected shock (p ≈ 4 MPa, T ≈ 1000 K). For five of the six measurements, the derived temperatures were within a deviation range of 6% to a reference value calculated from measured shock speed. The uncertainty estimated was less than or equal to 3.5% for all six measurements. Two LIGS signals from measurements behind the reflected shock in shock tunnel mode were analyzed in detail. One of the signals allowed an unambiguous derivation of the temperature under the conditions of a shock with Mach 2.7 (p ≈ 5 MPa, T ≈ 1200 K, deviation 0.5% , uncertainty 4.9% ).

  6. Development of a tunnel backfilling concept for nuclear waste disposal

    International Nuclear Information System (INIS)

    Gunnarsson, D.; Borgesson, L.

    2003-01-01

    In the main concept for disposal of the Swedish Nuclear Waste (KBS-3V) it is vital that the drifts can be backfilled with sufficiently good material at high density to fulfill the following requirements: - to obstruct upwards swelling of bentonite from the deposition holes, - to prevent or restrict the water flow in the tunnel and around the canister, - to resist chemical conversion for a long period of time, - not to cause any significant chemical conversion of the buffer surrounding the canister. Investigations and tests of backfill material and techniques have been running in the Swedish underground laboratory, Aspo HRL, since 1996. In the first test, Field Test of Tunnel Backfilling, the objectives were to test the manufacturing of backfill material, to develop and test a backfilling technique and to investigate what densities could be achieved with different backfill materials in the field. Horizontal layers were applied and compacted by a roller in 0.2 m thick layers to 1.5 m from the floor. The rest of the tunnel was backfilled with inclined layers. Five different backfill materials were tested; TBM-muck, TBM-muck crushed to a maximum grain size of 20 mm and crushed TBM-muck mixed with 10, 20 and 30% MX-80 bentonite. The main conclusions from these tests were that the technique for manufacturing backfill material and for backfilling the tunnel were suitable but that the horizontal backfill layers were sensitive to wet conditions, that the backfilling equipment needed to be improved to better reach the areas close to the rock walls and roof and that the durability of the equipment needed to be improved. For the continued development for the Backfill and Plug Test and the Prototype Repository it was decided that the backfilling should be made with inclined layers in the entire cross section of the tunnel in order to decrease the sensitivity to water inflow. The backfilling equipment was improved; two new compactors, the so-called slope compactor and the so

  7. Development of a tunnel backfilling concept for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, D.; Borgesson, L. [Clay Technology AB, Ideon, Lund (Sweden)

    2003-07-01

    In the main concept for disposal of the Swedish Nuclear Waste (KBS-3V) it is vital that the drifts can be backfilled with sufficiently good material at high density to fulfill the following requirements: - to obstruct upwards swelling of bentonite from the deposition holes, - to prevent or restrict the water flow in the tunnel and around the canister, - to resist chemical conversion for a long period of time, - not to cause any significant chemical conversion of the buffer surrounding the canister. Investigations and tests of backfill material and techniques have been running in the Swedish underground laboratory, Aspo HRL, since 1996. In the first test, Field Test of Tunnel Backfilling, the objectives were to test the manufacturing of backfill material, to develop and test a backfilling technique and to investigate what densities could be achieved with different backfill materials in the field. Horizontal layers were applied and compacted by a roller in 0.2 m thick layers to 1.5 m from the floor. The rest of the tunnel was backfilled with inclined layers. Five different backfill materials were tested; TBM-muck, TBM-muck crushed to a maximum grain size of 20 mm and crushed TBM-muck mixed with 10, 20 and 30% MX-80 bentonite. The main conclusions from these tests were that the technique for manufacturing backfill material and for backfilling the tunnel were suitable but that the horizontal backfill layers were sensitive to wet conditions, that the backfilling equipment needed to be improved to better reach the areas close to the rock walls and roof and that the durability of the equipment needed to be improved. For the continued development for the Backfill and Plug Test and the Prototype Repository it was decided that the backfilling should be made with inclined layers in the entire cross section of the tunnel in order to decrease the sensitivity to water inflow. The backfilling equipment was improved; two new compactors, the so-called slope compactor and the so

  8. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  9. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  10. Open access wind tunnel measurements of a downwind free yawing wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2016-01-01

    A series of free yawing wind tunnel experiments was held in the Open Jet Facility (OJF) of the TU Delft. The ≈ 300 W turbine has three blades in a downwind configuration and is optionally free to yaw. Different 1.6m diameter rotor configurations are tested such as blade flexibility and sweep...

  11. Progression of carpal tunnel syndrome according to electrodiagnostic testing in nonoperatively treated patients

    NARCIS (Netherlands)

    van Suchtelen, Mark; Becker, Stéphanie J. E.; Gruber, Jillian S.; Ring, David

    2014-01-01

    This study tested the null hypothesis that nonoperatively treated patients would not show disease progression of carpal tunnel syndrome (CTS) over time according to median nerve distal motor latency (DML) on two electrodiagnostic tests. This retrospective study analyzed sixty-two adult

  12. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    2001-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L' Air Liquide in the form of a NET contract. (author)

  13. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    1999-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L'Air Liquide in the form of a NET contract. (author)

  14. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  15. Mark I 1/5-scale boiling water reactor pressure suppression experiment facility report

    International Nuclear Information System (INIS)

    Altes, R.G.; Pitts, J.H.; Ingraham, R.F.; Collins, E.K.; McCauley, E.W.

    1977-01-01

    An accurate Mark I 1 / 5 -scale, boiling water reactor (BWR), pressure suppression facility was designed and constructed at Lawrence Livermore Laboratory (LLL) in 11 months. Twenty-seven air tests using the facility are described. Cost was minimized by utilizing equipment borrowed from other LLL programs. The total value of borrowed equipment exceeded the program's budget of $2,020,000. Substantial flexibility in the facility was used to permit independent variation in the drywell pressure-time history, initial pressure in the drywell and toroidal wetwells, initial toroidal wetwell water level and downcomer length, vent line flow resistance, and vent line flow asymmetry. The two- and three-dimensional sectors of the toroidal wetwell provided significant data

  16. Large Scale Leach Test Facility: Development of equipment and methods, and comparison to MCC-1 leach tests

    International Nuclear Information System (INIS)

    Pellarin, D.J.; Bickford, D.F.

    1985-01-01

    This report describes the test equipment and methods, and documents the results of the first large-scale MCC-1 experiments in the Large Scale Leach Test Facility (LSLTF). Two experiments were performed using 1-ft-long samples sectioned from the middle of canister MS-11. The leachant used in the experiments was ultrapure deionized water - an aggressive and well characterized leachant providing high sensitivity for liquid sample analyses. All the original test plan objectives have been successfully met. Equipment and procedures have been developed for large-sample-size leach testing. The statistical reliability of the method has been determined, and ''bench mark'' data developed to relate small scale leach testing to full size waste forms. The facility is unique, and provides sampling reliability and flexibility not possible in smaller laboratory scale tests. Future use of this facility should simplify and accelerate the development of leaching models and repository specific data. The factor of less than 3 for leachability, corresponding to a 200,000/1 increase in sample volume, enhances the credibility of small scale test data which precedes this work, and supports the ability of the DWPF waste form to meet repository criteria

  17. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    Science.gov (United States)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  18. A draining concept for tunnels with the aim of optimizing their geothermal utilization; Concept de drainage des tunnels en vue d'une optimisation de l'utilisation geothermique (valorisation du potentiel geothermique des tunnels - Recherche d'optimisation)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, J.

    2006-07-01

    Since almost 30 years, the geothermal potential of mountain water has been exploited in Swiss tunnels. The first known application was at the southern mouth of the St. Gotthard road tunnel, where the draining water was collected for heating a waiting-room in Airolo. The present report prepared for the Swiss Federal Office of Energy (SFOE) examines the possibilities for enhancing the efficiency and thus the potential of this geothermal application. They include: a) Reducing thermal losses by thermally insulating the water pipes along the tunnel. b) Increasing the usable quantity of water by providing additional drillings along the tunnel. c) Providing more than one water pipe, thus allowing to collect water of different temperatures in separate pipes. d) New technologies: add heat exchangers to tunnel construction elements in direct contact with the rocks, e.g. rock anchors, liners, concrete elements in the floor. The last chapter examines possible improvements for two large tunnels currently in project.

  19. Cold vacuum drying residual free water test description

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C

  20. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  1. Survey of European LWR fuel irradiation test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hardt, P von der [Commission of the European Communities, Joint Research Centre, Petten Establishment, Petten (Netherlands)

    1983-06-01

    The first European commercial nuclear power plants (1956) featured gas-cooled thermal reactors. Although there is now a general orientation towards light water cooled plants (with a slight preference for the PWR) a large fraction of the 1982 nuclear generating capacity is still invested in gas-cooled reactors. R and D also continues for the HTGR with its long-term development potential. This paper, however, is limited to a general survey of experimental programmes and facilities for light water reactor fuel testing in Western Europe, particularly inside the European Communities. As it turns out, over a dozen major installations are available, all connected to research reactors in government-funded R and D centres. Their equipment is briefly reviewed. Some 50% of the experimental programmes are carried out in large international collaboration, involving up to 20 organizations per project. Techniques and results are rapidly communicated through frequent meetings and conferences. It is anticipated that a part of the present research reactor-based work will gradually shift to power reactor pool side inspection facilities. (author)

  2. Survey of European LWR fuel irradiation test facilities

    International Nuclear Information System (INIS)

    Hardt, P. von der

    1983-01-01

    The first European commercial nuclear power plants (1956) featured gas-cooled thermal reactors. Although there is now a general orientation towards light water cooled plants (with a slight preference for the PWR) a large fraction of the 1982 nuclear generating capacity is still invested in gas-cooled reactors. R and D also continues for the HTGR with its long-term development potential. This paper, however, is limited to a general survey of experimental programmes and facilities for light water reactor fuel testing in Western Europe, particularly inside the European Communities. As it turns out, over a dozen major installations are available, all connected to research reactors in government-funded R and D centres. Their equipment is briefly reviewed. Some 50% of the experimental programmes are carried out in large international collaboration, involving up to 20 organizations per project. Techniques and results are rapidly communicated through frequent meetings and conferences. It is anticipated that a part of the present research reactor-based work will gradually shift to power reactor pool side inspection facilities. (author)

  3. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  4. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  5. NRI experimental facility for the testing of irradiation assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Ruscak, M.; Chvatal, P.; Zamboch, M.

    1998-01-01

    IASCC influencing reactor internals of both BWR and PWR reactors is a complex phenomenon covering influences of material structure, neutron fluence, neutron flux, chemistry of environment, gamma radiation and mechanical stress. To evaluate such degradation, tests should be performed under conditions similar to those in real structure. Nuclear Research Institute has built several experimental facilities in order to be able to test IASCC degradation of materials. Basically, reactor water loops, both PWR and BWR, could be used to model environmental conditions including gamma and neutron irradiation. Pre-irradiation can be done in irradiation channels under well controlled temperature conditions. During the experiment, in-pile conditions can be compared with those out of pile. It enables to clarify pure influence of irradiation. For testing of irradiated specimens, hot cell facility has been developed for slow strain rate tests. The paper will show all above mentioned facilities as well as some of the results observed with them. (author)

  6. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  7. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  8. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas... waste and refuse or for safe sanitary storage of waste before removal from the testing facility...

  9. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  10. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  11. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so...

  12. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  13. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  14. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance

  15. The Thames Tideway Tunnel (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 3: Insight into a pioneering project at the cutting edge of engineering: the upgrade to London’s failing sewerage system. With a growing population and heavier rainfall, the River Thames is regularly polluted in breach of European Directive requirements. Two new storage and transfer tunnels will run up to 85m deep under the river and will intercept and divert sewer overflows to a treatment facility in east London. The challenges faced by constructing a tunnel project of this size under the river and through London’s historic urban environment will set a new UK record for this type of tunnelling.

  16. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  17. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  18. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    Science.gov (United States)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  19. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  20. Introduction to the modified TROI test facility for fuel coolant interaction under a submerged reactor vessel

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seong-Wan; Song, Jin Ho; Hong, Seong-Ho

    2014-01-01

    The molten Fuel-Coolant Interaction (FCI) can threaten the integrity of the reactor cavity under a severe accident. A steam explosion can be occurred by the rapid energy transfer in the high-temperature corium melt jet penetrating into water, which makes the dynamic load applying to the surrounding structure. Before a steam explosion, the corium melt jet breaks into small-sized particles, and the steam is generated continuously by the film boiling on the hot surface of the melt contacting with water. The premixing phase consisting of the corium melt, water, and steam can determine the intensity of the steam explosion. Unfortunately, the previous experimental studies on the FCI phenomena have carried out under a free fall of the corium melt jet in a gas phase before interacting with water. The previous TROI (Test for Real cOrium Interaction with water) test facility, that is a well-known test facility for the FCI phenomena in the world, has observed a steam explosion under a free fall of a corium melt jet in a gas phase before contacting a coolant since 2000, which is changing to simulate the FCI phenomena under a submerged reactor vessel. This study introduces the modified TROI test facility as shown in Fig. 1 and the considerations for the experiment with success. The previous TROI test facility, that has observed the molten Fuel-Coolant Interaction (FCI) with a free fall of the prototypic corium melt in a gas phase before contacting a coolant, was modified to simulate the FCI phenomena under a submerged reactor vessel for the assessment of the In-Vessel Retention (IVR) concept, i.e., without a free-fall distance of the corium melt before contacting water. The superheated prototypic corium melt created by the cold crucible melting method moves on a releasing valve newly installed just above the water level in the interaction vessel. The corium melt will stay on a releasing valve in less than 0.2 seconds to reduce heat loss for preventing the solidification, and

  1. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  2. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  3. The 1 × 1 m hypersonic wind tunnel Kochel/Tullahoma 1940-1960

    Science.gov (United States)

    Eckardt, Dietrich

    2015-03-01

    Peenemünde and Cape Canaveral mark cornerstones of space history. Kochel in Southern Germany and Tullahoma in Tennessee, USA also belong in this category. The technically unique Kochel wind tunnel was part of the German long-distance missile development strategy, planned and prepared in secret before the beginning of World War II. A 57 MW closed-circuit wind tunnel facility with 1 × 1 m measuring section was planned for continuous-flow simulation at high Mach numbers Ma 7-10. In the early 1940 s a site beside the Walchensee Power Station at Kochel am See in Upper Bavaria, Germany was chosen to provide the required altitude difference of 200 m for the hydraulic turbine drives. The preparatory activities for the erection of this impressive hypersonic wind tunnel facility were pushed ahead until an enforced temporary pause in September 1944. In early May 1945 US troops occupied the area and, in due course, scientists of General Arnold's Scientific Advisory Group, the `von Kármán team', ordered the transfer to the USA of available equipment, design materials and other paperwork. Here, at the Arnold Engineering Development Center (AEDC) Tullahoma, TN this `Tunnel A' was built to begin operation around 1957. The testing was conducted on the Mach 7 experimental aircraft X-15, space shuttle developments and still secret investigations on unmanned hypersonic vehicles.

  4. Enhancements to the FAST-MAC Circulation Control Model and Recent High-Reynolds Number Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.

    2013-01-01

    A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.

  5. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Kilsdonk, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Aeschlimann, R. W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  6. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  7. Cooling effects of artificial water facilities by using a moving type turbulence promoter; Kudo ranryu sokushintai ni yoru suireikyaku jikkenho

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K; Nomura, T; Nishimura, N; Iyota, H [Osaka City University, Osaka (Japan)

    1996-10-27

    Artificial water facilities present an effective means to alleviate trying micrometeorological phenomena such as warming of the urban space. For the reproduction of such an alleviating means by use of a model in a wind tunnel, a moving disturbance promoter (moving spire) was developed so as to render disturbances in a wind tunnel current similar in scale to ones in the real atmosphere, and an air current cooling experiment was conducted using a model fountain. The effort was intended for a small-size wind tunnel without a space large enough for disturbance promoter installation, and a moving type spire was developed for promoting disturbance effectively. The new spire is driven by a driving unit consisting of a motor and cam and can change its angle relative to the main current by 140{degree} at a rotation cycle of 1.7Hz., and this changes the flow direction of the main current periodically. As compared with the generally used combination of a roughness block and stationery spire, this new spire produced a disturbance intensity two times greater and a disturbance scale three times larger. When the disturbance intensity and scale were increased, the cooling characteristics of the air current changed in response to changes in the state of flow. 8 refs., 7 figs., 1 tab.

  8. Communication: Isotopic effects on tunneling motions in the water trimer

    Energy Technology Data Exchange (ETDEWEB)

    Videla, Pablo E. [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Rossky, Peter J. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Laria, D., E-mail: dhlaria@cnea.gov.ar [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires (Argentina)

    2016-02-14

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H{sub 2}O]{sub 3} and [D{sub 2}O]{sub 3}, at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H{sub 2}O]{sub 3} than in [D{sub 2}O]{sub 3}. Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments.

  9. Development of a water detritiation facility for JET

    International Nuclear Information System (INIS)

    Perevezentsev, A.N.; Bell, A.C.; Brennan, P.D.; Hemmerich, J.L.

    2002-01-01

    A water detritiation facility, based on a world-wide adopted combined electrolysis catalytic exchange (CECE) process, for the JET active gas handling plant is described. A research and development programme is presented. The programme includes the testing of structured inert packing with an incorporated hydrophobic catalyst for increased throughput of a liquid phase catalytic exchange (LPCE) column, a vapour phase catalytic exchange (VPCE) process for reduction of tritium inventory in the alkali electrolyser and a column of high effectiveness for alkali retention

  10. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  11. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  12. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  13. Test Section Turbulence in the AEDC/VKF Supersonic/Hypersonic Wind Tunnels

    Science.gov (United States)

    1981-07-01

    8 4.3 Ins t rumen ta t ion ....................................................... 18...Pressure Fluctuation Spectral Content in AEDC Tunnels A and B (Based on FY79 Pitot Probe), Af = 200 Hz...intensity, spatial distribution, and spectral content , has become increasingly important in the analysis of test data. The sector- supported model in the

  14. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  15. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  16. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  17. DOE LeRC photovoltaic systems test facility

    Science.gov (United States)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  18. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  19. Extruded Tunnel Lining System : Phase 1. Conceptual Design and Feasibility Testing.

    Science.gov (United States)

    1979-09-01

    The Extruded Tunnel Lining System (ETLS) has been conceived as a means of continuously placing the final concrete tunnel lining directly behind a tunnel boring machine. The system will shorten the time required to excavate and line a tunnel section, ...

  20. Natural circulation in a scaled PWR integral test facility

    International Nuclear Information System (INIS)

    Kiang, R.L.; Jeuck, P.R. III

    1987-01-01

    Natural circulation is an important mechanism for cooling a nuclear power plant under abnormal operating conditions. To study natural circulation, we modeled a type of pressurized water reactor (PWR) that incorporates once-through steam generators. We conducted tests of single-phase natural circulations, two-phase natural circulations, and a boiler condenser mode. Because of complex geometry, the natural circulations observed in this facility exhibit some phenomena not commonly seen in a simple thermosyphon loop

  1. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  2. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  3. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  4. RELAP5 Prediction of Transient Tests in the RD-14 Test Facility

    International Nuclear Information System (INIS)

    Lee, Sukho; Kim, Manwoong; Kim, Hho-Jung; Lee, John C.

    2005-01-01

    Although the RELAP5 computer code has been developed for best-estimate transient simulation of a pressurized water reactor and its associated systems, it could not assess the thermal-hydraulic behavior of a Canada deuterium uranium (CANDU) reactor adequately. However, some studies have been initiated to explore the applicability for simulating a large-break loss-of-coolant accident in CANDU reactors. In the present study, the small-reactor inlet header break test and the steam generator secondary-side depressurization test conducted in the RD-14 test facility were simulated with the RELAP5/MOD3.2.2 code to examine its extended capability for all the postulated transients and accidents in CANDU reactors. The results were compared with experimental data and those of the CATHENA code performed by Atomic Energy of Canada Limited.In the RELAP5 analyses, the heated sections in the facility were simulated as a multichannel with five pipe models, which have identical flow areas and hydraulic elevations, as well as a single-pipe model.The results of the small-reactor inlet header break and the steam generator secondary-side depressurization simulations predicted experimental data reasonably well. However, some discrepancies in the depressurization of the primary heat transport system after the header break and consequent time delay of the major phenomena were observed in the simulation of the small-reactor inlet header break test

  5. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  6. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  7. Water supply rates for recirculating evaporative cooling systems in poultry housing

    Science.gov (United States)

    Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...

  8. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  9. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  10. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  11. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  12. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sanadhya, Vivek; Lal, Pradeep; Goel, Vijay; Mukhopadhyay, S.; Saha, Shilpi

    2001-01-01

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  13. Installation of the water environment irradiation facility for the IASCC research under the BWR/PWR irradiation environment (2)

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Hanawa, Hiroshi; Sakuta, Yoshiyuki; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Shibata, Mitsunobu

    2014-07-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from 2012 to 2014 in the follow-up report reported before (JAEA-Technology 2013-019). (author)

  14. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  15. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics

    1999-12-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  16. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)

    1999-01-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  17. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  18. 33-GVA interrupter test facility

    International Nuclear Information System (INIS)

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  19. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  20. Do Access to Improved Water Source and Sanitation Facility Accelerate Economic Growth in Bangladesh?

    Directory of Open Access Journals (Sweden)

    Sandip SARKER

    2016-04-01

    Full Text Available This paper examines the relationship among access to improved water, sanitation and economic growth in Bangladesh through co-integration and vector error correction model (VECM over the period 1991 to 2014. Bangladesh has registered remarkable progress in achieving major Millennium Development Goals (MDG. Today nearly 87% of our total population has access to improved water sources and 60% have access to improved sanitation facilities which is contributing significantly towards human development in Bangladesh. Therefore we want to test whether access to improved water and sanitation accelerates economic growth in Bangladesh through a time series analysis. The Johansen co-integration tests indicate that there is long run association among the variables. The vector error correction model indicates that there is a long run causality running from improved sanitation facilities (% of population with access and improved water source (% of population with access to gross domestic product in Bangladesh. Similarly in the short run a causal relationship has been found among the variables as well. Further impulse response function and variance decomposition results say that improved sanitation facilities (% of population with access and improved water source (% of population with access can explain the major variations in our economic growth. The implication of our findings is that in Bangladesh an increase in improved access to water and sanitation is likely to positively affect our economic growth in the long run. Keeping in mind about Sustainable Development Goals (SDG, policymakers in Bangladesh need to pay special attention to ensure greater access to improved water and sanitation to boost our economic growth & development.

  1. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    International Nuclear Information System (INIS)

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  2. Tunnel backfill erosion by dilute water

    International Nuclear Information System (INIS)

    Olin, M.

    2014-03-01

    The goal was to estimate smectite release from tunnel backfill due to dilute groundwater pulse during post glacial conditions. The plan was to apply VTT's two different implementations (BESW D and BESW S ) of well-known model of Neretnieks et al. (2009). It appeared difficult to produce repeatable results using this model in COMSOL 4.2 environment, therefore a semi-analytical approximate approach was applied, which enabled to take into account both different geometry and smectite content in tunnel backfill as compared to buffer case. The results are quite similar to buffer results due to the decreasing effect of smaller smectite content and the increasing effect of larger radius. (orig.)

  3. Tunnel backfill erosion by dilute water

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-03-15

    The goal was to estimate smectite release from tunnel backfill due to dilute groundwater pulse during post glacial conditions. The plan was to apply VTT's two different implementations (BESW{sub D} and BESW{sub S}) of well-known model of Neretnieks et al. (2009). It appeared difficult to produce repeatable results using this model in COMSOL 4.2 environment, therefore a semi-analytical approximate approach was applied, which enabled to take into account both different geometry and smectite content in tunnel backfill as compared to buffer case. The results are quite similar to buffer results due to the decreasing effect of smaller smectite content and the increasing effect of larger radius. (orig.)

  4. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression

    Directory of Open Access Journals (Sweden)

    Miller Leanne

    2011-10-01

    Full Text Available Abstract Background Several clinical measures of sensory and motor function are used alongside patient-rated questionnaires to assess outcomes of carpal tunnel decompression. However there is a lack of evidence regarding which clinical tests are most responsive to clinically important change over time. Methods In a prospective cohort study 63 patients undergoing carpal tunnel decompression were assessed using standardised clinician-derived and patient reported outcomes before surgery, at 4 and 8 months follow up. Clinical sensory assessments included: touch threshold with monofilaments (WEST, shape-texture identification (STI™ test, static two-point discrimination (Mackinnon-Dellon Disk-Criminator and the locognosia test. Motor assessments included: grip and tripod pinch strength using a digital grip analyser (MIE, manual muscle testing of abductor pollicis brevis and opponens pollicis using the Rotterdam Intrinsic Handheld Myometer (RIHM. The Boston Carpal Tunnel Questionnaire (BCTQ was used as a patient rated outcome measure. Results Relative responsiveness at 4 months was highest for the BCTQ symptom severity scale with moderate to large effects sizes (ES = -1.43 followed by the BCTQ function scale (ES = -0.71. The WEST and STI™ were the most responsive sensory tests at 4 months showing moderate effect sizes (WEST ES = 0.55, STI ES = 0.52. Grip and pinch strength had a relatively higher responsiveness compared to thenar muscle strength but effect sizes for all motor tests were very small (ES ≤0.10 or negative indicating a decline compared to baseline in some patients. Conclusions For clinical assessment of sensibility touch threshold assessed by monofilaments (WEST and tactile gnosis measured with the STI™ test are the most responsive tests and are recommended for future studies. The use of handheld myometry (RIHM for manual muscle testing, despite more specifically targeting thenar muscles, was less responsive than grip or tripod

  5. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  6. Rock mass evaluation for predicting tunnel constructability in the preliminary investigation stage. Phenomena causing difficult tunneling and rockburst prediction

    International Nuclear Information System (INIS)

    Shin, Koichi; Sawada, Masataka; Inohara, Yoshiki; Shidahara, Takumi; Hatano, Teruyoshi

    2011-01-01

    For the selection of the Detailed Investigation Areas for HLW disposal, predicting the tunnel constructability is one of the requirements together with assessing long-term safety. This report is the 1st of the three papers dealing with the evaluation of tunnel constructability. This paper deals with the geological factors relating to difficult tunneling such as squeezing, rockburst, and others. Also it deals with the prediction of rockburst. The 2nd paper will deal with the prediction of squeezing. The 3rd paper deals with the engineering characteristics of rock mass through rock mass classification. This paper about difficult tunneling has been based upon analysis of more than 500 tunneling reports about 280 tunnel constructions. The causes of difficult tunneling are related to (1) underground water, (2) mechanical properties of the rock, or (3) others such as gas. The geological factors for excessive water inflow are porous volcanic product of Quarternary, fault crush zone and hydrothermally altered zone of Green Tuff area, and degenerated mixed rock in accretionary complex. The geological factors for squeezing are solfataric clay at Quarternary volcanic zone, fault crush zone and hydrothermally altered zone of Green Tuff area, mudstone and fault crush zone of sedimentary rock of Neogene and later. Information useful for predicting rockburst has been gathered from previous reports. In the preliminary investigation stage, geological survey, geophysical survey and borehole survey from the surface are the source of information. Therefore rock type, P-wave velocity from seismic exploration and in-situ rock stress from hydrofracturing have been considered. Majority of rockburst events occurred at granitic rock, excluding coal mine where different kind of rockburst occurred at pillars. And P-wave velocity was around 5 km/s at the rock of rockburst events. Horizontal maximum and minimum stresses SH and Sh have been tested as a criterion for rockburst. It has been

  7. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  8. Full-Span Tiltrotor Aeroacoustic Model (TRAM) Overview and 40- by 80-Foot Wind Tunnel Test. [conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center

    Science.gov (United States)

    McCluer, Megan S.; Johnson, Jeffrey L.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Most helicopter data trends cannot be extrapolated to tiltrotors because blade geometry and aerodynamic behavior, as well as rotor and fuselage interactions, are significantly different for tiltrotors. A tiltrotor model has been developed to investigate the aeromechanics of tiltrotors, to develop a comprehensive database for validating tiltrotor analyses, and to provide a research platform for supporting future tiltrotor designs. The Full-Span Tiltrotor Aeroacoustic Model (FS TRAM) is a dual-rotor, powered aircraft model with extensive instrumentation for measurement of structural and aerodynamic loads. This paper will present the Full-Span TRAM test capabilities and the first set of data obtained during a 40- by 80-Foot Wind Tunnel test conducted in late 2000 at NASA Ames Research Center. The Full-Span TRAM is a quarter-scale representation of the V-22 Osprey aircraft, and a heavily instrumented NASA and U.S. Army wind tunnel test stand. Rotor structural loads are monitored and recorded for safety-of-flight and for information on blade loads and dynamics. Left and right rotor balance and fuselage balance loads are monitored for safety-of-flight and for measurement of vehicle and rotor aerodynamic performance. Static pressure taps on the left wing are used to determine rotor/wing interactional effects and rotor blade dynamic pressures measure blade airloads. All of these measurement capabilities make the FS TRAM test stand a unique and valuable asset for validation of computational codes and to aid in future tiltrotor designs. The Full-Span TRAM was tested in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel from October through December 2000. Rotor and vehicle performance measurements were acquired in addition to wing pressures, rotor acoustics, and Laser Light Sheet (LLS) flow visualization data. Hover, forward flight, and airframe (rotors off) aerodynamic runs were performed. Helicopter-mode data were acquired during angle of attack and thrust sweeps for

  9. Construction monitoring activities in the ESF starter tunnel

    International Nuclear Information System (INIS)

    Pott, J.; Carlisle, S.

    1994-01-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented

  10. Installation of the backfill and plug test

    International Nuclear Information System (INIS)

    Gunnarsson, D.; Borgesson, L.; Hokmark, H.; Hohannesson, L.E.; Sanden, T.

    2003-01-01

    The Backfill and Plug Test is a full scale test of backfill material, backfilling technique and a tunnel plug. The main objectives of the Backfill and Plug Test are: - to develop and test different materials and compaction techniques for backfilling of tunnels excavated by blasting; - to test the function of the backfill and its interaction with the surrounding rock in a tunnel excavated by blasting; - to develop technique for building tunnel plugs and to test the function. The installation was made in the Swedish underground laboratory, Aspo HRL, during 1999. The inner part of the tunnel is not used for the test but was filled with drainage material. The test volume, which is about 28 m long, can be divided into the following three parts: - the inner part filled with backfill containing 30% bentonite; - the outer part filled with backfill without bentonite and bentonite blocks and pellets at the roof; - the plug. Permeable layers divide the test volume into 11 test sections. The permeable layers are used for increasing the water saturation rate in the backfill and for applying hydraulic gradients between the layers for studying the flow of water in the backfill and in the near field rock. The permeable layers were installed every 2.2 m and each layer is divided into three units in order to separately measure the flow close to the roof, in the central areas of the tunnel and close to the floor. The outer part ends with a wall of prefabricated concrete beams that were used for temporary support of the backfill during the casting of the plug. The upper volume close to the plug is filled with bentonite pellets and blocks consisting of 20% bentonite and 80% sand. The backfill is instrumented with 34 pore water pressure cells, 21 total pressure cells, 57 sensors for monitoring the water saturation and 13 gauges for measuring the local hydraulic conductivity. The water pressures in the permeable mats are measured in all sections. Four pressure cylinders, 2 in the roof

  11. Pool water cleaning facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro [Hitachi Ltd., Tokyo (Japan); Asano, Takashi

    1998-05-29

    Only one system comprising a suppression poor water cleaning system (SPCU) and a filtration desalting tower (F/D) is connected for a plurality of nuclear power plants. Pipelines/valves for connecting the one system of the SPCU pump, the F/D and the plurality of nuclear power plants are disposed, and the system is used in common with the plurality of nuclear power plants. Pipelines/valves for connecting a pipeline for passing SP water to the commonly used SPCU pump and a skimmer surge tank are disposed, and fuel pool water is cooled and cleaned by the commonly used SPCU pump and the commonly used F/D. The number of SPCU pumps and the F/D facilities can be reduced, and a fuel pool water cooling operation mode and a fuel pool water cleaning operation mode which were conducted by an FPC pump so far are conducted by the SPCU pump. (N.H.)

  12. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  13. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  14. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  15. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  16. Automatic control of NASA Langley's 0.3-meter cryogenic test facility

    Science.gov (United States)

    Thibodeaux, J. J.; Balakrishna, S.

    1980-01-01

    Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.

  17. Storm Water General Permit 1 for Industrial Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — General permit #1 for storm water discharges associated with industrial facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  18. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.; O'Byrne, Sean B.; Neely, Andrew J.; Buttsworth, David R.; Balage, Sudantha

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  19. Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition

    Science.gov (United States)

    McGilvray, M.; Dann, A. G.; Jacobs, P. A.

    2013-07-01

    Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.

  20. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  1. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  2. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  3. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    Science.gov (United States)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  4. Small hydropower plant in Ruetenen - Drainage water utilization from the Alpine motor way tunnel 'Seelisberg' in Switzerland

    International Nuclear Information System (INIS)

    Odermatt, K.; Ettlin, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project that uses the drainage water from the Seelisberg motor way tunnel in central Switzerland to drive a small turbine that uses the fall distance between the collection point near the tunnel portal and the lake of Lucerne, which lies 48 meters below, to generate more than 100 kW of electrical power. The operation of the hydraulic power station and the experience gained during initial operation are described and the somewhat erratic amounts of water - depending on rainfall, snow-melting etc. - are discussed. Figures are given on the building and operational costs, electricity production and the price of the electricity produced. The report is illustrated with technical drawings and photos of the installation

  5. Outcome of the geological mapping of the ONKALO underground research facility access tunnel, chainage 1980-3116

    International Nuclear Information System (INIS)

    Nordbaeck, N.

    2010-06-01

    This report describes the lithology and geological structures of the ONKALO underground rock characterization facility access tunnel in chainage 1980-3116. This part of the tunnel was excavated and mapped from spring 2007 to autumn 2008. The bedrock is very heterogeneous and mainly composed of veined gneiss and diatexitic gneiss, but many felsic dykes and sections of pegmatitic granite also occur. In addition, small sections of mica gneiss and K-feldspar porphyry are present. There are also numerous inclusions of mica gneiss, quartz gneiss and skarn. The foliation dips moderately towards SE. 14 fold axes and axial planes were measured from the ONKALO tunnel in chainage 1980-3116 and all have been interpreted to belong to deformation phase D 3 . The measured fold axes have various orientations, but most have moderate plunges and ENE- or WSW-trending ones dominate. The axial planes typically dip moderately towards SE. An almost vertical lineation was also measured from mica gneiss on two locations. A total of 7668 fractures were measured. Three main fracture sets were distinguished from the measured orientations: set 1 fractures are vertical and strike approximately NS, set 2 fractures are more or less horizontal and set 3 fractures are vertical and ENEWSW- striking. The most common filling minerals are calcite, pyrite, chlorite, kaolinite, epidote, muscovite, quartz, biotite, and illite. Of the measured fractures, 579 were slickensided. The slickensided fractures are mainly either sub-vertical N-S-trending (set 1) or sub-vertical NE-SW-trending, with dip to SE. Slickenside surfaces show N-S- and NE-SW-trending lineations, with shallow dip. The slickensided fractures are mostly strike-slip faults with both sinistral and dextral sense of movement. The chainage 1980- 3116 contains 170 tunnel-crosscutting fractures. The orientation is mostly vertical N-Sstriking, sub-horizontal or vertical E-W- trending. 27 deformation zone intersections were also observed, 23 brittle

  6. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  7. EVALUATION OF REINFORCING EFFECT ON FACEBOLTS FOR TUNNELING USING X-RAY CT AND CENTRIFUGE MODEL TEST

    Science.gov (United States)

    Takano, Daiki; Otani, Jun; Date, Kensuke; Yokot, Yasuhiro; Nagatani, Hideki

    The purpose of this paper is firstly to simulate the tunnel face failure in laboratory with four cases of model tests by pulling out tunnel model from a sandy ground that are without using auxiliary method nor facebolts and using facebolts with three different lengths of bolts, and secondary, to investigate the behavior of model ground using X-ray computed tomography (CT) scanner to visualize the failure zone in three dimensions. In addition to those results, a series of centrifuge model tests are conducted to confirm the results of X-ray CT test and also to discuss the ground behavior under full scale stress level. Finally, the effect of face bolting method is evaluated based on all the test results.

  8. Directory of transport packaging test facilities

    International Nuclear Information System (INIS)

    1983-08-01

    Radioactive materials are transported in packagings or containers which have to withstand certain tests depending on whether they are Type A or Type B packagings. In answer to a request by the International Atomic Energy Agency, 13 Member States have provided information on the test facilities and services existing in their country which can be made available for use by other states by arrangement for testing different kinds of packagings. The directory gives the technical information on the facilities, the services, the tests that can be done and in some cases even the financial arrangement is included

  9. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    Science.gov (United States)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  10. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  11. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  12. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  13. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  14. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  15. ORNL 150 keV neutral beam test facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Kim, J.; Menon, M.M.; Schilling, G.

    1977-01-01

    The 150 keV neutral beam test facility provides for the testing and development of neutral beam injectors and beam systems of the class that will be needed for the Tokamak Fusion Test Reactor (TFTR) and The Next Step (TNS). The test facility can simulate a complete beam line injection system and can provide a wide range of experimental operating conditions. Herein is offered a general description of the facility's capabilities and a discussion of present system performance

  16. The tunnel project. Drill hole logging and structural geologic studies in the Grualia, the Lunner county

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Braathen, Alvar; Roenning, Jan S.; Nordgulen, Oeystein

    2001-01-01

    In connection with the project ''Environmental and community useful tunnels'' the Norwegian Geologic Survey (NGU) has made geologic and geophysical investigations along parts of the tunnel at the Grualia in the Lunner county. The purpose of the geologic studies was to map and investigate weakness zones in the rock foundations. The geophysical studies aimed at testing techniques that was in little use in preliminary studies for tunnel operations. The methods used have been optical inspection of drill holes, measurements of temperature and conductivity in the water and the measuring of the natural gamma radiation in the drill holes. The resistivity in the drill holes is also determined and test pumping with flow measurements is carried out in order to calculate the well water influx capacity. These methods may contribute to information about the rock condition (cracking, water influx). Previously the NGU has made 2D resistivity measurements at the ground in the tunnel in order to map the weakness zones. The results from the measurements in 6 wells show large variations in the rock qualities. The wells are drilled towards indicated weakness zones. Open water conducting cracks and sections with largely cracked rocks are detected in or in the proximity of the tunnel route. The weakness zone between the hornfels and the syenite west of the Langvatnet is largely cracked, has a large water conducting capacity and there are some unstable masses. Further east several open, water- conducting cracks are detected in the syenite. Furthest to the east in the route cracked and unstable rocks are found. Several of the holes are blocked by ravines which confirm the poor rock quality. In the particular areas problems are to be expected during the operation with respect to water influx and stability. Methodically the drill hole studies have shown great value for the follow up of the 2D resistivity measurements on the ground. The indicated weakness zones through the 2D have been

  17. Direction of rational use of water at livestock facilities

    Science.gov (United States)

    Potseluev, A. A.; Nazarov, I. V.

    2017-05-01

    The article notes the world water shortage problem. Against this background, Russia’s agricultural production is considered, in particular the livestock sector as the main consumer of water resources. The structure of the main technological processes at livestock facilities is given and possible technological damage is indicated in case of the lack of technological processes for servicing animals and poultry with water. The direction of rational use of water based on the introduction of new technical and technological solutions of water supply systems and means is substantiated. Constructive solutions of systems and facilities that help to reduce water consumption are presented, and as well a possible positive effect.

  18. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    Science.gov (United States)

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  19. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    Storz, R.

    1980-10-01

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  20. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics